JP7540199B2 - Method for preparing molten raw material and method for recovering valuable metals - Google Patents
Method for preparing molten raw material and method for recovering valuable metals Download PDFInfo
- Publication number
- JP7540199B2 JP7540199B2 JP2020091595A JP2020091595A JP7540199B2 JP 7540199 B2 JP7540199 B2 JP 7540199B2 JP 2020091595 A JP2020091595 A JP 2020091595A JP 2020091595 A JP2020091595 A JP 2020091595A JP 7540199 B2 JP7540199 B2 JP 7540199B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- melting
- flux
- granulated
- molten raw
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 78
- 239000002994 raw material Substances 0.000 title claims description 64
- 229910052751 metal Inorganic materials 0.000 title claims description 52
- 239000002184 metal Substances 0.000 title claims description 52
- 150000002739 metals Chemical class 0.000 title claims description 27
- 238000002844 melting Methods 0.000 claims description 60
- 230000008018 melting Effects 0.000 claims description 60
- 230000004907 flux Effects 0.000 claims description 55
- 239000008187 granular material Substances 0.000 claims description 35
- 230000009467 reduction Effects 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 32
- 239000002893 slag Substances 0.000 claims description 23
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 claims description 22
- 239000000292 calcium oxide Substances 0.000 claims description 22
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 22
- 238000002156 mixing Methods 0.000 claims description 22
- 229910045601 alloy Inorganic materials 0.000 claims description 20
- 239000000956 alloy Substances 0.000 claims description 20
- 239000002905 metal composite material Substances 0.000 claims description 18
- 238000011084 recovery Methods 0.000 claims description 15
- 238000005469 granulation Methods 0.000 claims description 14
- 230000003179 granulation Effects 0.000 claims description 14
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 9
- 229910001416 lithium ion Inorganic materials 0.000 claims description 9
- 238000002360 preparation method Methods 0.000 claims description 6
- 239000002699 waste material Substances 0.000 claims description 6
- 239000000463 material Substances 0.000 description 41
- 230000008569 process Effects 0.000 description 33
- 239000010926 waste battery Substances 0.000 description 29
- 238000010309 melting process Methods 0.000 description 28
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 14
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 14
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- 239000012768 molten material Substances 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 9
- 230000003647 oxidation Effects 0.000 description 9
- 238000007254 oxidation reaction Methods 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 229910000019 calcium carbonate Inorganic materials 0.000 description 7
- 235000010216 calcium carbonate Nutrition 0.000 description 7
- 229910017052 cobalt Inorganic materials 0.000 description 7
- 239000010941 cobalt Substances 0.000 description 7
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 238000009854 hydrometallurgy Methods 0.000 description 5
- 230000002378 acidificating effect Effects 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229960004424 carbon dioxide Drugs 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 239000004484 Briquette Substances 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 229910002090 carbon oxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 238000000638 solvent extraction Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 1
- 239000005751 Copper oxide Substances 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 150000004696 coordination complex Chemical class 0.000 description 1
- 229910000431 copper oxide Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910000480 nickel oxide Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 239000003832 thermite Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/84—Recycling of batteries or fuel cells
Landscapes
- Processing Of Solid Wastes (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Secondary Cells (AREA)
Description
本発明は、熔融原料の調製方法及び有価金属回収方法に関する。 The present invention relates to a method for preparing molten raw materials and a method for recovering valuable metals.
リチウムイオン電池等の、使用済みあるいは工程内の不良品である電池(以下廃電池という)をリサイクルし、含有する有価金属を回収しようとする調製方法には、大きく分けて乾式法と湿式法がある。 There are two main methods for recycling used or in-process defective batteries, such as lithium-ion batteries (hereafter referred to as waste batteries), and recovering the valuable metals they contain: dry and wet methods.
乾式法は、破砕した廃電池を熔融処理し、回収対象である有価金属と、付加価値の低いその他の金属等とを、それらの間の酸素親和力の差を利用して分離回収するものである。すなわち、鉄等の付加価値の低い元素を極力酸化してスラグとし、かつコバルト等の有価物は酸化を極力抑制して合金として回収するものである。 In the dry process, crushed waste batteries are melted and the valuable metals to be recovered are separated and recovered from other metals with low added value by utilizing the difference in oxygen affinity between them. In other words, low added value elements such as iron are oxidized as much as possible to produce slag, and valuable materials such as cobalt are recovered as alloys by minimizing oxidation.
例えば、特許文献1は、乾式法を含む有価金属回収方法を開示している。特許文献1によれは、この技術はリチウムイオン電池等の廃電池を乾式処理する際に、スラグ粘度を低減して低温での操業を可能とするとともに、スラグと合金の分離を確実にして有価金属を効率的に回収できるものである。 For example, Patent Document 1 discloses a valuable metal recovery method that includes a dry method. According to Patent Document 1, this technology reduces the slag viscosity during dry processing of waste batteries such as lithium-ion batteries, enabling operation at low temperatures, and ensures separation of the slag and alloys to efficiently recover valuable metals.
さて、有価金属回収方法における還元熔融処理は、例えば、熔融炉を使用して行うことができる。しかしながら、例えば廃電池のような金属複合体は、有価金属に対して金属複合体全体の体積が大きく、そのまま熔融炉に装入するだけでは、熔融炉の単位容量あたりに装入することのできる熔融原料の重量(以下、炉内充填嵩密度ともいう。)を高めることができなくなることがある。 Now, the reduction melting process in the valuable metal recovery method can be carried out, for example, using a melting furnace. However, for example, metal composites such as waste batteries have a large overall volume relative to the valuable metals, and simply charging them into the melting furnace as is may not be enough to increase the weight of molten raw material that can be charged per unit capacity of the melting furnace (hereinafter also referred to as the furnace loading bulk density).
また、炉内充填嵩密度が低いと、還元炉内での熔融原料の伝熱性が悪化して還元熔融に必要な所定の温度に昇温するまでに多くの時間を要してしまい、効率的な還元熔融処理を行うことができなくなることがある。 In addition, if the bulk density of the material packed in the furnace is low, the heat transfer of the molten raw material in the reduction furnace will deteriorate, and it will take a long time to raise the temperature to the specified temperature required for reduction melting, which may make it impossible to carry out an efficient reduction melting process.
本発明は、このような実情に鑑みて提案されたものであり、有価金属に対して金属複合体全体の体積が大きい熔融原料であっても効率的な還元熔融処理を行うことができる熔融原料の調製方法を提供することを目的とする。 The present invention has been proposed in light of these circumstances, and aims to provide a method for preparing molten raw material that can perform efficient reduction melting treatment even for molten raw material in which the overall volume of the metal complex is large relative to the valuable metal.
本発明者らは、上述した課題を解決するために鋭意検討を重ねた。その結果、熔融原料を酸化カルシウムを含むフラックスとの混合物にして造粒物とすることで上記課題を解決できることを見出し、本発明を完成するに至った。 The inventors of the present invention have conducted extensive research to solve the above-mentioned problems. As a result, they discovered that the above problems could be solved by mixing the molten raw material with a flux containing calcium oxide to form a granulated product, which led to the completion of the present invention.
