[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7545817B2 - Device for concentrating and recovering a middle molecule solution and method for operating the same - Google Patents

Device for concentrating and recovering a middle molecule solution and method for operating the same Download PDF

Info

Publication number
JP7545817B2
JP7545817B2 JP2020094807A JP2020094807A JP7545817B2 JP 7545817 B2 JP7545817 B2 JP 7545817B2 JP 2020094807 A JP2020094807 A JP 2020094807A JP 2020094807 A JP2020094807 A JP 2020094807A JP 7545817 B2 JP7545817 B2 JP 7545817B2
Authority
JP
Japan
Prior art keywords
concentration
liquid
forward osmosis
osmosis membrane
organic solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020094807A
Other languages
Japanese (ja)
Other versions
JP2020196009A (en
Inventor
文善 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JP2020196009A publication Critical patent/JP2020196009A/en
Application granted granted Critical
Publication of JP7545817B2 publication Critical patent/JP7545817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、有機溶媒を含んだ溶液を濃縮するための濃縮回収装置及びその運転方法に関する。 The present invention relates to a concentration and recovery device for concentrating a solution containing an organic solvent and a method for operating the same.

正浸透膜は浸透圧差を利用した分離・濃縮膜である。正浸透膜による濃縮は、濃縮対象となる被処理液が、膜を介してより高い浸透圧を有する駆動液に接触したとき、浸透圧差を駆動力として被処理液の溶媒が駆動液側に移動することで進行する。正浸透膜技術は、逆浸透膜同様の極めて高い阻止性を有しながら、熱又は圧といったエネルギーをかけずに溶液を高い濃度まで濃縮することができるため、浸透圧発電、食品等の分野での利用が期待される技術である。さらに、正浸透膜技術は、熱で変性しやすい成分を含む医薬品原料の濃縮技術としての利用が期待できる。医薬品原料の濃縮を考える際に特徴となるのは、被処理液が有機溶媒を含む点である。一般に正浸透膜は高分子材料で作製されるため、有機溶媒によって正浸透膜が劣化するおそれがある。正浸透膜が劣化すると、被処理液中の溶質が駆動液中へ流出したり、駆動液中の溶質が被処理液中へ流入する可能性がある。 The forward osmosis membrane is a separation and concentration membrane that utilizes the osmotic pressure difference. Concentration using a forward osmosis membrane proceeds when the liquid to be concentrated comes into contact with a driving liquid having a higher osmotic pressure through the membrane, and the solvent in the liquid to be treated moves to the driving liquid side, driven by the osmotic pressure difference. Forward osmosis membrane technology has the same extremely high blocking properties as reverse osmosis membranes, but can concentrate solutions to high concentrations without applying energy such as heat or pressure, so it is a technology that is expected to be used in fields such as osmotic power generation and food. In addition, forward osmosis membrane technology is expected to be used as a concentration technology for pharmaceutical raw materials that contain components that are easily denatured by heat. A characteristic of the concentration of pharmaceutical raw materials is that the liquid to be treated contains an organic solvent. Generally, forward osmosis membranes are made of polymer materials, so there is a risk of the forward osmosis membrane being deteriorated by organic solvents. If the forward osmosis membrane deteriorates, solutes in the liquid to be treated may flow out into the driving liquid, or solutes in the driving liquid may flow into the liquid to be treated.

特許文献1では、ポリケトンを膜素材に用いることで正浸透膜の耐有機溶剤性が向上することが記載されている。 Patent document 1 describes how the use of polyketone as the membrane material improves the organic solvent resistance of forward osmosis membranes.

特許文献2では、無機材料であるゼオライトを膜素材に用い、ゼオライトの環構造を制御することで、耐有機溶剤性が向上することが記載されている。 Patent document 2 describes how zeolite, an inorganic material, is used as the membrane material, and the ring structure of the zeolite is controlled to improve organic solvent resistance.

国際公開第2016/024573号International Publication No. 2016/024573 特開2014-039915号公報JP 2014-039915 A

特許文献1で得られる正浸透膜は、有機溶媒を含む液を高濃度に濃縮することは考えられていない。特許文献1の実施例では、被処理液中に含まれる有機溶媒がごく微量である例が記載されているに過ぎない。一般に水と有機溶媒とでは正浸透膜を透過する速度に差があるため、濃縮工程によって被処理液中の有機溶媒濃度は上昇していくことが多い。したがって、正浸透膜が低濃度の有機溶媒含有液に対して耐性を有するのみでは、当該正浸透膜を有機溶媒含有液の濃縮用途へ適用することは難しい。
特許文献2による正浸透膜は、透過水量が極めて低いために濃縮手段として非実用的である。
また、高分子或いは無機素材を用いた正浸透膜による有機溶媒含有液の濃縮装置で、装置の機構によって、濃縮後に被処理液中の溶質の駆動液中への流出を防ぐと同時に、駆動液中の溶質の被処理液への混入を防ぐ工夫をしたものはない。
The forward osmosis membrane obtained in Patent Document 1 is not intended to concentrate a liquid containing an organic solvent to a high concentration. In the examples of Patent Document 1, only an example is described in which the liquid to be treated contains a very small amount of organic solvent. In general, there is a difference in the speed at which water and organic solvents permeate the forward osmosis membrane, so the concentration of the organic solvent in the liquid to be treated often increases during the concentration process. Therefore, if a forward osmosis membrane is only resistant to a liquid containing a low concentration of organic solvent, it is difficult to apply the forward osmosis membrane to the concentration of the liquid containing an organic solvent.
The forward osmosis membrane disclosed in Patent Document 2 is impractical as a concentration means because the amount of water permeated is extremely low.
Furthermore, there is no device for concentrating an organic solvent-containing liquid using a forward osmosis membrane made of a polymer or inorganic material that is designed to prevent the outflow of solutes in the treated liquid into the driving liquid after concentration, and at the same time, to prevent the solutes in the driving liquid from mixing into the treated liquid, by using a mechanism of the device.

本発明が解決しようとする課題は、有機溶媒を含む被処理液を正浸透膜で濃縮する際に正浸透膜を劣化させずに当該被処理液の所望の濃縮を実現できるような、濃縮回収装置及び濃縮回収方法を提供することである。 The problem that the present invention aims to solve is to provide a concentration recovery device and a concentration recovery method that can achieve the desired concentration of a liquid to be treated that contains an organic solvent without deteriorating the forward osmosis membrane when concentrating the liquid to be treated using the forward osmosis membrane.

本発明者らは、正浸透膜での濃縮における有機溶媒含有液中の有機溶媒濃度の変動に着目し、濃縮回収装置に溶媒添加機構を加えることを着想した。濃縮中又は濃縮前に適切な量の溶媒を被処理液に添加して当該被処理液の有機溶媒濃度を制御することで、正浸透膜の膨潤又は溶解を防ぐことができると見出した。有機溶媒濃度の制御によって被処理液中の溶質の駆動液中への流出、及び/又は駆動液中の溶質の被処理液への流入を防ぐことが期待できる。 The inventors focused on the fluctuation in the organic solvent concentration in an organic solvent-containing liquid during concentration using a forward osmosis membrane and came up with the idea of adding a solvent addition mechanism to a concentration and recovery device. They discovered that swelling or dissolution of the forward osmosis membrane can be prevented by controlling the organic solvent concentration of the liquid being treated by adding an appropriate amount of solvent to the liquid being treated during or before concentration. It is expected that controlling the organic solvent concentration will prevent solutes in the liquid being treated from leaking into the driving liquid and/or solutes in the driving liquid from flowing into the liquid being treated.

すなわち、本発明を実施する形態の一例は以下に示すとおりである。 That is, one example of an embodiment of the present invention is as follows:

[1] 有機溶媒含有液の濃縮回収装置であって、
正浸透膜による1つ以上の濃縮機構、及び
前記有機溶媒含有液に溶媒を添加する溶媒添加機構、
を備える、濃縮回収装置。
[2] 有機溶媒含有液が分子量200以上30000以下の中分子を含む、上記態様1に記載の濃縮回収装置。
[3] アミノ酸、ペプチド、核酸、および糖類から成る群より選択される少なくとも1つの化学種を有機溶媒含有液中に含む、上記態様1または2に記載の濃縮回収装置。
[4] 前記有機溶媒含有液が、水、アセトニトリル、メタノール、エタノール、イソプロピルアルコール、酢酸エチル、ヘキサン、トルエン、ジメチルスルホキシドから成る群より選択される少なくとも1種の溶媒を含む、上記態様1~3のいずれかに記載の濃縮回収装置。
[5] 前記正浸透膜を構成する化学種が、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリベンズイミダゾール、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリケトン、再生セルロース、ポリアミド、ポリウレア、ゼオライト、及び有機金属構造体から成る群より選択される少なくとも1種を含む、上記態様1~4のいずれかに記載の濃縮回収装置。
[6] 前記正浸透膜による濃縮で使用する駆動液が、塩化ナトリウム、塩化マグネシウム、硫酸ナトリウム、硫酸マグネシウム、塩化カリウム、塩化リチウム、臭化リチウム、酢酸ナトリウム、酢酸、シュウ酸ナトリウム、シュウ酸、クエン酸ナトリウム、クエン酸、リン酸ナトリウム、リン酸、及びポリエチレングリコールから成る群より選択される少なくとも1種を含む水溶液である、上記態様1~5のいずれかに記載の濃縮回収装置。
[7] 正浸透膜による濃縮機構の前段に、1つ以上の限外ろ過膜による分画機構を備える、上記態様1~6のいずれかに記載の濃縮回収装置。
[8] 有機溶媒含有液中の溶媒組成を観測するための測定機構を有する、上記態様1~7のいずれかに記載の濃縮回収装置。
[9] 前記測定機構が、赤外分光法(IR)、屈折率計による測定法、密度計による測定法、及び液体クロマトグラフィー/質量分析(LC/MS)、ガスクロマトグラフィー/質量分析による計測法(GC/MS)、紫外可視分光(UV-vis)、核磁気共鳴装置(NMR)による分析法から成る群より選択される少なくとも1種を用いるものである、上記態様8に記載の濃縮回収装置。
[10] 有機溶媒含有液の有機溶媒濃度が、使用する前記正浸透膜の上限濃度を超えない、上記態様1~9のいずれかに記載の濃縮回収装置の運転方法。ただし、前記上限濃度は、次のように定義する:ある濃度の有機溶媒水溶液に前記正浸透膜を2時間浸漬し、正浸透膜を純水で洗浄したのちに、被処理液を純水、駆動液を3.5質量%の塩化ナトリウム水溶液として正浸透膜を運転したときの、透水速度(Jw)と塩の逆拡散速度(Js)の比率、Js/Jwが0.50となる濃度。
[11] 駆動液の濃縮再生機構を備える、上記態様1~10のいずれかに記載の濃縮回収装置。
[12] 前記濃縮再生機構が減圧蒸留、膜蒸留、蒸発缶を用いた蒸発濃縮のいずれかである、上記態様1~11のいずれかに記載の濃縮回収装置。
[1] An apparatus for concentrating and recovering an organic solvent-containing liquid, comprising:
one or more concentrating mechanisms using a forward osmosis membrane; and a solvent adding mechanism for adding a solvent to the organic solvent-containing liquid.
A concentration recovery device comprising:
[2] The concentration and recovery apparatus according to the above aspect 1, wherein the organic solvent-containing liquid contains medium molecules having a molecular weight of 200 or more and 30,000 or less.
[3] The concentration and recovery apparatus according to the above aspect 1 or 2, wherein the organic solvent-containing liquid contains at least one chemical species selected from the group consisting of amino acids, peptides, nucleic acids, and sugars.
[4] The concentration and recovery apparatus according to any one of aspects 1 to 3, wherein the organic solvent-containing liquid contains at least one solvent selected from the group consisting of water, acetonitrile, methanol, ethanol, isopropyl alcohol, ethyl acetate, hexane, toluene, and dimethyl sulfoxide.
[5] The concentration and recovery apparatus according to any one of aspects 1 to 4, wherein the chemical species constituting the forward osmosis membrane includes at least one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polybenzimidazole, polyvinylidene fluoride, polyacrylonitrile, polyketone, regenerated cellulose, polyamide, polyurea, zeolite, and metal-organic frameworks.
[6] The concentration and recovery apparatus according to any one of Aspects 1 to 5, wherein the driving liquid used in the concentration by the forward osmosis membrane is an aqueous solution containing at least one selected from the group consisting of sodium chloride, magnesium chloride, sodium sulfate, magnesium sulfate, potassium chloride, lithium chloride, lithium bromide, sodium acetate, acetic acid, sodium oxalate, oxalic acid, sodium citrate, citric acid, sodium phosphate, phosphoric acid, and polyethylene glycol.
[7] The concentration and recovery apparatus according to any one of aspects 1 to 6, further comprising a fractionation mechanism using one or more ultrafiltration membranes upstream of the concentration mechanism using the forward osmosis membrane.
[8] The concentration and recovery apparatus according to any one of the above aspects 1 to 7, further comprising a measurement mechanism for observing a solvent composition in an organic solvent-containing liquid.
[9] The concentration and recovery apparatus according to aspect 8, wherein the measurement mechanism is at least one selected from the group consisting of infrared spectroscopy (IR), a measurement method using a refractometer, a measurement method using a density meter, and an analysis method using liquid chromatography / mass spectrometry (LC / MS), a measurement method using gas chromatography / mass spectrometry (GC / MS), ultraviolet-visible spectroscopy (UV-vis), and a nuclear magnetic resonance device (NMR).
[10] A method for operating a concentration and recovery apparatus according to any one of aspects 1 to 9, wherein the organic solvent concentration of the organic solvent-containing liquid does not exceed the upper limit concentration of the forward osmosis membrane used, where the upper limit concentration is defined as follows: the concentration at which the ratio Js/Jw of the water permeation rate (Jw) to the back diffusion rate (Js) of salt is 0.50 when the forward osmosis membrane is immersed in an organic solvent aqueous solution of a certain concentration for 2 hours, the forward osmosis membrane is washed with pure water, and then the forward osmosis membrane is operated with pure water as the treated liquid and a 3.5 mass% aqueous sodium chloride solution as the driving liquid.
[11] The concentration and recovery device according to any one of aspects 1 to 10, further comprising a driving liquid concentration and regeneration mechanism.
[12] The concentration and recovery apparatus according to any one of the above aspects 1 to 11, wherein the concentration and regeneration mechanism is any one of reduced pressure distillation, membrane distillation, and evaporation and concentration using an evaporator.

