[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7541216B2 - Method for producing hydrogen-containing organ preservation solution and hydrogen-containing organ preservation solution - Google Patents

Method for producing hydrogen-containing organ preservation solution and hydrogen-containing organ preservation solution Download PDF

Info

Publication number
JP7541216B2
JP7541216B2 JP2021515774A JP2021515774A JP7541216B2 JP 7541216 B2 JP7541216 B2 JP 7541216B2 JP 2021515774 A JP2021515774 A JP 2021515774A JP 2021515774 A JP2021515774 A JP 2021515774A JP 7541216 B2 JP7541216 B2 JP 7541216B2
Authority
JP
Japan
Prior art keywords
hydrogen
solution
organ preservation
hydrogen gas
etk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021515774A
Other languages
Japanese (ja)
Other versions
JPWO2020217575A1 (en
JPWO2020217575A5 (en
Inventor
英司 小林
元昭 佐野
総 橋本
勝春 飯沼
善一 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Doctorsman Co Ltd
Original Assignee
Keio University
Doctorsman Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Doctorsman Co Ltd filed Critical Keio University
Publication of JPWO2020217575A1 publication Critical patent/JPWO2020217575A1/ja
Publication of JPWO2020217575A5 publication Critical patent/JPWO2020217575A5/ja
Application granted granted Critical
Publication of JP7541216B2 publication Critical patent/JP7541216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Environmental Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Dentistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Description

本発明は、水素ガスを溶解させてなる水素含有臓器保存液の生成方法及びこの水素含有臓器保存液に関する。 The present invention relates to a method for producing a hydrogen-containing organ preservation solution by dissolving hydrogen gas, and to this hydrogen-containing organ preservation solution.

水素ガスが種々の生体反応を引き起こすことは、近年、明らかにされてきている。特に虚血再灌流障害の防止に有効である機構が明らかにされており(例えば、非特許文献1)、小動物を用いた種々の臓器移植モデルによって水素ガスの有効性が報告されている(例えば、非特許文献2~4)。しかし、これらはネズミなどの小動物の臓器移植モデルに関するものであり、ブタモデルを用いたものではない。一方、水素ガスの有効性をブタモデル等の前臨床モデルで検証した論文は存在するが(例えば、非特許文献5~9)、これらは少数であり、しかも、一定の見解を示唆するものではない。It has been revealed in recent years that hydrogen gas induces various biological reactions. In particular, the mechanism by which it is effective in preventing ischemia-reperfusion injury has been elucidated (e.g., Non-Patent Document 1), and the effectiveness of hydrogen gas has been reported in various organ transplant models using small animals (e.g., Non-Patent Documents 2-4). However, these relate to organ transplant models of small animals such as mice, and do not use pig models. On the other hand, there are papers that have verified the effectiveness of hydrogen gas in preclinical models such as pig models (e.g., Non-Patent Documents 5-9), but these are few in number and do not suggest a consistent view.

また、これら非特許文献の開示内容を含む従来技術においては、水素ガスを、電気分解装置で発生させて供給するか又は水素ボンベから供給することが行われていた。In addition, in the prior art, including the disclosures in these non-patent documents, hydrogen gas was generated in an electrolysis device and supplied, or was supplied from a hydrogen cylinder.

Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S, “Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals”, Nat Med. 2007 Jun;13(6):688-94. Epub 2007 May 7Ohsawa I, Ishikawa M, Takahashi K, Watanabe M, Nishimaki K, Yamagata K, Katsura K, Katayama Y, Asoh S, Ohta S, “Hydrogen acts as a therapeutic antioxidant by selectively reducing cytotoxic oxygen radicals”, Nat Med. 2007 Jun ;13(6):688-94. Epub 2007 May 7 Abe T, Li XK, Yazawa K, Hatayama N, Xie L, Sato B, Kakuta Y, Tsutahara K, Okumi M, Tsuda H, Kaimori JY, Isaka Y, Natori M, Takahara S, Nonomura N, “Hydrogen-rich University of Wisconsin solution attenuates renal cold ischemia-reperfusion injury”, Transplantation. 2012 Jul 15;94(1):14-21. doi: 10.1097/TP.0b013e318255f8beAbe T, Li XK, Yazawa K, Hatayama N, Xie L, Sato B, Kakuta Y, Tsutahara K, Okumi M, Tsuda H, Kaimori JY, Isaka Y, Natori M, Takahara S, Nonomura N, “Hydrogen-rich University of Wisconsin solution attenuates renal cold ischemia-reperfusion injury”, Transplantation. 2012 Jul 15;94(1):14-21. doi: 10.1097/TP.0b013e318255f8be Lobb I, Jiang J, Lian D, Liu W, Haig A, Saha MN, Torregrossa R, Wood ME, Whiteman M, Sener A. “Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions”, Am J Transplant. 2017 Feb;17(2):341-352. doi: 10.1111/ajt.14080. Epub 2016 Nov 29.Lobb I, Jiang J, Lian D, Liu W, Haig A, Saha MN, Torregrossa R, Wood ME, Whiteman M, Sener A. “Hydrogen Sulfide Protects Renal Grafts Against Prolonged Cold Ischemia-Reperfusion Injury via Specific Mitochondrial Actions”, Am J Transplant. 2017 Feb;17(2):341-352. doi: 10.1111/ajt.14080. Epub 2016 Nov 29. Tamaki I, Hata K, Okamura Y, Nigmet Y, Hirao H, Kubota T, Inamoto O, Kusakabe J, Goto T, Tajima T, Yoshikawa J, Tanaka H, Tsuruyama T, Tolba RH, Uemoto S, “Hydrogen Flush After Cold Storage as a New End-Ischemic Ex Vivo Treatment for Liver Grafts Against Ischemia/Reperfusion Injury”, Liver Transpl. 2018 Nov;24(11):1589-1602. doi: 10.1002/lt.25326Tamaki I, Hata K, Okamura Y, Nigmet Y, Hirao H, Kubota T, Inamoto O, Kusakabe J, Goto T, Tajima T, Yoshikawa J, Tanaka H, Tsuruyama T, Tolba RH, Uemoto S, “Hydrogen Flush After Cold “Storage as a New End-Ischemic Ex Vivo Treatment for Liver Grafts Against Ischemia/Reperfusion Injury”, Liver Transpl. 2018 Nov;24(11):1589-1602. doi: 10.1002/lt.25326 Hosgood SA, Moore T, Qurashi M, Adams T, Nicholson ML, “Hydrogen Gas Does Not Ameliorate Renal Ischemia Reperfusion Injury in a Preclinical Model”, Artif Organs. 2018 Jul;42(7):723-727. doi: 10.1111/aor.13118. Epub 2018 Apr 2.Hosgood SA, Moore T, Qurashi M, Adams T, Nicholson ML, “Hydrogen Gas Does Not Ameliorate Renal Ischemia Reperfusion Injury in a Preclinical Model”, Artif Organs. 2018 Jul;42(7):723-727. doi: 10.1111/ aor.13118. Epub 2018 Apr 2. Sekijima M, Sahara H, Miki K, Villani V, Ariyoshi Y, Iwanaga T, Tomita Y, Yamada K, “Hydrogen sulfide prevents renal ischemia-reperfusion injury in CLAWN miniature swine”, J Surg Res. 2017 Nov;219:165-172. doi: 10.1016/j.jss.2017.05.123. Epub 2017 Jun 28Sekijima M, Sahara H, Miki K, Villani V, Ariyoshi Y, Iwanaga T, Tomita Y, Yamada K, “Hydrogen sulfide prevents renal ischemia-reperfusion injury in CLAWN miniature swine”, J Surg Res. 2017 Nov;219:165- 172. doi: 10.1016/j.jss.2017.05.123. Epub 2017 Jun 28 Lee G, Hosgood SA, Patel MS, Nicholson ML, “Hydrogen sulphide as a novel therapy to ameliorate cyclosporine nephrotoxicity”, J Surg Res. 2015 Aug;197(2):419-26. doi: 10.1016/j.jss.2015.02.061. Epub 2015 Mar 17.Lee G, Hosgood SA, Patel MS, Nicholson ML, “Hydrogen sulphide as a novel therapy to ameliorate cyclosporine nephrotoxicity”, J Surg Res. 2015 Aug;197(2):419-26. doi: 10.1016/j.jss.2015.02 .061. Epub 2015 Mar 17. Haam S, Lee S, Paik HC, Park MS, Song JH, Lim BJ, Nakao A, “The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death”, Eur J Cardiothorac Surg. 2015 Oct;48(4):542-7. doi: 10.1093/ejcts/ezv057. Epub 2015 Mar 6Haam S, Lee S, Paik HC, Park MS, Song JH, Lim BJ, Nakao A, “The effects of hydrogen gas inhalation during ex vivo lung perfusion on donor lungs obtained after cardiac death”, Eur J Cardiothorac Surg. 2015 Oct; 48(4):542-7. doi: 10.1093/ejcts/ezv057. Epub 2015 Mar 6 Matsuno N, Watanabe R, Kimura M, Iwata S, Fujiyama M, Kono S, Shigeta T, Enosawa S, “Beneficial effects of hydrogen gas on porcine liver reperfusion injury with use of total vascular exclusion and active venous bypass”, Transplant Proc. 2014 May;46(4):1104-6. doi: 10.1016/j.transproceed.2013.11.134.Matsuno N, Watanabe R, Kimura M, Iwata S, Fujiyama M, Kono S, Shigeta T, Enosawa S, “Beneficial effects of hydrogen gas on porcine liver reperfusion injury with use of total vascular exclusion and active venous bypass”, Transplant Proc. 2014 May;46(4):1104-6. doi: 10.1016/j.transproceed.2013.11.134.