(1)本発明の第1は、価金属を含む金属複合体の焙焼物を熔融原料として還元熔融することにより、スラグと、該有価金属を含有する合金とを得る還元熔融工程に供する熔融原料の調製方法であって、前記焙焼物と酸化カルシウムを含むフラックスとを混合し、得られる混合物を造粒して造粒物を得る熔融原料の調製方法である。 (1) The first aspect of the present invention is a method for preparing a molten raw material to be used in a reduction melting process in which a roasted product of a metal composite containing a valuable metal is reduced and melted as the molten raw material to obtain slag and an alloy containing the valuable metal. The method for preparing the molten raw material includes mixing the roasted product with a flux containing calcium oxide, and granulating the resulting mixture to obtain a granulated product.
(2)本発明の第2は、第1の発明において、前記混合物に2t/cm以上の圧力を加えることで造粒物を得る熔融原料の調製方法である。 (2) The second aspect of the present invention is a method for preparing a molten raw material according to the first invention, in which a granulated material is obtained by applying a pressure of 2 t/cm or more to the mixture.
(3)本発明の第3は、第1又は第2の発明において、前記金属複合体は廃リチウムイオン電池を含む熔融原料の調製方法である。 (3) The third aspect of the present invention is a method for preparing a molten raw material according to the first or second invention, in which the metal composite contains waste lithium-ion batteries.
(4)本発明の第4は、有価金属を含む金属複合体の焙焼物を熔融原料として還元熔融することにより該有価金属を含有する合金を得る有価金属回収方法であって、前記金属複合体を焙焼して焙焼物を得る焙焼工程と、前記焙焼物と酸化カルシウムを含むフラックスとを混合し、得られる混合物を造粒して造粒物を得る熔融原料調製工程と、熔融原料として前記造粒物を還元熔融して、スラグと、該有価金属を含有する合金とを得る還元熔融工程と、を有する有価金属回収方法である。
である。
(4) A fourth aspect of the present invention is a method for recovering valuable metals, which comprises the steps of: roasting the metal composite to obtain a roasted product as a molten raw material; mixing the roasted product with a flux containing calcium oxide and granulating the resulting mixture to obtain a granulated product; and reducing and melting the granulated product as a molten raw material to obtain slag and an alloy containing the valuable metal. The method comprises the steps of: roasting the metal composite to obtain a roasted product; mixing the roasted product with a flux containing calcium oxide and granulating the resulting mixture to obtain a granulated product; and reducing and melting the granulated product as a molten raw material to obtain slag and an alloy containing the valuable metal.
It is.
本発明によれば、効率的な還元熔融処理を行うことができる。 According to the present invention, efficient reduction melting treatment can be performed.
以下、本発明の具体的な実施形態(以下、「本実施の形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 A specific embodiment of the present invention (hereinafter, referred to as "the present embodiment") will be described in detail below. Note that the present invention is not limited to the following embodiment, and various modifications are possible within the scope of the present invention.
≪1.熔融原料の調製方法の概要≫
本実施の形態に係る熔融原料の調製方法は、主に有価金属を回収する有価金属回収方法での還元熔融処理を行うに際し、その処理対象である熔融処理に供する熔融前の原料(熔融原料)を調製する方法である。ここで、有価金属回収方法では、有価金属を含む金属複合体を焙焼して焙焼物を得て、その焙焼物を熔融処理に供する熔融原料として還元熔融して、スラグと、有価金属を含有する合金とを得る。
≪1. Overview of the method for preparing molten raw materials≫
The method for preparing a molten raw material according to the present embodiment is a method for preparing a raw material before melting (molten raw material) to be subjected to a melting treatment, which is a target of a reduction melting treatment in a valuable metal recovery method for recovering mainly valuable metals. Here, in the valuable metal recovery method, a metal composite containing a valuable metal is roasted to obtain a roasted product, and the roasted product is reduced and melted as a molten raw material to be subjected to the melting treatment to obtain slag and an alloy containing the valuable metal.
具体的に、本実施の形態に係る熔融原料の調製方法では、熔融原料として用いる金属複合体の焙焼物について、予め酸化カルシウムを含むフラックスと混合して混合物を得て(混合工程S41)、得られた混合物を造粒して造粒物を得る(造粒工程S42)ことを特徴としている。 Specifically, the method for preparing the molten raw material according to this embodiment is characterized in that the roasted metal composite used as the molten raw material is mixed in advance with a flux containing calcium oxide to obtain a mixture (mixing step S41), and the mixture is granulated to obtain a granulated product (granulation step S42).
このように熔融原料をフラックスと混合し造粒して造粒物とし、そしてこの造粒物を熔融炉に装入することにより、熔融炉への充填量を増やし、炉内充填嵩密度を高めることができる。また、焙焼物とフラックスとを混合して造粒物の形態とすることで、造粒物中において焙焼物とフラックスとの密着性が高まるため、還元熔融処理時における焙焼物への熱伝導性も向上する。これにより、還元熔融に必要な所定の温度に昇温するまでの速度(昇温速度)が高まり、効率的な還元熔融処理を行うことができる。 In this way, by mixing the molten raw material with flux and granulating it to form granules, and then charging these granules into a melting furnace, it is possible to increase the amount of material loaded into the melting furnace and increase the bulk density loaded into the furnace. In addition, by mixing the roasted material with flux to form granules, the adhesion between the roasted material and the flux in the granules is increased, and the thermal conductivity to the roasted material during the reduction melting process is also improved. This increases the speed at which the temperature is raised to the specified temperature required for reduction melting (heating rate), allowing for an efficient reduction melting process.
なお、本明細書において造粒物とは、金属複合体の焙焼物を一体に結合することにより顆粒化したものをいい、少なくともその形状を維持できる程度の硬度を有するものをいう。 In this specification, the term "granulated material" refers to a material that has been granulated by bonding together roasted metal composites, and has at least enough hardness to maintain its shape.
この造粒物は、焙焼物とフラックスとが混合されて造粒して得られるものであり、その形状を維持できる程度の硬度を有する。そのため、例えばその形状を維持したまま崩壊せずにコンベアー等により搬送することも可能である。このように本実施の形態に係る熔融原料の調製方法により処理された熔融原料は取り扱い性も良好である。 These granulated materials are obtained by mixing the roasted material and flux and granulating them, and have a degree of hardness that allows them to maintain their shape. Therefore, for example, they can be transported on a conveyor or the like while maintaining their shape and not collapsing. In this way, the molten raw material processed by the method for preparing molten raw material according to this embodiment is easy to handle.
さらに、本実施の形態では、焙焼物と酸化カルシウムを含むフラックスとを混合することを特徴としている。カルシウムを主成分として含むフラックスを熔融原料に含ませることにより、カルシウムを主成分として含むフラックスが粘結剤としての機能を有するため、造粒物の硬度を高くすることができる。ところが、炭酸カルシウムを主成分として含むフラックスを熔融原料に含ませると、還元熔融時の過程で、短時間に熱分解して炭酸ガスが発生する。このように熔融物が発泡状態であると、発泡による熔融物の上面の盛り上がり量を考慮して原材料の装入量を制御しなければならない。例えば、原材料の装入量を抑制すると生産効率が低下する。また、熔融物が発泡状態であると、熔融炉上面の開口部から熔融物が溢れ出てしまうおそれもある。 Furthermore, this embodiment is characterized in that the roasted material is mixed with a flux containing calcium oxide. By adding a flux containing calcium as a main component to the molten raw material, the flux containing calcium as a main component functions as a binder, and the hardness of the granulated material can be increased. However, if a flux containing calcium carbonate as a main component is added to the molten raw material, it will thermally decompose in a short time during the reduction melting process and generate carbon dioxide gas. If the molten material is in a foamed state like this, the amount of raw material charged must be controlled taking into account the amount of swelling of the upper surface of the molten material due to foaming. For example, if the amount of raw material charged is reduced, production efficiency will decrease. Also, if the molten material is in a foamed state, there is a risk that the molten material will overflow from the opening on the upper surface of the melting furnace.
