[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7548460B2 - Water storage device - Google Patents

Water storage device Download PDF

Info

Publication number
JP7548460B2
JP7548460B2 JP2024008695A JP2024008695A JP7548460B2 JP 7548460 B2 JP7548460 B2 JP 7548460B2 JP 2024008695 A JP2024008695 A JP 2024008695A JP 2024008695 A JP2024008695 A JP 2024008695A JP 7548460 B2 JP7548460 B2 JP 7548460B2
Authority
JP
Japan
Prior art keywords
seawater
pipe material
pipe
storage device
water storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2024008695A
Other languages
Japanese (ja)
Other versions
JP2024032855A (en
Inventor
一紀 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2024008695A priority Critical patent/JP7548460B2/en
Publication of JP2024032855A publication Critical patent/JP2024032855A/en
Application granted granted Critical
Publication of JP7548460B2 publication Critical patent/JP7548460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids

Landscapes

  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Description

本発明は、海中に設ける貯水装置に関する。 The present invention relates to a water storage device installed underwater.

従来より、水の位置エネルギーを利用した蓄電システムである揚水式水力発電が広く一般に知られている。揚水式水力発電は、上部ダムと下部ダムとの間に水車タービンを備えた発電所を構築し、上部ダムから水車タービンを経由して下部ダムに向けて水を落とすことにより発電機で発電する。そののち、下部ダムに貯留した水を上部ダムに汲み上げ、水の位置エネルギーの形で電気を貯える。 Pumped-storage hydroelectric power generation, an electricity storage system that utilizes the potential energy of water, has been widely known for some time. In pumped-storage hydroelectric power generation, a power station equipped with a water turbine is constructed between an upper dam and a lower dam, and electricity is generated by a generator that drops water from the upper dam through the water turbine toward the lower dam. The water stored in the lower dam is then pumped up to the upper dam, and electricity is stored in the form of the potential energy of the water.

近年では、上記の揚水式水力発電と同様の原理で、海水の位置エネルギーを利用して発電と蓄電を繰り返す海水位置エネルギー利用蓄電システムとして、海洋インバースダムの開発が進められている。特許文献1には、その詳細が電力貯蔵システムとして開示されているが、概略を図9(a)(b)に示す。海洋インバースダム200は、沖合の海底近傍にダム空間となる函型の貯水槽201と発電設備202を構築したものである。 In recent years, marine inverse dams have been developed as a seawater potential energy storage system that uses the potential energy of seawater to repeatedly generate and store electricity, based on the same principle as the pumped storage hydroelectric power generation described above. Patent Document 1 discloses the details of this system as an electricity storage system, but an outline is shown in Figures 9(a) and (b). The marine inverse dam 200 is constructed near the seabed offshore, with a box-shaped water tank 201 that serves as the dam space, and a power generation facility 202.

海洋インバースダム200では海水Wを、図9(a)で示すように、発電設備202を経由して貯水槽201に向けて落下させることで、発電が行われる。一方、発電に利用した海水Wで貯水槽201が満たされると、図9(b)で示すように、揚水ポンプ203を利用して海水Wを排出し、貯水槽201を空洞にする。すると、上述した海水の位置エネルギーを利用した発電設備202による発電の再開が可能となるため、これをもって、電気エネルギーが蓄電された状態となる。 At the marine inverse dam 200, electricity is generated by dropping seawater W into the water tank 201 via the power generation equipment 202, as shown in FIG. 9(a). On the other hand, when the water tank 201 is filled with the seawater W used for power generation, the seawater W is discharged using the lift pump 203, as shown in FIG. 9(b), to make the water tank 201 hollow. This makes it possible to resume power generation by the power generation equipment 202, which uses the potential energy of the seawater described above, and electrical energy is now stored.

特許第5787943号公報Patent No. 5787943

上述のとおり、海水Wを利用する海洋インバースダム200は、海水位の安定している沖合に構築することから、年間を通して安定して発電できる。また、函型に形成された貯水槽201の数量を増量し容量を増大すれば、大規模な電力量を確保することが可能となる。さらに、貯水槽201の天端に屋根を構築すれば、屋根部分を利用して大規模ソーラーパネルを設置したり、送受電アンテナを設置してマイクロ波ミラー衛星を利用した長距離エネルギー電送を実現することも期待される。 As described above, the marine inverse dam 200 that uses seawater W can generate electricity steadily throughout the year because it is constructed offshore where the seawater level is stable. Also, by increasing the number and capacity of the box-shaped water tanks 201, it is possible to secure a large amount of electricity. Furthermore, by constructing a roof on the top of the water tank 201, it is expected that the roof area can be used to install large-scale solar panels or a power transmission/reception antenna can be installed to realize long-distance energy transmission using a microwave mirror satellite.

ところが、海中に構築する函型の貯水槽201には様々な課題が生じる。例えば、建築時には、貯水槽201を安定して設置するべく、海底面の不陸調整が必要となる。また、貯水槽201に海水Wが流入する発電時に、貯水槽201の重量が増大することを考慮し、これを支持できるよう、貯水槽201を設置する海底面全面に地盤改良を行い、地盤補強をする必要が生じる。さらには、貯水槽201の海水Wを揚水する蓄電時に、貯水槽201に浮力が作用することを考慮し、これに抵抗するべく、貯水槽201の重量を大きく構築したり、海底地盤中に地盤アンカー204を定着させる等の対策を講じる必要が生じる。 However, constructing a box-shaped water tank 201 underwater poses various challenges. For example, during construction, it is necessary to adjust the seabed to ensure stable installation of the water tank 201. Also, considering that the weight of the water tank 201 increases when seawater W flows into the water tank 201 to generate electricity, it becomes necessary to carry out ground improvement and ground reinforcement on the entire seabed surface on which the water tank 201 is to be installed so that the weight can be supported. Furthermore, considering that buoyancy acts on the water tank 201 when electricity is stored by pumping up the seawater W in the water tank 201, it becomes necessary to take measures such as constructing the water tank 201 to be heavy and anchoring ground anchors 204 into the seabed to resist this.

また、函型の貯水槽201は、海底面から海面に至る高さに構築すると、津波等の自然外力が作用した場合には構造体としての機能を維持できない可能性があり、通常時であっても高い曲げ剛性を要求される。加えて、貯水槽201は鉄筋コンクリート造の構造体とすることが想定されるが、海洋環境下では鉄筋の早期に劣化しやすいだけでなく、劣化対策のメンテナンスも困難となりやすい。 Furthermore, if the box-shaped water tank 201 is constructed at a height that reaches from the seabed to the sea surface, it may not be able to maintain its structural function in the event of a natural external force such as a tsunami, and so a high bending rigidity is required even under normal circumstances. In addition, the water tank 201 is expected to be a reinforced concrete structure, but in a marine environment not only is the reinforcing steel prone to early deterioration, but maintenance measures to prevent deterioration can also be difficult.