臓器移植におけるドナーの医療現場において、従来技術のように、水素ガスを電気分解装置で発生させて供給すること、又は水素ボンベを現場に持ち込んでこのボンベから水素ガスを供給することは、その準備に多大の労力及び時間を要することのみならず、危険性を伴うことから、緊急性が要求される現場において、迅速に実施することは実質的に不可能であった。 At the medical site of organ transplant donors, the conventional method of generating hydrogen gas using an electrolysis device and supplying it from a hydrogen cylinder brought to the site and supplying hydrogen gas from this cylinder not only requires a great deal of effort and time in preparation, but also involves risks, making it virtually impossible to carry out quickly at sites where urgency is required.

従って本発明は、従来技術のこのような問題点を解消するものであり、その目的は、移植用臓器を取り扱う現場において、素早く、簡便にかつ安全に水素含有臓器保存液を生成することができる水素含有臓器保存液の生成方法及び水素含有臓器保存液を提供することにある。Therefore, the present invention aims to solve such problems in the prior art, and its object is to provide a method for producing hydrogen-containing organ preservation fluid and a hydrogen-containing organ preservation fluid that can quickly, easily and safely be produced at sites where organs for transplantation are handled.

本発明によれば、水素含有臓器保存液の生成方法は、移植用臓器を取り扱う現場において、水素吸蔵合金キャニスタから、臓器保存液を収容した可撓性容器内に水素ガスを圧入し、この可撓性容器を振動させて水素ガスを臓器保存液内に溶解させ、この可撓性容器を外気に開放して内部の圧力を低減させることにより、可撓性容器内に所定濃度以上の溶存水素を含有し、移植用臓器を洗い流し及び/又は保存するために使用する水素含有臓器保存液を生成する。According to the present invention, a method for producing a hydrogen-containing organ preservation solution involves, at a site where organs for transplant are handled, pressuring hydrogen gas from a hydrogen storage alloy canister into a flexible container containing organ preservation solution, vibrating the flexible container to dissolve the hydrogen gas in the organ preservation solution, and opening the flexible container to the outside air to reduce the internal pressure, thereby producing a hydrogen-containing organ preservation solution containing a predetermined concentration or more of dissolved hydrogen in the flexible container and used for flushing and/or preserving organs for transplant.

このように、本発明によれば、医療現場において、水素吸蔵合金キャニスタからの水素ガスを使用し、この水素ガスを可撓性容器内に圧入し、この可撓性容器を振動させることによって水素ガスを臓器保存液内に溶解させ、その後、可撓性容器を外気に開放して内部の圧力を低減させている。水素ガス発生源として水素吸蔵合金キャニスタを用いているため、手軽にかつ安全に医療現場に水素ガス発生源を持ち込むことができ、緊急時においても、可撓性容器内に水素ガスを素早く圧入することができる。また、水素ガス圧入後に可撓性容器を振動させることにより、臓器保存液内により多くの水素ガスを溶解させることができると共に、臓器保存液内に含まれる水素ガスのナノバブルがより高い濃度となる。さらに、その後、可撓性容器を外気に開放して内部の圧力を低減させることにより、可撓性容器内の臓器保存液を移植用臓器の洗い流し及び保存に使用することが可能となるのみならず、臓器保存液内に含まれる水素ガスのナノバブルをより高い濃度とすることができる。この水素ガスのナノバブルは、移植用臓器の洗い流し(フラッシュアウト)効果向上に大きく寄与するものである。Thus, according to the present invention, in a medical field, hydrogen gas from a hydrogen storage alloy canister is used, this hydrogen gas is injected into a flexible container, and the flexible container is vibrated to dissolve the hydrogen gas in the organ preservation liquid, and then the flexible container is opened to the outside air to reduce the internal pressure. Since a hydrogen storage alloy canister is used as a hydrogen gas source, the hydrogen gas source can be easily and safely brought to a medical field, and even in an emergency, hydrogen gas can be quickly injected into the flexible container. In addition, by vibrating the flexible container after hydrogen gas injection, more hydrogen gas can be dissolved in the organ preservation liquid, and the hydrogen gas nanobubbles contained in the organ preservation liquid can be at a higher concentration. Furthermore, by subsequently opening the flexible container to the outside air to reduce the internal pressure, not only can the organ preservation liquid in the flexible container be used to wash and preserve organs for transplantation, but the hydrogen gas nanobubbles contained in the organ preservation liquid can be at a higher concentration. These hydrogen gas nanobubbles contribute greatly to improving the flushing effect of organs for transplantation.

水素吸蔵合金キャニスタから可撓性容器に供給される水素ガスの圧力が所定圧力となるまで、水素ガスの供給を行うことも好ましい。It is also preferable to supply hydrogen gas until the pressure of the hydrogen gas supplied from the hydrogen storage alloy canister to the flexible container reaches a predetermined pressure.

この場合、所定圧力が、0.02MPa~0.07MPa(ゲージ圧)の範囲の圧力であることがより好ましい。In this case, it is more preferable that the specified pressure is in the range of 0.02 MPa to 0.07 MPa (gauge pressure).

可撓性容器の振動を、30秒間以上行うことも好ましい。It is also preferable to vibrate the flexible container for at least 30 seconds.

本発明によれば、さらに、水素含有臓器保存液は、所定濃度以上の溶存水素を含有し、移植用臓器を洗い流し及び/又は保存するために使用する液体である。According to the present invention, furthermore, the hydrogen-containing organ preservation solution is a liquid that contains dissolved hydrogen at a predetermined concentration or more and is used to flush and/or preserve organs for transplantation.

この水素含有臓器保存液は、移植用臓器の摘出現場において、摘出した移植用臓器を洗い流しするために使用する液体であることが好ましい。It is preferable that this hydrogen-containing organ preservation solution is a liquid used to rinse the extracted organ for transplant at the site of the organ's removal.

この水素含有臓器保存液は、摘出した移植用臓器を保存し、移植用臓器の移植現場に搬送するために使用する臓器保存液体であることも好ましい。It is also preferable that this hydrogen-containing organ preservation solution is an organ preservation liquid used to preserve extracted organs for transplantation and to transport the organs for transplantation to the transplant site.

この水素含有臓器保存液は、可撓性容器内に収容されており、収容された水素含有臓器保存液の一部が摘出した移植用臓器を洗い流しするために使用する液体であり、可撓性容器内に収容された残りが摘出した移植用臓器を保存するために使用する液体であることも好ましい。This hydrogen-containing organ preservation solution is contained in a flexible container, and it is also preferable that a portion of the contained hydrogen-containing organ preservation solution is a liquid used to rinse the extracted organ for transplantation, and the remainder contained in the flexible container is a liquid used to preserve the extracted organ for transplantation.

上述の所定濃度が、4時間後の溶存水素濃度が1.0mg/L以上となる濃度であることも好ましい。It is also preferable that the above-mentioned specified concentration is a concentration that results in a dissolved hydrogen concentration of 1.0 mg/L or more after 4 hours.

本発明によれば、水素ガス発生源として水素吸蔵合金キャニスタを用いているため、手軽にかつ安全に医療現場に水素ガス発生源を持ち込むことができ、緊急時においても、可撓性容器内に水素ガスを素早く圧入することができる。また、水素ガス圧入後に可撓性容器を振動させることにより、臓器保存液内により多くの水素ガスを溶解させることができると共に、臓器保存液内に含まれる水素ガスのナノバブルがより高い濃度となる。さらに、その後、可撓性容器を外気に開放して内部の圧力を低減させることにより、可撓性容器内の臓器保存液を移植用臓器の洗い流し及び保存に使用することが可能となるのみならず、臓器保存液内に含まれる水素ガスのナノバブルをより高い濃度とすることができる。この水素ガスのナノバブルは、移植用臓器を洗い流し効果に大きく寄与するものである。According to the present invention, since a hydrogen storage alloy canister is used as a hydrogen gas source, the hydrogen gas source can be easily and safely brought to the medical site, and hydrogen gas can be quickly injected into the flexible container even in an emergency. In addition, by vibrating the flexible container after hydrogen gas is injected, more hydrogen gas can be dissolved in the organ preservation liquid, and the hydrogen gas nanobubbles contained in the organ preservation liquid can be at a higher concentration. Furthermore, by subsequently opening the flexible container to the outside air to reduce the internal pressure, not only can the organ preservation liquid in the flexible container be used to wash and preserve organs for transplantation, but the hydrogen gas nanobubbles contained in the organ preservation liquid can be at a higher concentration. These hydrogen gas nanobubbles greatly contribute to the effect of washing organs for transplantation.

本発明の一実施形態として、水素含有臓器保存液の生成工程及び水素含有臓器保存液の使用工程を概略的に示すフロー図である。FIG. 1 is a flow chart showing a process for producing a hydrogen-containing organ preservation solution and a process for using the hydrogen-containing organ preservation solution, according to one embodiment of the present invention. 図1の実施形態における水素含有臓器保存液の生成装置の構成を概略的に示す斜視図である。FIG. 2 is a perspective view showing a schematic configuration of an apparatus for producing a hydrogen-containing organ preservation solution in the embodiment of FIG. 1. 水素含有臓器保存液の溶存水素濃度の初期及び時間的推移を示すグラフである。1 is a graph showing the initial and time-dependent changes in the dissolved hydrogen concentration in a hydrogen-containing organ preservation solution. 水素ガス含有ETK液及び水素ガス非含有ETK液で洗い流したDonar Cardiac Death (DCD)腎臓の観察画像を示す図である。FIG. 1 shows images of kidneys in donor cardiac death (DCD) that have been flushed with hydrogen gas-containing ETK solution and hydrogen gas-free ETK solution. 水素ガス非含有ETK液で洗い流し及び保存したDCD腎臓の観察画像を示す図である。FIG. 1 shows images of DCD kidneys flushed and preserved with ETK solution without hydrogen gas. 水素ガス含有ETK液で洗い流し及び保存したDCD腎臓の観察画像を示す図である。FIG. 1 shows images of DCD kidneys flushed and preserved with ETK solution containing hydrogen gas. 術後慢性期の血中BUNの推移を示すグラフである。1 is a graph showing changes in blood BUN during the chronic phase after surgery. 術後慢性期の血中Creの推移を示すグラフである。1 is a graph showing the change in blood Cre level over time during the chronic phase after surgery.