そこで、焙焼物と酸化カルシウムを含むフラックスとを混合することで熔融物が発泡状態になることを効果的に抑制して、熔融物が発泡状態となることによる生産効率の低下を抑制することが可能となる。 Therefore, by mixing the roasted material with a flux containing calcium oxide, it is possible to effectively prevent the molten material from becoming foamy, thereby preventing a decrease in production efficiency due to the molten material becoming foamy.
さて、処理対象である熔融原料としては、例えば、自動車若しくは電子機器等の劣化による廃棄物、リチウムイオン電池の寿命に伴い発生したリチウムイオン電池のスクラップ、又は電池製造工程内の不良品等の廃電池等を含む金属複合体が挙げられる。 The molten raw materials to be treated include, for example, waste materials resulting from the deterioration of automobiles or electronic devices, scrap lithium-ion batteries generated as the lithium-ion batteries reach the end of their lifespan, or metal composites containing waste batteries such as defective products produced during the battery manufacturing process.
以下では、リチウムイオン電池の廃電池から得られた熔融原料を処理対象とする場合を一例として、熔融原料の調製方法を有価金属回収方法の各工程とともに説明する。 Below, we will explain the method for preparing the molten raw material, along with each step of the valuable metal recovery method, using as an example the case in which the molten raw material obtained from waste lithium-ion batteries is the target of processing.
なお、本発明において、処理対象である熔融原料は、廃電池を含む金属複合体の焙焼物に限定されるものではないが、廃電池は電極に由来する有価金属の他に電池パック等に由来する有価金属以外のものを多く含むことから、有価金属に対して金属複合体全体の体積が大きくなる。このため、炉内充填嵩密度を高めることができなくなり効率的な還元熔融処理を行うことができなくなるという課題が発生しやすいものであるので、廃電池を含む金属複合体の焙焼物を処理対象とすることで本発明の利益を好適に享受できる。 In the present invention, the molten raw material to be treated is not limited to the roasted product of a metal composite containing waste batteries. However, waste batteries contain many non-valuable metals derived from battery packs and the like in addition to valuable metals derived from electrodes, so the volume of the entire metal composite is large compared to the valuable metals. This can easily lead to a problem that the bulk density of the material packed in the furnace cannot be increased and efficient reduction melting treatment cannot be performed. Therefore, the benefits of the present invention can be preferably enjoyed by treating roasted products of a metal composite containing waste batteries.
≪2.有価金属回収方法の各工程≫
以下、熔融原料の調製方法について、その前提となる有価金属回収方法と共に説明する。
≪2. Each step of the valuable metal recovery method≫
The method for preparing the molten raw material will be described below together with the valuable metal recovery method that is the premise of the method.
具体的には、有価金属回収方法は、図1に示すように廃電池から電解液及び外装缶を除去する廃電池前処理工程S1と、廃電池前処理工程S1に供された廃電池を粉砕して粉砕物を得る粉砕工程S2と、粉砕物を焙焼して焙焼物を得る焙焼工程S3と、焙焼物と酸化カルシウムを含むフラックスとを混合して得られる混合物を造粒して造粒物を得る熔融原料調製工程S4と、熔融原料として造粒物を還元熔融して、スラグと、有価金属を含有する合金とを得る還元熔融工程S5と、を有する。 Specifically, the valuable metal recovery method includes a waste battery pretreatment process S1 in which the electrolyte and outer cans are removed from the waste batteries as shown in FIG. 1, a crushing process S2 in which the waste batteries subjected to the waste battery pretreatment process S1 are crushed to obtain a crushed product, a roasting process S3 in which the crushed product is roasted to obtain a roasted product, a molten raw material preparation process S4 in which the roasted product is mixed with a flux containing calcium oxide, the resulting mixture is granulated to obtain a granulated product, and a reduction melting process S5 in which the granulated product is reduced and melted as the molten raw material to obtain slag and an alloy containing valuable metals.
[廃電池前処理工程]
廃電池前処理工程S1では、廃電池から電解液及び外装缶を除去する。廃電池内には電解液等を有しているためそのままの状態で粉砕処理を行うと、爆発の恐れがある。また、廃電池に含まれる外装缶は金アルミニウムや鉄などが含まれる場合が多く、こうしたアルミニウムや鉄などの外装缶はそのまま有価金属として比較的容易に回収することが可能である。本工程を経ることで、電池から電解液及び外装缶を除去することで、安全性を高め、また、銅、ニッケル、コバルト等の有価金属の回収生産性を高めることができる。
[Waste battery pretreatment process]
In the waste battery pretreatment process S1, the electrolyte and the outer can are removed from the waste battery. Since the waste battery contains the electrolyte and the like, there is a risk of explosion if the waste battery is crushed in its current state. Furthermore, the outer can contained in the waste battery often contains gold, aluminum, iron, etc., and such aluminum, iron, etc. can be relatively easily recovered as valuable metals as they are. By removing the electrolyte and the outer can from the battery through this process, safety can be improved and the recovery productivity of valuable metals such as copper, nickel, and cobalt can be increased.
廃電池前処理工程S1の具体的な方法は特に限定されないが、例えば針状の刃先で廃電池を物理的に開孔し、電解液及び外装缶を除去する方法などが挙げられる。また、廃電池を加熱して電解液を燃焼して無害化してもよい。 The specific method for the waste battery pretreatment process S1 is not particularly limited, but examples include a method in which the waste battery is physically opened with a needle-shaped blade and the electrolyte and outer can are removed. In addition, the waste battery may be heated to burn the electrolyte and render it harmless.
なお、廃電池前処理工程S1において、例えば外装缶に含まれるアルミニウムや鉄を回収する場合、除去した外装缶を粉砕した後に篩振とう機を用いて篩分けを行うようにすることができる。アルミニウムの場合、軽度の粉砕であっても容易に粉状となるため、外装缶からアルミニウムを効率的に回収することができる。また、磁力による選別によって、外装缶から鉄を回収することができる。 In addition, in the waste battery pretreatment process S1, when recovering aluminum or iron contained in the outer can, for example, the removed outer can can be crushed and then sieved using a sieve shaker. Aluminum can be efficiently recovered from the outer can because it easily becomes powder even with light crushing. In addition, iron can be recovered from the outer can by sorting using magnetic force.
[粉砕工程]
粉砕工程S2では、廃電池前処理工程S1に供された廃電池(金属複合体)を粉砕して粉砕物を得る。これにより、後述する還元熔融工程S5にて反応効率を高めて、銅、ニッケル、コバルトの有価金属の回収率を高めることができる。
[Crushing process]
In the pulverization step S2, the waste batteries (metal composite) subjected to the waste battery pretreatment step S1 are pulverized to obtain a pulverized material, which can increase the reaction efficiency in the reduction melting step S5 described later and increase the recovery rate of valuable metals such as copper, nickel, and cobalt.
破砕処理において使用する破砕装置は、特に限定されず、カッターミキサー等の従来公知の粉砕機を用いて粉砕することができる。 The crushing device used in the crushing process is not particularly limited, and crushing can be performed using a conventionally known crusher such as a cutter mixer.