さらに、函型の貯水槽201を沖合に設けることで、海底面までの深度と広い設置面積を確保できるため、高い発電力を確保することができるが、電力を使用する陸地までの距離が長くなるため、大規模な送電設備が必要になるとともに、輸送時の電力ロスも増大することとなる。 Furthermore, by installing the box-shaped water tank 201 offshore, it is possible to ensure a large installation area and depth to the seabed, which allows for a high level of power generation. However, this increases the distance to land where the electricity is used, which requires large-scale power transmission equipment and increases power loss during transportation.

本発明は、かかる課題に鑑みなされたものであって、その主な目的は、海中で効率よく構築できるとともに、海水位置エネルギー利用蓄電システムへの利用に適した構造を有する貯水装置を提供することである。 The present invention has been made in consideration of these problems, and its main objective is to provide a water storage device that can be constructed efficiently underwater and has a structure suitable for use in a seawater potential energy utilization electricity storage system.

かかる目的を達成するため、本発明の貯水装置は、内空部に貯留空間が形成される、該内空部に連通する海水流入部と海水排出部とが設けられた管材と、該管材の長手方向を海底面に沿わせて支持する複数の管材支持部材と、を備える貯水装置であって、前記管材の一端に形成した前記海水流入部側に、前記貯留空間に外気を供給する空気注入管が設けられているとともに、前記管材の他端に形成した前記海水排出部側に、前記貯留空間の海水を排出する排水機構及び空気を排出する排気機構が設けられていることを特徴とする。また、前記空気注入管は、開状態で前記貯留空間に外気を供給する逆止弁を備えることを特徴とする。 In order to achieve this object, the water storage device of the present invention is a water storage device comprising a pipe member having a seawater inlet and a seawater outlet communicating with the internal space, in which a storage space is formed, and a plurality of pipe member support members that support the longitudinal direction of the pipe member along the seabed surface, and is characterized in that an air injection pipe that supplies outside air to the storage space is provided on the seawater inlet side formed at one end of the pipe member, and a drainage mechanism that discharges seawater from the storage space and an exhaust mechanism that discharges air are provided on the seawater outlet side formed at the other end of the pipe member. The air injection pipe is also characterized in that it is provided with a check valve that supplies outside air to the storage space when open.

本発明の貯水装置によれば、海底面に沿わせた管材を、複数の管材支持部材で支持することから、管材の貯留空間に海水が流入し、管材の全体重量が増大した場合には、その荷重を複数の管材支持部材で分担して支持することができる。同様に、貯留空間から海水を排出したのちに管材に浮力が作用した場合にも、複数の管材支持部材各々で分担して、この浮力に抵抗することができる。 According to the water storage device of the present invention, the pipe material laid along the seabed surface is supported by multiple pipe material support members, so that if seawater flows into the storage space of the pipe material and the total weight of the pipe material increases, the load can be shared and supported by the multiple pipe material support members. Similarly, if buoyancy acts on the pipe material after seawater is discharged from the storage space, this buoyancy can be resisted by each of the multiple pipe material support members.

これにより、海底面の不陸調整や海底地盤の地盤改良等の大掛かりな海中作業を省略できるため、貯水装置を海中で効率よく構築することができる。また、貯留空間への海水の流出入が繰り返されても、管材支持部材で管材を安定して海底面に据え付けることが可能となる。したがって、発電と蓄電を繰り返すたびに海水の流出入が生じる海洋インバースダムのような海水位置エネルギー利用蓄電システムに好適な構造体として、貯水装置を利用することが可能となる。 This eliminates the need for large-scale underwater work such as leveling the seabed and improving the seabed foundation, allowing the water storage device to be constructed efficiently underwater. Furthermore, even if seawater repeatedly flows in and out of the storage space, the pipe support members allow the pipes to be stably installed on the seabed. This makes it possible to use the water storage device as a suitable structure for a seawater potential energy storage system, such as an ocean inverse dam, where seawater flows in and out every time electricity is generated and stored.

また、管材の延在形状を、直線状や曲線状もしくは平面視十字状など適宜変更することにより、貯留空間の容量を自在に調整することが可能となる。また、管材は、海底面に設置された際に水圧に耐えうる程度の剛性を有していれば、函型の構造体を用いる場合のように津波等による自然外力に耐えるような高い剛性を確保する必要がなく、貯水装置を、自然外力に対して高い耐力を有する構造体とすることが可能となる。 In addition, by appropriately changing the extension shape of the pipe material to a straight line, curved line, cross-shaped line in plan view, etc., it is possible to freely adjust the volume of the storage space. Furthermore, as long as the pipe material has a rigidity sufficient to withstand water pressure when installed on the seabed, there is no need to ensure high rigidity to withstand natural forces such as tsunamis, as is the case when using a box-shaped structure, and the water storage device can be made into a structure with high resistance to natural forces.

本発明の貯水装置によれば、管材支持部材にサクションアンカーを採用することから、管材の海底面への設置作業が簡素化され、施工性を向上することが可能となる。このとき、管材として市場で取引されているプレキャスト部材等の規格品を適用すれば、海中で実施する作業を大幅に削減でき、施工性をより向上することが可能となる。また、管材の撤去作業も容易に実施できるため、供用後に実施する可能性のある管材の交換や移設等のメンテナンス作業を、容易に実施することが可能となる。 According to the water storage device of the present invention, suction anchors are used as pipe support members, which simplifies the installation of pipes on the seabed and improves workability. In this case, if standardized products such as precast members that are traded on the market as pipes are used, the work to be performed underwater can be significantly reduced, making it possible to further improve workability. In addition, since the pipes can be easily removed, maintenance work such as replacing or relocating the pipes that may be performed after the system is put into service can be easily performed.

本発明の貯水装置によれば、管材が複数の管材本体により構成されることから、連結する管材本体の本数を適宜変更することにより、内空部に設けられる貯留空間の容量を容易に増減することが可能となる。また、管材の一部に破損等の不具合が生じた場合には、損傷した管材本体を撤去し交換すればよく、管材のメンテナンス作業を容易に実施することも可能となる。 According to the water storage device of the present invention, since the pipe material is composed of multiple pipe material bodies, it is possible to easily increase or decrease the capacity of the storage space provided in the internal space by appropriately changing the number of pipe material bodies that are connected. Furthermore, if a defect such as damage occurs in a part of the pipe material, the damaged pipe material body can be removed and replaced, and maintenance work on the pipe material can be easily performed.