本発明の一態様によれば、有機溶媒を含む被処理液を正浸透膜で濃縮するとき、濃縮後に、被処理液中の溶質の駆動液中への流出を防ぐとともに駆動液中の溶質の被処理液への混入を防ぐことが可能になる。 According to one aspect of the present invention, when a liquid to be treated containing an organic solvent is concentrated using a forward osmosis membrane, it is possible to prevent solutes in the liquid to be treated from flowing out into the driving liquid after concentration and to prevent solutes in the driving liquid from mixing into the liquid to be treated.

本発明の一態様に係る濃縮回収装置を示す模式図である。1 is a schematic diagram showing a concentration recovery apparatus according to one embodiment of the present invention. 本発明の一態様に係る濃縮回収装置を示す模式図である。1 is a schematic diagram showing a concentration recovery apparatus according to one embodiment of the present invention. 本発明の一態様に係る濃縮回収装置を示す模式図である。1 is a schematic diagram showing a concentration recovery apparatus according to one embodiment of the present invention. 本発明の一態様に係る濃縮回収装置を示す模式図である。1 is a schematic diagram showing a concentration recovery apparatus according to one embodiment of the present invention. 本発明の一態様に係る濃縮回収装置を示す模式図である。1 is a schematic diagram showing a concentration recovery apparatus according to one embodiment of the present invention. 本発明の一態様に係る濃縮回収装置を示す模式図である。1 is a schematic diagram showing a concentration recovery apparatus according to one embodiment of the present invention. 濃縮回収装置の性能評価装置を示す模式図である。FIG. 2 is a schematic diagram showing a performance evaluation device for a concentration and recovery device. 実施例1における結果を示す図である。FIG. 1 shows the results in Example 1. 実施例2における結果を示す図である。FIG. 13 shows the results in Example 2. 実施例3における結果を示す図である。FIG. 13 shows the results in Example 3. 実施例4における結果を示す図である。FIG. 13 shows the results in Example 4. 実施例5における結果を示す図である。FIG. 13 shows the results in Example 5. 実施例6における結果を示す図である。FIG. 13 shows the results in Example 6. 実施例7における結果を示す図である。FIG. 13 shows the results in Example 7. 実施例8における結果を示す図である。FIG. 13 shows the results in Example 8. 比較例1における結果を示す図である。FIG. 13 is a diagram showing the results in Comparative Example 1.

以下に、本発明の実施形態(以下、「本実施形態」と称する)について説明する。本発明者らは、被処理液の有機溶媒濃度が十分に低い場合は正浸透膜の性能劣化は無視できる程度であること、及び、有機溶媒が正浸透膜をある程度透過するという性質に着目した。本発明の一態様は、被処理液中に溶媒を添加しながら正浸透膜によって濃縮を行う加溶媒濃縮方式、及びそれを実現するための装置を提供する。 The following describes an embodiment of the present invention (hereinafter, referred to as "the present embodiment"). The inventors have focused on the fact that when the organic solvent concentration of the liquid to be treated is sufficiently low, the performance degradation of the forward osmosis membrane is negligible, and that the organic solvent permeates the forward osmosis membrane to a certain extent. One aspect of the present invention provides a solvent addition concentration method in which a solvent is added to the liquid to be treated and concentration is performed using a forward osmosis membrane, and an apparatus for realizing the method.

≪濃縮回収装置≫
本発明の一態様が提供する濃縮回収装置は、1つ以上の正浸透膜と、1つ以上の溶媒添加機構とを備え、典型的には、1つ以上の被処理液タンクと、1つ以上の駆動液タンクと、1つ以上の送液ポンプとを更に備える。
<Concentration recovery device>
The concentration and recovery apparatus provided by one aspect of the present invention comprises one or more forward osmosis membranes and one or more solvent addition mechanisms, and typically further comprises one or more tanks for treated liquid, one or more drive liquid tanks, and one or more liquid delivery pumps.

図1~6は、本発明の一態様に係る濃縮回収装置を示す模式図である。図1~6を参照し、濃縮回収装置100,200,300,400,500,600は、正浸透膜4による1つ以上の濃縮機構、及び、有機溶媒含有液に溶媒を添加する溶媒添加機構2を備える。典型的な態様において、濃縮回収装置は、被処理液タンク1、溶媒添加機構2、ポンプ3、正浸透膜4、駆動液タンク5、及び測定機構6を備える。被処理液タンクには、有機溶媒含有液が収容される。駆動液タンクには、駆動液が収容される。一態様において、濃縮回収装置は、正浸透膜の一方の面側に供給される有機溶媒含有液と、正浸透膜の他方の面側に供給される駆動液とを更に備える。 Figures 1 to 6 are schematic diagrams showing a concentration recovery device according to one embodiment of the present invention. Referring to Figures 1 to 6, the concentration recovery devices 100, 200, 300, 400, 500, and 600 are equipped with one or more concentration mechanisms using a forward osmosis membrane 4, and a solvent addition mechanism 2 that adds a solvent to an organic solvent-containing liquid. In a typical embodiment, the concentration recovery device is equipped with a tank 1 for treated liquid, a solvent addition mechanism 2, a pump 3, a forward osmosis membrane 4, a driving liquid tank 5, and a measurement mechanism 6. The tank for treated liquid contains an organic solvent-containing liquid. The driving liquid tank contains a driving liquid. In one embodiment, the concentration recovery device further includes an organic solvent-containing liquid supplied to one side of the forward osmosis membrane and a driving liquid supplied to the other side of the forward osmosis membrane.

特定の態様に係る濃縮回収装置は、図6に示すように、限外ろ過膜7による分画機構、及び前処理タンク8を更に備えてよい。限外ろ過膜7は、正浸透膜4による濃縮機構の前段(すなわち液流の上流側)に設けられることが好ましい。濃縮回収装置において、被処理液は、被処理液タンク1に貯蔵され、任意に限外ろ過膜7を経て、正浸透膜4に供給される。好ましい一態様においては、図6に示すように、限外ろ過膜7による分画機構と、正浸透膜4による濃縮機構との間に、被処理液タンク1を設ける。 As shown in FIG. 6, the concentration recovery device according to a specific embodiment may further include a fractionation mechanism using an ultrafiltration membrane 7 and a pretreatment tank 8. The ultrafiltration membrane 7 is preferably provided before the concentration mechanism using the forward osmosis membrane 4 (i.e., upstream of the liquid flow). In the concentration recovery device, the liquid to be treated is stored in a tank 1 for the liquid to be treated and is supplied to the forward osmosis membrane 4 via the ultrafiltration membrane 7 as desired. In a preferred embodiment, the tank 1 for the liquid to be treated is provided between the fractionation mechanism using the ultrafiltration membrane 7 and the concentration mechanism using the forward osmosis membrane 4 as shown in FIG. 6.

正浸透膜4の搭載本数に制限はない。一般的な限外ろ過膜と正浸透膜とでは脱溶媒速度が10倍近く違う場合があるため、濃縮回収装置内で、限外ろ過膜よりも正浸透膜を多く設けるか、図6のように、限外ろ過膜7と正浸透膜4の間に、被処理液タンク1を設けることが好ましい。。正浸透膜が複数配置される場合、当該複数の正浸透膜は、並列(図4参照)或いは直列(図5参照)に接続されてよい。複数用いる場合の正浸透膜に対しては、同一の駆動液を通液しても、異なる種類及び/又は異なる濃度の駆動液を通液してもかまわない。 There is no limit to the number of forward osmosis membranes 4 that can be installed. Since the desolvation speed of a typical ultrafiltration membrane can differ by nearly 10 times from that of a forward osmosis membrane, it is preferable to provide more forward osmosis membranes than ultrafiltration membranes in the concentration and recovery device, or to provide a tank 1 for the liquid to be treated between the ultrafiltration membrane 7 and the forward osmosis membrane 4 as shown in Figure 6. When multiple forward osmosis membranes are used, the multiple forward osmosis membranes may be connected in parallel (see Figure 4) or in series (see Figure 5). When multiple forward osmosis membranes are used, the same driving liquid may be passed through them, or driving liquids of different types and/or different concentrations may be passed through them.

駆動液は、駆動液タンク5に蓄えられている。駆動液は、ポンプ3により正浸透膜4に送られ、正浸透膜4において被処理液から溶媒を抜き取る。駆動液は運転を進めるにつれて溶質濃度が低下していき、浸透圧が下がっていく。そのため、好ましい態様においては、希釈された駆動液から溶媒を抜き取る駆動液の濃縮再生機構(図示せず)が濃縮回収装置に含まれていることが好ましい。濃縮再生機構は、減圧蒸留機構、膜蒸留機構、及び蒸発缶を用いた蒸発濃縮機構から成る群より選択される少なくとも1つであることが好ましい。 The driving liquid is stored in the driving liquid tank 5. The driving liquid is sent to the forward osmosis membrane 4 by the pump 3, where the solvent is extracted from the liquid to be treated. As the operation of the driving liquid progresses, the solute concentration of the driving liquid decreases, and the osmotic pressure decreases. Therefore, in a preferred embodiment, it is preferable that the concentration recovery device includes a driving liquid concentration regeneration mechanism (not shown) that extracts the solvent from the diluted driving liquid. It is preferable that the concentration regeneration mechanism is at least one selected from the group consisting of a reduced pressure distillation mechanism, a membrane distillation mechanism, and an evaporation concentration mechanism using an evaporator.

被処理液としての有機溶媒含有液に含まれる有機溶媒は、正浸透膜の脱溶媒速度及び塩の逆拡散に影響を与え、溶質の損失又は品質低下を招く可能性があるため、被処理液中の有機溶媒濃度は十分に低く制御される必要がある。本実施形態では、濃縮回収装置が溶媒添加機構2を備えることにより、被処理液に溶媒(例えば水)が添加されて被処理液の有機溶媒濃度が所定以下に維持される。この溶媒添加機構は、限外ろ過膜7(用いる場合)による分画機構よりも後段(すなわち液流下流側)、かつ、正浸透膜4よりも前段(すなわち液流上流側)に設けられていることが好ましい。 The organic solvent contained in the organic solvent-containing liquid to be treated may affect the desolvation speed of the forward osmosis membrane and the back diffusion of salt, which may result in loss of solutes or deterioration of quality, so the organic solvent concentration in the liquid to be treated must be controlled to be sufficiently low. In this embodiment, the concentration and recovery device is equipped with a solvent addition mechanism 2, which adds a solvent (e.g., water) to the liquid to be treated to maintain the organic solvent concentration of the liquid to be treated at a predetermined level or lower. This solvent addition mechanism is preferably provided after the fractionation mechanism using the ultrafiltration membrane 7 (if used) (i.e., downstream of the liquid flow) and before the forward osmosis membrane 4 (i.e., upstream of the liquid flow).

一態様において、被処理液中の有機溶媒濃度を測定する測定機構6としての有機溶媒濃度モニターが、濃縮回収装置内、特に、限外ろ過膜7と正浸透膜4との間に備わっていることが好ましい。図1~6では、測定機構6が、被処理液タンク1内に設けられている例を示している。 In one embodiment, an organic solvent concentration monitor serving as a measurement mechanism 6 for measuring the organic solvent concentration in the liquid to be treated is preferably provided within the concentration and recovery device, particularly between the ultrafiltration membrane 7 and the forward osmosis membrane 4. Figures 1 to 6 show an example in which the measurement mechanism 6 is provided within the tank 1 for the liquid to be treated.

<被処理液>
被処理液とは、正浸透膜に送液され、濃縮される液を指す。被処理液は、溶質と溶媒から構成される。なお本開示では、溶媒添加又は濃縮がされた液も、被処理液と呼称する。被処理液は、限外ろ過膜によって分画処理されていてもよい。この場合、限外ろ過膜に送液される液を前処理液、限外ろ過膜を透過した液を透過液、限外ろ過膜で阻止された液を阻止液と呼称する。
<Liquid to be treated>
The liquid to be treated refers to a liquid that is sent to a forward osmosis membrane and concentrated. The liquid to be treated is composed of a solute and a solvent. In this disclosure, a liquid to which a solvent has been added or which has been concentrated is also called the liquid to be treated. The liquid to be treated may be fractionated by an ultrafiltration membrane. In this case, the liquid sent to the ultrafiltration membrane is called a pretreatment liquid, the liquid that has permeated the ultrafiltration membrane is called a permeated liquid, and the liquid that has been blocked by the ultrafiltration membrane is called a blocked liquid.