[焙焼工程]
焙焼工程S3では、廃電池の粉砕物を焙焼して焙焼物を得る。熔融原料に炭素が含まれると、後述する還元熔融工程S5においてメタルの凝集が阻害されて、メタルとスラグとの分離性が低下して有価金属の回収率が低下する。そこで、粉砕物を焙焼することにより粉砕物に含まれる炭素を酸化して除去することで後述する還元熔融工程S5においてメタルとスラグとを効果的に分離させて、有価金属の回収率を向上させることができる。
[Roasting process]
In the roasting step S3, the crushed waste battery material is roasted to obtain a roasted material. If the melting raw material contains carbon, the aggregation of metal is hindered in the reducing and melting step S5 described later, and the separability of metal and slag is reduced, resulting in a reduction in the recovery rate of valuable metals. Therefore, the crushed material is roasted to oxidize and remove the carbon contained in the crushed material, thereby effectively separating the metal and slag in the reducing and melting step S5 described later, thereby improving the recovery rate of valuable metals.
また、焙焼工程これによりS3では、粉砕物に含まれる金属のうち少なくともアルミニウムを酸化する。後述する還元熔融工程S5において粉砕物に含まれるアルミニウムをスラグとしてメタルと分離することができる。 In addition, in the roasting process S3, at least the aluminum of the metals contained in the pulverized material is oxidized. In the reduction melting process S5 described below, the aluminum contained in the pulverized material can be separated from the metal as slag.
焙焼処理における条件は、特に限定されないが、少なくとも粉砕物に含まれる炭素とアルミニウムを酸化できる程度の酸化度で焙焼処理を施すことが好ましい。具体的には、焙焼温度としては700℃以上に加熱して行うことが好ましい。なお、焙焼温度の上限としては、特に限定されないが、900℃以下とすることが好ましい。焙焼温度が高すぎると、主に廃電池の外部シェルに用いられている鉄等の一部がキルン等の焙焼炉本体の内壁等に付着してしまい、円滑な操業の妨げになる場合や、キルン自体の劣化につながる場合があり好ましくない。 The conditions for the roasting process are not particularly limited, but it is preferable to carry out the roasting process at a degree of oxidation that can oxidize at least the carbon and aluminum contained in the pulverized material. Specifically, the roasting temperature is preferably 700°C or higher. The upper limit of the roasting temperature is not particularly limited, but is preferably 900°C or lower. If the roasting temperature is too high, some of the iron and other materials used mainly in the outer shells of the waste batteries will adhere to the inner walls of the roasting furnace body of a kiln, etc., which may hinder smooth operation or lead to deterioration of the kiln itself, and is therefore undesirable.
また、焙焼処理の際に、酸化度を調整するにあたって、炉内に適量の酸化剤を導入することが好ましい。酸化剤としては特に限定されないが、取り扱いが容易な点から、空気、純酸素、酸素富化気体等の酸素を含む気体を用いることが好ましい。なお、酸化剤の導入量については、例えば、酸化処理の対象となる各物質の酸化に必要な化学当量の1.2倍程度とすることができる。 In addition, during the roasting process, it is preferable to introduce an appropriate amount of oxidizing agent into the furnace to adjust the degree of oxidation. There are no particular limitations on the oxidizing agent, but it is preferable to use an oxygen-containing gas such as air, pure oxygen, or oxygen-enriched gas, because of ease of handling. The amount of oxidizing agent introduced can be, for example, about 1.2 times the chemical equivalent required for oxidation of each substance to be subjected to the oxidation process.
[熔融原料調製工程]
熔融原料調製工程S4は、次工程の還元熔融工程S5での還元熔融処理に供する原料(熔融原料)を調製する工程である。具体的に、熔融原料調製工程S4では、焙焼物と酸化カルシウムを含むフラックスとを混合して混合物を得て(混合工程S41)、得られた混合物を造粒することで造粒物を得る(造粒工程S42)。
[Melted raw material preparation process]
The molten raw material preparation step S4 is a step of preparing a raw material (molten raw material) to be subjected to a reduction melting treatment in the next reduction melting step S5. The mixture is mixed with the flux containing the powder to obtain a mixture (mixing step S41), and the mixture is granulated to obtain a granulated material (granulation step S42).
このように、還元熔融処理に先立ち、熔融対象である焙焼物とフラックスを混合し造粒して、焙焼物とフラックスとを含む造粒物を得る。そしてこのような造粒物の形態の熔融原料を熔融炉に装入して還元熔融処理に供することで、炉内への充填量や充填嵩密度を高め、また焙焼物への熱伝導性を向上させることができ、効率的な還元熔融処理を可能にする。 In this way, prior to the reduction melting process, the roasted material to be melted and the flux are mixed and granulated to obtain a granulated material containing the roasted material and flux. Then, by charging the melting raw material in the form of such a granulated material into a melting furnace and subjecting it to the reduction melting process, it is possible to increase the amount of material filled into the furnace and the bulk density of the material, and also to improve the thermal conductivity to the roasted material, enabling an efficient reduction melting process.
以下、熔融原料調製工程S4に含まれる混合工程S41と、造粒工程S42と、についてそれぞれ説明する。 The mixing process S41 and the granulation process S42 included in the molten raw material preparation process S4 are described below.
(混合工程)
混合工程S41では、焙焼工程S3で得られた焙焼物と酸化カルシウムを含むフラックスとを混合して混合物を得る。従来一般的に、フラックスは、スラグを溶解させて除去することを目的として還元熔融処理時に熔融炉内に添加して使用されている。本実施の形態に係る熔融原料の調製方法においては、還元溶融処理に先立ち、予め焙焼物と酸化カルシウムフラックスとを混合して混合物を得て、後述する造粒工程S42にてその混合物を造粒して造粒物を作製する。
(Mixing process)
In the mixing step S41, the roasted product obtained in the roasting step S3 is mixed with a flux containing calcium oxide to obtain a mixture. Conventionally, flux is generally added to a melting furnace during a reducing and melting process in order to dissolve and remove slag. In the method for preparing a molten raw material according to the present embodiment, the roasted product is mixed with calcium oxide flux to obtain a mixture prior to the reducing and melting process, and the mixture is granulated in a granulation step S42 to be described later to produce granules.
また、造粒物に酸化カルシウムを含むフラックスを含むことによって、熔融物が発泡状態になることを効果的に抑制して、熔融物が発泡状態となることによる生産効率の低下を抑制することが可能となる。さらに、得られる造粒物の強度特性が向上し、炉内への充填量や充填嵩密度をより効果的に高めることができる。 In addition, by including a flux containing calcium oxide in the granules, it is possible to effectively prevent the molten material from becoming foamy, thereby preventing a decrease in production efficiency due to the molten material becoming foamy. Furthermore, the strength characteristics of the resulting granules are improved, and the amount of material filled into the furnace and the filling bulk density can be more effectively increased.
焙焼物への酸化カルシウムを含むフラックスの混合割合の下限は、混合物中の焙焼物100質量部に対して10質量部以上であることが好ましく、20質量部以上であることがより好ましい。フラックスの含有割合の上限は、混合物中の焙焼物100質量部に対して50質量部以下であることが好ましく、40質量部以下であることがより好ましい。 The lower limit of the mixing ratio of flux containing calcium oxide to the roasted product is preferably 10 parts by mass or more, more preferably 20 parts by mass or more, per 100 parts by mass of roasted product in the mixture. The upper limit of the flux content is preferably 50 parts by mass or less, more preferably 40 parts by mass or less, per 100 parts by mass of roasted product in the mixture.