本発明の貯水装置を、電気エネルギーを海水の位置エネルギーに変換して貯蔵する蓄電システムに採用すれば、海底面に沿って設置される管材の海水流入部を岸側近傍に配置した状態で、管材の延在形状を適宜変更することにより貯留空間の容量を自在に調整できる。これにより、管材の海水流入部に接続される発電設備を岸側近傍に配置しながら、所望の蓄電量を確保できるだけでなく、発電した電力を陸地に送電する際に必要とする送電設備の省力化や、送電に伴う電力ロスの大幅な削減を図ることが可能となる。 If the water storage device of the present invention is used in an electricity storage system that converts electrical energy into potential energy of seawater and stores it, the capacity of the storage space can be freely adjusted by appropriately changing the extension shape of the pipe material installed along the seabed, with the seawater inlet of the pipe material located near the shore. This not only makes it possible to secure the desired amount of stored electricity while locating the power generation equipment connected to the seawater inlet of the pipe material near the shore, but also makes it possible to reduce the labor required for the power transmission equipment required to transmit the generated electricity to land and significantly reduce power losses associated with power transmission.

本発明によれば、貯水装置が、内空部に貯留空間が設けられる管材を、海底面に沿わせた状態で複数の管材支持部材により支持する簡略な構造であるため、海中で効率よく構築できるとともに、貯留空間への海水の流出入が繰り返されても、管材支持部材で管材を安定して海底面に据え付けることができるため、海水位置エネルギー利用蓄電システムに好適な構造体として利用することが可能となる。 According to the present invention, the water storage device has a simple structure in which a pipe with a storage space in its internal cavity is supported by a plurality of pipe support members while aligned with the seabed surface, so that it can be constructed efficiently underwater, and even if seawater repeatedly flows in and out of the storage space, the pipe support members allow the pipe to be stably installed on the seabed surface, making it possible to use it as a suitable structure for a seawater potential energy utilization electricity storage system.

本発明の実施の形態における蓄電システムの概略を示す図である。1 is a diagram showing an outline of a power storage system according to an embodiment of the present invention; 本発明の実施の形態における管材支持部材の詳細を示す図である。5A to 5C are diagrams showing details of a pipe material support member in an embodiment of the present invention. 本発明の実施の形態における貯水装置の事例を示す図である(その1)。1 is a diagram showing an example of a water storage device according to an embodiment of the present invention (part 1). FIG. 本発明の実施の形態における貯水装置の事例を示す図である(その2)。FIG. 2 is a diagram showing an example of a water storage device according to an embodiment of the present invention (part 2). 本発明の実施の形態における貯水装置の事例を示す図である(その3)。FIG. 3 is a diagram showing an example of a water storage device according to an embodiment of the present invention (part 3). 本発明の実施の形態における貯水装置の事例を示す図である(その4)。FIG. 4 is a diagram showing an example of a water storage device according to an embodiment of the present invention; 本発明の実施の形態における貯水装置の構築方法を示す図である(その1)。1A to 1C are diagrams showing a method for constructing a water storage device according to an embodiment of the present invention (part 本発明の実施の形態における貯水装置の構築方法を示す図である(その2)。13A to 13C are diagrams showing a method for constructing a water storage device in accordance with an embodiment of the present invention (part 2). 従来技術である海洋インバースダムの一例を示す図である。FIG. 1 is a diagram showing an example of a marine inverse dam according to the prior art.

本発明の貯水装置は、電気エネルギーを海水の位置エネルギーに変換して貯蔵する蓄電システムへの利用に適したものであり、貯水装置を用いた蓄電システムと併せてその詳細を、図1~図8を参照しつつ以下に説明する。 The water storage device of the present invention is suitable for use in an electricity storage system that converts electrical energy into potential energy of seawater and stores it. The details of the electricity storage system using the water storage device will be described below with reference to Figures 1 to 8.

≪≪蓄電システム≫≫
蓄電システム100は、図1(a)(b)で示すように、海水Wを利用して発電する発電設備10と、発電設備10で利用した海水Wが流下する貯水装置20と、貯水装置20に貯留された海水Wを排出する排水設備30と、貯水装置20に外気を供給する空気注入管40とを備える。
<<Energy Storage System>>
As shown in Figures 1(a) and (b), the energy storage system 100 includes a power generation equipment 10 that generates power using seawater W, a water storage device 20 through which the seawater W used in the power generation equipment 10 flows, a drainage device 30 that discharges the seawater W stored in the water storage device 20, and an air injection pipe 40 that supplies outside air to the water storage device 20.

発電設備10は、海水Wが流入する流入管路11と、流入管路11を流下した海水Wが供給される発電装置12と、発電装置12から流出した海水Wを、貯水装置20に供給する流出管路13と、を備える。発電装置12は、揚水式水力発電に設けられている発電設備と同様の設備であり、海水Wを利用して回転する水車タービンと、水車タービンの回転を利用して発電する発電機と、を備えている。なお、必要に応じて、流入管路11から流出管路13に向けて流下する海水Wの流速を調整する流水設備を備えてもよい。 The power generation facility 10 includes an inflow pipeline 11 through which seawater W flows, a power generation device 12 to which the seawater W that has flowed down the inflow pipeline 11 is supplied, and an outflow pipeline 13 that supplies the seawater W that has flowed out from the power generation device 12 to the water storage device 20. The power generation device 12 is the same as the power generation facility provided in a pumped-storage hydroelectric power generation system, and includes a water turbine that uses the seawater W to rotate, and a generator that uses the rotation of the water turbine to generate electricity. If necessary, a water flow facility may be provided to adjust the flow rate of the seawater W that flows down from the inflow pipeline 11 toward the outflow pipeline 13.

貯水装置20は、海底の岸側に配置されている発電設備10と沖側に配置されている排水設備30とを接続するようにして、海底面sfに沿って設置されており、発電設備10から流下した海水Wを貯留することの可能な貯留空間S1を有している。なお、貯水装置20の詳細は後述する。 The water storage device 20 is installed along the seabed surface sf so as to connect the power generation equipment 10 arranged on the shore side of the seabed with the drainage equipment 30 arranged on the offshore side, and has a storage space S1 capable of storing seawater W flowing down from the power generation equipment 10. Details of the water storage device 20 will be described later.

排水設備30は、貯水装置20に貯留する海水Wを排出する排水ポンプ31と、排水ポンプ31の動力を創出する発電システム32とを備えている。本実施の形態では、発電システム32として洋上風力発電を事例に挙げているが、これに限定するものではなく、太陽光発電等を採用してもよい。また、排水ポンプ31に動力を供給できる装備が備えられていれば、発電システム32は必ずしも設置されていなくてもよい。 The drainage facility 30 includes a drainage pump 31 that discharges seawater W stored in the water storage device 20, and a power generation system 32 that generates power for the drainage pump 31. In this embodiment, offshore wind power generation is used as an example of the power generation system 32, but this is not limited to this, and solar power generation or the like may also be used. In addition, as long as equipment capable of supplying power to the drainage pump 31 is provided, the power generation system 32 does not necessarily have to be installed.