図1は本発明の一実施形態として、水素含有臓器保存液の生成工程及び水素含有臓器保存液の使用工程を概略的に示しており、図2は本実施形態における水素含有臓器保存液の生成装置の構成を概略的に示している。 Figure 1 shows an outline of the process for producing hydrogen-containing organ preservation solution and the process for using the hydrogen-containing organ preservation solution as one embodiment of the present invention, and Figure 2 shows an outline of the configuration of an apparatus for producing hydrogen-containing organ preservation solution in this embodiment.

本実施形態においては、腎臓などの移植用臓器を取り扱う現場、即ち、心停止したドナーから臓器を摘出する現場において、臓器保存液内に水素ガスを溶解させる処理を瞬時に行って、所定溶存水素濃度の水素含有臓器保存液を生成し、この水素含有臓器保存液を用いて摘出した臓器の洗い流し(フラッシュアウト)及び保存を行う。臓器保存液としては、以下の説明では、ETK(ET-Kyoto)液を用いるが、UW(University of Wisconsin)液やHTK(Histidine-Tryptophan-Ketoglutarate)液を用いても良いことはもちろんである。In this embodiment, at the site where transplant organs such as kidneys are handled, i.e., at the site where organs are extracted from donors whose hearts have stopped beating, a process of dissolving hydrogen gas in an organ preservation solution is instantaneously performed to generate a hydrogen-containing organ preservation solution with a predetermined dissolved hydrogen concentration, and the extracted organ is flushed out (flushed out) and preserved using this hydrogen-containing organ preservation solution. In the following explanation, ETK (ET-Kyoto) solution is used as the organ preservation solution, but UW (University of Wisconsin) solution or HTK (Histidine-Tryptophan-Ketoglutarate) solution may also be used.

臓器摘出現場において、水素含有ETK液を生成する工程を以下説明する。The process for producing hydrogen-containing ETK solution at the organ harvesting site is described below.

まず、図2に示すように、ETK液10aが収容されたプラスチックソフトバッグ10(ポリエチレン、ポリプロピレン、ポリ塩化ビニル等フィルムで作られた可撓性容器)を用意し、このプラスチックソフトバッグ10に水素吸蔵合金キャニスタ21を接続する(図1のステップS1)。具体的には、図2に示すように、瓶針12をこのプラスチックソフトバッグ10のゴム栓11に穿通させることにより、この瓶針12に接続されているチューブ13、ワンタッチカプラ14(ソケット14a及びプラグ14b)、チューブ15、継手16、チューブ18、ワンタッチカプラ19(ソケット19a及びプラグ19b)、並びにチューブ20を介して、水素吸蔵合金キャニスタ21をプラスチックソフトバッグ10に接続する。First, as shown in Fig. 2, a plastic soft bag 10 (flexible container made of a film such as polyethylene, polypropylene, or polyvinyl chloride) containing ETK liquid 10a is prepared, and a hydrogen storage alloy canister 21 is connected to this plastic soft bag 10 (step S1 in Fig. 1). Specifically, as shown in Fig. 2, a bottle needle 12 is inserted through a rubber stopper 11 of the plastic soft bag 10, and the hydrogen storage alloy canister 21 is connected to the plastic soft bag 10 via a tube 13 connected to the bottle needle 12, a one-touch coupler 14 (socket 14a and plug 14b), a tube 15, a joint 16, a tube 18, a one-touch coupler 19 (socket 19a and plug 19b), and a tube 20.

この接続により、水素吸蔵合金キャニスタ21からの水素ガスが、チューブ20、ワンタッチカプラ19、チューブ18、継手16、チューブ15、ワンタッチカプラ14、チューブ13、及び瓶針12からなる供給路を介してプラスチックソフトバッグ10内に圧入される(図1のステップS2)。With this connection, hydrogen gas from the hydrogen storage alloy canister 21 is pressurized into the plastic soft bag 10 through a supply path consisting of the tube 20, one-touch coupler 19, tube 18, fitting 16, tube 15, one-touch coupler 14, tube 13, and bottle needle 12 (step S2 in Figure 1).

継手16の流路にリリーフ弁17が接続されているため、流路内の内部圧力、即ちプラスチックソフトバッグ10内の圧力は、例えば0.02MPa~0.07MPa(ゲージ圧)の範囲の所定圧力に維持される。 Because a relief valve 17 is connected to the flow path of the fitting 16, the internal pressure in the flow path, i.e., the pressure inside the plastic soft bag 10, is maintained at a predetermined pressure, for example in the range of 0.02 MPa to 0.07 MPa (gauge pressure).

なお、水素吸蔵合金キャニスタ21は、発熱反応及び吸熱反応により常温、低圧下で可逆的に水素の吸放出が可能な水素吸蔵合金を内部に収容したボンベ状の容器であり、一般に市販されている(例えば株式会社日本製鋼所(JSW)製)。この水素吸蔵合金キャニスタ21は、内部圧力が、1MPa以上にならないため高圧ガス保安法でいう高圧ガスには該当しない。従って、病院等の臓器摘出現場で手軽に利用することができる。また、容器のサイズも直径数cm、高さ10cm程度まで小さく設計することが可能である。さらに、水素吸蔵合金は、水素を消耗した後でも再吸収により利用可能となるため、繰返し利用によるコストダウンというメリットがある。このように、水素吸蔵合金キャニスタ21によれば、軽量及びコンパクトでありながら安全に高純度の水素ガスを供給可能である。The hydrogen storage alloy canister 21 is a cylinder-shaped container that contains a hydrogen storage alloy that can reversibly absorb and release hydrogen at room temperature and low pressure through exothermic and endothermic reactions, and is generally available commercially (for example, manufactured by Japan Steel Works, Ltd. (JSW)). This hydrogen storage alloy canister 21 does not fall under the category of high-pressure gas as defined by the High Pressure Gas Safety Act, since the internal pressure of the hydrogen storage alloy can be no more than 1 MPa. Therefore, it can be easily used at organ removal sites such as hospitals. In addition, the size of the container can be designed to be as small as a few centimeters in diameter and about 10 cm in height. Furthermore, since the hydrogen storage alloy can be reused by reabsorbing hydrogen even after it has been consumed, there is an advantage in that costs can be reduced by repeated use. In this way, the hydrogen storage alloy canister 21 is lightweight and compact, yet can safely supply high-purity hydrogen gas.

次いで、ワンタッチカプラ14を接続解除状態とし、プラスチックソフトバッグ10を水素吸蔵合金キャニスタ21から切り離す。接続解除状態としても、ワンタッチカプラ14のプラグ14b内に設けられた閉止弁(バルブ)が閉じられるため、プラスチックソフトバッグ10から水素ガスが漏れ出すことはなく、同様にプラグ14a内に設けられた閉止弁(バルブ)が閉じられるため、水素吸蔵合金キャニスタ21から水素ガスが大気に放出されることはない。Next, the one-touch coupler 14 is put into a disconnected state, and the plastic soft bag 10 is separated from the hydrogen storage alloy canister 21. Even in the disconnected state, the stop valve (valve) provided in the plug 14b of the one-touch coupler 14 is closed, so hydrogen gas does not leak from the plastic soft bag 10, and similarly, the stop valve (valve) provided in the plug 14a is closed, so hydrogen gas is not released from the hydrogen storage alloy canister 21 to the atmosphere.

この状態でワンタッチカプラ14のプラグ14b、チューブ13、瓶針12及びプラスチックソフトバッグ10を、例えば手で持って、激しく振動させることによって、プラスチックソフトバッグ10の液体10a内に水素ガスをより多く溶解させる(図1のステップS3)。振動の時間は、30秒以上であることが望ましい。In this state, the plug 14b of the one-touch coupler 14, the tube 13, the bottle needle 12, and the plastic soft bag 10 are vigorously shaken, for example, by hand, to dissolve more hydrogen gas into the liquid 10a in the plastic soft bag 10 (step S3 in FIG. 1). It is desirable to vibrate for 30 seconds or more.

次いで、プラスチックソフトバッグ10を大気に開放する(図1のステップS4)。この開放は、例えばプラグ14bに閉止弁を設けていないソケット(図示無し)を接続することによって行われる。Next, the plastic soft bag 10 is opened to the atmosphere (step S4 in FIG. 1). This opening is performed, for example, by connecting a socket (not shown) without a shutoff valve to the plug 14b.

以上の工程により、プラスチックソフトバッグ10内には、所望の溶存水素濃度の水素が含有された水素含有ETK液が、臓器摘出現場において、非常に短時間で生成されることとなる。プラスチックソフトバッグ10の膨張を抑制するために、その外周に筒型の膨張抑止部材を設けても良い。Through the above process, a hydrogen-containing ETK solution containing hydrogen at the desired dissolved hydrogen concentration is generated in a very short time at the organ removal site inside the plastic soft bag 10. In order to suppress the expansion of the plastic soft bag 10, a cylindrical expansion suppression member may be provided on its outer periphery.