また、フラックスは、それ自体が粘結剤として機能する。そのため、焙焼物とフラックスとを混合し、得られる混合物を造粒することで、一体に結合した造粒物と有効に得ることができる。 In addition, the flux itself functions as a binder. Therefore, by mixing the roasted material with the flux and granulating the resulting mixture, it is possible to effectively obtain a granulated material that is bound together.
焙焼物とフラックスとを混合するに際しては、ヘンシェルミキサー等の種々の混合機を用いて行うことができる。上述のように、フラックス自体が粘結剤としての機能を有するため、水や粘結剤を必要としない。なお、水や粘結剤を混合しないで得られる造粒物では、その造粒物を乾燥する工程が不要となるため、操業コスト面で優れる。 When mixing the roasted material and the flux, various mixers such as a Henschel mixer can be used. As mentioned above, the flux itself functions as a binder, so water or a binder is not required. In addition, granules obtained without mixing water or a binder do not require a process for drying the granules, which is advantageous in terms of operating costs.
なお、後述する還元熔融工程S5で還元剤として炭素を使用する場合には、炭素をフラックスとともに混合物に含有させてもよい。 When carbon is used as a reducing agent in the reduction melting step S5 described below, carbon may be included in the mixture together with the flux.
(造粒工程)
造粒工程S42では、混合工程S41で得られた混合物を造粒して造粒物を得る。具体的には、例えば造粒機を使用して、得られた混合物を一体に結合し得る所定の圧力(線圧)を加えて造粒することで、その形状を維持できる程度の硬度を有する造粒物を得る。
(Granulation process)
In the granulation step S42, the mixture obtained in the mixing step S41 is granulated to obtain a granulated product. Specifically, for example, a granulator is used to granulate the mixture obtained by applying a predetermined pressure (linear pressure) capable of binding the mixture together, thereby obtaining a granulated product having a hardness sufficient to maintain its shape.
混合物を造粒する際に付加する圧力(線圧)としては、特に制限されるものではないが、下限は、1.0t/cm以上であることが好ましく、1.5t/cm以上であることがより好ましく、2.0t/cm以上であることがさらに好ましい。上限は特に制限はないが、4.0t/cm超にしても炉内充填嵩密度を高めることができなくなることから4.0t/cm以下であることが好ましい。 The pressure (linear pressure) applied when granulating the mixture is not particularly limited, but the lower limit is preferably 1.0 t/cm or more, more preferably 1.5 t/cm or more, and even more preferably 2.0 t/cm or more. There is no particular upper limit, but if it exceeds 4.0 t/cm, it will not be possible to increase the bulk density packed in the furnace, so it is preferably 4.0 t/cm or less.
このようにして得られた造粒物であればフラックスが粘結剤として機能し、造粒する際に付加する圧力(線圧)によって一体に結合した造粒物が得られる。また、造粒物の形態となっているため、その造粒物中における焙焼物とフラックスとの密着性が高まり、焙焼物への熱伝導性を向上させることができる。 In the granulated material obtained in this manner, the flux functions as a binder, and the pressure (linear pressure) applied during granulation results in a granulated material that is bound together. In addition, because the granulated material is in the form of a granule, the adhesion between the roasted material and the flux in the granulated material is increased, improving the thermal conductivity of the roasted material.
[還元熔融工程]
還元熔融工程S5は、熔融原料として前記造粒物を還元熔融して、スラグと、有価金属を含有する合金とを得る。還元熔融工程S5は、焙焼工程S3で酸化したアルミニウム等の不要な酸化物は酸化物のままで、焙焼工程S3で酸化してしまった銅等の有価金属の酸化物については還元及び熔融させ、還元物を一体化した合金として回収することを目的とする。なお、熔融物として得られる合金を「熔融合金」ともいう。
[Reduction melting process]
In the reduction melting step S5, the granulated material is reduced and melted as a melting raw material to obtain slag and an alloy containing valuable metals. The reduction melting step S5 aims to recover the reduced material as an integrated alloy by leaving unnecessary oxides such as aluminum oxidized in the roasting step S3 as oxides, while reducing and melting oxides of valuable metals such as copper oxidized in the roasting step S3. The alloy obtained as a molten material is also called "molten alloy".
ここで、本実施の形態では、熔融原料調製工程S4において、熔融原料を還元熔融するのに先立ち、熔融原料とフラックスとを混合して得られる混合物を造粒して造粒物を得ている。したがって、この造粒物を熔融原料として熔融炉に装入することで、熔融炉内への充填量を高め、また炉内充填嵩密度を高めることができ、熔融処理量を増やして効率的な還元熔融処理を行うことが可能となる。また、造粒物の形態となっているため、その造粒物中における焙焼物とフラックスとの密着性が高まり、還元溶融処理時における焙焼物への熱伝導性を向上させることができる。これにより、還元熔融に必要な所定の温度に昇温するまでの速度(昇温速度)が高まり、熔融処理時間が短縮されて、より一層効率的な還元熔融処理を行うことが可能となる。 In this embodiment, in the melting raw material preparation step S4, prior to reducing and melting the melting raw material, the mixture obtained by mixing the melting raw material and the flux is granulated to obtain a granulated material. Therefore, by charging this granulated material into the melting furnace as the melting raw material, the amount of material filled into the melting furnace can be increased and the bulk density of the material filled in the furnace can be increased, and the amount of melting can be increased to perform an efficient reducing and melting process. In addition, since the granulated material is in the form of a granulated material, the adhesion between the roasted material and the flux in the granulated material is increased, and the thermal conductivity to the roasted material during the reducing and melting process can be improved. As a result, the speed at which the temperature is raised to a predetermined temperature required for reducing and melting (heating rate) is increased, the melting process time is shortened, and a more efficient reducing and melting process can be performed.
還元熔融工程S5では、例えば炭素又は一酸化炭素等の存在下で行うことが好ましい。炭素は、回収対象である有価金属の銅、ニッケル、コバルト等を容易に還元する能力があり、例えば炭素1モルで、銅酸化物やニッケル酸化物等の有価金属の酸化物2モルを還元することができる還元剤である。また、炭素又は一酸化炭素を用いた還元では、例えばアルミニウム等の金属粉を還元剤として還元するテルミット反応を利用する場合に比べ、極めて安全性が高い。 The reduction melting step S5 is preferably carried out in the presence of, for example, carbon or carbon monoxide. Carbon has the ability to easily reduce valuable metals such as copper, nickel, and cobalt, which are the targets of recovery, and is a reducing agent that can reduce, for example, two moles of valuable metal oxides, such as copper oxide and nickel oxide, with one mole of carbon. Reduction using carbon or carbon monoxide is also extremely safer than, for example, the thermite reaction, which uses metal powder, such as aluminum, as a reducing agent.
炭素としては、人工黒鉛や天然黒鉛の他、不純物のコンタミの恐れが無ければ石炭やコークス等を使用することができる。 As carbon, in addition to artificial graphite and natural graphite, coal, coke, etc. can be used as long as there is no risk of contamination with impurities.