上述する構成の蓄電システム100は、図1(a)で示すように、貯水装置20の貯留空間S1が空洞の状態もしくは貯水可能な空隙を有した状態で、流入管路11を介して発電装置12への海水Wの供給を開始する。このとき、空気注入管40は、逆止弁等の電磁弁(図示せず)を閉状態としておく。また、貯留空間S1の空気を排気する排気機構(図示せず)を、例えば排水設備30に設けておき、これを作動させておく。これにより、海水Wが供給されると発電装置12は発電し、発電により取得した電気は、送電設備14を介して陸地側に設けられている変電施設15に送電される。 As shown in FIG. 1(a), the storage system 100 having the above-described configuration starts supplying seawater W to the power generation device 12 through the inlet pipe 11 when the storage space S1 of the water storage device 20 is hollow or has a gap that can store water. At this time, the air injection pipe 40 has a solenoid valve such as a check valve (not shown) in a closed state. In addition, an exhaust mechanism (not shown) for exhausting air from the storage space S1 is provided, for example, in the drainage equipment 30 and is operated. As a result, when seawater W is supplied, the power generation device 12 generates electricity, and the electricity obtained by the generation is transmitted to the substation facility 15 provided on the land side through the power transmission equipment 14.

その一方で、発電装置12を経由した海水Wは、流出管路13を介して貯水装置20に流下し、貯留空間S1に貯留される。そして、図1(b)で示すように、貯水装置20の貯留空間S1が満たされた時点で、もしくは所望の発電量に達した時点で発電を一時停止し、排水設備30を稼働させる。このとき、空気注入管40は、逆止弁等の電磁弁(図示せず)を開状態とし、貯留空間S1に外気を供給可能な状態としておく。 Meanwhile, the seawater W that has passed through the power generation device 12 flows down through the outflow pipe 13 into the water storage device 20 and is stored in the storage space S1. Then, as shown in FIG. 1(b), when the storage space S1 of the water storage device 20 is filled or when the desired amount of power generation is reached, power generation is temporarily stopped and the drainage equipment 30 is operated. At this time, the air injection pipe 40 opens an electromagnetic valve such as a check valve (not shown) so that outside air can be supplied to the storage space S1.

すると、貯留空間S1は海水Wが排出されて空洞になるため、発電設備10による海水Wの位置エネルギーを利用した発電が再度可能な状態となり、これをもって、電気エネルギーが蓄電されたこととなる。これにより蓄電システム100は、海水Wの位置エネルギーを利用して発電と蓄電を繰り返す、海水位置エネルギー利用蓄電システムとして機能することとなる。 Then, the seawater W is discharged from the storage space S1, making it hollow, and the power generation facility 10 is again able to generate electricity using the potential energy of the seawater W, which means that electrical energy has been stored. This causes the energy storage system 100 to function as a seawater potential energy storage system that repeatedly generates and stores electricity using the potential energy of the seawater W.

≪≪貯水装置≫≫
上記のように利用される貯水装置20は、図1(b)で示すように、内空部が貯留空間S1となる管材21と、管材21を海底面sf上で支持する複数の管材支持部材22と、を備えている。
<<Water Storage Device>>
The water storage device 20 used as described above comprises a pipe material 21 whose inner space forms a storage space S1, and a plurality of pipe material support members 22 that support the pipe material 21 on the seabed surface sf, as shown in Figure 1(b).

管材21は、岸側から沖側に向けて延在するように海底面sfに沿って設置されており、岸側に位置する一端に海水流入部21aが形成され、この海水流入部21aに発電設備10の流出管路13が接続されている。また、管材21の沖側に位置する他端に海水流出部21bが形成され、この海水排出部21bに、排水設備30の排水ポンプ31が接続されている。このように、発電設備10と排水設備30とを接続する管材21は、管材支持部材22を介して、海底面sfに据え付けられている。 The pipe material 21 is installed along the seabed surface sf so as to extend from the shore side toward the offshore side, and a seawater inlet section 21a is formed at one end located on the shore side, to which the outlet pipeline 13 of the power generation equipment 10 is connected. A seawater outlet section 21b is formed at the other end located on the offshore side of the pipe material 21, to which the drainage pump 31 of the drainage equipment 30 is connected. In this way, the pipe material 21 connecting the power generation equipment 10 and the drainage equipment 30 is installed on the seabed surface sf via the pipe material support member 22.

管材支持部材22は、図2(a)で示すように、管材21を把持する把持部材23と、把持部材23が設けられたサクションアンカー24とを備えている。サクションアンカー24は、頂版241と、頂版241の下面より垂下されている筒体形状よりなるスカート部材242とにより構成され、頂版241の上面に把持部材23が取り付けられている。 As shown in FIG. 2(a), the pipe material support member 22 is equipped with a gripping member 23 that grips the pipe material 21, and a suction anchor 24 to which the gripping member 23 is attached. The suction anchor 24 is composed of a top plate 241 and a skirt member 242 having a cylindrical shape that hangs down from the underside of the top plate 241, and the gripping member 23 is attached to the upper surface of the top plate 241.

頂版241にはさらに、図2(a)(b)で示すように、頂版241とスカート部材242との囲繞空間S2により囲まれた空間に滞留する海水Wを排出する排水孔2411が設けられている。これにより、図2(b)で示すように、スカート部材242を海底面sfに当接させた状態で、囲繞空間S2の海水Wを排水孔2411を利用して排出すると、スカート部材242が海底地盤に貫入されるとともにその状態が維持され、海底地盤に定着するアンカー部材として機能する。 As shown in Figures 2(a) and 2(b), the top plate 241 is further provided with drainage holes 2411 for draining seawater W that is retained in the space enclosed by the enclosed space S2 of the top plate 241 and the skirt member 242. As a result, as shown in Figure 2(b), when the skirt member 242 is in contact with the seabed surface sf and the seawater W in the enclosed space S2 is drained using the drainage holes 2411, the skirt member 242 penetrates into the seabed and maintains this state, functioning as an anchor member that is fixed to the seabed.

このような管材支持部材22を、把持部材23を介して把持した管材21の長手方向に複数設けることにより、図1(b)で示すように、管材21の貯留空間S1に海水Wが貯留された状態では、その荷重を複数の管材支持部材22により分担して支持することが可能となる。したがって、貯水装置20が位置する海底地盤に対して、大掛かりな地盤改良を施す必要はない。 By providing multiple such pipe material support members 22 in the longitudinal direction of the pipe material 21 grasped by the grasping member 23, as shown in FIG. 1(b), when seawater W is stored in the storage space S1 of the pipe material 21, the load can be shared and supported by the multiple pipe material support members 22. Therefore, there is no need to carry out extensive ground improvement work on the seabed ground on which the water storage device 20 is located.