その後、このように生成した水素含有ETK液によって、摘出した臓器の洗い流し(フラッシュアウト)を行う(図1のステップS5)。この洗い流しは、プラスチックソフトバッグ10内の水素含有ETK液の一部で行う。The extracted organs are then flushed out with the hydrogen-containing ETK solution thus produced (step S5 in FIG. 1). This flushing is performed with a portion of the hydrogen-containing ETK solution in the plastic soft bag 10.

次いで、残りの水素含有ETK液が入ったプラスチックソフトバック10のゴム栓側を上にして、プラスチックソフトバッグの上部をハサミで切断開封し、残りの水素含有ETK液が入ったプラスチックソフトバッグ内の残りの水素含有ETK液内に、洗い流しした摘出臓器を保存し、移植現場まで搬送する(図1のステップS6)。Next, the rubber stopper side of the plastic soft bag 10 containing the remaining hydrogen-containing ETK liquid is placed on top, the top of the plastic soft bag is cut open with scissors, and the washed, removed organ is stored in the remaining hydrogen-containing ETK liquid inside the plastic soft bag, and the organ is transported to the transplant site (step S6 in Figure 1).

次いで、移植現場において、水素含有ETK液から摘出臓器を取り出し、移植を行う(図1のステップS7)。Next, at the transplant site, the excised organ is removed from the hydrogen-containing ETK solution and transplanted (step S7 in Figure 1).

以上説明したように、本実施形態によれば、吸蔵合金に水素を貯蔵した水素吸蔵合金キャニスタ21からの水素ガスをETK液内に溶解させるように構成しているので、どこへでも安全にかつ簡単に水素ガス供給源を搬送でき、しかも、水素吸蔵合金キャニスタ21をプラスチックソフトバッグ10に簡単に接続できるように構成されているので、緊急時の臓器摘出現場で簡単にかつ素早くプラスチックソフトバッグ10内に水素ガスを圧入することができる。また、水素ガス圧入後にプラスチックソフトバッグ10を振動させることにより、ETK液内により多くの水素ガスを溶解させることができると共に、ETK液内に含まれる水素ガスのナノバブルがより高い濃度となる。さらに、その後、プラスチックソフトバッグ10を外気に開放して内部の圧力を低減させることにより、プラスチックソフトバッグ10内のETK液を移植用臓器の洗い流し及び保存に使用することが可能となるのみならず、ETK液内に含まれる水素ガスのナノバブルをより高い濃度とすることができる。この水素ガスのナノバブルは、移植用臓器の洗い流し効果向上に大きく寄与するものである。As described above, according to this embodiment, the hydrogen gas from the hydrogen storage alloy canister 21, which stores hydrogen in the storage alloy, is dissolved in the ETK liquid, so that the hydrogen gas supply source can be safely and easily transported anywhere. Moreover, since the hydrogen storage alloy canister 21 is configured to be easily connected to the plastic soft bag 10, hydrogen gas can be easily and quickly injected into the plastic soft bag 10 at the organ removal site in an emergency. In addition, by vibrating the plastic soft bag 10 after hydrogen gas is injected, more hydrogen gas can be dissolved in the ETK liquid, and the hydrogen gas nanobubbles contained in the ETK liquid become more concentrated. Furthermore, by subsequently opening the plastic soft bag 10 to the outside air to reduce the internal pressure, not only can the ETK liquid in the plastic soft bag 10 be used to wash and preserve the organ for transplantation, but the hydrogen gas nanobubbles contained in the ETK liquid can be made to have a higher concentration. These hydrogen gas nanobubbles greatly contribute to improving the washing effect of the organ for transplantation.

次に、プラスチックソフトバッグ10に供給される水素ガスの圧力(ゲージ圧)が、0.02MPa~0.07MPaの範囲にある所定圧力であることが望ましい理由について説明する。Next, we will explain why it is desirable for the pressure (gauge pressure) of the hydrogen gas supplied to the plastic soft bag 10 to be a specified pressure in the range of 0.02 MPa to 0.07 MPa.

膨張・収縮する可撓性容器であるプラスチックソフトバッグ内の水素ガス圧力と溶存水素濃度との関係を知るために下記の試験を行った。
1.試験方法
全体容量が1,850mLのプラスチックソフトバッグ(ポリエチレンフィルムとポリプロピレンフィルムの複層フィルム製)に1Lの医療用液体(例えばETK液)を入れ(空間容積:150mL)、水素ガスを内圧(ゲージ圧)が0.04MPa、0.05MPa、0.06MPaとなるまで注入し、その溶液の溶存水素濃度をバイオニクス機器株式会社製のBIH-50D計測器で計測した。
2.試験結果
次の表1はこの試験結果を示している。

Figure 0007541216000001

ヘンリーの法則によって計算した最大溶解量は、表2のようになる。
全内容量 : 1,850 mL
医療用液体量 : 1,000 mL
初期空気容量 : 150 mL
注入ガス全体容量 : 850 mL
液温 : 15 ℃
振る時間 : 30 秒間
Figure 0007541216000002
The following test was conducted to determine the relationship between the hydrogen gas pressure and the dissolved hydrogen concentration inside a plastic soft bag, which is a flexible container that expands and contracts.
1. Test method 1 L of medical liquid (e.g., ETK solution) was placed into a plastic soft bag (made of a multi-layer film of polyethylene film and polypropylene film) with a total volume of 1,850 mL (space volume: 150 mL), and hydrogen gas was injected until the internal pressure (gauge pressure) reached 0.04 MPa, 0.05 MPa, and 0.06 MPa, and the dissolved hydrogen concentration of the solution was measured using a BIH-50D measuring device manufactured by Bionics Equipment Co., Ltd.
2. Test Results The following Table 1 shows the test results.
Figure 0007541216000001

The maximum dissolution amount calculated by Henry's law is shown in Table 2.
Total content: 1,850 mL
Medical fluid volume: 1,000 mL
Initial air volume: 150 mL
Total gas volume: 850 mL
Liquid temperature: 15℃
Shaking time: 30 seconds
Figure 0007541216000002

表2に示すように、医療用液体(例えばETK液)に水素ガスを溶解する場合、1.7mg/L程度の溶存水素濃度を得るためには、注入する水素ガスの圧力は0.02MPa以上であることが望ましく、プラスチックソフトバッグの可撓性を低下させて耐圧性を向上させると設計した場合、例えば0.07MPaが最大である。従って、プラスチックソフトバッグに供給される水素ガスの圧力は、0.02MPa~0.07MPaの範囲にある所定圧力であることが望ましい。 As shown in Table 2, when dissolving hydrogen gas in a medical liquid (e.g., ETK liquid), in order to obtain a dissolved hydrogen concentration of about 1.7 mg/L, it is desirable for the pressure of the injected hydrogen gas to be 0.02 MPa or more, and if the flexibility of the plastic soft bag is reduced to improve pressure resistance, for example, the maximum is 0.07 MPa. Therefore, it is desirable for the pressure of the hydrogen gas supplied to the plastic soft bag to be a predetermined pressure in the range of 0.02 MPa to 0.07 MPa.

次に、プラスチックソフトバッグの振動時間が30秒以上であるのが望ましい理由について説明する。 Next, we will explain why it is desirable for the vibration time of the plastic soft bag to be 30 seconds or more.

膨張・収縮が可能な可撓性容器であるプラスチックソフトバッグの望ましい振動時間を知るために下記の試験を行った。
1.試験方法
全体容量が1,550mLのプラスチックソフトバッグに1Lの水道水を入れ、残りの空気の容積が50mLとなるまでこのプラスチックソフトバッグを押しつぶした後に、水素ガスをバッグ内圧(ゲージ圧)が0.05MPaとなるまで注入し密閉した。その後、1時間振らずに静置したもの、10秒間振って混合したもの、30秒間振って混合したもの、1分間振って混合したもの、2分間振って混合したもの、の内容液の溶存水素濃度をバイオニクス機器株式会社製のBIH-50D計測器で計測した。水温は10℃であった。
2.試験結果
試験結果は、表3のごときものであった。

Figure 0007541216000003

ヘンリーの法則に従って演算すると、液体への水素ガスへの最大溶解量は2.40mg/Lであることが別途求められ、この最大溶解量から、振った時間の効率差を求めると、次の表4のようになる。
Figure 0007541216000004

この表4より、30秒より多くの時間振り混ぜることで69.6%以上の溶解効率が得られることが分かり、従って、プラスチックソフトバック10の振動(振り混ぜ)を、30秒間以上行うことが望ましい。 The following test was carried out to determine the desirable vibration time for a plastic soft bag, which is a flexible container capable of expanding and contracting.
1. Test method 1 L of tap water was placed in a plastic soft bag with a total volume of 1,550 mL, and the plastic soft bag was crushed until the volume of the remaining air was 50 mL. Hydrogen gas was then injected until the pressure inside the bag (gauge pressure) was 0.05 MPa, and the bag was sealed. The dissolved hydrogen concentration of the contents of the following items was measured using a BIH-50D measuring device manufactured by Bionics Instruments Co., Ltd.: one that was left unshaken for 1 hour, one that was shaken and mixed for 10 seconds, one that was shaken and mixed for 30 seconds, one that was shaken and mixed for 1 minute, and one that was shaken and mixed for 2 minutes. The water temperature was 10°C.
2. Test Results The test results are shown in Table 3.
Figure 0007541216000003

When calculated according to Henry's law, the maximum dissolution amount of hydrogen gas into the liquid is separately determined to be 2.40 mg/L. When the efficiency difference depending on the shaking time is calculated from this maximum dissolution amount, it is as shown in Table 4 below.
Figure 0007541216000004

From Table 4, it is clear that a dissolution efficiency of 69.6% or more can be obtained by shaking for more than 30 seconds, and therefore it is desirable to vibrate (shake) the plastic soft bag 10 for 30 seconds or more.