[溶媒]
本開示において、溶媒とは水並びに有機溶媒を指す。有機溶媒は、炭素原子を1つ以上有する有機化合物であり、一態様においては、常圧で0℃超50℃未満で液体で存在する化合物である。有機溶媒としては、例えばアセトニトリル、メタノール、エタノール、イソプロピルアルコール、ブタノール、酢酸エチル、ペンタン、ヘキサン、トルエン、キシレン、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチルピロリドン(NMP)、クロロホルム、塩化メチレン、アセトン、及びジオキサンから成る群より選択される1種以上を用いることができる。より好ましくは、正浸透膜を透過する速度が大きく、濃縮時間を短くできるという観点から、溶媒は、水、アセトニトリル、メタノール、エタノール、イソプロピルアルコール、酢酸エチル、ブタノール、ヘキサン、トルエン、ジメチルスルホキシド、NMP、クロロホルム、塩化メチレン、及びアセトンから成る群より選択される少なくとも1種、さらに好ましくは水、アセトニトリル、メタノール、エタノール、イソプロピルアルコール、酢酸エチル、ヘキサン、トルエン、及びジメチルスルホキシドから成る群より選択される少なくとも1種である。本開示の有機溶媒含有液は、水と有機溶媒と溶質とを少なくとも含む液である。水と有機溶媒との比率は任意であるが、有機溶媒は正浸透膜を膨潤或いは溶解させ得、したがって正浸透膜の性能を劣化させ得るため、有機溶媒含有液中の有機溶媒の濃度は、後述する、正浸透膜が許容する有機溶媒の上限濃度(本開示で、許容上限濃度、又は単に上限濃度ともいう。)以下であることが好ましい。
[solvent]
In the present disclosure, the solvent refers to water and an organic solvent. The organic solvent is an organic compound having one or more carbon atoms, and in one embodiment, is a compound that exists in a liquid state at a temperature higher than 0°C and lower than 50°C at normal pressure. As the organic solvent, for example, one or more selected from the group consisting of acetonitrile, methanol, ethanol, isopropyl alcohol, butanol, ethyl acetate, pentane, hexane, toluene, xylene, dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methylpyrrolidone (NMP), chloroform, methylene chloride, acetone, and dioxane can be used. More preferably, from the viewpoint of high speed of permeation through the forward osmosis membrane and short concentration time, the solvent is at least one selected from the group consisting of water, acetonitrile, methanol, ethanol, isopropyl alcohol, ethyl acetate, butanol, hexane, toluene, dimethyl sulfoxide, NMP, chloroform, methylene chloride, and acetone, and more preferably at least one selected from the group consisting of water, acetonitrile, methanol, ethanol, isopropyl alcohol, ethyl acetate, hexane, toluene, and dimethyl sulfoxide. The organic solvent-containing liquid of the present disclosure is a liquid containing at least water, an organic solvent, and a solute. The ratio of water to organic solvent is arbitrary, but since the organic solvent can swell or dissolve the forward osmosis membrane and thus deteriorate the performance of the forward osmosis membrane, it is preferable that the concentration of the organic solvent in the organic solvent-containing liquid is equal to or lower than the upper limit concentration of the organic solvent that the forward osmosis membrane can tolerate (also referred to as the allowable upper limit concentration or simply the upper limit concentration in the present disclosure), which will be described later.

[溶質]
溶質は、一態様において、塩並びに分子量50以上の化合物から選択される。塩は無機塩でも有機塩でもよい。溶質は、塩化ナトリウム、塩化マグネシウム、硫酸ナトリウム、硫酸マグネシウム、塩化カリウム、塩化リチウム、臭化リチウム、酢酸ナトリウム、酢酸、シュウ酸ナトリウム、シュウ酸、クエン酸ナトリウム、クエン酸、リン酸ナトリウム、及びリン酸から成る群より選択される1種以上の化合物であってよい。分子量50以上の化合物に制限はないが、例えばアミノ酸、ペプチド、糖類、核酸、タンパク質、ヌクレオチド、ポリケチド、エチレングリコール類、アルデヒド類、カルボン酸、スルホン酸化合物、アミン、テルペン類、芳香族化合物、ヘテロ環芳香族化合物、アルカロイド、アルコール化合物、エステル化合物、等が挙げられる。
[Solute]
In one embodiment, the solute is selected from salts and compounds having a molecular weight of 50 or more. The salt may be an inorganic salt or an organic salt. The solute may be one or more compounds selected from the group consisting of sodium chloride, magnesium chloride, sodium sulfate, magnesium sulfate, potassium chloride, lithium chloride, lithium bromide, sodium acetate, acetic acid, sodium oxalate, oxalic acid, sodium citrate, citric acid, sodium phosphate, and phosphoric acid. Compounds having a molecular weight of 50 or more are not limited, but examples thereof include amino acids, peptides, sugars, nucleic acids, proteins, nucleotides, polyketides, ethylene glycols, aldehydes, carboxylic acids, sulfonic acid compounds, amines, terpenes, aromatic compounds, heterocyclic aromatic compounds, alkaloids, alcohol compounds, ester compounds, and the like.

(中分子)
中分子は、上記の溶質の例であって、分子量200以上30000以下の分子を指す。被処理液中の溶質は、好ましくは、水又は有機溶媒に対する溶解性と、正浸透膜に詰まりにくい点で中分子である。中分子が分子量500以上10000未満、500以上7000未満、500以上3500未満、500以上2900未満、又は1000以上2900未満であることは、幅広い濃度の有機溶媒を含む水溶液に溶解することが期待される点で、特に好ましい。上記分子量は、構造式から計算される分子量であり、但し分子量500を超える場合には、ゲルパーミエーションクロマトグラフィを用い、ポリエチレンオキシド換算で求められる数平均分子量であってよい。
(Medium molecule)
The medium molecule is an example of the solute and refers to a molecule having a molecular weight of 200 to 30,000. The solute in the liquid to be treated is preferably a medium molecule in terms of solubility in water or organic solvents and the tendency to clog forward osmosis membranes. It is particularly preferable that the medium molecule has a molecular weight of 500 to less than 10,000, 500 to less than 7,000, 500 to less than 3,500, 500 to less than 2,900, or 1,000 to less than 2,900, since it is expected to dissolve in aqueous solutions containing organic solvents of a wide range of concentrations. The molecular weight is a molecular weight calculated from the structural formula, but when the molecular weight exceeds 500, it may be a number average molecular weight calculated in terms of polyethylene oxide using gel permeation chromatography.

一態様においては、アミノ酸、ペプチド、核酸、及び糖類から成る群より選択される少なくとも1種の溶質が好ましい。これらの溶質は、分子内に、ヒドロキシ基、アミノ基、カルボキシ基等の親水性官能基を多数有しており、水溶性が他の化合物、例えば炭化水素化合物に比べて高いため、有機溶媒含有液の濃縮工程での析出が起こりにくく好ましい。 In one embodiment, at least one solute selected from the group consisting of amino acids, peptides, nucleic acids, and sugars is preferred. These solutes have many hydrophilic functional groups, such as hydroxyl groups, amino groups, and carboxyl groups, in the molecule, and are more water-soluble than other compounds, such as hydrocarbon compounds, and are therefore less likely to precipitate during the concentration process of the organic solvent-containing liquid, making them preferred.

アミノ酸は、カルボキシ基とアミノ基とを同一分子内に有する化合物を表し、天然及び非天然アミノ酸を包含する。
ペプチドは、アミド結合を1つ以上有する有機化合物であり、制限はないが、例えば:アラニルグルタミン、カルノシン、アンセリン、アスパルテームのようなジペプチド;グルタチオンのようなオリゴペプチド;インスリンのようなホルモンペプチド;シクロスポリンAやバシトラシンのような環状ペプチド;などが挙げられる。
核酸は、5単糖、核酸塩基、及びリン酸から成る分子であってよい。
糖類は、6単糖骨格、5単糖骨格、及びグルコサミン骨格のいずれか1種以上を1つ以上含む有機化合物であってよく、制限はないが、例えばオリゴ糖、オリゴ糖ペプチド、オリゴサッカリドのような糖鎖が挙げられる。
An amino acid refers to a compound having a carboxy group and an amino group in the same molecule, and includes natural and unnatural amino acids.
Peptides are organic compounds containing one or more amide bonds, and include, but are not limited to, dipeptides such as alanylglutamine, carnosine, anserine, and aspartame; oligopeptides such as glutathione; hormone peptides such as insulin; and cyclic peptides such as cyclosporin A and bacitracin.
A nucleic acid may be a molecule consisting of five monosaccharides, a nucleobase, and a phosphate.
The saccharide may be an organic compound containing one or more of a hexasaccharide backbone, a pentasaccharide backbone, and a glucosamine backbone, and examples thereof include, but are not limited to, sugar chains such as oligosaccharides, oligosaccharide peptides, and oligosaccharides.

有機溶媒含有液は、酸、緩衝剤、上記中分子よりも大きな分子量の不純物等のうち1種以上を含んでもよいが、これらを含まなくてもよい。酸は、酢酸、フルオロ酢酸、ジフルオロ酢酸、トリフルオロ酢酸、塩酸、硫酸、クエン酸、及びシュウ酸から成る群より選択される少なくとも1種であることが好ましい。緩衝剤は、酢酸、シュウ酸、クエン酸、リン酸、ホウ酸、酒石酸及びそれらのアルカリ金属塩(例えばナトリウム塩)、並びにトリス緩衝剤から成る群より選択される少なくとも1種であってよい。 The organic solvent-containing liquid may contain one or more of an acid, a buffer, impurities having a molecular weight larger than the above-mentioned medium molecule, etc., but may not contain these. The acid is preferably at least one selected from the group consisting of acetic acid, fluoroacetic acid, difluoroacetic acid, trifluoroacetic acid, hydrochloric acid, sulfuric acid, citric acid, and oxalic acid. The buffer may be at least one selected from the group consisting of acetic acid, oxalic acid, citric acid, phosphoric acid, boric acid, tartaric acid, and alkali metal salts thereof (e.g., sodium salts), and Tris buffer.

<駆動液>
駆動液は被処理液よりも高い浸透圧を有する水溶液である。正浸透膜には駆動液が通液される。駆動液は、好ましくは、塩化ナトリウム、塩化マグネシウム、硫酸ナトリウム、硫酸マグネシウム、塩化カリウム、塩化リチウム、臭化リチウム、酢酸ナトリウム、酢酸、シュウ酸ナトリウム、シュウ酸、クエン酸ナトリウム、クエン酸、リン酸ナトリウム、リン酸、及びポリエチレングリコールから成る群より選択される少なくとも1種を含む水溶液である。また、駆動液は有機溶媒を含んでよい。駆動液中の水と有機溶媒との比率は任意であるが、正浸透膜が許容する有機溶媒の上限濃度より低い。また、被処理液に含まれる有機溶媒の種類と駆動液に含まれる有機溶媒の種類とは同一であっても異なっていても良い。
<Driving fluid>
The driving liquid is an aqueous solution having a higher osmotic pressure than the liquid to be treated. The driving liquid is passed through the forward osmosis membrane. The driving liquid is preferably an aqueous solution containing at least one selected from the group consisting of sodium chloride, magnesium chloride, sodium sulfate, magnesium sulfate, potassium chloride, lithium chloride, lithium bromide, sodium acetate, acetic acid, sodium oxalate, oxalic acid, sodium citrate, citric acid, sodium phosphate, phosphoric acid, and polyethylene glycol. The driving liquid may also contain an organic solvent. The ratio of water to organic solvent in the driving liquid is arbitrary, but is lower than the upper limit concentration of the organic solvent permitted by the forward osmosis membrane. The type of organic solvent contained in the liquid to be treated and the type of organic solvent contained in the driving liquid may be the same or different.

<正浸透膜>
正浸透膜は、一態様において、緻密層と基材膜層とを有してよい。緻密層は、孔径2.0nm以下の層であってよく、基材膜層は、孔径2.0nm超の層であってよい。緻密層は、水分子を透過させて、被処理液の溶質及び駆動液の溶質を阻止する役割を担う。基材膜層は、水分子、被処理液の溶質、及び駆動液の溶質のいずれも透過させる層であり、緻密層を機械的に支持する役割を担う。緻密層と基材膜層とは同じ又は異なる化学種で構成されていてよい。
<Forward osmosis membrane>
In one embodiment, the forward osmosis membrane may have a dense layer and a base membrane layer. The dense layer may be a layer with a pore size of 2.0 nm or less, and the base membrane layer may be a layer with a pore size of more than 2.0 nm. The dense layer plays a role of allowing water molecules to pass through and blocking solutes of the liquid to be treated and solutes of the driving liquid. The base membrane layer is a layer that allows water molecules, solutes of the liquid to be treated, and solutes of the driving liquid to pass through, and plays a role of mechanically supporting the dense layer. The dense layer and the base membrane layer may be composed of the same or different chemical species.

正浸透膜は、複数の正浸透膜が装填されてモジュール(以下、正浸透膜モジュールともいう。)を構成してよい。正浸透膜モジュールの脱溶媒速度は、Jw(kg/m2/h)であらわされる。ここで、Jwは下記式(1)から算出される。
Jw=L/(M×H)・・・(1)
Lは被処理液の減少量(kg)、Mは正浸透膜の緻密層部分の表面積(m2)、Hは運転時間(h)である。
A forward osmosis membrane may be configured as a module (hereinafter, also referred to as a forward osmosis membrane module) by loading a plurality of forward osmosis membranes. The solvent removal rate of the forward osmosis membrane module is expressed as Jw (kg/ m2 /h). Here, Jw is calculated from the following formula (1).
Jw=L/(M×H)...(1)
L is the amount of the treated liquid reduced (kg), M is the surface area of the dense layer of the forward osmosis membrane (m 2 ), and H is the operation time (h).