一方、図2(c)で示すように、管材21の貯留空間S1から海水Wが排出された状態では、管材21に浮力が発生して複数の管材支持部材22各々に引抜き荷重が作用する。しかし、管材21は、海底地盤に定着された管材支持部材22を構成するサクションアンカー24により、これに抵抗することができる。したがって、浮力を考慮して管材21の重量を大きくしたり、バラストを設ける等の対策を講じる必要もない。 On the other hand, as shown in FIG. 2(c), when seawater W is discharged from the storage space S1 of the pipe material 21, buoyancy occurs in the pipe material 21, and a pull-out load acts on each of the multiple pipe material support members 22. However, the pipe material 21 can resist this by the suction anchors 24 that constitute the pipe material support members 22 fixed to the seabed. Therefore, there is no need to take measures such as increasing the weight of the pipe material 21 or providing ballast to take buoyancy into account.

このように、貯水装置20は、管材21の貯留空間S1に対して海水Wの流出入が繰り返された場合にも、管材支持部材22により管材21を海底面sf上で安定して据え付け支持することができる。したがって、発電と蓄電を繰り返すたびに海水Wの流出入が生じる海水位置エネルギー利用蓄電システムに好適な構造体として、貯水装置20を利用することが可能となる。 In this way, the water storage device 20 can stably install and support the pipe material 21 on the seabed surface sf by the pipe material support member 22, even when seawater W repeatedly flows in and out of the storage space S1 of the pipe material 21. Therefore, the water storage device 20 can be used as a suitable structure for a seawater potential energy utilization electricity storage system in which seawater W flows in and out every time electricity generation and storage are repeated.

≪≪管材の延在形状≫≫
上述する構成の貯水装置20は、管材21が複数の管材本体211により構成されている。そして、図1及び図3~図6で例示するように、複数の管材本体211を組み合わせて管材21の延在形状を適宜変更することにより、その内空部に設けられる貯留空間S1の容量を、自在に調整することが可能となっている。
<<Extension shape of pipe material>>
In the water storage device 20 having the above-described configuration, the pipe material 21 is composed of a plurality of pipe material bodies 211. As illustrated in Fig. 1 and Fig. 3 to Fig. 6, by combining a plurality of pipe material bodies 211 and appropriately changing the extension shape of the pipe material 21, it is possible to freely adjust the capacity of the storage space S1 provided in the inner hollow portion.

管材本体211は、図1(b)で示すように、内空部を有する長尺の管状部材であって、海底面sf上に位置する状態で、水圧の影響を受けても大きな変形を生じない程度の剛性を有する材料であれば、いずれの材料により構成されるものであってもよい。例えば、プレキャストコンクリート造のヒューム管やボックスカルバート等、市場で広く取引されている規格品を採用することが可能であり、その断面形状も円筒型もしくは角筒型等いずれであってもよい。 As shown in FIG. 1(b), the pipe body 211 is a long tubular member with an internal hollow portion, and may be made of any material that has sufficient rigidity to not deform significantly even when subjected to water pressure when positioned on the seabed surface sf. For example, it is possible to use standard products that are widely traded on the market, such as precast concrete Hume pipes and box culverts, and the cross-sectional shape may be either cylindrical or square.

このような管材本体211は、貯留空間S1を構成する内空部が連通するよう、隣り合う端部どうしを連結して管材21を構成する。これにより、管材21の一部に損傷等の不具合が生じた場合には、不具合を生じた部分に位置する管材本体211を撤去し交換すればよく、管材21のメンテナンス作業を容易に実施することが可能となる。管材本体211どうしの連結方法はいずれの手段によるものであってもよいが、例えば、図2(a)で示すような中継躯体25を採用するとよい。 The pipe material 21 is formed by connecting adjacent ends of such pipe material bodies 211 so that the internal space that constitutes the storage space S1 is in communication. As a result, if a defect such as damage occurs in a part of the pipe material 21, the pipe material body 211 located in the defective part can be removed and replaced, making it possible to easily carry out maintenance work on the pipe material 21. The pipe material bodies 211 may be connected to each other by any means, but for example, it is recommended to use an intermediate body 25 as shown in Figure 2 (a).

中継躯体25は、隣り合う管材本体211を連通状態で連結する継手部材であり、水密に連結できるとともに着脱自在な部材であれば、スリーブ継手や可撓性継手等いずれの構造のものも採用可能である。このような構成の中継躯体25は、管材支持部材22のサクションアンカー24を構成する頂版241の上面に、把持部材23とともに設置してもよいし、管材支持部材22に設置することなく単体で用いてもよい。 The intermediate body 25 is a joint member that connects adjacent pipe bodies 211 in a communicating state, and any structure such as a sleeve joint or a flexible joint can be used as long as it can be connected watertight and is detachable. The intermediate body 25 having such a configuration may be installed together with the gripping member 23 on the upper surface of the top plate 241 that constitutes the suction anchor 24 of the pipe support member 22, or it may be used alone without being installed on the pipe support member 22.

なお、管材本体211が、例えば両端部にオス継手もしくはメス継手を備え、隣り合う管材本体211どうしの間で水密構造の継手を形成できるものであれば、必ずしも中継躯体25は用いなくてもよい。 In addition, if the pipe body 211 has male or female joints at both ends, for example, and a watertight joint can be formed between adjacent pipe bodies 211, the intermediate body 25 does not necessarily have to be used.

このような構成の管材本体211は、例えば図1(a)(b)で示すように、複数を長手方向に直線状もしくは曲線状に順次連結して管材21を構成し、発電設備10と排水設備30とを接続する。これにより、管材21の貯留空間S1の容量と管材21の延長長さを容易に増減することが可能となる。 As shown in Figures 1(a) and 1(b), for example, multiple pipe bodies 211 having such a configuration are sequentially connected in a straight or curved manner in the longitudinal direction to form the pipe 21, which connects the power generation equipment 10 and the drainage equipment 30. This makes it possible to easily increase or decrease the capacity of the storage space S1 of the pipe 21 and the extension length of the pipe 21.

ここで、発電設備10と排水設備30とを接続する管材21は、1本のみに限定されるものではなく複数本を並列配置してもよい。例えば、図3(a)(b)では2本の管材21を並列に配置し、各々の海水流入部21a及び海水排出部21bを、発電設備10及び排水設備30に接続している。こうすると、いずれか一方に損傷等を生じるなどしてメンテナンスを行う必要が生じた場合にも、発電設備10を継続して稼働させることが可能となる。このとき、並行する2本の管材21どうしは、図3(a)で示すように中継躯体25を利用して両者が連通する構造としてもよいし、図3(b)で示すようにそれぞれを独立させる構造としてもよい。 Here, the number of pipes 21 connecting the power generation equipment 10 and the drainage equipment 30 is not limited to one, and multiple pipes may be arranged in parallel. For example, in Fig. 3(a) and (b), two pipes 21 are arranged in parallel, and the seawater inlet 21a and the seawater outlet 21b are connected to the power generation equipment 10 and the drainage equipment 30, respectively. In this way, even if maintenance becomes necessary due to damage to one of the equipment, it is possible to continue operating the power generation equipment 10. In this case, the two parallel pipes 21 may be structured to communicate with each other using a relay body 25 as shown in Fig. 3(a), or may be structured to be independent of each other as shown in Fig. 3(b).