このように生成した水素含有ETK液内の初期(バッグ解放時)の溶存水素濃度とその経時的変化について、検証した。 We examined the initial (when the bag was released) dissolved hydrogen concentration in the hydrogen-containing ETK liquid produced in this way and its change over time.

まず、UW液、HTK液、及びETK液について、水素ガス溶解を行った。その条件は、以下の通りである。
全内容量 : 1,850 mL
内容液量 : 1,000 mL
初期空気容量 : 50 mL
注入ガス全体容量 : 850 mL
液 温 : 1 ℃
充填水素ガス圧 : 0.06 MPa
振動時間 : 1 分間
計測は、低温であることよりガスクロマトグラフ法によって行った。ガスクロマトグラフはタイヨウ社トライライザーmBA-3000を使用した。その後、この液のプラスチックソフトバッグを大気開放した際の溶存水素濃度と、冷却した状態での溶存水素濃度の経時変化とを測定した。その計測結果を表5及び図3に示す。
First, hydrogen gas dissolution was carried out on the UW solution, the HTK solution, and the ETK solution under the following conditions.
Total content: 1,850 mL
Contents: 1,000 mL
Initial air volume: 50 mL
Total gas volume: 850 mL
Liquid temperature: 1℃
Hydrogen gas pressure: 0.06 MPa
Vibration time: 1 minute Measurements were made by gas chromatography due to the low temperature. A Taiyo Trilyzer mBA-3000 gas chromatograph was used. The dissolved hydrogen concentration was then measured when the plastic soft bag containing the liquid was opened to the atmosphere, and the change over time in the dissolved hydrogen concentration when cooled was also measured. The measurement results are shown in Table 5 and Figure 3.

Figure 0007541216000005

表5及び図3に示すように、同等の加圧下ではUW液、HTK液が高濃度水素を含有した。また、UW液、HTK液、及びETK液のいずれも常圧下、1℃保存で時間的な減衰は極めて緩徐であった。4時間の範囲であれば、1mg/L以上の溶存水素濃度は確保できた。
Figure 0007541216000005

As shown in Table 5 and Figure 3, the UW solution and the HTK solution contained high concentrations of hydrogen under the same pressure. In addition, the UW solution, the HTK solution, and the ETK solution all showed a very slow decrease in hydrogen concentration over time when stored at normal pressure and 1°C. A dissolved hydrogen concentration of 1 mg/L or more could be ensured within a 4-hour period.

臓器摘出現場において、本実施形態の方法(水素ガス圧力0.02~0.07MPa、振動時間30秒以上)により生成した水素含有ETK液を用いることによる効果を、循環停止ドナーからの腎移植ブタモデルで検討した。The effectiveness of using hydrogen-containing ETK solution produced by the method of this embodiment (hydrogen gas pressure 0.02 to 0.07 MPa, vibration time 30 seconds or more) at an organ harvesting site was investigated in a pig model of kidney transplantation from a non-circulating donor.

その結果、DCD(ドナー心停止)30分モデルにおいて、この水素含有ETK液は、DCD腎臓の血液の洗い流し効果が高かった。さらに、DCD腎臓の移植後の短期間観察(術後5日まで)において、これまでの冷臓器保存液での保存では移植した臓器が機能しないPrimary non-function(PNF)となっていたが、この水素含有ETK液による洗い流し及び保存により、尿排泄が観察された。従ってこの手法は、障害臓器を移植可能な臓器への蘇生させる新たな技術として、臨床現場で安全かつ簡便に使用可能であることが分かった。As a result, in a 30-minute DCD (donor cardiac arrest) model, this hydrogen-containing ETK solution was highly effective in flushing blood from the DCD kidney. Furthermore, in short-term observations (up to 5 days after surgery) after transplantation of DCD kidneys, transplanted organs stored in the conventional cold organ preservation solution had become non-functional (primary non-function) but after washing and preservation with this hydrogen-containing ETK solution, urinary excretion was observed. This method was therefore found to be a new technique for resuscitating damaged organs into transplantable organs that can be used safely and easily in clinical settings.

次に、本実施形態により生成した水素含有冷ETK液をブタDCDからの腎臓移植モデルにおいて、その有効性と安全性を試験した方法及びその結果を説明する。ここでは、より臨床を反映させるため、年齢がかさんでも大きくならないマイクロミニブタ(MMP)を使用した。循環停止30分の虚血状態の腎臓を作り、ドナー腎として摘出した後、水素含有ETK液又は水素非含有ETK液を使用して保存し、移植後急性期のレシピエントの腎機能を比較検討した。Next, the method and results of testing the efficacy and safety of the hydrogen-containing cold ETK solution produced by this embodiment in a kidney transplant model from DCD pigs will be described. Here, micro mini pigs (MMPs), which do not grow larger with age, were used to more closely reflect clinical practice. A kidney was created in an ischemic state with 30 minutes of circulatory arrest, and extracted as a donor kidney. It was then preserved using either a hydrogen-containing or non-hydrogen-containing ETK solution, and the recipient's renal function in the acute phase after transplantation was compared.

(使用したマイクロミニブタ)
使用したMMPは、実験専用ミニブタとして開発され、年齢が行っても30Kgを超えないものとした。具体的には、雌、25~40か月齢、体重20~26Kgのものを使用した。
(Micro mini pigs used)
The MMP used was a miniature pig developed for laboratory use, weighing no more than 30 kg at most, specifically, female, aged 25-40 months and weighing 20-26 kg.

(水素含有ETK液の生成及び水素濃度の測定)
水素含有ETK液は、ETKを4℃に冷やした上で灌流直前に前述の手法で水素ガスの充填を行った。冷生理食塩水をコントロールとして、オンアイス上で保存液の大気開放を行い、経時的に水素含有ETK液内の水素ガス濃度をガスクロマトグラフ法(株式会社タイヨウ製のトライライザーmBA-3000使用)にて測定した。
(Production of hydrogen-containing ETK solution and measurement of hydrogen concentration)
The hydrogen-containing ETK solution was prepared by cooling the ETK to 4°C and then filling it with hydrogen gas using the method described above immediately before perfusion. As a control, cold saline was placed on ice and the preservation solution was exposed to the atmosphere, and the hydrogen gas concentration in the hydrogen-containing ETK solution was measured over time by gas chromatography (using a Trilyzer mBA-3000 manufactured by Taiyo Co., Ltd.).

(DCD腎臓の洗い流し効果における水素含有の有効性の検証)
ドナーについて、全身麻酔下、上腹部正中切開で開腹し、左右の腎臓のフリーイングを行った。その後、開胸し、胸部大動脈を遮断し、腹部全臓器の虚血を誘導した。30分の温虚血状態を作った後、左右の腎臓を一括で取り出し、ドナー腎とした。その間、ドナーにはヘパリン等の抗凝固剤を加えなかった。摘出腎臓は直ちにバックテーブルに置いて、左右の腎臓に分け、一方を本実施形態の方法(水素ガス圧力0.02~0.07MPa、振動時間30秒以上)により生成した(温度4℃の)水素含有冷ETK液、他方を水素ガスを添加せずに生成した(温度4℃の)水素非含有冷ETK液を用いて1mの自然点滴落下で5分間灌流した。その灌流の際に、これら水素含有冷ETK液及び水素非含有冷ETK液の滴下される速度をカウントした。表6は水素含有冷ETK液及び水素非含有冷ETK液の灌流速度を時間(分)当たりのカウント数で表している。
(Verification of the effectiveness of hydrogen content in DCD kidney flushing effect)
The donor was subjected to a midline abdominal incision under general anesthesia, and the left and right kidneys were freed. The chest was then opened, the thoracic aorta was blocked, and ischemia of all abdominal organs was induced. After creating a warm ischemic state for 30 minutes, the left and right kidneys were removed together to be used as donor kidneys. During this time, no anticoagulants such as heparin were added to the donor. The excised kidney was immediately placed on the back table and separated into left and right kidneys. One was perfused for 5 minutes with a hydrogen-containing cold ETK solution (temperature 4°C) produced by the method of this embodiment (hydrogen gas pressure 0.02 to 0.07 MPa, vibration time 30 seconds or more) and the other was perfused with a hydrogen-free cold ETK solution (temperature 4°C) produced without adding hydrogen gas, at a natural drip drop of 1 m. During the perfusion, the dripping speed of the hydrogen-containing cold ETK solution and the hydrogen-free cold ETK solution was counted. Table 6 shows the perfusion rates of cold ETK solution containing hydrogen and cold ETK solution not containing hydrogen, expressed as counts per minute.

Figure 0007541216000006

また、図4は、Aは水素含有冷ETK液を灌流した摘出DCD腎臓、Bは水素非含有冷ETK液を灌流した摘出DCD腎臓をそれぞれ示している。
Figure 0007541216000006

FIG. 4A shows an isolated DCD kidney perfused with cold hydrogen-containing ETK solution, and FIG. 4B shows an isolated DCD kidney perfused with cold hydrogen-free ETK solution.

表6から分かるように、摘出DCD腎臓への水素含有冷ETK液による灌流の場合は、灌流初期から水素非含有冷ETK液の場合に比べ自然滴下による灌流速度が速かった。また、図4から分かるように、灌流終了時の灌流領域の肉眼所見では、水素含有冷ETK液の方が水素非含有冷ETK液に比して、より多量に灌流されていた。As can be seen from Table 6, when the isolated DCD kidney was perfused with hydrogen-containing cold ETK solution, the natural drip perfusion rate was faster from the beginning of the perfusion compared to the case of hydrogen-free cold ETK solution. Also, as can be seen from Figure 4, macroscopic findings of the perfusion area at the end of the perfusion showed that a larger amount of hydrogen-containing cold ETK solution was perfused than that of hydrogen-free cold ETK solution.