正浸透膜モジュールの運転中に、駆動液の溶質が被処理液へ移動することがある。これを塩の逆拡散とよび、その速度はJs(g/m2/h)であらわされる。Jsは下記式(2)から算出される。
Js=G/(M×H)・・・(2)
Gは塩の増加量(g)、Mは正浸透膜の緻密層部分の表面積(m2)、Hは運転時間(h)である。
During operation of the forward osmosis membrane module, solutes in the drive liquid may move to the treated liquid. This is called back diffusion of salts, and its speed is expressed as Js (g/ m2 /h). Js is calculated from the following formula (2).
Js=G/(M×H)...(2)
G is the amount of salt increase (g), M is the surface area (m 2 ) of the dense layer of the forward osmosis membrane, and H is the operation time (h).

一態様において、正浸透膜は、水が単位時間あたりに正浸透膜を透過する質量と、有機溶媒が単位時間あたりに正浸透膜を透過する質量とが、下記関係:
0 < (有機溶媒が単位時間あたりに正浸透膜を透過する質量)/(水が単位時間あたりに正浸透膜を透過する質量)×100 ≦ 100
を満たす。すなわち、一態様に係る正浸透膜は、水分子も有機溶媒分子も透過させるが、水分子よりも有機溶媒分子の透過量が小さい。
In one embodiment, the forward osmosis membrane has a mass of water permeating the forward osmosis membrane per unit time and a mass of organic solvent permeating the forward osmosis membrane per unit time that satisfy the following relationship:
0 < (mass of organic solvent permeating the forward osmosis membrane per unit time) / (mass of water permeating the forward osmosis membrane per unit time) × 100 ≦ 100
That is, the forward osmosis membrane according to one embodiment allows both water molecules and organic solvent molecules to permeate, but the amount of organic solvent molecules that permeates is smaller than the amount of water molecules.

正浸透膜の緻密層の厚みに制限はないが、正浸透膜の機械強度と脱溶媒速度とを大きく保つ観点から、好ましくは0.010μm以上3.0μm以下、より好ましくは0.10μm以上1.0μm以下である。 There is no limit to the thickness of the dense layer of the forward osmosis membrane, but from the viewpoint of maintaining a high mechanical strength and solvent removal speed of the forward osmosis membrane, it is preferably 0.010 μm or more and 3.0 μm or less, more preferably 0.10 μm or more and 1.0 μm or less.

基材膜層の厚みに制限はないが、機械強度と脱溶媒速度とを大きく保つ観点から、好ましくは10μm以上1000μm以下、より好ましくは15μm以上500μm以下、更に好ましくは20μm以上350μm以下である。 There is no limit to the thickness of the base film layer, but from the viewpoint of maintaining high mechanical strength and solvent removal speed, it is preferably 10 μm or more and 1000 μm or less, more preferably 15 μm or more and 500 μm or less, and even more preferably 20 μm or more and 350 μm or less.

正浸透膜の形状に制限はなく、平膜状でも中空糸膜状でも構わない。平膜状の場合、基材膜層は例えば不織布を含んでよい。 There are no limitations on the shape of the forward osmosis membrane, and it may be a flat membrane or a hollow fiber membrane. In the case of a flat membrane, the base membrane layer may include, for example, a nonwoven fabric.

正浸透膜を構成する化学種は、好ましくは、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリベンズイミダゾール、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリケトン、再生セルロース、ポリアミド、ポリウレア、ゼオライト、及び金属有機構造体(ZIF-8、UiO-66など)から成る群より選択される少なくとも1種を含む。脱溶媒速度(溶媒が水の場合には脱水速度)と、被処理液の溶質及び駆動液の溶質の透過の阻止性との両立の観点から、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリベンズイミダゾール、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリケトン、再生セルロース、ポリアミド、及びポリウレアから成る群より選択される少なくとも1種が好ましい。 The chemical species constituting the forward osmosis membrane preferably includes at least one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polybenzimidazole, polyvinylidene fluoride, polyacrylonitrile, polyketone, regenerated cellulose, polyamide, polyurea, zeolite, and metal organic framework (ZIF-8, UiO-66, etc.). From the viewpoint of achieving both the desolvation speed (dehydration speed when the solvent is water) and the blocking ability of the solutes of the treated liquid and the solutes of the driving liquid, at least one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polybenzimidazole, polyvinylidene fluoride, polyacrylonitrile, polyketone, regenerated cellulose, polyamide, and polyurea is preferred.

正浸透膜は、高濃度の有機溶媒に接触すると、膨潤或いは溶解することがある。正浸透膜が膨潤すると、緻密層の孔径が大きくなるために当該緻密層によって阻止し得る物質の径が増大し、被処理液及び駆動液の溶質が正浸透膜を透過しやすくなる。或いは、緻密層と基材膜層との間での膨潤率に差がある場合、緻密層と基材膜層との間に欠陥が生じ、被処理液及び駆動液の溶質が正浸透膜を透過しやすくなることがある。また、有機溶媒の種類によっては緻密層或いは基材膜層が有機溶媒によって溶解して欠陥が生じる可能性がある。そのため、正浸透膜による濃縮は、膜が膨潤或いは溶解しないように、被処理液及び駆動液の有機溶媒濃度は正浸透膜が許容する上限濃度以下となることが好ましい。特に、被処理液の有機溶媒濃度は、濃縮回収工程の進行に伴って増大していくことから、濃縮回収工程を通じて、被処理液中の有機溶媒濃度を下記の上限濃度以下に維持することが望ましい。 When the forward osmosis membrane comes into contact with a high concentration of organic solvent, it may swell or dissolve. When the forward osmosis membrane swells, the pore size of the dense layer increases, so the diameter of the substance that can be blocked by the dense layer increases, and the solutes of the liquid to be treated and the driving liquid can easily pass through the forward osmosis membrane. Alternatively, if there is a difference in the swelling rate between the dense layer and the base membrane layer, defects may occur between the dense layer and the base membrane layer, and the solutes of the liquid to be treated and the driving liquid may easily pass through the forward osmosis membrane. In addition, depending on the type of organic solvent, the dense layer or the base membrane layer may be dissolved by the organic solvent, causing defects. Therefore, in the concentration using the forward osmosis membrane, it is preferable that the organic solvent concentration of the liquid to be treated and the driving liquid is equal to or lower than the upper limit concentration allowed by the forward osmosis membrane so that the membrane does not swell or dissolve. In particular, since the organic solvent concentration of the liquid to be treated increases as the concentration recovery process progresses, it is desirable to maintain the organic solvent concentration in the liquid to be treated below the upper limit concentration described below throughout the concentration recovery process.

上限濃度は、後述する上限濃度測定試験に基づいて算出されるJs/Jwが0.50以下となる最大濃度を指す。正浸透膜の長期運転の観点から、上限濃度は、より好ましくは、Js/Jwが0.40以下となる濃度、より好ましくはJs/Jwが0.35以下となる濃度である。有機溶媒濃度が上記上限濃度を超えないようにする場合、正浸透膜の膨潤劣化が短時間で進行することがなく好ましい。 The upper limit concentration refers to the maximum concentration at which Js/Jw calculated based on the upper limit concentration measurement test described below is 0.50 or less. From the viewpoint of long-term operation of the forward osmosis membrane, the upper limit concentration is more preferably a concentration at which Js/Jw is 0.40 or less, and more preferably a concentration at which Js/Jw is 0.35 or less. When the organic solvent concentration is not allowed to exceed the above upper limit concentration, swelling and deterioration of the forward osmosis membrane do not progress in a short period of time, which is preferable.

<溶媒添加機構>
溶媒添加機構は、被処理液に溶媒を加え、被処理液の有機溶媒濃度を調節する役割を持つ。本実施形態の濃縮回収装置は、溶媒添加機構を備えることで、正浸透膜に接する被処理液の有機溶媒濃度を所望以下に保持できる。正浸透膜は、高濃度の有機溶媒に曝されると膨潤、溶解等により劣化し得るところ、溶媒添加機構は、過度に高有機溶媒濃度の被処理液が正浸透膜に接触することを防止し、したがって正浸透膜の劣化を抑制する。溶媒添加機構によって被処理液に添加される溶媒としては、水等を例示できる。典型的な態様において、溶媒は水である。溶媒の添加の形式に制限はなく、被処理液に対し、正浸透膜による濃縮を行う前に溶媒を添加しても、正浸透膜による濃縮中に溶媒を添加してもよい。溶媒添加機構は、被処理液タンクに接続されていてもよいし、被処理液が正浸透膜へ送られるライン中に接続されていてもよいし、正浸透膜を出た被処理液が被処理液タンクへ戻るライン中に接続されていてもよい。
<Solvent addition mechanism>
The solvent addition mechanism has a role of adding a solvent to the liquid to be treated and adjusting the organic solvent concentration of the liquid to be treated. The concentration recovery device of this embodiment is provided with a solvent addition mechanism, so that the organic solvent concentration of the liquid to be treated that comes into contact with the forward osmosis membrane can be maintained at a desired level or lower. When exposed to a high concentration of organic solvent, the forward osmosis membrane can be deteriorated by swelling, dissolution, etc., and the solvent addition mechanism prevents the liquid to be treated that has an excessively high organic solvent concentration from coming into contact with the forward osmosis membrane, thereby suppressing deterioration of the forward osmosis membrane. An example of the solvent added to the liquid to be treated by the solvent addition mechanism is water. In a typical embodiment, the solvent is water. There is no limitation on the form of solvent addition, and the solvent may be added to the liquid to be treated before concentration by the forward osmosis membrane or during concentration by the forward osmosis membrane. The solvent addition mechanism may be connected to a tank for the liquid to be treated, may be connected to a line through which the liquid to be treated is sent to the forward osmosis membrane, or may be connected to a line through which the liquid to be treated that has left the forward osmosis membrane returns to the tank for the liquid to be treated.

<限外ろ過膜>
本実施形態の濃縮回収装置は、正浸透膜の前段(すなわち液流上流側)に、1つ以上の限外ろ過膜による分画機構を設けることができる。有機溶媒含有液に含まれる溶質のサイズが十分大きい場合は、限外ろ過膜である程度分画精製することができる。また、有機溶媒含有液が、濃縮対象となる分子以外の不純物を含むとき、分画機構によって不純物と濃縮対象の分子とを分離できる場合がある。限外ろ過膜の分画分子量及び膜形状に制限はない。分画分子量は好ましくは、1kDa以上1000kDa以下、又は3kDa以上500kDa以下、又は3kDa以上100kDa以下、又は3kDa以上50kDa以下、又は3kDa以上10kDa以下、又は5kDa以上10kDa以下である。また、分画機構として複数の限外ろ過膜を用いてよい。
限外ろ過膜の運転方式は任意である。一般に、遠心力などを利用して膜に対して垂直方向に液を送液するデッドエンド方式と、膜に対して平行方向に液を送液するクロスフロー方式がある。好ましくは、溶質が堆積し難いクロスフロー式である。
<Ultrafiltration membrane>
The concentration and recovery device of this embodiment can be provided with a fractionation mechanism using one or more ultrafiltration membranes in front of the forward osmosis membrane (i.e., the upstream side of the liquid flow). When the size of the solute contained in the organic solvent-containing liquid is sufficiently large, the ultrafiltration membrane can fractionate and purify the liquid to some extent. In addition, when the organic solvent-containing liquid contains impurities other than the molecules to be concentrated, the impurities and the molecules to be concentrated can be separated by the fractionation mechanism. There are no limitations on the molecular weight cutoff and membrane shape of the ultrafiltration membrane. The molecular weight cutoff is preferably 1 kDa or more and 1000 kDa or less, or 3 kDa or more and 500 kDa or less, or 3 kDa or more and 100 kDa or less, or 3 kDa or more and 50 kDa or less, or 3 kDa or more and 10 kDa or less, or 5 kDa or more and 10 kDa or less. In addition, multiple ultrafiltration membranes may be used as the fractionation mechanism.
The ultrafiltration membrane may be operated in any manner. Generally, there is a dead-end type in which the liquid is fed perpendicular to the membrane by using centrifugal force, and a cross-flow type in which the liquid is fed parallel to the membrane. The cross-flow type is preferable because solutes are less likely to accumulate.

限外ろ過膜は、被処理液タンクと正浸透膜との間に設けてもよいし、被処理液タンクとは別に前処理タンク8を設け、前処理タンク8と被処理液タンク1との間に限外ろ過膜7を設けてもよい。一態様においては、限外ろ過膜による分画機構と正浸透膜による濃縮機構との間に被処理液タンクが配置される。 The ultrafiltration membrane may be provided between the tank for the treated liquid and the forward osmosis membrane, or a pretreatment tank 8 may be provided separately from the tank for the treated liquid, and an ultrafiltration membrane 7 may be provided between the pretreatment tank 8 and the tank for the treated liquid 1. In one embodiment, the tank for the treated liquid is disposed between the fractionation mechanism using the ultrafiltration membrane and the concentration mechanism using the forward osmosis membrane.

限外ろ過膜は、例えば、高分子膜、又はセラミック膜であってよい。 The ultrafiltration membrane may be, for example, a polymer membrane or a ceramic membrane.