また、管材21は、必ずしも直線や曲線等の線状に限定されるものではなく、例えば図4(a)で示すように、管材21よりなる1本の本線21Aで発電設備10と排水設備30とを接続する。そして、この本線21Aに、同じく管材21よりなる2本の支線21Bを別途連結し、平面視で十字形状をなすように形成してもよい。この場合には、本線21Aと支線21Bとの連結部に上述した中継躯体25を介装し、本線21Aと支線21Bの貯留空間S1を連通させる。 The pipe material 21 is not necessarily limited to a linear shape such as a straight line or a curved line. For example, as shown in FIG. 4(a), a single main line 21A made of pipe material 21 connects the power generation equipment 10 and the drainage equipment 30. Two branch lines 21B also made of pipe material 21 may be separately connected to this main line 21A to form a cross shape in a plan view. In this case, the above-mentioned relay body 25 is interposed between the connection between the main line 21A and the branch line 21B to connect the storage spaces S1 of the main line 21A and the branch line 21B.

また、図4(b)で示すように、本線21Aに対して複数の支線1Bを連結させてもよい。こうすると、本線21Aに対して連結する支線21Bの本数や長さを適宜変更することで、発電設備10と排水設備30との距離を一定に維持しながら、貯留空間S1の容量を調整することが可能となる。これにより、例えば、発電設備10と排水設備30とを接続する本線21Aを短小に抑えつつ、つまり、蓄電システム100全体を海域の岸側に寄せながら、大容量の貯留空間S1を確保することも可能となる。 Also, as shown in FIG. 4(b), multiple branch lines 1B may be connected to the main line 21A. In this way, by appropriately changing the number and length of the branch lines 21B connected to the main line 21A, it is possible to adjust the capacity of the storage space S1 while maintaining a constant distance between the power generation equipment 10 and the drainage equipment 30. This makes it possible to ensure a large-capacity storage space S1 while keeping the main line 21A connecting the power generation equipment 10 and the drainage equipment 30 short and small, that is, while moving the entire energy storage system 100 closer to the shore of the sea area.

さらに、管材21に設ける海水流入部21aと海水排出部21bは、必ずしも異なる位置に設ける必要はなく、両者を兼用させてもよい。具体的には、図5で示すように、管材21よりなる本線21Aに海水流出入口21cを設けるとともに、管材21よりなる支線21Bを2本準備する。そのうえで、これら2本の支線21Bの他端を各々海水流出入口21cに接続させ、一方の支線21Bの一端には発電設備10を接続し、他方の支線21Bの一端には排水設備30を接続する。 Furthermore, the seawater inlet 21a and the seawater outlet 21b of the pipe 21 do not necessarily need to be provided in different positions, and both may be used in the same place. Specifically, as shown in FIG. 5, a seawater inlet 21c is provided in the main line 21A made of the pipe 21, and two branch lines 21B made of the pipe 21 are prepared. The other ends of these two branch lines 21B are then each connected to the seawater inlet 21c, and one end of one branch line 21B is connected to the power generation equipment 10, and one end of the other branch line 21B is connected to the drainage equipment 30.

そして、本線21Aと2本の支線21Bとの連結部には、上述した中継躯体25を介装し3本を連通させる。このとき、海水流出入口21cを本線21Aの長手方向の岸側に設けると、発電設備10及び排水設備30をともに岸側に配置することができるため、排水設備30を沖側に配置する場合と比較して、建設時の施工性を大幅に向上できるとともに、運用時のメンテナンス作業の作業性も向上させることが可能となる。 Then, the above-mentioned relay structure 25 is installed at the connection between the main line 21A and the two branch lines 21B to connect the three lines. In this case, if the seawater inlet/outlet 21c is provided on the shore side in the longitudinal direction of the main line 21A, both the power generation equipment 10 and the drainage equipment 30 can be located on the shore side. This makes it possible to significantly improve workability during construction compared to when the drainage equipment 30 is located on the offshore side, and also improves the workability of maintenance work during operation.

また、管材21に設ける海水流入部21aと海水排出部21bは、それぞれ1か所に限定されるものではなく、複数個所に設ける構成としてもよい。例えば、図6では、管材21を平面視でコの字状に構築し、コの字の開口側を岸に向けて海底面sf上に設置する。そのうえで、管材21の岸側に位置する2つの端部各々に海水流入部21aを設け、発電設備10をそれぞれ接続する。また、管材21の沖側に位置する部分に海水排出部21bを3か所設け、各々に排水設備30を接続する。 The seawater inlet 21a and seawater outlet 21b on the pipe 21 are not limited to one each, and may be provided in multiple locations. For example, in FIG. 6, the pipe 21 is constructed in a U-shape in a plan view, and is installed on the seabed surface sf with the opening of the U-shape facing the shore. Seawater inlet 21a is then provided at each of the two ends of the pipe 21 located on the shore side, and a power generation facility 10 is connected to each. In addition, three seawater outlets 21b are provided on the offshore portion of the pipe 21, and drainage facilities 30 are connected to each.

こうすると、2つの発電設備10を同時もしくは交互に稼働させて、発電量を増大させることが可能となる。また、発電設備10のいずれか一方に不具合を生じるなどしてメンテナンスを行う必要が生じた場合にも、他方の発電設備10を稼働させることができ、電力供給の必要時に発電作業を継続して実施することが可能となる。 In this way, it is possible to increase the amount of power generated by operating the two power generation facilities 10 simultaneously or alternately. Also, if one of the power generation facilities 10 needs maintenance due to a malfunction, the other power generation facility 10 can be operated, making it possible to continue power generation work when a power supply is required.

≪≪貯水装置の構築方法≫≫
上記の貯水装置20の構築方法について、その一事例を説明する。まず、図7(a)で示すように、海底面sfにおける管材21の設置予定位置に所定の間隔で管材支持部材22を配置する。このとき、管材支持部材22のサクションアンカー24を海底地盤に一部突き当てておくとよい。
<<<How to construct a water storage device>>
An example of a method for constructing the water storage device 20 will be described below. First, as shown in Fig. 7(a), pipe support members 22 are placed at predetermined intervals at the planned installation positions of pipe members 21 on the seabed surface sf. At this time, it is preferable to abut a part of the suction anchors 24 of the pipe support members 22 against the seabed ground.