(腎移植モデルにおける評価)
ドナー腎臓としては、前述の場合と同様に、30分の循環停止腎臓を用いた。左右に分離した腎臓を、水素含有冷ETK液及び通常の水素非含有冷ETK液で単純浸漬保存し、レシピエントへのプットインまでの時間、保存した(1~4時間保存)。水素含有冷ETK液は、本実施形態の生成方法で生成したものであり、1mg/L以上の溶存水素濃度を有するものである。レシピエントは、まず、全身麻酔後腹部正中切開で開腹し、レシピエントの左腎動静脈周囲を露出した。ヘパリン1ccを静脈内投与の後に、腎臓脈周囲の腹部大動脈をトータルクランプした。レシピエント腎静脈にブルドックカンシをかけ、レシピエントの左腎を腎動脈基部からカレルパッチ状に切除した。ここで保存しておいたドナー腎臓をプットインし、5-0ナイロンの連続にて、カレルパッチ部の腎臓脈を端側吻合した。動脈吻合後は、再度末梢腎臓脈にクリップをかけ直し、腹部大動脈の全遮断を解除した。腹部大動脈の全遮断時間は30分と設定した。続いて腎静脈を、6-0ナイロンを用いて連続で端端吻合し、最後に尿管を6-0で結節縫合した。移植腎は、リフロー後に移植腎の血流を確認し、右腎臓を摘出の上、閉腹した。術後は当日の抗菌薬投与を行い、以後、飲水及び食事を自由にした。術後6日まで観察し、犠牲死の上、末梢血、膀胱内尿、さらに移植腎のサンプリングを行った。末梢血、尿中のBUN及びCreをそれぞれGLDH法及び酵素法で測定した。また尿中のTPはピガロールレット法、電解質はイオン選択電極法、IPは酵素法、GLUはHK-G6PDH法で測定した。移植腎は、10%中性緩衝ホルムアルデヒド液に固定して、皮質を中心に乳頭部を含むように縦断方向に切り出した。常法に従って包埋し、薄層切片を作成し、Hematoxylin Eosin(H.E.)及びElastica van Gieson(EVG)染色し、病理学的に検証した。移植腎は、Banff分類を参考にスコア化した。その結果が表7に示されている。
(Evaluation in a kidney transplant model)
As the donor kidney, a kidney that had been stopped for 30 minutes was used, as in the above-mentioned case. The kidney separated into the left and right sides was simply immersed and preserved in hydrogen-containing cold ETK solution and normal hydrogen-free cold ETK solution, and was preserved for the time until it was put into the recipient (preserved for 1 to 4 hours). The hydrogen-containing cold ETK solution was produced by the production method of this embodiment, and had a dissolved hydrogen concentration of 1 mg/L or more. The recipient was first subjected to a midline abdominal incision after general anesthesia, and the area around the left renal artery and vein of the recipient was exposed. After intravenous administration of 1 cc of heparin, the abdominal aorta around the renal vein was totally clamped. A bulldog clamp was placed on the recipient renal vein, and the left kidney of the recipient was excised in a Carrel patch shape from the base of the renal artery. The donor kidney that had been preserved was put in, and the renal vein at the Carrel patch part was anastomosed end-to-side with a continuous 5-0 nylon. After the arterial anastomosis, the peripheral renal vein was clipped again, and the total blockage of the abdominal aorta was released. The total occlusion time of the abdominal aorta was set to 30 minutes. The renal vein was then anastomosed end-to-end in succession using 6-0 nylon, and finally the ureter was sutured with 6-0 interrupted sutures. After reflow, the blood flow of the transplanted kidney was confirmed, the right kidney was removed, and the abdomen was closed. Antibiotics were administered on the day of surgery, and thereafter, drinking water and eating were allowed ad libitum. The animals were observed for 6 days after surgery, sacrificed, and peripheral blood, bladder urine, and transplanted kidney were sampled. BUN and Cre in peripheral blood and urine were measured by the GLDH method and the enzyme method, respectively. Urinary TP was measured by the Pigallolette method, electrolytes by the ion-selective electrode method, IP by the enzyme method, and GLU by the HK-G6PDH method. The transplanted kidney was fixed in 10% neutral buffered formaldehyde solution and cut longitudinally to include the papilla with the cortex at the center. The tissue was embedded in a conventional manner, thin sections were prepared, and stained with Hematoxylin Eosin (H.E.) and Elastica van Gieson (EVG) for pathological examination. The transplanted kidney was scored according to the Banff classification. The results are shown in Table 7.

Figure 0007541216000007
Figure 0007541216000007

移植を受けたミニブタは全例観察期間(6病日)まで生存した。犠牲時、水素非含有ETK液による群は、全例、膀胱内に尿が観察されず、移植腎の血流も認められなかった。これに対して、水素含有ETK液による保存群は、保存時間4時間のものも、移植腎には血流があり、膀胱内に尿が認められた。また、表7から分かるように、回収された末梢血中のBUNの平均値は、水素含有ETK液群が143(mg/dL)、水素非含有ETK液群が270(mg/dL)であり、Creの平均値は、水素含有ETK液群が15.5(mg/dL)、水素非含有ETK液群が24(mg/dL)であった。回収された水素群の尿解析では、急性糸球体障害を示していた。All transplanted minipigs survived until the observation period (6 days after the transplant). At the time of sacrifice, in all cases of the group treated with non-hydrogen-containing ETK solution, no urine was observed in the bladder, and no blood flow was observed in the transplanted kidney. In contrast, in the group treated with hydrogen-containing ETK solution, blood flow was observed in the transplanted kidney and urine was observed in the bladder, even in the case of the group treated with hydrogen-containing ETK solution, which had been preserved for 4 hours. As can be seen from Table 7, the average BUN value in the peripheral blood collected was 143 (mg/dL) in the hydrogen-containing ETK solution group and 270 (mg/dL) in the non-hydrogen-containing ETK solution group, and the average Cre value was 15.5 (mg/dL) in the hydrogen-containing ETK solution group and 24 (mg/dL) in the non-hydrogen-containing ETK solution group. Analysis of the urine collected from the hydrogen group showed acute glomerular damage.

さらに病理学的解析を行うと、水素非含有ETK液群によって保存された腎臓は、急性腎不全による腎皮質壊死が認められた。図5は水素非含有ETK液群のDCD腎臓の観察画像であり、同図(A)及び(B)は皮膜下の一例、同図(C)及び(D)は皮髄境界部付近の一例を示している。ただし、同図(A)及び(C)は低倍率(40倍)の画像であり、同図(B)及び(D)は高倍率(400倍)の画像である。 Further pathological analysis revealed that kidneys preserved with the non-hydrogen-containing ETK solution group had renal cortical necrosis due to acute renal failure. Figure 5 shows images of DCD kidneys from the non-hydrogen-containing ETK solution group, with (A) and (B) showing an example of subcapsular necrosis, and (C) and (D) showing an example of necrosis near the corticomedullary junction. However, (A) and (C) are low-magnification (40x) images, while (B) and (D) are high-magnification (400x) images.

図5(A)に示すように、観察領域のほとんどが壊死像となっており、汎腎皮質壊死と診断された。また、同図(B)に示すように、被膜と直下の尿細管の細胞核が保持されているものもあったが、これらの細胞質は変性―壊死を呈していた。さらに、同図(C)及び(D)に示すように、間質には浸潤した細胞残渣としてのリンパ球、単球細胞及び好中球が多数混在していた。As shown in Figure 5 (A), most of the observed area was necrotic, and pan-renal cortical necrosis was diagnosed. As shown in Figure 5 (B), the capsule and the cell nuclei of the tubules directly below were preserved in some cases, but the cytoplasm of these tubules had undergone degeneration and necrosis. Furthermore, as shown in Figures (C) and (D), the interstitium contained a large number of lymphocytes, monocytes, and neutrophils as infiltrated cellular debris.

これに対して、水素含有ETK液群によって保存された腎臓は、急性組織障害があるものの血流は保たれていた。図6は水素含有ETK液群のDCD腎臓の観察画像であり、同図(A)及び(B)、(C)及び(D)、並びに(E)及び(F)は皮膜下の3つの例をそれぞれ示している。ただし、同図(A)、(C)及び(E)は低倍率(40倍)の画像であり、同図(B)、(D)及び(F)は高倍率(400倍)の画像である。In contrast, kidneys preserved with hydrogen-containing ETK solution showed acute tissue damage but maintained blood flow. Figure 6 shows images of DCD kidneys in the hydrogen-containing ETK solution group, with (A) and (B), (C) and (D), and (E) and (F) showing three examples of subcapsular lesions. However, (A), (C), and (E) are low-magnification (40x) images, while (B), (D), and (F) are high-magnification (400x) images.