<測定機構>
本実施形態の濃縮回収装置は、被処理液である有機溶媒含有液中の溶媒組成(特に有機溶媒濃度)を測定する測定機構を備えてよい。測定機構は、装置ライン内に組み込まれていても、ライン外に併設されていてもよい。測定機構としては、屈折率計、密度計、液体クロマトグラフィー/質量分析(LC/MS)装置、ガスクロマトグラフィー/質量分析(GC/MS)装置、赤外分光(IR)光度計、紫外可視分光(UV-vis)光度計、及び核磁気共鳴(NMR)装置から成る群より選択される1つ以上を用いてよい。溶媒及び溶質の種類及び/又は濃度によってこれらの分析方法を使い分けることができる。なかでも、測定の簡便さの点で、屈折率計、密度計、赤外分光(IR)光度計、及び紫外可視分光(UV-vis)光度計から成る群より選択される1種以上が好ましく、赤外分光(IR)光度計、及び屈折率計がより好ましい。複数種の有機溶媒を含む混合系でも、検量線を事前作成することで、測定機構6による濃度測定が可能である。
<Measurement mechanism>
The concentration and recovery apparatus of this embodiment may be provided with a measurement mechanism for measuring the solvent composition (particularly the organic solvent concentration) in the organic solvent-containing liquid, which is the liquid to be treated. The measurement mechanism may be incorporated in the apparatus line or may be provided outside the line. As the measurement mechanism, one or more selected from the group consisting of a refractometer, a density meter, a liquid chromatography/mass spectrometry (LC/MS) device, a gas chromatography/mass spectrometry (GC/MS) device, an infrared spectrometer (IR) photometer, an ultraviolet-visible spectrometer (UV-vis) photometer, and a nuclear magnetic resonance (NMR) device may be used. These analysis methods can be used depending on the type and/or concentration of the solvent and solute. Among them, in terms of ease of measurement, one or more selected from the group consisting of a refractometer, a density meter, an infrared spectrometer (IR) photometer, and an ultraviolet-visible spectrometer (UV-vis) photometer are preferred, and an infrared spectrometer (IR) photometer and a refractometer are more preferred. Even in a mixed system containing multiple types of organic solvents, the concentration can be measured by the measurement mechanism 6 by creating a calibration curve in advance.

<溶媒の添加方法>
溶媒の添加方法は、下記不等式を満たすことが望ましい:
(A+B)>C かつ、
E/(D+E)>(E-Bt)/(D+E-At-Bt+Ct)
すなわち、
A-B×(D/E)<C<A+B
ここで、
Aは、正浸透膜を水が透過する速度(kg/h)であり、Bは、正浸透膜を有機溶媒が透過する速度(kg/h)であり、Cは、被処理液へ溶媒(水)を添加する速度(kg/h)であり、Dは、被処理液中の水の初期質量(kg)であり、Eは、被処理液中の有機溶媒の初期質量(kg)であり、Atは、濃縮開始後、時間tの間に正浸透膜を透過した水の質量(kg)であり、Btは、濃縮開始後、時間tの間に正浸透膜を透過した有機溶媒の質量(kg)であり、Ctは、濃縮開始後、時間tの間に被処理液に添加された溶媒(水)の質量(kg)である。
<Method of adding solvent>
The method of adding the solvent should preferably satisfy the following inequality:
(A+B)>C and
E/(D+E)>(E-Bt)/(D+E-At-Bt+Ct)
That is,
A-B×(D/E)<C<A+B
Where:
A is the rate at which water permeates the forward osmosis membrane (kg/h), B is the rate at which an organic solvent permeates the forward osmosis membrane (kg/h), C is the rate at which solvent (water) is added to the liquid to be treated (kg/h), D is the initial mass of water (kg) in the liquid to be treated, E is the initial mass of organic solvent (kg) in the liquid to be treated, At is the mass of water (kg) that permeates the forward osmosis membrane during time t after the start of concentration, Bt is the mass of organic solvent (kg) that permeates the forward osmosis membrane during time t after the start of concentration, and Ct is the mass of solvent (water) added to the liquid to be treated during time t after the start of concentration.

上記不等式を満たす観点から、溶媒の添加方法は、好ましくは下記(i)~(iii)のいずれかである。
(i)正浸透膜の脱溶媒速度に合わせて、ある一定の速度で溶媒(例えば水)を加える方法
(ii)被処理液中の有機溶媒濃度を適宜測定し、有機溶媒濃度に応じて、溶媒(例えば水)を加える方法
(iii)事前に十分量の溶媒(例えば水)を被処理液に加えてから、濃縮回収装置によって被処理液を濃縮する方法
(i)、(ii)、(iii)のいずれの方法でも、有機溶媒濃度が正浸透膜の上限濃度を超えることなく、被処理液を濃縮することが可能である。総運転時間を短縮する観点からは、上記(ii)の方法が好ましい。
From the viewpoint of satisfying the above inequality, the method of adding the solvent is preferably any one of the following (i) to (iii).
(i) A method of adding a solvent (e.g., water) at a certain rate in accordance with the solvent removal rate of the forward osmosis membrane; (ii) A method of appropriately measuring the organic solvent concentration in the liquid to be treated and adding a solvent (e.g., water) according to the organic solvent concentration; (iii) A method of adding a sufficient amount of solvent (e.g., water) to the liquid to be treated in advance and then concentrating the liquid to be treated using a concentration recovery device. In any of the methods (i), (ii), and (iii), it is possible to concentrate the liquid to be treated without the organic solvent concentration exceeding the upper limit concentration of the forward osmosis membrane. From the viewpoint of shortening the total operation time, the above method (ii) is preferred.

<駆動液の濃縮再生機構>
駆動液の濃縮再生機構は、希釈された駆動液から溶媒を除き、浸透圧を上昇させる機構である。本実施形態の濃縮回収装置において、濃縮再生機構は必ずしも必須ではないが、当該濃縮再生機構を用いることは、濃縮回収装置の長期運転の観点から好ましい。濃縮再生機構は、減圧蒸留機構、膜蒸留機構、及び蒸発缶を用いた蒸発濃縮機構から成る群より選択される少なくとも1つであることが好ましい。
<Concentration and regeneration mechanism of working liquid>
The driving liquid concentration and regeneration mechanism is a mechanism for removing the solvent from the diluted driving liquid and increasing the osmotic pressure. In the concentration and recovery device of this embodiment, the concentration and regeneration mechanism is not necessarily required, but it is preferable to use the concentration and regeneration mechanism from the viewpoint of long-term operation of the concentration and recovery device. The concentration and regeneration mechanism is preferably at least one selected from the group consisting of a reduced pressure distillation mechanism, a membrane distillation mechanism, and an evaporation and concentration mechanism using an evaporator.

<濃縮回収装置の運転操作>
濃縮回収装置は、一態様において、液温0℃超50℃以下の範囲の運転温度で運転することができる。溶質の溶解度が高く当該溶質が液中で安定に存在できる観点から、運転温度は、好ましくは4℃以上40℃以下、より好ましくは10℃以上30℃以下である。被処理液と駆動液との間に温度差があってもよい。
<Operation of the concentration recovery device>
In one embodiment, the concentration and recovery apparatus can be operated at a liquid temperature in the range of more than 0° C. and not more than 50° C. From the viewpoint of high solubility of the solute and stable existence of the solute in the liquid, the operating temperature is preferably 4° C. or more and 40° C. or less, more preferably 10° C. or more and 30° C. or less. There may be a temperature difference between the liquid to be treated and the driving liquid.

正浸透膜にかかる圧力は、被処理液中及び駆動液中の溶質を正浸透膜に固着させずに被処理液を濃縮しやすく、かつ正浸透膜が圧密化しにくいという観点から、被処理液側、駆動液側ともに100kPa以下であることが好ましい。ここでの圧力とは、正浸透膜の各液の入口に圧力計を設置し、運転時の所定量で液を送液した際に圧力計が示す値を指し、浸透圧は加味しない。被処理液側と駆動液側との圧力差は、正浸透膜をより長期的に使用できるようにする観点から、好ましくは50kPa以下、より好ましくは20kPa以下である。被処理液側と駆動液側とのいずれの圧力が高くなっても構わない。 The pressure applied to the forward osmosis membrane is preferably 100 kPa or less on both the treated liquid side and the driving liquid side, from the viewpoint of making it easy to concentrate the treated liquid without causing the solutes in the treated liquid and the driving liquid to adhere to the forward osmosis membrane, and making it difficult for the forward osmosis membrane to become compacted. The pressure here refers to the value indicated by a pressure gauge installed at the inlet of each liquid of the forward osmosis membrane when a predetermined amount of liquid is delivered during operation, and does not take into account osmotic pressure. The pressure difference between the treated liquid side and the driving liquid side is preferably 50 kPa or less, more preferably 20 kPa or less, from the viewpoint of enabling the forward osmosis membrane to be used for a longer period of time. It does not matter whether the pressure on the treated liquid side or the driving liquid side is higher.

限外ろ過膜による分画機構を設ける場合、限外ろ過膜の運転温度は、被処理液の液温と同じであってよい。また、運転圧力は限外ろ過膜への溶質の固着を低減できる観点で、好ましくは300kPa以下、より好ましくは200kPa以下、更に好ましくは100kPa以下である。 When a fractionation mechanism using an ultrafiltration membrane is provided, the operating temperature of the ultrafiltration membrane may be the same as the temperature of the liquid being treated. In addition, the operating pressure is preferably 300 kPa or less, more preferably 200 kPa or less, and even more preferably 100 kPa or less, from the viewpoint of reducing adhesion of solutes to the ultrafiltration membrane.

<上限濃度の決定>
正浸透膜の有機溶媒含有液に対する許容上限濃度は、既定濃度の有機溶媒水溶液に正浸透膜を2時間浸漬し、正浸透膜を純水で洗浄したのちに、被処理液を純水、駆動液を3.5質量%の塩化ナトリウム水溶液として、液温25℃で正浸透膜を運転したときの、脱溶媒速度(Jw)と塩の逆拡散速度(Js)の比率、Js/Jwが0.50となる濃度である。以下、当該上限濃度の決定方法について述べる。図7は、濃縮回収装置の性能評価装置を示す模式図である。性能評価装置700は、駆動液タンク15、駆動液用の送液ポンプ16、純水タンク17、電子天秤18、純水用の送液ポンプ19、正浸透膜モジュール20を備える。
正浸透膜モジュールを図7に示すような性能評価装置に接続し、一方の面側(一態様において緻密層側)に純水(被処理液として)を、他方の面側(一態様において基材膜層側)に3.5質量%の塩化ナトリウム水溶液(駆動液として)を25℃で30分間通液し、30分間の平均脱水速度並びに塩の逆拡散速度を前述の式(1)、(2)に従って算出する。このとき、純水と塩化ナトリウム水溶液とによって通液時に正浸透膜にかかる圧力がそれぞれ20kPa以下となるように各液の流速を調節する。測定後、正浸透膜は純水で十分に洗浄する。なお、評価後の被処理液中に含まれる塩化ナトリウムは導電率計を用いて検出することができる。
<Determination of upper limit concentration>
The allowable upper limit concentration of the forward osmosis membrane for the organic solvent-containing liquid is the concentration at which the ratio of the desolvation rate (Jw) to the salt back diffusion rate (Js), Js/Jw, is 0.50 when the forward osmosis membrane is immersed in an organic solvent aqueous solution of a predetermined concentration for 2 hours, the forward osmosis membrane is washed with pure water, the liquid to be treated is pure water, the driving liquid is a 3.5 mass% sodium chloride aqueous solution, and the forward osmosis membrane is operated at a liquid temperature of 25° C. The method for determining the upper limit concentration will be described below. FIG. 7 is a schematic diagram showing a performance evaluation device for a concentration recovery device. The performance evaluation device 700 includes a driving liquid tank 15, a liquid delivery pump 16 for the driving liquid, a pure water tank 17, an electronic balance 18, a liquid delivery pump 19 for the pure water, and a forward osmosis membrane module 20.
The forward osmosis membrane module is connected to a performance evaluation device as shown in FIG. 7, and pure water (as the liquid to be treated) is passed through one side (the dense layer side in one embodiment) and a 3.5 mass% sodium chloride aqueous solution (as the driving liquid) is passed through the other side (the base membrane layer side in one embodiment) at 25° C. for 30 minutes, and the average dehydration rate and salt back diffusion rate for 30 minutes are calculated according to the above-mentioned formulas (1) and (2). At this time, the flow rate of each liquid is adjusted so that the pressure applied to the forward osmosis membrane by the pure water and the sodium chloride aqueous solution during the liquid passing is 20 kPa or less. After the measurement, the forward osmosis membrane is thoroughly washed with pure water. The sodium chloride contained in the liquid to be treated after the evaluation can be detected using a conductivity meter.

所定濃度の有機溶媒水溶液を調製し、正浸透膜に液が十分に接触するように、正浸透膜モジュールを当該有機溶媒水溶液中に2時間浸漬する。その後、正浸透膜モジュールを回収し、十分に純水で洗浄する。図7に示すような性能評価装置にて、正浸透膜を再度25℃で性能評価し、脱溶媒速度と塩の逆拡散速度を算出する。ここで、Js/Jwが0.50以下であれば許容とし、0.50より大きければ正浸透膜が劣化したとみなす。用いる被処理液の有機溶媒濃度を5質量%、10質量%、15質量%のように5質量%ずつ大きくして評価を行い、Js/Jwが0.50以下となる最大点を上限濃度として設定する。 An organic solvent aqueous solution of a predetermined concentration is prepared, and the forward osmosis membrane module is immersed in the organic solvent aqueous solution for 2 hours so that the liquid is in sufficient contact with the forward osmosis membrane. The forward osmosis membrane module is then recovered and thoroughly washed with pure water. The performance of the forward osmosis membrane is evaluated again at 25°C using a performance evaluation device such as that shown in Figure 7, and the desolvation rate and salt back diffusion rate are calculated. Here, if Js/Jw is 0.50 or less, it is considered acceptable, and if it is greater than 0.50, the forward osmosis membrane is considered to have deteriorated. The organic solvent concentration of the liquid to be treated is increased by 5 mass% in increments such as 5 mass%, 10 mass%, and 15 mass%, and the maximum point at which Js/Jw is 0.50 or less is set as the upper limit concentration.