次に、図7(b)で示すように、頂版241とスカート部材242とにより囲まれた囲繞空間S2に滞留する海水Wを排水孔2411を利用して排出することで、スカート部材242を海底地盤に貫入させて、管材支持部材22を海底地盤に定着させる。なお、本実施の形態では、管材支持部材22の設置間隔を、おおよそ管材本体211の長さに相当する間隔とし、隣り合う管材本体211の端部どうしが管材支持部材22の上方で対向するように配置している。 Next, as shown in FIG. 7(b), the seawater W remaining in the enclosed space S2 surrounded by the top plate 241 and the skirt member 242 is drained using the drainage holes 2411, causing the skirt member 242 to penetrate into the seabed and anchoring the pipe support member 22 to the seabed. In this embodiment, the pipe support members 22 are installed at intervals roughly equivalent to the length of the pipe main body 211, and the ends of adjacent pipe main bodies 211 are arranged to face each other above the pipe support member 22.

次に、図7(c)で示すように、サクションアンカー24の頂版241に管材本体211の端部近傍を配置したのち、把持部材23を介して管材本体211を頂版241上で把持する。このような作業を連続して行い、図8(a)で示すように、複数の管材本体211を順次、把持部材23を介して管材支持部材22上に設置する。 Next, as shown in FIG. 7(c), the vicinity of the end of the pipe body 211 is placed on the top plate 241 of the suction anchor 24, and then the pipe body 211 is gripped on the top plate 241 via the gripping member 23. This operation is carried out continuously, and as shown in FIG. 8(a), multiple pipe bodies 211 are sequentially placed on the pipe support member 22 via the gripping member 23.

管材本体211を管材支持部材22上に設置する作業と並行して、もしくはこれらの作業を終了したのち、図8(b)で示すように、中継躯体25を利用して隣り合う管材本体211の端部どうしを連通状態で連結し、所望の延在形状に形成された、もしくは貯留空間S1に所望の容量を有する管材21を構築する。なお、本実施の形態では、隣り合う管材本体211の端部どうしを頂版241上で対向させているため、管材支持部材22上に中継躯体25を配置している。 In parallel with the work of installing the pipe material main body 211 on the pipe material support member 22, or after completing these works, as shown in Figure 8 (b), the ends of adjacent pipe material main bodies 211 are connected in a communicating state using the relay body 25 to construct a pipe material 21 formed in a desired extension shape or having a desired capacity in the storage space S1. In this embodiment, the ends of adjacent pipe material main bodies 211 are opposed to each other on the top plate 241, so the relay body 25 is placed on the pipe material support member 22.

このように、海底面sfの不陸調整や海底地盤の地盤改良等の大掛かりな作業を省略した状態で、貯留空間S1への海水Wの流出入が繰り返されても、管材支持部材22で管材21を安定して海底面sfに据え付け支持することが可能となる。したがって、貯水装置20を構築するための海中作業を大幅に削減でき、効率よく貯水装置20を海中で構築することができる。 In this way, even if seawater W repeatedly flows in and out of the storage space S1, the pipe material 21 can be stably installed and supported on the seabed surface sf by the pipe material support member 22, without the need for large-scale work such as leveling the seabed surface sf or improving the seabed ground. Therefore, the underwater work required to construct the water storage device 20 can be significantly reduced, and the water storage device 20 can be constructed efficiently underwater.

上述する手順で管材21と管材支持部材22とにより構成される貯水装置20を構築したのち、貯水装置20に発電設備10及び排水設備30を接続し、図1で示すような蓄電システム100を海底面sfに構築する。 After constructing the water storage device 20 consisting of the pipe material 21 and the pipe material support member 22 according to the procedure described above, the power generation equipment 10 and the drainage equipment 30 are connected to the water storage device 20, and the storage system 100 as shown in FIG. 1 is constructed on the seabed surface sf.

上記の蓄電システム100は、貯水装置20を採用することにより、海底面sfに沿って設置される管材21の海水流入部21aを岸側近傍に配置した状態で、管材21の延在形状を適宜変更することにより貯留空間S1の容量を自在に調整できる。これにより、管材21の海水流入部21aに接続される発電設備10を岸側に配置しながら、所望の蓄電量を確保できるだけでなく、発電した電力を陸地に送電する際に必要とする送電設備14の省力化や、送電に伴う電力ロスの大幅な削減を図ることが可能となる。 The above-mentioned power storage system 100 employs a water storage device 20, and while the seawater inlet 21a of the pipe material 21 installed along the seabed surface sf is located near the shore side, the capacity of the storage space S1 can be freely adjusted by appropriately changing the extension shape of the pipe material 21. This not only ensures the desired amount of stored power while locating the power generation equipment 10 connected to the seawater inlet 21a of the pipe material 21 on the shore side, but also reduces the power required for the power transmission equipment 14 required to transmit the generated power to land and significantly reduces power loss associated with power transmission.

本発明の貯水装置20及び貯水装置20を用いた蓄電システム100は、上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更が可能である。 The water storage device 20 and the power storage system 100 using the water storage device 20 of the present invention are not limited to the above embodiment, and various modifications are possible without departing from the spirit of the present invention.

例えば、本実施の形態では、海底面sf上で管材21を支持する管材支持部材22を、管材21を把持する把持部材23と、把持部材23が設けられたサクションアンカー24とにより構成したが、必ずしもこれに限定されるものではない。管材21を海底面sf上に安定して定着支持できれば、管材支持部材22はいずれの支持構造を採用してもよい。 For example, in this embodiment, the pipe material support member 22 that supports the pipe material 21 on the seabed surface sf is configured with a gripping member 23 that grips the pipe material 21 and a suction anchor 24 to which the gripping member 23 is attached, but this is not necessarily limited to this. As long as the pipe material 21 can be stably fixed and supported on the seabed surface sf, the pipe material support member 22 may adopt any support structure.

また、本実施の形態では、管材21を備えた貯水装置20のみを利用して蓄電システム100を構築したが、これに限定されるものではなく、従来技術で図8(a)(b)で示すような、函型の貯水槽201を備える海洋インバースダム200を組み合わせて蓄電システムを構築してもよい。 In addition, in this embodiment, the power storage system 100 is constructed using only the water storage device 20 equipped with the pipe material 21, but this is not limited to this, and the power storage system may be constructed by combining an ocean inverse dam 200 equipped with a box-shaped water storage tank 201, as shown in Figures 8(a) and (b) in the prior art.