図6(A)及び(B)の例では、同図(A)に示す低倍率において、尿細管の拡張と細胞浸潤が認められた。同図(B)に示す高倍率において、糸球体に単核球等の浸潤と係蹄の閉塞がみられた。また、尿細管の間質に多数の単核細胞、リンパ球の浸潤による尿細管炎が認められた。図6(C)及び(D)の例では、同図(C)に示す低倍率において、出血、尿細管の拡張がみられた。同図(D)に示す高倍率では、同図(B)の例と比べ、尿細管間質の細胞浸潤が乏しかった。図6(E)及び(F)の例では、同図(E)に示す低倍率において、多くの尿細管は萎縮と拡張がみられ、尿細管の幾つかに硝子円柱がみられた。同図(F)に示す高倍率では、尿細管の間質に多数の単核球、リンパ球の浸潤がみられた。In the examples of Figures 6 (A) and (B), tubular dilation and cellular infiltration were observed at low magnification (A). At high magnification (B), infiltration of mononuclear cells and blockage of the loop were observed in the glomeruli. In addition, tubulitis due to infiltration of numerous mononuclear cells and lymphocytes was observed in the interstitium of the tubules. In the examples of Figures 6 (C) and (D), bleeding and tubular dilation were observed at low magnification (C). At high magnification (D), cellular infiltration of the tubular interstitium was less than that in the example of Figure 6 (B). In the examples of Figures 6 (E) and (F), many tubules were atrophied and dilated at low magnification (E), and some tubules had hyaline casts. At high magnification (F), infiltration of numerous mononuclear cells and lymphocytes was observed in the interstitium of the tubules.

(腎移植モデルの慢性期における評価)
前述した腎移植術と同様の方法で腎移植を行った。ただし、ドナー腎臓としては、20分の循環停止腎臓を用いた。腎臓を、水素非含有冷ETK液及び水素含有冷ETK液でそれぞれ洗い流しした後、水素非含有冷ETK液及び水素含有冷ETK液でそれぞれ単純浸漬保存した。水素非含有冷ETK液に1時間保存した腎臓(水素なし)と、水素含有冷ETK液に1時間保存した腎臓(水素あり1h)と、水素含有冷ETK液に4時間保存した腎臓(水素あり4h)をレシピエントへそれぞれプットインした。水素含有冷ETK液は、本発明の生成方法で生成したものであり、1mg/L以上の溶存水素濃度を有するものである。術後に免疫抑制剤を投与した。免疫抑制剤及びその用法・用量は以下の通りであった。タクロリムス(プログラフ):0.15~0.30mg/kg、経口投与、12時間おき、1日2回、ミコフェノール酸モフェチル:500mg/head、経口投与、1日2回、プレドニゾロン:0.5~2mg/kg、静脈内又は経口投与、1日2回。以後、飲水及び食事を自由にした。術前、術直後、術後1~14日の末梢血のBUN及びCreをそれぞれGLDH法及び酵素法で測定した。その結果が表8及び図7並びに表9及び図8に示されている。
(Evaluation of the chronic phase of kidney transplantation model)
The kidney transplant was performed in the same manner as the kidney transplantation described above. However, as the donor kidney, a kidney that had been subjected to 20 minutes of circulatory arrest was used. The kidney was washed with hydrogen-free cold ETK solution and hydrogen-containing cold ETK solution, respectively, and then simply immersed and preserved in hydrogen-free cold ETK solution and hydrogen-containing cold ETK solution, respectively. A kidney preserved in hydrogen-free cold ETK solution for 1 hour (without hydrogen), a kidney preserved in hydrogen-containing cold ETK solution for 1 hour (with hydrogen 1h), and a kidney preserved in hydrogen-containing cold ETK solution for 4 hours (with hydrogen 4h) were put into the recipient, respectively. The hydrogen-containing cold ETK solution was produced by the production method of the present invention and has a dissolved hydrogen concentration of 1 mg/L or more. An immunosuppressant was administered after surgery. The immunosuppressant and its dosage and administration were as follows. Tacrolimus (Prograf): 0.15-0.30 mg/kg, oral, every 12 hours, twice a day, mycophenolate mofetil: 500 mg/head, oral, twice a day, prednisolone: 0.5-2 mg/kg, intravenous or oral, twice a day. Thereafter, water and food were allowed ad libitum. Peripheral blood BUN and Cre were measured by the GLDH method and the enzyme method, respectively, before surgery, immediately after surgery, and 1-14 days after surgery. The results are shown in Table 8 and Figure 7, and Table 9 and Figure 8.

Figure 0007541216000008
Figure 0007541216000008

Figure 0007541216000009
Figure 0007541216000009

表8及び図7並びに表9及び図8から分かるように、水素なし(非含有)の通常のETK液に保存した腎臓を移植したミニブタは、BUN及びCreが、術後日数の経過に従って単純上昇しているが、本発明の生成方法によって生成可能な1mg/L以上の溶存水素濃度を有する水素含有冷ETK液に保存した腎臓によれば、術後4日経過すると、BUN及びCreが共に低下を開始し、腎機能が回復した。即ち、本発明の生成方法によって生成した1mg/L以上の溶存水素濃度の水素含有冷ETK液に保存した腎臓は、免疫抑制剤を投与した移植後慢性期において、腎機能が大幅に回復することが分かった。As can be seen from Table 8 and Figure 7, as well as Table 9 and Figure 8, in the miniature pigs transplanted with kidneys preserved in normal ETK solution without hydrogen (non-containing), the BUN and Cre increased simply with the number of days after surgery, but in the kidneys preserved in cold hydrogen-containing ETK solution with a dissolved hydrogen concentration of 1 mg/L or more that can be produced by the production method of the present invention, both the BUN and Cre began to decrease after 4 days after surgery, and renal function was restored. In other words, it was found that kidneys preserved in cold hydrogen-containing ETK solution with a dissolved hydrogen concentration of 1 mg/L or more produced by the production method of the present invention significantly recovered renal function in the chronic phase after transplantation when immunosuppressants were administered.

(まとめ)
これまで水素ガスが虚血再灌流障害防止に効果があることは知られていたが、高濃度の水素ガスは、可燃性があり、その臨床での使用では安全面で難があった。本願発明者は、設備の整っている病院での医師主導型治験として、水素ガスの吸入が、冠動脈のインターベンション後の虚血再灌流障害に有効であることを示してきた。しかしながら、突発的に発生するドナーの臨床現場では、あらかじめ水素充填した臓器保存液を用意することも、水素ガスボンベを現場に持ち込むことも、実現が非常に難しかった。また、臓器保存液内で電気分解を行って水素ガスを発生させる手法は、臨床現場では簡便性に欠けていた。これに対して、本発明によれば、水素吸蔵合金機器に注目して、既存の臓器保存液の可撓性容器に対し0.06MPa程度のゲージ圧にまで水素ガスを充填することが臨床現場において簡単にかつ迅速行うことができる。
(summary)
It has been known that hydrogen gas is effective in preventing ischemia-reperfusion injury, but high-concentration hydrogen gas is flammable, and its clinical use is problematic in terms of safety. The inventors of the present application have demonstrated that inhalation of hydrogen gas is effective in ischemia-reperfusion injury after coronary artery intervention in a physician-initiated clinical trial at a well-equipped hospital. However, in clinical settings where donors suddenly occur, it is very difficult to prepare organ preservation solutions filled with hydrogen in advance or to bring hydrogen gas cylinders to the site. In addition, the method of generating hydrogen gas by electrolysis in organ preservation solutions lacks convenience in clinical settings. In contrast, according to the present invention, focusing on hydrogen storage alloy equipment, hydrogen gas can be easily and quickly filled in clinical settings to a gauge pressure of about 0.06 MPa in flexible containers for existing organ preservation solutions.

本発明の検証として、既存の臓器保存液への水素ガスの充填を行い、初期の溶存水素ガス濃度及びその経時変化を測定した。臓器保存液は、低温できわめて水素を含有しやすくしかも長時間水素ガスを維持できることが判明した。また、細胞外液型臓器保存液であるETK液を用いてDCD腎臓におけるフラッシュアウト効果を検証した。ETK液は細胞内液型のUW液と比し、その粘張度は低くいが、水素ガスを含有していない場合と比し、初期灌流から高流量で灌流されることが判明した。灌流領域の組織解析から、糸球体等の毛細血管系の拡張と微小血栓の洗い流し効果が推測された。その機序として、ブタ腎移植を想定した虚血・再灌流障害に対する水素ガスの効果を実際の腎移植でそれを検証した。本モデルで使用した高齢MMPでのDCD30分モデルにおいて、水素非含有ETK液では全例がPNFであったのに反して、水素含有ETK液では血流が維持され尿の産出がなされた。また、前述したように、術後急性期のみならず、免疫抑制剤投与下における慢性期の移植腎機能も極めて良好となることが検証された。本発明の水素含有臓器保存液の効果は、術中のリンス効果や術中、術後の免疫抑制薬の投与、さらにMSCなどの補助細胞療法を加えることで、これまで移植不可能であった腎臓が移植可能となる期待が持たれる。To verify the present invention, hydrogen gas was filled into an existing organ preservation solution, and the initial dissolved hydrogen gas concentration and its change over time were measured. It was found that the organ preservation solution is very easy to contain hydrogen at low temperatures and can maintain hydrogen gas for a long time. In addition, the flush-out effect in DCD kidneys was verified using ETK solution, which is an extracellular fluid type organ preservation solution. It was found that ETK solution has a lower viscosity than intracellular fluid type UW solution, but is perfused at a higher flow rate from the initial perfusion compared to when it does not contain hydrogen gas. From the tissue analysis of the perfusion area, it was estimated that the expansion of the capillary system such as glomeruli and the washing out effect of microthrombi were observed. As a mechanism, the effect of hydrogen gas on ischemia-reperfusion injury assuming pig kidney transplantation was verified in an actual kidney transplant. In a DCD 30-minute model with aged MMP used in this model, all cases with non-hydrogen-containing ETK solution were PNF, whereas blood flow was maintained and urine was produced with hydrogen-containing ETK solution. As mentioned above, it was also verified that the transplanted kidney functions extremely well not only during the acute postoperative period, but also during the chronic period under the administration of immunosuppressants. The effects of the hydrogen-containing organ preservation solution of the present invention are expected to make kidneys that were previously untransplantable possible to transplant, by combining the rinsing effect during surgery, the administration of immunosuppressants during and after surgery, and auxiliary cell therapy such as MSC.