<中分子溶液の濃縮回収>
以下、有機溶媒を含んだ中分子溶液の濃縮回収の方法の例について述べる。
所定の有機溶媒濃度及び溶質濃度の中分子溶液を調製する。ここで、有機溶媒濃度及び溶質濃度は、
有機溶媒濃度(質量%)=(有機溶媒の質量(g))/(溶液全体の質量(g))×100
溶質濃度(質量%)=(溶質の質量(g))/(溶液全体の質量(g))×100
で表される。
前記中分子溶液を被処理液として濃縮回収装置で濃縮する。必要に応じて濃縮運転中の被処理液の有機溶媒濃度を測定機構で測定してよい。濃縮後の被処理液の有機溶媒濃度、溶質濃度、及び駆動液の溶質濃度を、測定機構と同じ分析方法、例えば核磁気共鳴法、又は誘導結合プラズマ-質量分析(ICP―MS)を用いて求める。また、使用後の正浸透膜モジュールを純水で十分に洗浄したのち、被処理液を純水、駆動液を3.5質量%塩化ナトリウム水溶液として、液温25℃、被処理液及び駆動液から正浸透膜にかかる圧力がそれぞれ20kPa以下になるように流量を調節して30分間運転し、Js/Jwによって性能評価できる。
<Concentration and recovery of middle molecule solution>
An example of a method for concentrating and recovering a middle molecule solution containing an organic solvent will be described below.
A medium molecule solution having a predetermined organic solvent concentration and solute concentration is prepared. Here, the organic solvent concentration and solute concentration are as follows:
Organic solvent concentration (mass %)=(mass of organic solvent (g))/(mass of total solution (g))×100
Solute concentration (mass%)=(mass of solute (g))/(mass of total solution (g))×100
It is expressed as:
The middle molecular solution is concentrated in a concentration recovery device as the liquid to be treated. If necessary, the organic solvent concentration of the liquid to be treated during the concentration operation may be measured by a measurement mechanism. The organic solvent concentration, solute concentration, and solute concentration of the driving liquid after concentration are determined using the same analysis method as the measurement mechanism, for example, nuclear magnetic resonance or inductively coupled plasma-mass spectrometry (ICP-MS). In addition, after the forward osmosis membrane module is thoroughly washed with pure water after use, the liquid to be treated is pure water and the driving liquid is a 3.5 mass% sodium chloride aqueous solution, and the liquid temperature is 25°C. The flow rate is adjusted so that the pressure applied to the forward osmosis membrane from the liquid to be treated and the driving liquid is 20 kPa or less, respectively, and the performance can be evaluated by Js/Jw.

濃縮後の被処理液中の溶質の回収率は下式(3)から算出できる。
回収率={(濃縮後の被処理液の中分子濃度(質量%))×(濃縮後の被処理液の質量(g))×100}/{(濃縮前の被処理液の中分子濃度(質量%))×(濃縮前の被処理液の質量(g))×100}・・・(3)
The recovery rate of the solute in the treated liquid after concentration can be calculated from the following formula (3).
Recovery rate = {(Middle molecule concentration (mass%) of the liquid to be treated after concentration) × (mass (g) of the liquid to be treated after concentration) × 100} / {(Middle molecule concentration (mass%) of the liquid to be treated before concentration) × (mass (g) of the liquid to be treated before concentration) × 100} ... (3)

一態様において、有機溶媒含有液の回収率は、好ましくは80.0質量%以上、より好ましくは95.0質量%以上である。回収率は、理想的には100質量%であるが、濃縮回収装置の製造容易性の観点から、例えば、99.9質量%以下、又は99.5質量%以下であってよい。 In one embodiment, the recovery rate of the organic solvent-containing liquid is preferably 80.0% by mass or more, more preferably 95.0% by mass or more. The recovery rate is ideally 100% by mass, but from the viewpoint of ease of manufacturing the concentration recovery device, it may be, for example, 99.9% by mass or less, or 99.5% by mass or less.

濃縮運転後の正浸透膜の性能評価の結果、Js/Jwが0.50以下のとき、正浸透膜は劣化していないとみなすことができるため、同じ正浸透膜を再度濃縮運転に用いてもよい。 When the performance evaluation of the forward osmosis membrane after the concentration operation shows that Js/Jw is 0.50 or less, the forward osmosis membrane can be considered not to have deteriorated, and the same forward osmosis membrane may be used again for the concentration operation.

≪濃縮回収方法≫
本発明の一態様は、有機溶媒含有液の濃縮回収方法も提供する。当該方法は、正浸透膜を用いて有機溶媒含有液を濃縮する濃縮工程を含み、濃縮工程において、有機溶媒含有液に溶媒を添加する。一態様において、濃縮回収方法は、前述した濃縮回収装置を用いて実施してよい。したがって、当該方法で用いる正浸透膜(中空糸膜等)、限外ろ過膜、測定機構、濃縮再生機構、有機溶媒含有液、駆動液等の構成要素、及び濃縮運転の態様については、≪濃縮回収装置≫の項で例示したのと同様であってよい。
以下、濃縮回収方法の各工程の好適例について説明する。
<Concentration recovery method>
One aspect of the present invention also provides a method for concentrating and recovering an organic solvent-containing liquid. The method includes a concentration step of concentrating the organic solvent-containing liquid using a forward osmosis membrane, and in the concentration step, a solvent is added to the organic solvent-containing liquid. In one aspect, the concentration and recovery method may be carried out using the above-mentioned concentration and recovery device. Therefore, the components such as the forward osmosis membrane (hollow fiber membrane, etc.), ultrafiltration membrane, measurement mechanism, concentration and regeneration mechanism, organic solvent-containing liquid, and driving liquid used in the method, and the mode of concentration operation may be the same as those exemplified in the section "Concentration and recovery device".
Preferred examples of each step of the concentration and recovery method will be described below.

<濃縮工程>
本工程では、正浸透膜を用いて有機溶媒含有液を濃縮する。濃縮工程においては、有機溶媒含有液に溶媒を添加する。濃縮工程において、正浸透膜の一方の面側に有機溶媒含有液を供給し、正浸透膜の他方の面側に駆動液を供給する。溶媒の添加方法は限定されず、連続的又は間欠的な添加であってよい。有機溶媒含有液の有機溶媒濃度が、≪濃縮回収装置≫の項で前述した正浸透膜の許容上限濃度を超えない範囲に維持されるように、有機溶媒含有液に溶媒を添加することが望ましい。
<Concentration process>
In this step, the organic solvent-containing liquid is concentrated using a forward osmosis membrane. In the concentration step, a solvent is added to the organic solvent-containing liquid. In the concentration step, the organic solvent-containing liquid is supplied to one side of the forward osmosis membrane, and a driving liquid is supplied to the other side of the forward osmosis membrane. The method of adding the solvent is not limited, and may be continuous or intermittent addition. It is desirable to add the solvent to the organic solvent-containing liquid so that the organic solvent concentration of the organic solvent-containing liquid is maintained within a range not exceeding the allowable upper limit concentration of the forward osmosis membrane described above in the section "Concentration and recovery device".

<分画工程>
本実施形態の方法は、濃縮工程の前に、1つ以上の限外ろ過膜によって有機溶媒含有液を分画する分画工程を更に含んでよい。分画工程で得た分画済の有機溶媒含有液を、被処理液タンクを介して前記濃縮工程に供してよい。
<Fractionation step>
The method of the present embodiment may further include a fractionation step of fractionating the organic solvent-containing liquid using one or more ultrafiltration membranes prior to the concentration step. The fractionated organic solvent-containing liquid obtained in the fractionation step may be supplied to the concentration step via a tank for treated liquid.

<溶媒組成の測定>
本実施形態の方法は、有機溶媒含有液中の溶媒組成を観測することを更に含んでよい。観測には、≪濃縮回収装置≫の項で例示した測定機構を用いてよい。溶媒組成の観測は、濃縮工程において、例えば、予め設定した時間間隔で行ってよい。
<Measurement of Solvent Composition>
The method of the present embodiment may further include observing the solvent composition in the organic solvent-containing liquid. The observation may be performed using the measurement mechanism exemplified in the section "Concentration and Recovery Apparatus". The observation of the solvent composition may be performed, for example, at a preset time interval during the concentration step.

<駆動液濃縮再生工程>
本実施形態の方法は、濃縮工程において希釈された駆動液を濃縮再生する駆動液濃縮再生工程を更に含んでよい。当該濃縮再生には、≪濃縮回収装置≫の項で例示した濃縮再生機構を用いてよい。
<Driving solution concentration and regeneration process>
The method of the present embodiment may further include a driving liquid concentration and regeneration step of concentrating and regenerating the driving liquid diluted in the concentration step. For the concentration and regeneration, the concentrating and regeneration mechanism exemplified in the section "Concentration and recovery device" may be used.

以上例示した工程によって、有機溶媒含有液を濃縮できる。一態様において、本実施形態の方法による、有機溶媒含有液の回収率、及び、有機溶媒含有液の濃縮により回収された濃縮液中の、駆動液に含まれていた溶質の含有濃度は、それぞれ、≪濃縮回収装置≫の項で例示した範囲であることが好ましい。 The organic solvent-containing liquid can be concentrated by the process exemplified above. In one aspect, the recovery rate of the organic solvent-containing liquid by the method of this embodiment and the concentration of the solute contained in the driving liquid in the concentrated liquid recovered by concentrating the organic solvent-containing liquid are preferably within the ranges exemplified in the section entitled "Concentration and Recovery Apparatus."

以下、本発明の実施形態の具体例を実施例並びに比較例として挙げるが、本発明はこの範囲に限定されるものではない。 Specific examples of the present invention are given below as examples and comparative examples, but the present invention is not limited to these scopes.

(製造例1)
ポリエーテルスルホン(BASF社製、Ultrason)の質量割合20%のN-メチルピロリドン(NMP)溶液を調製し、二重紡口を装備した湿式中空糸紡糸機に上記の原液を充填し、水をみたした凝固槽に押し出し、相分離により中空糸を形成した。中空糸は、外径1.0mm、内径0.70mmであった。内表面積が100cm2になるように、中空糸膜を束ねてプラスチックハウジングに充填し、ウレタン接着剤でハウジングと中空糸膜束とを接着して、ハウジングと中空糸膜束とを含む中空糸膜モジュールを形成した。
(Production Example 1)
A 20% by mass solution of polyethersulfone (BASF Ultrason) in N-methylpyrrolidone (NMP) was prepared, and the above solution was filled into a wet hollow fiber spinning machine equipped with a double-nozzle nozzle, and extruded into a coagulation tank filled with water to form hollow fibers by phase separation. The hollow fibers had an outer diameter of 1.0 mm and an inner diameter of 0.70 mm. The hollow fiber membranes were bundled and packed into a plastic housing so that the inner surface area was 100 cm2, and the housing and the hollow fiber membrane bundle were bonded with a urethane adhesive to form a hollow fiber membrane module including the housing and the hollow fiber membrane bundle.

中空糸膜の内表面側に、2.0質量%のm-フェニレンジアミン、及び0.10質量%のドデシル硫酸ナトリウムを含む水溶液を5分間通液したのち、5分間5.0L/minの窒素を通液し、さらに0.20質量%の1,3,5-ベンゼンカルボン酸トリクロリドのヘキサン溶液を3分間通液することで、正浸透膜モジュールに加工した。正浸透膜モジュールは使用前に純水で終夜水洗した。 An aqueous solution containing 2.0% by mass of m-phenylenediamine and 0.10% by mass of sodium dodecyl sulfate was passed through the inner surface of the hollow fiber membrane for 5 minutes, followed by passing nitrogen at 5.0 L/min for 5 minutes, and then passing a hexane solution of 0.20% by mass of 1,3,5-benzenecarboxylic acid trichloride through it for 3 minutes to process it into a forward osmosis membrane module. The forward osmosis membrane module was washed overnight with pure water before use.

上記正浸透膜の脱溶媒速度Jw及び塩の逆拡散速度Jsを、純水と3.5質量%塩化ナトリウム水溶液を用いた脱水試験により測定した。このとき、純水と3.5質量%塩化ナトリウムの送液速度はそれぞれ120mL/min及び270mL/minとした。Jw=12.6(kg/m2/h)、Js=2.8(g/m2/h)であった。 The solvent removal rate Jw and salt back-diffusion rate Js of the forward osmosis membrane were measured by a dehydration test using pure water and a 3.5% by mass aqueous sodium chloride solution. The delivery rates of the pure water and 3.5% by mass aqueous sodium chloride were 120 mL/min and 270 mL/min, respectively. Jw = 12.6 (kg/ m2 /h), Js = 2.8 (g /m2 /h).