100 蓄電システム
10 発電設備
11 流入管路
12 発電装置
13 流出管路
14 送電設備
15 変電設備
20 貯水装置
21 管材
21a 海水流入部
21b 海水排出部
211 管材本体
21A 本線
21B 支線
22 管材支持部材
23 把持部材(装着具)
24 サクションアンカー
241 頂版
2411 排水孔
242 スカート部材
25 中継躯体
30 排水設備
31 排水ポンプ
32 発電システム
40 空気注入管
200 海洋インバースダム
201 貯水槽
202 発電設備
203 揚水ポンプ
204 地盤アンカー
sf 海底面
W 海水
S1 貯留空間
S2 囲繞空間
100 Energy storage system 10 Power generation equipment 11 Inflow pipeline 12 Power generation device 13 Outflow pipeline 14 Power transmission equipment 15 Substation equipment 20 Water storage device 21 Pipe material 21a Seawater inlet section 21b Seawater discharge section 211 Pipe material main body 21A Main line 21B Branch line 22 Pipe material support member 23 Grip member (mounting tool)
24 Suction anchor 241 Top plate 2411 Drain hole 242 Skirt member 25 Intermediate structure 30 Drainage equipment 31 Drainage pump 32 Power generation system 40 Air injection pipe 200 Marine inverse dam 201 Water tank 202 Power generation equipment 203 Water lifting pump 204 Ground anchor sf Seabed surface W Seawater S1 Storage space S2 Enclosed space

Claims (2)

内空部に貯留空間が形成されるとともに、該内空部に連通する海水流入部と海水排出部とが設けられた管材と、
該管材の長手方向を海底面に沿わせて支持する複数の管材支持部材と、を備える貯水装置であって、
前記管材の一端に形成した前記海水流入部側に、前記貯留空間に外気を供給する空気注入管が設けられているとともに、
前記管材の他端に形成した前記海水排出部側に、前記貯留空間の海水を排出する排水機構及び空気を排出する排気機構が設けられていることを特徴とする貯水装置。
A pipe member having an internal space in which a storage space is formed and having a seawater inlet and a seawater outlet communicating with the internal space;
A water storage device comprising: a plurality of pipe material support members that support the pipe material in a longitudinal direction along the seabed surface,
An air injection pipe for supplying outside air to the storage space is provided on the seawater inlet side formed at one end of the pipe material,
A water storage device characterized in that a drainage mechanism for discharging seawater from the storage space and an exhaust mechanism for discharging air are provided on the seawater discharge section formed at the other end of the pipe material.
請求項1に記載の貯水装置において、
前記空気注入管は、開状態で前記貯留空間に外気を供給する逆止弁を備えることを特徴とする貯水装置。
The water storage device according to claim 1,
A water storage device characterized in that the air injection pipe is provided with a check valve that supplies outside air to the storage space when open.
JP2024008695A 2020-07-20 2024-01-24 Water storage device Active JP7548460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024008695A JP7548460B2 (en) 2020-07-20 2024-01-24 Water storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020123505A JP7484525B2 (en) 2020-07-20 2020-07-20 Energy Storage System
JP2024008695A JP7548460B2 (en) 2020-07-20 2024-01-24 Water storage device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020123505A Division JP7484525B2 (en) 2020-07-20 2020-07-20 Energy Storage System

Publications (2)

Publication Number Publication Date
JP2024032855A JP2024032855A (en) 2024-03-12
JP7548460B2 true JP7548460B2 (en) 2024-09-10

Family

ID=80216201

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020123505A Active JP7484525B2 (en) 2020-07-20 2020-07-20 Energy Storage System
JP2024008695A Active JP7548460B2 (en) 2020-07-20 2024-01-24 Water storage device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2020123505A Active JP7484525B2 (en) 2020-07-20 2020-07-20 Energy Storage System

Country Status (1)

Country Link
JP (2) JP7484525B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205448A (en) 2006-02-01 2007-08-16 Sekisui Chem Co Ltd Pipe connection structure
JP5411517B2 (en) 2009-01-27 2014-02-12 ミサワホーム株式会社 3-story apartment house
JP5563892B2 (en) 2010-05-14 2014-07-30 本田技研工業株式会社 Electric vehicle
JP2016169742A (en) 2011-11-11 2016-09-23 ロエンデック−ハンデルス ゲーエムベーハー Pumped-storage power station
JP2018506953A (en) 2015-02-12 2018-03-08 ユニヴァーシティ オブ マルタ Hydraulic-pneumatic energy storage system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755778B2 (en) * 1990-04-19 1998-05-25 三菱重工業株式会社 Deep sea power storage plant

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205448A (en) 2006-02-01 2007-08-16 Sekisui Chem Co Ltd Pipe connection structure
JP5411517B2 (en) 2009-01-27 2014-02-12 ミサワホーム株式会社 3-story apartment house
JP5563892B2 (en) 2010-05-14 2014-07-30 本田技研工業株式会社 Electric vehicle
JP2016169742A (en) 2011-11-11 2016-09-23 ロエンデック−ハンデルス ゲーエムベーハー Pumped-storage power station
JP2018506953A (en) 2015-02-12 2018-03-08 ユニヴァーシティ オブ マルタ Hydraulic-pneumatic energy storage system

Also Published As

Publication number Publication date
JP2024032855A (en) 2024-03-12
JP2022020158A (en) 2022-02-01
JP7484525B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP5745688B2 (en) Floating wind power generation facility with energy storage equipment
US8475084B2 (en) Tidal flow power generation
CN107075824B (en) Seabed terminal for offshore activities
US20110215650A1 (en) Offshore energy harvesting, storage, and power generation system
CN108884647B (en) Shallow water base structure and method for installing a shallow water base structure
US6347910B1 (en) Submarine power storage system
CN102947582A (en) Sea wave power generation equipment
WO2013044978A1 (en) Method of building an offshore power storage facility and corresponding offshore power storage facility
JP4746131B2 (en) Water turbine structure and sluice structure for tidal power plant with expansion joint and internal filling
CN111424716B (en) Oblique-pulling anchorage type suspension tunnel structure with relay extension of artificial island
WO2021207588A1 (en) Marine-pumped hydroelectric energy storage
US3958426A (en) Offshore harbor tank and installation
CN112195962A (en) Offshore electric platform pile-sleeve foundation structure with anti-sinking box structure
CN218506092U (en) C-shaped assembly type floating transportation structure for split floating transportation of offshore substation
JP7548460B2 (en) Water storage device
WO2013044976A1 (en) A set of building elements for an offshore power storage facility
WO2022156093A1 (en) Drainage and exhaust structure and method for submarine vacuum pipeline
US20240301855A1 (en) Combined wave energy converter and grid storage
CN217870596U (en) Tensioning type fan foundation anchored on foundation seabed
CN219952021U (en) Marine fan foundation with transition section and combined negative pressure barrel and underwater single pile
CN107585269B (en) Seawater three-dimensional oil tank platform, system and construction method thereof
CN113464374B (en) Dry-type cabin sled piece structure and pipe-line system suitable for many bases are sunk
CN221589683U (en) Gravity reinforced concrete anchor foundation
JP7444909B2 (en) Caisson and floating structure floats
ES2650735T3 (en) Foundation Base

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240812

R150 Certificate of patent or registration of utility model

Ref document number: 7548460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150