熔融処理における温度条件(熔融温度)としては、特に限定されないが、1300℃以上1500℃以下の温度とすることが好ましい。熔融温度が1300℃を下回ると、熔融合金の流動性が悪化する場合があり、不純物と有価金属の分離効率が悪化する可能性がある。一方で、熔融温度を1500℃を超える温度とすると、熱エネルギーが無駄に消費され、るつぼ等の耐火物の消耗も激しくなり、生産性が低下する可能性がある。そのため、熔融温度としては1500℃以下とすることが好ましい。 The temperature conditions (melting temperature) in the melting process are not particularly limited, but a temperature of 1300°C or higher and 1500°C or lower is preferable. If the melting temperature is lower than 1300°C, the fluidity of the molten alloy may deteriorate, and the efficiency of separating impurities and valuable metals may deteriorate. On the other hand, if the melting temperature is higher than 1500°C, thermal energy will be wasted and refractories such as crucibles will be rapidly worn out, which may reduce productivity. Therefore, it is preferable to set the melting temperature at 1500°C or lower.
熔融炉は、バーナーを有するバーナー炉であっても、電気等を用いた加熱手段を有する電気炉であってもよいが、電気炉であることが好ましい。 The melting furnace may be a burner furnace having a burner or an electric furnace having a heating means using electricity, etc., but an electric furnace is preferable.
熔融処理においては、フラックスを用いることが好ましい。フラックスを用いて還元物を熔融することで、アルミニウム等の酸化物を含有するスラグをフラックスに溶解させて除去することができる。なお、本実施の形態では、熔融原料である粒状物にフラックスが所定量含まれているので、熔融処理においては、フラックスを必ずしも用いなくともよい。 In the melting process, it is preferable to use a flux. By melting the reduced material using a flux, the slag containing oxides such as aluminum can be dissolved in the flux and removed. In this embodiment, since the granular material that is the melting raw material contains a predetermined amount of flux, it is not necessary to use a flux in the melting process.
熔融処理においてフラックスを用いる場合、フラックスとしては、カルシウムを主成分として含むものが好ましく、例えば酸化カルシウムや炭酸カルシウムを用いることができる。また、フラックスとして炭酸カルシウムを用いると、熔融物が発泡状態となることがあるので、酸化カルシウムを含むものを使用することが好ましい。なお、熔融処理でのフラックスは粒状物に含まれるフラックスと同じものであっても異なるものであってもよい。 When a flux is used in the melting process, it is preferable that the flux contains calcium as a main component, and for example, calcium oxide or calcium carbonate can be used. Furthermore, if calcium carbonate is used as the flux, the melt may become foamy, so it is preferable to use a flux containing calcium oxide. The flux used in the melting process may be the same as the flux contained in the granular material, or it may be different.
また、還元熔融工程で得られた合金には、合金を回収する前に硫黄を添加しても良く、これにより合金を脆くして破砕しやすくすることができる。合金を破砕することで比表面積を大きくすることができ、これにより湿式製錬プロセスでの浸出性を向上させることができる。 Sulfur may also be added to the alloy obtained in the reduction melting process before the alloy is recovered, making it brittle and easier to crush. Crushing the alloy increases its specific surface area, which improves its leachability in the hydrometallurgical process.
熔融原料にリンが含まれている場合、リンは酸化すると酸性酸化物になるため、スラグの組成は塩基性であるほどリンをスラグに除去しやすい。スラグ中で塩基性酸化物となるカルシウムが多いほうが良く、酸性酸化物となる珪素は少ない方が良く、特にスラグ中の二酸化珪素/酸化カルシウムの質量比が0.5以下であることが好ましい。また、酸化アルミニウムの割合が大きいとスラグの融点が上昇するため、酸化アルミニウムを熔融するために十分な量のカルシウムが必要であり、特にスラグ中の酸化カルシウム/酸化アルミニウムの質量比が0.3以上2以下であることが好ましい。これにより、スラグが塩基性となり、酸性酸化物を生成するリンを効果的に除去できる。なお、熔融処理においては、粉塵や排ガス等が発生することがあるが、従来公知の排ガス処理を施すことによって無害化することができる。 When phosphorus is contained in the melting raw material, phosphorus becomes an acidic oxide when oxidized, so the more basic the slag composition, the easier it is to remove phosphorus into the slag. The more calcium that becomes a basic oxide in the slag, the better, and the less silicon that becomes an acidic oxide, and it is particularly preferable that the mass ratio of silicon dioxide/calcium oxide in the slag is 0.5 or less. In addition, since the melting point of the slag increases when the proportion of aluminum oxide is large, a sufficient amount of calcium is required to melt the aluminum oxide, and it is particularly preferable that the mass ratio of calcium oxide/aluminum oxide in the slag is 0.3 to 2. This makes the slag basic, and phosphorus that forms an acidic oxide can be effectively removed. In addition, dust and exhaust gases may be generated in the melting process, but these can be rendered harmless by applying conventional exhaust gas treatment.
このように、上述した乾式処理プロセスによってリンを除去することができるため、回収した熔融合金を湿式製錬プロセスに供する場合には、そのプロセスを単純化することができる。このとき、この湿式製錬プロセスでの処理量は、投入廃電池の量に比べて質量比で1/4から1/3程度まで少なくなっていることも有利な点である。したがって、乾式工程(廃電池前処理工程S1~還元熔融工程S5)を広義の前処理とすることで、不純物(リン)の少ない合金を得るとともに処理量も大幅に減らすことで、乾式製錬プロセスと湿式製錬プロセスとを組み合わせることが工業的に可能である。 In this way, since phosphorus can be removed by the above-mentioned dry treatment process, when the recovered molten alloy is subjected to a hydrometallurgical process, the process can be simplified. At this time, it is also advantageous that the amount of material processed in this hydrometallurgical process is reduced by about 1/4 to 1/3 in mass ratio compared to the amount of waste batteries input. Therefore, by treating the dry process (waste battery pretreatment process S1 to reduction melting process S5) as a pretreatment in a broad sense, it is possible to obtain an alloy with fewer impurities (phosphorus) and significantly reduce the amount of material processed, making it industrially possible to combine the dry smelting process and the hydrometallurgical process.
なお、湿式製錬プロセスにおける処理は、中和処理や溶媒抽出処理等の公知の方法により行うことができ、特に限定されない。一例を挙げれば、コバルト、ニッケル、銅からなる合金の場合、硫酸等の酸で有価金属を浸出させた後(浸出工程)、溶媒抽出等により例えば銅を抽出し(抽出工程)、残存したニッケル及びコバルトの含有溶液は、電池製造プロセスにおける正極活物質製造工程に払い出すようにする。 The treatment in the hydrometallurgical process can be performed by known methods such as neutralization and solvent extraction, and is not particularly limited. For example, in the case of an alloy consisting of cobalt, nickel, and copper, valuable metals are leached with an acid such as sulfuric acid (leaching process), and then copper is extracted by solvent extraction or the like (extraction process), and the remaining solution containing nickel and cobalt is discharged to the positive electrode active material production process in the battery production process.
以下、実施例及び比較例を用いて、本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 The present invention will be explained in more detail below using examples and comparative examples, but the present invention is not limited to the following examples.