以上述べた実施形態及び実施例は全て本発明を例示的に示すものであって限定的に示すものではなく、本発明は他の種々の変形態様及び変更態様で実施することができる。従って本発明の範囲は特許請求の範囲及びその均等範囲によってのみ規定されるものである。The above-described embodiments and examples are merely illustrative of the present invention and are not limiting, and the present invention can be implemented in various other modified and altered forms. Therefore, the scope of the present invention is defined only by the claims and their equivalents.

10 プラスチックソフトバッグ
10a ETK液
11 ゴム栓
12 瓶針
13、15、18、20 チューブ
14、19 ワンタッチカプラ
14a、19a ソケット
14b、19b プラグ
16 継手
17 リリーフ弁
21 水素吸蔵合金キャニスタ
10 Plastic soft bag 10a ETK liquid 11 Rubber stopper 12 Bottle needle 13, 15, 18, 20 Tube 14, 19 One-touch coupler 14a, 19a Socket 14b, 19b Plug 16 Joint 17 Relief valve 21 Hydrogen storage alloy canister

Claims (4)

移植用臓器の摘出現場において、水素吸蔵合金キャニスタから、臓器保存液を収容した可撓性容器内に水素ガスを圧入し、前記可撓性容器を振動させて水素ガスを前記臓器保存液内に溶解させ、前記可撓性容器を外気に開放して内部の圧力を低減させることにより、前記可撓性容器内に所定濃度の溶存水素を含有し、移植用臓器を洗い流し及び/又は保存するために使用する水素含有臓器保存液を生成し、
前記所定濃度が、4時間後の溶存水素濃度が1.0mg/L以上となる濃度であることを特徴とする水素含有臓器保存液の生成方法。
At the site of removal of an organ for transplantation, hydrogen gas is injected from a hydrogen storage alloy canister into a flexible container containing an organ preservation solution, the flexible container is vibrated to dissolve the hydrogen gas in the organ preservation solution, and the flexible container is opened to the outside air to reduce the internal pressure, thereby producing a hydrogen-containing organ preservation solution containing a predetermined concentration of dissolved hydrogen in the flexible container and used for washing and/or preserving an organ for transplantation ,
The method for producing a hydrogen-containing organ preservation solution , wherein the predetermined concentration is a concentration at which the dissolved hydrogen concentration after 4 hours is 1.0 mg/L or more .
前記水素吸蔵合金キャニスタから前記可撓性容器に供給される水素ガスの圧力が所定圧力となるまで、前記水素ガスの供給を行うことを特徴とする請求項1に記載の水素含有臓器保存液の生成方法。 The method for producing hydrogen-containing organ preservation solution according to claim 1, characterized in that the hydrogen gas is supplied from the hydrogen storage alloy canister to the flexible container until the pressure of the hydrogen gas reaches a predetermined pressure. 前記所定圧力が、0.02MPa~0.07MPaの範囲の圧力であることを特徴とする請求項2に記載の水素含有臓器保存液の生成方法。 The method for producing hydrogen-containing organ preservation solution according to claim 2, characterized in that the predetermined pressure is in the range of 0.02 MPa to 0.07 MPa. 前記可撓性容器の振動を、30秒間以上行うことを特徴とする請求項1から3のいずれか1項に記載の水素含有臓器保存液の生成方法。 The method for producing hydrogen-containing organ preservation solution according to any one of claims 1 to 3, characterized in that the flexible container is vibrated for 30 seconds or more.
JP2021515774A 2019-04-23 2019-11-22 Method for producing hydrogen-containing organ preservation solution and hydrogen-containing organ preservation solution Active JP7541216B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019081425 2019-04-23
JP2019081425 2019-04-23
PCT/JP2019/045790 WO2020217575A1 (en) 2019-04-23 2019-11-22 Method for generating hydrogen-containing organ preservation solution, and hydrogen-containing organ preservation solution

Publications (3)

Publication Number Publication Date
JPWO2020217575A1 JPWO2020217575A1 (en) 2020-10-29
JPWO2020217575A5 JPWO2020217575A5 (en) 2022-01-27
JP7541216B2 true JP7541216B2 (en) 2024-08-28

Family

ID=72942072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021515774A Active JP7541216B2 (en) 2019-04-23 2019-11-22 Method for producing hydrogen-containing organ preservation solution and hydrogen-containing organ preservation solution

Country Status (2)

Country Link
JP (1) JP7541216B2 (en)
WO (1) WO2020217575A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241787A (en) 2009-03-13 2010-10-28 Mizu Kk Process and apparatus for producing hydrogen-containing biocompatible solution
JP2013010771A (en) 2004-11-12 2013-01-17 Doorzand Airdrive Bv Composition for cold preservation and perfusion of organ
JP2014201580A (en) 2013-04-10 2014-10-27 株式会社昭和冷凍プラント Treatment liquid for storage or cleaning of transplanted organ using nitrogen water and preparation method thereof
JP2015150472A (en) 2014-02-12 2015-08-24 有限会社ジェニス・ホワイト Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water
JP2018177683A (en) 2017-04-12 2018-11-15 MiZ株式会社 Protective agent for ischemia-reperfusion disorder and method for treating organs

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010771A (en) 2004-11-12 2013-01-17 Doorzand Airdrive Bv Composition for cold preservation and perfusion of organ
JP2010241787A (en) 2009-03-13 2010-10-28 Mizu Kk Process and apparatus for producing hydrogen-containing biocompatible solution
JP2014201580A (en) 2013-04-10 2014-10-27 株式会社昭和冷凍プラント Treatment liquid for storage or cleaning of transplanted organ using nitrogen water and preparation method thereof
JP2015150472A (en) 2014-02-12 2015-08-24 有限会社ジェニス・ホワイト Manufacturing device for hydrogen water, and manufacturing method and storage method for hydrogen water
JP2018177683A (en) 2017-04-12 2018-11-15 MiZ株式会社 Protective agent for ischemia-reperfusion disorder and method for treating organs

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Abe Toyofumi et al.,Hydrogen-Rich University of Wisconsin Solution Attenuates Renal Cold Ischemia-Reperfusion Injury,Transplanation,2012年,Vol.94,No.1,PP.14-21
中尾篤典 他,Hydrogen rich water bathを用いた新しい臓器保存方法,Organ Biology,2014年,Vol.21,No.2,PP.150-158
内田 孟 他,ブタ小腸移植における水素分子含有保存液の小腸虚血再灌流障害に対する有効性,Organ Biology,2013年,Vol.20,No.3,P103

Also Published As

Publication number Publication date
JPWO2020217575A1 (en) 2020-10-29
WO2020217575A1 (en) 2020-10-29

Similar Documents

Publication Publication Date Title
US11856944B2 (en) Organ care solution for ex-vivo machine perfusion of donor lungs
Lee et al. Modified right liver graft from a living donor to prevent congestion1
Reiling et al. Assessment and transplantation of orphan donor livers: a back‐to‐base approach to normothermic machine perfusion
Gittes et al. Bench surgery for tumor in a solitary kidney
JP7174984B2 (en) Decellularized carrier production method, decellularized carrier storage method, cell filling method, cell sheet preparation method, and decellularized solution kit
JP7541216B2 (en) Method for producing hydrogen-containing organ preservation solution and hydrogen-containing organ preservation solution
JP2021017423A (en) Perfusate and perfusion method
Green Rabbit renal autografts as an organ preservation model
Lavender et al. Extracorporeal renal transplantation in man
CN105407716A (en) Formulations containing poly (0-2-hydroxyethyl) starch for increasing the oxygen-content, stability and shelf life of an organ and tissue preservation solution
JP2016516830A (en) Preservation solution for organs and tissues with increased oxygen content, improved stability, and longer shelf life
CN113677200A (en) Method and apparatus for repairing an organ
Adham et al. Does middle hepatic vein omission in a right split graft affect the outcome of liver transplantation? A comparative study of right split livers with and without the middle hepatic vein
Arora et al. Long‐term survival after 67 hours of anhepatic state due to primary liver allograft nonfunction
Heuer et al. Liver transplantation in swine without venovenous bypass
Lau et al. 4.1: Liver Splitting During Normothermic Machine Perfusion: A Novel Method to Combine the Advantages of Both In-Situ and Ex-Vivo Techniques
Wen et al. A simple technique for a new working heterotopic heart transplantation model in rats
WO2023106036A1 (en) Organ preservation device and organ preservation method
Cai et al. A rat model of liver transplantation with a steatotic donor liver after cardiac death
Hawthorne et al. Pancreas Retrieval for Whole Organ and Islet Cell Transplantation
JP2022528752A (en) Methods and Devices for Reconditioning the Kidney
Alam et al. THE OUT COME OF KIDNEY TRANSPLANTS WITH MULTIPLE RENAL ARTERIES.: 1545
Pootracool et al. LIMB SALVAGE IN NON-TRANSPLANTATION AND TRANSPLANTATION POPULATION: 1547
Kahn et al. SEQUENTIAL CHANGES IN COAGULATION AFTER RENAL TRANSPLANTATION–A THROMBOELASTOGRAM STUDY: 1546
Romanowski et al. DOES CLAMPING OF DISTAL PART OF ILIAC ARTERY DURING TRANSPLANTATION IMPROVING THE REPERFUSION OF TRANSPLANTED GRAFT: 1548

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20210827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210827

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231102

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240112

TRDD Decision of grant or rejection written
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20240618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240719

R150 Certificate of patent or registration of utility model

Ref document number: 7541216

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150