(実施例1)
製造例1に従って正浸透膜モジュールを得た。上記正浸透膜の脱溶媒速度Jw及び塩の逆拡散速度Jsを、純水と3.5質量%塩化ナトリウム水溶液を用いた脱水試験により測定した。このとき、純水と3.5質量%塩化ナトリウムの送液速度はそれぞれ120mL/min及び270mL/minとした。Jw=11.9(kg/m2/h)、Js=2.0(g/m2/h)であった。25℃のアセトニトリル10、15、20、25、30質量%水溶液の各々に2時間浸漬したのち、純水で十分正浸透膜モジュールを洗浄した。Js/Jwはそれぞれ0.22、0.19、0.33、0.45、0.97であった。そのため、正浸透膜が許容する有機溶媒の上限濃度は25質量%とした。
Example 1
A forward osmosis membrane module was obtained according to Production Example 1. The desolvation rate Jw and salt back diffusion rate Js of the forward osmosis membrane were measured by a dehydration test using pure water and a 3.5 mass% sodium chloride aqueous solution. At this time, the liquid delivery rates of pure water and 3.5 mass% sodium chloride were 120 mL/min and 270 mL/min, respectively. Jw = 11.9 (kg/m 2 /h), Js = 2.0 (g/ m 2 /h). After immersing in 10, 15, 20, 25, and 30 mass% aqueous solutions of acetonitrile at 25°C for 2 hours, the forward osmosis membrane module was thoroughly washed with pure water. Js/Jw were 0.22, 0.19, 0.33, 0.45, and 0.97, respectively. Therefore, the upper limit concentration of organic solvent that the forward osmosis membrane can tolerate was set to 25 mass%.

アセトニトリル10質量%水溶液500gにアラニルグルタミン0.80gを溶解し、0.157質量%のアラニルグルタミン溶液を調製した。これを被処理液として、上記正浸透膜モジュールを搭載した濃縮回収装置で濃縮実験を行った。駆動液には35質量%塩化マグネシウム水溶液を用いた。被処理液と駆動液の送液速度はそれぞれ75mL/min及び130mL/minであった。運転中、毎分1.0g/minの速度で被処理液に水を添加した。115分後に被処理液の質量が100gとなったので運転を停止した。IR、及び屈折率計により、濃縮された被処理液のアセトニトリル濃度を測定したところ、19.2質量%であった。前述の式(3)にて回収率を算出したところ、92.8%であった。 0.80 g of alanylglutamine was dissolved in 500 g of 10% by mass acetonitrile aqueous solution to prepare a 0.157% by mass alanylglutamine solution. This was used as the treated liquid and a concentration experiment was performed using the concentration recovery device equipped with the forward osmosis membrane module. A 35% by mass magnesium chloride aqueous solution was used as the driving liquid. The liquid feed rates of the treated liquid and the driving liquid were 75 mL/min and 130 mL/min, respectively. During operation, water was added to the treated liquid at a rate of 1.0 g/min per minute. After 115 minutes, the mass of the treated liquid reached 100 g, so operation was stopped. The acetonitrile concentration of the concentrated treated liquid was measured by IR and a refractometer and found to be 19.2% by mass. The recovery rate was calculated using the above formula (3) and found to be 92.8%.

(実施例2)
製造例1に従って正浸透膜モジュールを作製した。Jw=11.9、Js=1.9であった。実施例1と同様に被処理液を調製し、濃縮実験を行った。ただし、水の添加速度を1.5g/minとした。135分で運転を停止した。濃縮実験後の被処理液中のアセトニトリル濃度は18.0質量%であった。前述の式(3)にて回収率を算出したところ、91.3%であった。
Example 2
A forward osmosis membrane module was produced according to Production Example 1. Jw = 11.9, Js = 1.9. A concentration experiment was carried out by preparing a liquid to be treated in the same manner as in Example 1, except that the water addition rate was 1.5 g/min. The operation was stopped after 135 minutes. The acetonitrile concentration in the liquid to be treated after the concentration experiment was 18.0 mass%. The recovery rate was calculated by the above formula (3) to be 91.3%.

(実施例3)
製造例1に従って正浸透膜モジュールを作製した。Jw=13.0、Js=1.4であった。実施例1と同様に被処理液を調製し、濃縮実験を行った。ただし、水の添加速度を2.0g/minとした。159分で運転を停止した。濃縮実験後の被処理液中のアセトニトリル濃度は14.4質量%であった。前述の式(3)にて回収率を算出したところ、96.0%であった。
Example 3
A forward osmosis membrane module was produced according to Production Example 1. Jw = 13.0, Js = 1.4. A liquid to be treated was prepared in the same manner as in Example 1, and a concentration experiment was carried out. However, the water addition rate was 2.0 g/min. The operation was stopped at 159 minutes. The acetonitrile concentration in the liquid to be treated after the concentration experiment was 14.4 mass%. The recovery rate was calculated using the above formula (3) and was 96.0%.

(実施例4)
製造例1に従って正浸透膜モジュールを作製した。Jw=9.9、Js=2.2であった。実施例1と同様に被処理液を調製し、濃縮実験を行った。ただし、水の添加速度を1.6g/minとした。144分で運転を停止した。濃縮実験後の被処理液中のアセトニトリル濃度は16.8質量%であった。前述の式(3)にて回収率を算出したところ、91.9%であった。
Example 4
A forward osmosis membrane module was produced according to Production Example 1. Jw = 9.9, Js = 2.2. A liquid to be treated was prepared in the same manner as in Example 1, and a concentration experiment was carried out. However, the water addition rate was 1.6 g/min. The operation was stopped after 144 minutes. The acetonitrile concentration in the liquid to be treated after the concentration experiment was 16.8 mass%. The recovery rate was calculated using the above formula (3) and was 91.9%.

(実施例5)
製造例1に従って正浸透膜モジュールを作製した。Jw=12.6、Js=1.1であった。実施例1と同様に被処理液を調製し、濃縮実験を行った。ただし、運転開始後55分後まで水は添加しなかった。運転開始後56分から、水の添加速度を2.0g/minとした。106分で運転を停止した。濃縮実験後の被処理液中のアセトニトリル濃度は16.8質量%であった。前述の式(3)にて回収率を算出したところ、94.2%であった。
Example 5
A forward osmosis membrane module was produced according to Production Example 1. Jw = 12.6, Js = 1.1. A liquid to be treated was prepared in the same manner as in Example 1, and a concentration experiment was carried out. However, water was not added until 55 minutes after the start of operation. From 56 minutes after the start of operation, the water addition rate was set to 2.0 g/min. The operation was stopped at 106 minutes. The acetonitrile concentration in the liquid to be treated after the concentration experiment was 16.8 mass%. The recovery rate was calculated using the above formula (3) and was 94.2%.

(実施例6)
製造例1に従って正浸透膜モジュールを作製した。Jw=11.5、Js=2.4であった。アセトニトリル20質量%水溶液を溶媒とする以外は実施例1と同様に被処理液を調製したうえで濃縮実験を行った。ここで、濃縮時の正浸透膜の平均脱溶媒速度を測定したところ、4.1g/minであった。被処理液タンクの屈折率計によって1分毎に、IR測定により5分毎に被処理液中のアセトニトリル濃度を測定した。アセトニトリルの濃度が22質量%に達したときに、4.1g/minで水添を開始し、アセトニトリルの濃度が20質量%になったときに水添を止める方式で運転を行った。189分で運転を停止した。濃縮実験後の被処理液中のアセトニトリル濃度は21.9質量%であった。前述の式(3)にて回収率を算出したところ、91.6%であった。
Example 6
A forward osmosis membrane module was produced according to Production Example 1. Jw = 11.5, Js = 2.4. A concentration experiment was carried out after preparing the liquid to be treated in the same manner as in Example 1 except that a 20% by mass aqueous solution of acetonitrile was used as the solvent. Here, the average desolvation speed of the forward osmosis membrane during concentration was measured and found to be 4.1 g/min. The acetonitrile concentration in the liquid to be treated was measured every minute using a refractometer in the tank for the liquid to be treated and every 5 minutes using IR measurement. When the concentration of acetonitrile reached 22% by mass, hydrogenation was started at 4.1 g/min, and when the concentration of acetonitrile reached 20% by mass, hydrogenation was stopped. The operation was stopped at 189 minutes. The acetonitrile concentration in the liquid to be treated after the concentration experiment was 21.9% by mass. The recovery rate was calculated using the above formula (3) and was found to be 91.6%.

(実施例7)
製造例1に従って正浸透膜モジュールを作製した。Jw=13.3、Js=2.4であった。メタノールに関して上限濃度の測定を行ったところ、30、35、40、45質量%メタノール水溶液に浸漬した際に、Js/Jwはそれぞれ0.30、0.41、0.44、0.59となった。そのため、正浸透膜が許容する有機溶媒の上限濃度を40質量%とした。30質量%メタノール水溶液を溶媒として、実施例1と同様に被処理液を調製し濃縮実験を行った。ここで、濃縮時の正浸透膜の平均脱溶媒速度を測定したところ、4.5g/minであった。被処理液タンクの屈折率計によって1分毎に、IR測定により5分毎に被処理液中のメタノール濃度を測定した。メタノールの濃度が40質量%に達したときに、4.5g/minで水添を開始し、メタノールの濃度が35質量%になったときに水添を停止する方式で運転を行った。108分で運転を停止した。濃縮実験後の被処理液中のメタノール濃度は33.6質量%であった。前述の式(3)にて回収率を算出したところ、98.0%であった。
(Example 7)
A forward osmosis membrane module was produced according to Production Example 1. Jw = 13.3, Js = 2.4. When the upper limit concentration of methanol was measured, Js / Jw was 0.30, 0.41, 0.44, and 0.59 when immersed in 30, 35, 40, and 45 mass% methanol aqueous solutions, respectively. Therefore, the upper limit concentration of organic solvents that the forward osmosis membrane can tolerate was set to 40 mass%. A 30 mass% methanol aqueous solution was used as the solvent to prepare a treated liquid in the same manner as in Example 1, and a concentration experiment was performed. Here, the average desolvation speed of the forward osmosis membrane during concentration was measured, and it was 4.5 g / min. The methanol concentration in the treated liquid was measured every minute by a refractometer in the treated liquid tank and every 5 minutes by IR measurement. When the concentration of methanol reached 40 mass%, hydrogenation was started at 4.5 g / min, and hydrogenation was stopped when the concentration of methanol reached 35 mass%. The operation was stopped at 108 minutes. The methanol concentration in the treated liquid after the concentration experiment was 33.6% by mass. The recovery rate was calculated to be 98.0% by the above formula (3).

(実施例8)
製造例1に従って正浸透膜モジュールを作製した。Jw=12.5、Js=1.4であった。アラニルグルタミンの代わりにマルトペンタオースを用いる以外は、実施例6と同様に実験を行った。185分で運転を停止した。濃縮実験後の被処理液中のアセトニトリル濃度は21.1質量%であった。前述の式(3)にて回収率を算出したところ、95.3%であった。
(Example 8)
A forward osmosis membrane module was produced according to Production Example 1. Jw = 12.5, Js = 1.4. An experiment was carried out in the same manner as in Example 6, except that maltopentaose was used instead of alanylglutamine. The operation was stopped at 185 minutes. The acetonitrile concentration in the treated liquid after the concentration experiment was 21.1% by mass. The recovery rate was calculated using the above formula (3) and was 95.3%.

(比較例1)
製造例1に従って正浸透膜モジュールを作製した。Jw=9.9、Js=1.2であった。実施例6と同様の被処理液を調製し、濃縮実験を行った。但し、水は添加しなかった。89分後に運転を停止した。濃縮実験後の被処理液中のアセトニトリル濃度は47.6質量%であった。前述の式(3)にて回収率を算出したところ、79.0%であった。
(Comparative Example 1)
A forward osmosis membrane module was produced according to Production Example 1. Jw = 9.9, Js = 1.2. The same liquid to be treated as in Example 6 was prepared, and a concentration experiment was carried out. However, water was not added. The operation was stopped after 89 minutes. The acetonitrile concentration in the liquid to be treated after the concentration experiment was 47.6 mass%. The recovery rate was calculated using the above formula (3) and was 79.0%.

(比較例2)
限外ろ過膜としてvivaflow50R(ザルトリウス社製、分画分子量5,000Da、膜面積50cm)を用いて、実施例2と同様の被処理液を分画濃縮した。液温は25℃、運転圧力は50kPaとした。水は添加しなかった。83分後に運転を停止した。濃縮実験後の阻止液のアセトニトリル濃度は19.6質量%であった。前述の式(3)にて回収率を算出したところ、6.3%であった。
(Comparative Example 2)
The same liquid to be treated as in Example 2 was fractionally concentrated using a vivaflow50R (manufactured by Sartorius, molecular weight cutoff 5,000 Da, membrane area 50 cm2) as an ultrafiltration membrane. The liquid temperature was 25°C, and the operating pressure was 50 kPa. No water was added. The operation was stopped after 83 minutes. The acetonitrile concentration of the blocking liquid after the concentration experiment was 19.6 mass%. The recovery rate was calculated using the above formula (3) to be 6.3%.

以上の結果を図8から図16にまとめた。 The above results are summarized in Figures 8 to 16.

溶媒添加によって、正浸透膜の上限濃度を下回る有機溶媒濃度で運転を行うことができた。これにより、正浸透膜は有機溶媒によって劣化しにくくなると期待できる。
このため、運転中に被処理液の有機溶媒濃度を観測し、適宜水を添加することで、ある有機溶媒濃度範囲内で濃縮を実施することが有用であることがわかる。
By adding the solvent, it was possible to operate the forward osmosis membrane at an organic solvent concentration below the upper limit of the forward osmosis membrane, which is expected to make the forward osmosis membrane less susceptible to deterioration by organic solvents.
For this reason, it is found to be useful to monitor the organic solvent concentration of the liquid being treated during operation and add water appropriately to carry out concentration within a certain organic solvent concentration range.

また、上限濃度を下回る有機溶媒濃度で運転を行うことで、同一の正浸透膜を繰り返し使用しても膜の劣化がないと期待できる。 In addition, by operating the system with an organic solvent concentration below the upper limit, it is expected that the membrane will not deteriorate even if the same forward osmosis membrane is used repeatedly.