[実施例1]
銅、アルミニウム、炭素を主成分とし、さらにニッケル、コバルト、鉄、リチウムを含むリチウムイオン電池の廃電池から電解液及び外装缶を除去し(廃電池前処理工程)、粉砕して粉砕物を得た(粉砕工程)。そして、粉砕物を焙焼し(焙焼工程)、酸化処理を行って得た焙焼物0.60tにフラックスとしてCaO(酸化カルシウム)0.10tを添加し、ヘンシェルミキサーで混合し、混合物0.70tを得た(混合工程)。この混合物を直径650mm、幅100mmのロールを有するブリケットマシンを用いて、線圧2.0t/cm、回転数3rpmの条件で加圧し、造粒物(30mm×25mm×7.5mm)を得た(造粒工程)。
[Example 1]
The electrolyte and the outer can were removed from the waste lithium-ion batteries, which were mainly composed of copper, aluminum, and carbon, and further contained nickel, cobalt, iron, and lithium (waste battery pretreatment process), and the batteries were pulverized to obtain a pulverized product (pulverization process). The pulverized product was then roasted (roasting process), and 0.60 t of the roasted product obtained by oxidation treatment was added with 0.10 t of CaO (calcium oxide) as a flux, and mixed in a Henschel mixer to obtain a mixture of 0.70 t (mixing process). This mixture was pressed using a briquette machine having a roll with a diameter of 650 mm and a width of 100 mm under conditions of a linear pressure of 2.0 t/cm and a rotation speed of 3 rpm to obtain a granulated product (30 mm x 25 mm x 7.5 mm) (granulation process).
そして、この造粒物をコンベアー搬送して、熔融炉(電気炉)へ向けて装入量が60Lとなるように装入した。このときに装入した原料の重量と容積から、炉内へ装入された原料の充填嵩密度(以下、炉内充填嵩密度ともいう。)を求めた。 The granulated material was then transported by conveyor to a melting furnace (electric furnace) so that the charge volume was 60 L. From the weight and volume of the raw material charged at this time, the packing bulk density of the raw material charged into the furnace (hereinafter also referred to as the furnace packing bulk density) was calculated.
次に、平均出力130kwの出力で熔融炉(電気炉)に通電して、装入した原料を1400℃に昇温した。この昇温に要した時間を計測し、昇温速度を求めた。 Next, electricity was applied to the melting furnace (electric furnace) with an average output of 130 kW to heat the charged raw materials to 1,400°C. The time required for this temperature increase was measured to determine the temperature increase rate.
さらに、1400℃に昇温後、この状態で30分保持するとともに、熔融物の上面の状態を観察した。 The temperature was then raised to 1400°C and held at this state for 30 minutes while observing the condition of the top surface of the melt.
[実施例2]
造粒工程でのブリケットマシンの加圧条件を線圧3.0t/cmとして加圧した以外は、実施例1と同様に行った。
[Example 2]
The same procedure as in Example 1 was carried out except that the pressure conditions of the briquetting machine in the granulation step were set to a linear pressure of 3.0 t/cm.
[比較例1]
酸化処理を行って得た焼結物0.54tにフラックスとしてCaCO3(炭酸カルシウム)0.16tを添加し、ブリケットマシンの加圧条件を線圧3.0t/cmとして加圧した以外は、実施例1と同様に行った。
[Comparative Example 1]
The same procedure as in Example 1 was carried out except that 0.16 t of CaCO 3 (calcium carbonate) was added as a flux to 0.54 t of the sintered product obtained by the oxidation treatment, and the pressing conditions of the briquette machine were set to a linear pressure of 3.0 t/cm.
[比較例2]
酸化処理を行って得た焼結物0.54tにフラックスとしてCaCO3(炭酸カルシウム)0.16tを添加し、混合原料との重量比で1.0wt%の水と、1.0wt%の粘結剤(α澱粉)を混合原料に添加して、ブリケットマシンの加圧条件を線圧3t/cmとして加圧し、得られた造粒物を乾燥した以外は、実施例1と同様に行った。
[Comparative Example 2]
The same procedure as in Example 1 was repeated except that 0.16 t of CaCO3 (calcium carbonate) was added as a flux to 0.54 t of the sintered product obtained by the oxidation treatment, 1.0 wt% of water and 1.0 wt% of a binder (α-starch) were added to the mixed raw material in a weight ratio relative to the mixed raw material, and the briquetting machine was set to a linear pressure of 3 t/cm to pressurize the mixture, and the obtained granules were dried.
[比較例3]
混合物の造粒を行わず、この混合物そのものを熔融炉(電気炉)へ装入したこと以外は、実施例1と同様に行った。
[Comparative Example 3]
The same procedure as in Example 1 was repeated, except that the mixture was not granulated and was charged directly into the melting furnace (electric furnace).
各実施例、比較例における焼結物量、フラックス量、造粒物量、及び造粒線圧を表1に示す。各実施例、比較例における炉内充填嵩密度、昇温速度、及び発泡の有無を表2に示す。 The amount of sintered material, amount of flux, amount of granulated material, and granulation line pressure for each example and comparative example are shown in Table 1. The furnace filling bulk density, heating rate, and presence or absence of foaming for each example and comparative example are shown in Table 2.
表1,2から分かるように、酸化カルシウムを含むフラックスとの混合物の造粒物を熔融原料を調製し、その造粒物の形態で還元熔融処理を施した実施例1,2は、炉内充填嵩密度を高めることができ、昇温速度も高く、熔融物が発泡状態になることを効果的に抑制できていることが分かる。 As can be seen from Tables 1 and 2, in Examples 1 and 2, in which the molten raw material was prepared from a granulated mixture of calcium oxide and flux and the granulated material was subjected to the reduction melting process, it was possible to increase the bulk density filled in the furnace, the heating rate was also high, and it was possible to effectively prevent the molten material from becoming foamy.
また、造粒線圧を3.0t/cmにして造粒した実施例2では、炉内充填嵩密度をより高めることができ、還元熔融に必要な所定の温度に昇温するまでの時間をさらに短縮できることが分かる。 In addition, in Example 2, in which granulation was performed with a granulation line pressure of 3.0 t/cm, it was found that the bulk density packed in the furnace could be increased and the time required to raise the temperature to the specified temperature required for reduction melting could be further shortened.
一方、酸化処理を行って得た焼結物にフラックスとしてCaCO3(炭酸カルシウム)を添加した比較例1、2では炉内充填嵩密度や昇温速度は実施例と同様に高いものであったが、熔融物に発泡が確認された。 On the other hand, in Comparative Examples 1 and 2 in which CaCO 3 (calcium carbonate) was added as a flux to the sintered material obtained by oxidation treatment, the bulk density packed in the furnace and the heating rate were high like those in the Examples, but bubbles were observed in the molten material.
さらに、酸化カルシウムを含むフラックスとの混合物を造粒しなかった比較例3では、炉内充填嵩密度を高めることができず、昇温速度も低くなっており、効率的な還元熔融処理を行うという本発明の課題を達成できるものとなっていない。 Furthermore, in Comparative Example 3, in which the mixture with flux containing calcium oxide was not granulated, the bulk density packed in the furnace could not be increased and the heating rate was also low, so the objective of the present invention, which is to perform an efficient reduction melting process, could not be achieved.
Claims (3)
前記金属複合体は廃リチウムイオン電池を含み、
前記焙焼物と酸化カルシウムを含むフラックスとを混合し、得られる混合物に2t/cm以上の圧力を加えて造粒することで造粒物を得る造粒工程を含む、
熔融原料の調製方法。 A method for preparing a molten raw material to be subjected to a reduction and melting step in which a roasted product of a metal composite containing a valuable metal is reduced and melted as a molten raw material to obtain slag and an alloy containing the valuable metal, comprising:
The metal composite includes a waste lithium ion battery,
A granulation step of mixing the roasted product with a flux containing calcium oxide and granulating the resulting mixture by applying a pressure of 2 t/cm or more to obtain a granulated product.