本発明は有機溶媒を含む溶液の濃縮プロセスに利用することができる。正浸透膜の膨潤、溶解による劣化を、溶媒の添加による被処理液の有機溶媒濃度制御によって抑制し、従来手法では回収が困難であった小さいサイズの分子を高い回収率で高濃度で回収することが可能である。 The present invention can be used in the concentration process of solutions containing organic solvents. Deterioration of the forward osmosis membrane due to swelling and dissolution can be suppressed by controlling the organic solvent concentration of the treated liquid by adding a solvent, making it possible to recover small molecules, which were difficult to recover using conventional methods, at a high recovery rate and in high concentration.

100,200,300,400,500,600 濃縮回収装置
700 性能評価装置
1 被処理液タンク
2 溶媒添加機構
3 ポンプ
4 正浸透膜
5,15 駆動液タンク
6 測定機構
7 限外ろ過膜
8 前処理タンク
16 駆動液用の送液ポンプ
17 純水タンク
18 電子天秤
19 純水用の送液ポンプ
20 正浸透膜モジュール
100, 200, 300, 400, 500, 600 Concentration and recovery device 700 Performance evaluation device 1 Tank for treated liquid 2 Solvent addition mechanism 3 Pump 4 Forward osmosis membrane 5, 15 Driving liquid tank 6 Measurement mechanism 7 Ultrafiltration membrane 8 Pretreatment tank 16 Driving liquid delivery pump 17 Pure water tank 18 Electronic balance 19 Pure water delivery pump 20 Forward osmosis membrane module

Claims (12)

有機溶媒含有液の濃縮回収装置であって、
前記有機溶媒含有液が、水を含み、且つ、アセトニトリル、メタノール、イソプロピルアルコール、酢酸エチル、ヘキサン、トルエン、及びジメチルスルホキシドから成る群より選択される少なくとも1種の溶媒を含み、
前記濃縮回収装置が、
正浸透膜による1つ以上の濃縮機構、及び
前記有機溶媒含有液に水を添加する溶媒添加機構、
を備える、濃縮回収装置。
An apparatus for concentrating and recovering an organic solvent-containing liquid, comprising:
The organic solvent-containing liquid contains water and at least one solvent selected from the group consisting of acetonitrile, methanol, isopropyl alcohol, ethyl acetate, hexane, toluene, and dimethyl sulfoxide;
The concentration and recovery device comprises:
one or more concentrating mechanisms using a forward osmosis membrane; and a solvent adding mechanism for adding water to the organic solvent-containing liquid.
A concentration recovery device comprising:
有機溶媒含有液中の溶媒組成を観測するための測定機構を有する、請求項に記載の濃縮回収装置。 2. The concentration and recovery apparatus according to claim 1 , further comprising a measuring mechanism for observing the solvent composition in the organic solvent-containing liquid. 前記測定機構が、赤外分光法(IR)、屈折率計による測定法、密度計による測定法、及び液体クロマトグラフィー/質量分析(LC/MS)、ガスクロマトグラフィー/質量分析による計測法(GC/MS)、紫外可視分光(UV-vis)、核磁気共鳴装置(NMR)による分析法から成る群より選択される少なくとも1種を用いるものである、請求項に記載の濃縮回収装置。 The measurement mechanism is at least one selected from the group consisting of infrared spectroscopy (IR), a measurement method using a refractometer, a measurement method using a density meter, and an analysis method using liquid chromatography / mass spectrometry (LC / MS), gas chromatography / mass spectrometry (GC / MS), ultraviolet-visible spectroscopy (UV-vis), and a nuclear magnetic resonance device (NMR). The concentration and recovery apparatus according to claim 2 , which uses at least one selected from the group consisting of an analysis method using an ultraviolet-visible spectroscopy (UV-vis), and a nuclear magnetic resonance device (NMR). 有機溶媒含有液が分子量200以上30000以下の中分子を含む、請求項1~のいずれか一項に記載の濃縮回収装置。 The concentration and recovery apparatus according to any one of claims 1 to 3 , wherein the organic solvent-containing liquid contains medium molecules having a molecular weight of 200 or more and 30,000 or less. アミノ酸、ペプチド、核酸、および糖類から成る群より選択される少なくとも1つの化学種を有機溶媒含有液中に含む、請求項1~のいずれか一項に記載の濃縮回収装置。 5. The concentration and recovery apparatus according to claim 1 , wherein the organic solvent-containing liquid contains at least one chemical species selected from the group consisting of amino acids, peptides, nucleic acids, and sugars. 前記正浸透膜を構成する化学種が、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリベンズイミダゾール、ポリフッ化ビニリデン、ポリアクリロニトリル、ポリケトン、再生セルロース、ポリアミド、ポリウレア、ゼオライト、及び有機金属構造体から成る群より選択される少なくとも1種を含む、請求項1~のいずれか一項に記載の濃縮回収装置。 The concentration and recovery apparatus according to any one of claims 1 to 5, wherein a chemical species constituting the forward osmosis membrane includes at least one selected from the group consisting of polysulfone, polyethersulfone, polyimide, polybenzimidazole, polyvinylidene fluoride, polyacrylonitrile, polyketone, regenerated cellulose, polyamide, polyurea, zeolite, and metal-organic frameworks . 前記正浸透膜による濃縮で使用する駆動液が、塩化ナトリウム、塩化マグネシウム、硫酸ナトリウム、硫酸マグネシウム、塩化カリウム、塩化リチウム、臭化リチウム、酢酸ナトリウム、酢酸、シュウ酸ナトリウム、シュウ酸、クエン酸ナトリウム、クエン酸、リン酸ナトリウム、リン酸、及びポリエチレングリコールから成る群より選択される少なくとも1種を含む水溶液である、請求項1~のいずれか一項に記載の濃縮回収装置。 The concentration and recovery apparatus according to any one of claims 1 to 6, wherein a driving liquid used in the concentration by the forward osmosis membrane is an aqueous solution containing at least one selected from the group consisting of sodium chloride, magnesium chloride, sodium sulfate, magnesium sulfate, potassium chloride, lithium chloride, lithium bromide, sodium acetate, acetic acid, sodium oxalate, oxalic acid, sodium citrate, citric acid, sodium phosphate, phosphoric acid, and polyethylene glycol. 正浸透膜による濃縮機構の前段に、1つ以上の限外ろ過膜による分画機構を備える、請求項1~のいずれか一項に記載の濃縮回収装置。 The concentration and recovery apparatus according to any one of claims 1 to 7 , further comprising a fractionation mechanism using one or more ultrafiltration membranes, which is provided in a stage preceding the concentration mechanism using the forward osmosis membrane. 駆動液の濃縮再生機構を備える、請求項1~のいずれか一項に記載の濃縮回収装置。 The concentration and recovery device according to any one of claims 1 to 8 , further comprising a mechanism for concentrating and regenerating the driving liquid. 前記濃縮再生機構が減圧蒸留、膜蒸留、蒸発缶を用いた蒸発濃縮のいずれかである、請求項に記載の濃縮回収装置。 The concentration recovery apparatus according to claim 9 , wherein the concentration regeneration mechanism is any one of reduced pressure distillation, membrane distillation, and evaporation concentration using an evaporator. 有機溶媒含有液の有機溶媒濃度が、使用する正浸透膜の上限濃度を超えない、濃縮回収装置の運転方法であって、
前記有機溶媒含有液が水を含み、
前記濃縮回収装置が、
正浸透膜による1つ以上の濃縮機構、及び
有機溶媒含有液に水を添加する溶媒添加機構、
を備え、
前記上限濃度が、ある濃度の有機溶媒水溶液に前記正浸透膜を2時間浸漬し、正浸透膜を純水で洗浄したのちに、被処理液を純水、駆動液を3.5質量%の塩化ナトリウム水溶液として正浸透膜を運転したときの、透水速度(Jw)と塩の逆拡散速度(Js)の比率、Js/Jwが0.50となる濃度である、濃縮回収装置の運転方法。
A method for operating a concentration and recovery apparatus in which the organic solvent concentration of an organic solvent-containing liquid does not exceed an upper limit concentration of a forward osmosis membrane used, comprising the steps of:
the organic solvent-containing liquid contains water,
The concentration and recovery device comprises:
one or more concentrating mechanisms using a forward osmosis membrane; and a solvent adding mechanism for adding water to the organic solvent-containing liquid.
Equipped with
a forward osmosis membrane is immersed in an organic solvent aqueous solution of a certain concentration for 2 hours, the forward osmosis membrane is washed with pure water, and then the forward osmosis membrane is operated with pure water as the treated liquid and a 3.5 mass% aqueous sodium chloride solution as the driving liquid, and the upper limit concentration is a concentration at which the ratio Js/Jw of the water permeation rate (Jw) to the back diffusion rate (Js) of salt is 0.50.
前記濃縮回収装置が、請求項1~10のいずれか一項に記載の濃縮回収装置である、請求項11に記載の濃縮回収装置の運転方法。 The method for operating a concentration recovery apparatus according to claim 11 , wherein the concentration recovery apparatus is the concentration recovery apparatus according to any one of claims 1 to 10 .
JP2020094807A 2019-05-31 2020-05-29 Device for concentrating and recovering a middle molecule solution and method for operating the same Active JP7545817B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019102675 2019-05-31
JP2019102675 2019-05-31

Publications (2)

Publication Number Publication Date
JP2020196009A JP2020196009A (en) 2020-12-10
JP7545817B2 true JP7545817B2 (en) 2024-09-05

Family

ID=73649495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020094807A Active JP7545817B2 (en) 2019-05-31 2020-05-29 Device for concentrating and recovering a middle molecule solution and method for operating the same

Country Status (1)

Country Link
JP (1) JP7545817B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022196698A1 (en) 2021-03-15 2022-09-22 旭化成株式会社 Method and system for reducing volume of raw material liquid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188786A (en) 2014-03-27 2015-11-02 東洋紡株式会社 Positive permeation processing system
JP2016155078A (en) 2015-02-24 2016-09-01 旭化成株式会社 Forward osmosis treatment system
JP2017035667A (en) 2015-08-12 2017-02-16 Jfeエンジニアリング株式会社 Desalination treatment device for water
WO2018200538A1 (en) 2017-04-24 2018-11-01 Coors Brewing Company System and method for producing beer/hard cider concentrate
WO2019098390A1 (en) 2017-11-20 2019-05-23 旭化成株式会社 System for concentrating solvent-containing articles, and concentrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188786A (en) 2014-03-27 2015-11-02 東洋紡株式会社 Positive permeation processing system
JP2016155078A (en) 2015-02-24 2016-09-01 旭化成株式会社 Forward osmosis treatment system
JP2017035667A (en) 2015-08-12 2017-02-16 Jfeエンジニアリング株式会社 Desalination treatment device for water
WO2018200538A1 (en) 2017-04-24 2018-11-01 Coors Brewing Company System and method for producing beer/hard cider concentrate
WO2019098390A1 (en) 2017-11-20 2019-05-23 旭化成株式会社 System for concentrating solvent-containing articles, and concentrate

Also Published As

Publication number Publication date
JP2020196009A (en) 2020-12-10

Similar Documents

Publication Publication Date Title
Su et al. Sublayer structure and reflection coefficient and their effects on concentration polarization and membrane performance in FO processes
CN106659987B (en) Forward osmosis membrane and forward osmosis treatment system
TWI232773B (en) Treatment system having spiral membrane element and method for operating the treatment system
JP6526440B2 (en) Positive penetration treatment system
CN113905806B (en) Raw material liquid concentration system
CN113905807A (en) Forward osmosis membrane, forward osmosis membrane module, and method for producing forward osmosis membrane module
US20140319049A1 (en) Method of forming forward osmosis membranes and the forward osmosis membranes thus formed
Wang et al. Preparation and characterization of chitosan-poly (vinyl alcohol)/polyvinylidene fluoride hollow fiber composite membranes for pervaporation dehydration of isopropanol
JP7545817B2 (en) Device for concentrating and recovering a middle molecule solution and method for operating the same
JP6780427B2 (en) How to regenerate the separation membrane module
JP7249427B2 (en) Raw material liquid concentration method and raw material liquid concentration system
WO2015140807A1 (en) Filter
Tsai et al. Study of the separation properties of chitosan/polysulfone composite hollow-fiber membranes
AU2020286068B2 (en) Raw material solution concentration system
CN111282455B (en) External pressure type hollow fiber industrial nanofiltration membrane and preparation method thereof
CN113304629A (en) Preparation method of composite nanofiltration membrane based on polyether sulfone hollow fiber ultrafiltration membrane
Roli et al. Separating xylose from glucose using spiral wound nanofiltration membrane: effect of cross-flow parameters on sugar rejection
Shah et al. Optimization of polysulfone support layer for thin-film composite forward osmosis membrane
JP6390326B2 (en) Method for producing porous filtration membrane for water treatment
US20240149220A1 (en) Method and System for Reducing Volume of Raw Material Liquid
CN109499374B (en) Recovery method suitable for operation interval of hollow fiber pervaporation membrane
SG188687A1 (en) Thin film composite osmosis membranes
US20240091714A1 (en) Strong Hollow-Fiber Membranes for Saline Desalination and Water Treatment
WO2024204207A1 (en) Raw material liquid flow concentration system and raw material liquid flow concentration method
WO2024204166A1 (en) Raw material liquid flow dehydration system and raw material liquid flow dehydration method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240530

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240826

R150 Certificate of patent or registration of utility model

Ref document number: 7545817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150