Method for preparing molten raw materials.
請求項1に記載の熔融原料の調製方法。 2. The method for preparing a molten raw material according to claim 1, wherein in the granulation step, the roasted product and the flux are mixed to obtain a granulated product such that a content ratio of the flux is 10 parts by mass or more and 50 parts by mass or less with respect to 100 parts by mass of the roasted product in the mixture.
前記金属複合体は廃リチウムイオン電池を含み、
前記金属複合体を焙焼して焙焼物を得る焙焼工程と、
前記焙焼物と酸化カルシウムを含むフラックスとを混合し、得られる混合物に2t/cm以上の圧力を加えて造粒して造粒物を得る熔融原料調製工程と、
熔融原料として前記造粒物を還元熔融して、スラグと、該有価金属を含有する合金とを得る還元熔融工程と、
を有する
有価金属回収方法。
A method for recovering valuable metals, comprising the steps of: reducing and melting a roasted product of a metal composite containing valuable metals as a melting raw material to recover the valuable metals;
The metal composite includes a waste lithium ion battery,
A roasting step of roasting the metal composite to obtain a roasted product;
a molten raw material preparation step of mixing the roasted product with a flux containing calcium oxide, and granulating the resulting mixture by applying a pressure of 2 t/cm or more to obtain a granulated product;
a reduction and melting step of reducing and melting the granulated material as a melting raw material to obtain slag and an alloy containing the valuable metal;
A valuable metal recovery method comprising the steps of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020091595A JP7540199B2 (en) | 2020-05-26 | 2020-05-26 | Method for preparing molten raw material and method for recovering valuable metals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020091595A JP7540199B2 (en) | 2020-05-26 | 2020-05-26 | Method for preparing molten raw material and method for recovering valuable metals |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021188068A JP2021188068A (en) | 2021-12-13 |
JP7540199B2 true JP7540199B2 (en) | 2024-08-27 |
Family
ID=78848238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020091595A Active JP7540199B2 (en) | 2020-05-26 | 2020-05-26 | Method for preparing molten raw material and method for recovering valuable metals |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7540199B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7540198B2 (en) | 2020-05-26 | 2024-08-27 | 住友金属鉱山株式会社 | Method for preparing molten raw material and method for recovering valuable metals |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265569A (en) | 2005-03-22 | 2006-10-05 | Jfe Steel Kk | Method for producing sintered ore and pseudo-grain for producing sintered ore |
JP2010138427A (en) | 2008-12-09 | 2010-06-24 | Sumitomo Metal Ind Ltd | Method for manufacturing reduced iron agglomerate for steel-making |
JP2013091826A (en) | 2011-10-25 | 2013-05-16 | Sumitomo Metal Mining Co Ltd | Valuable metal recovery method |
JP2015063740A (en) | 2013-09-25 | 2015-04-09 | 株式会社神戸製鋼所 | Method for producing granular iron |
JP2019131871A (en) | 2018-02-01 | 2019-08-08 | 株式会社神戸製鋼所 | Metal recovery method |
JP2019135321A (en) | 2018-02-05 | 2019-08-15 | 住友金属鉱山株式会社 | Method for recovering valuable metal from waste lithium-ion battery |
JP2020076132A (en) | 2018-11-08 | 2020-05-21 | 住友金属鉱山株式会社 | Method of smelting oxide ore |
JP2021143394A (en) | 2020-03-12 | 2021-09-24 | 株式会社神戸製鋼所 | Recovery method of valuable metal |
JP2021188067A (en) | 2020-05-26 | 2021-12-13 | 住友金属鉱山株式会社 | Preparation method of raw material to be melted, and valuable metal recovery method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3563897B2 (en) * | 1996-11-27 | 2004-09-08 | 住友金属鉱山株式会社 | Method for recovering nickel and cobalt from used lithium secondary battery |
-
2020
- 2020-05-26 JP JP2020091595A patent/JP7540199B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006265569A (en) | 2005-03-22 | 2006-10-05 | Jfe Steel Kk | Method for producing sintered ore and pseudo-grain for producing sintered ore |
JP2010138427A (en) | 2008-12-09 | 2010-06-24 | Sumitomo Metal Ind Ltd | Method for manufacturing reduced iron agglomerate for steel-making |
JP2013091826A (en) | 2011-10-25 | 2013-05-16 | Sumitomo Metal Mining Co Ltd | Valuable metal recovery method |
JP2015063740A (en) | 2013-09-25 | 2015-04-09 | 株式会社神戸製鋼所 | Method for producing granular iron |
JP2019131871A (en) | 2018-02-01 | 2019-08-08 | 株式会社神戸製鋼所 | Metal recovery method |
JP2019135321A (en) | 2018-02-05 | 2019-08-15 | 住友金属鉱山株式会社 | Method for recovering valuable metal from waste lithium-ion battery |
JP2020076132A (en) | 2018-11-08 | 2020-05-21 | 住友金属鉱山株式会社 | Method of smelting oxide ore |
JP2021143394A (en) | 2020-03-12 | 2021-09-24 | 株式会社神戸製鋼所 | Recovery method of valuable metal |
JP2021188067A (en) | 2020-05-26 | 2021-12-13 | 住友金属鉱山株式会社 | Preparation method of raw material to be melted, and valuable metal recovery method |
Also Published As
Publication number | Publication date |
---|---|
JP2021188068A (en) | 2021-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102575339B1 (en) | Method for recovering valuable metals from waste lithium ion batteries | |
JP2019135321A (en) | Method for recovering valuable metal from waste lithium-ion battery | |
JP5857572B2 (en) | Valuable metal recovery method | |
JP7540198B2 (en) | Method for preparing molten raw material and method for recovering valuable metals | |
JP7338326B2 (en) | Methods of recovering valuable metals | |
JP7363207B2 (en) | How to recover valuable metals | |
JP7354903B2 (en) | Method for recovering valuable metals from waste lithium-ion batteries | |
JP7540199B2 (en) | Method for preparing molten raw material and method for recovering valuable metals | |
JP7400333B2 (en) | How to recover valuable metals | |
JP6958659B2 (en) | How to recover valuable metals | |
JP2022117640A (en) | Method for recovering valuable metal | |
JP7363206B2 (en) | How to recover valuable metals | |
KR20240046215A (en) | Methods of producing valuable metals | |
JP2022085446A (en) | Method for recovering valuable metal | |
JP7447643B2 (en) | Valuable metal recovery method | |
WO2024048247A1 (en) | Method for recovering valuable metals | |
JP7389344B2 (en) | Method for recovering valuable metals from waste batteries | |
JP7215522B2 (en) | Valuable metal manufacturing method | |
JP7389343B2 (en) | Method for recovering valuable metals from waste batteries | |
JP7215521B2 (en) | Valuable metal manufacturing method | |
WO2024062905A1 (en) | Method for recovering valuable metals | |
WO2024048249A1 (en) | Method for recovering valuable metal | |
JP2022085447A (en) | Method for recovering valuable metal | |
KR20240004893A (en) | Methods of producing valuable metals | |
JP2023147086A (en) | Nickel oxide ore smelting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231114 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240111 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240215 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240527 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240716 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240729 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7540199 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |