[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7435895B2 - Method for improving delayed fracture characteristics of metal plate, method for producing blank material, and method for producing press-formed product - Google Patents

Method for improving delayed fracture characteristics of metal plate, method for producing blank material, and method for producing press-formed product Download PDF

Info

Publication number
JP7435895B2
JP7435895B2 JP2023502853A JP2023502853A JP7435895B2 JP 7435895 B2 JP7435895 B2 JP 7435895B2 JP 2023502853 A JP2023502853 A JP 2023502853A JP 2023502853 A JP2023502853 A JP 2023502853A JP 7435895 B2 JP7435895 B2 JP 7435895B2
Authority
JP
Japan
Prior art keywords
bending
metal plate
delayed fracture
end surface
unbending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023502853A
Other languages
Japanese (ja)
Other versions
JPWO2023037961A5 (en
JPWO2023037961A1 (en
Inventor
優一 松木
豊久 新宮
欣哉 中川
雄司 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2023037961A1 publication Critical patent/JPWO2023037961A1/ja
Publication of JPWO2023037961A5 publication Critical patent/JPWO2023037961A5/ja
Application granted granted Critical
Publication of JP7435895B2 publication Critical patent/JP7435895B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/06Removing local distortions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D28/00Shaping by press-cutting; Perforating
    • B21D28/02Punching blanks or articles with or without obtaining scrap; Notching
    • B21D28/16Shoulder or burr prevention, e.g. fine-blanking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0007Cutting or shearing the product
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/10Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/02Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Punching Or Piercing (AREA)

Description

本発明は、プレス成形にて成形品を製造する際に使用される、ブランク材としての金属板の遅れ破壊特性を改善する技術に関する。特に、本発明は、せん断端面での遅れ破壊特性を改善する技術である。また、本発明は、高強度鋼板からなる金属板をプレス成形して、遅れ破壊特性が良好な成形品を製造するための技術に関する。
ここで、本明細書では、金属板にせん断加工を施した端面をせん断端面と呼ぶ。また、本明細書では、引張強度1470MPa以上の鋼板を超高強度鋼板と呼ぶ。本発明は、引張強度980MPa以上の高強度鋼板に好適である。
The present invention relates to a technique for improving the delayed fracture characteristics of a metal plate as a blank material used when manufacturing a molded product by press forming. In particular, the present invention is a technique for improving delayed fracture characteristics at a sheared end face. The present invention also relates to a technique for press-forming a metal plate made of a high-strength steel plate to produce a molded product with good delayed fracture characteristics.
Here, in this specification, an end surface obtained by shearing a metal plate is referred to as a sheared end surface. Further, in this specification, a steel plate having a tensile strength of 1470 MPa or more is referred to as an ultra-high strength steel plate. The present invention is suitable for high-strength steel plates having a tensile strength of 980 MPa or more.

現在、自動車には軽量化による燃費向上と衝突安全性の向上が求められている。車体には、軽量化と衝突時の搭乗者保護を両立する目的で、高強度鋼板が使用されている。特に近年では、引張強度1470MPa以上の超高強度鋼板が車体に適用されてきている。高強度鋼板、特に超高強度鋼板の車体適用時における課題の一つに遅れ破壊がある。そして、引張強度980MPa以上の高強度鋼板では、せん断加工後の端面であるせん断端面から発生する、遅れ破壊と伸びフランジ割れへの対策が重要な課題となっている。 Currently, automobiles are required to improve fuel efficiency and collision safety through weight reduction. High-strength steel plates are used in the vehicle body to reduce weight and protect passengers in the event of a collision. Particularly in recent years, ultra-high strength steel plates with a tensile strength of 1470 MPa or more have been used for vehicle bodies. One of the issues when using high-strength steel plates, especially ultra-high-strength steel plates, for car bodies is delayed fracture. For high-strength steel plates with a tensile strength of 980 MPa or more, countermeasures against delayed fracture and stretch flange cracking that occur from the sheared end face, which is the end face after shearing, have become an important issue.

ここで、せん断端面には、大きな引張応力が残留することが知られている。そして、せん断端面を有する金属板を用いたプレス部品において、せん断端面での遅れ破壊の発生が懸念されている。この懸念は、特に超高強度鋼板で顕著となる。そして、このせん断端面での上記破壊を抑制するためには、せん断端面の引張り残留応力を低減させる必要がある。 Here, it is known that a large tensile stress remains on the sheared end face. In press parts using metal plates having sheared end surfaces, there is a concern that delayed fracture may occur at the sheared end surfaces. This concern is particularly noticeable with ultra-high strength steel sheets. In order to suppress the above-mentioned destruction at the sheared end face, it is necessary to reduce the tensile residual stress at the sheared end face.

ここで、せん断端面の引張り残留応力を低減する簡易な方法としては、例えば、穴抜き加工時に段付き上刃を用いてせん断する方法(非特許文献1)がある。また、別の方法としては、せん断工程を二回に分け、二回目のせん断の切り代を小さくする方法(非特許文献2)がある。しかし、このようなせん断に関する工法では、超高強度鋼板のように材料強度が高くなるほど、せん断用の刃の摩耗やせん断条件の管理に課題があった。すなわち、これらの方法は、実用上の難点があった。 Here, as a simple method for reducing the tensile residual stress on the sheared end surface, for example, there is a method of shearing using a stepped upper blade during punching (Non-Patent Document 1). Moreover, as another method, there is a method of dividing the shearing process into two steps and reducing the cutting margin of the second shearing step (Non-Patent Document 2). However, with such shearing methods, the higher the strength of the material, such as ultra-high-strength steel plates, the more problems arise with wear of the shearing blades and management of shearing conditions. That is, these methods have practical difficulties.

また、せん断後の塑性加工によりせん断端面の引張り残留応力を低減する方法としては、特許文献1に記載の方法がある。この方法は、せん断後のスクラップを打ち抜きパンチに対する対向パンチによって突き上げ、せん断端面を押し広げる方法である。しかし、このような塑性加工方法は、対向パンチ等の特別な設備構成が必要であり、せん断工程のリードタイムも増加する。このため、この方法は、必ずしも適用が容易な手法ではなかった。
そして、従来においては、高強度鋼板、特に超高強度鋼板を用いた成形品において、板のせん断端面から発生する遅れ破壊が懸念されている。
Further, as a method for reducing the tensile residual stress at the sheared end face by plastic working after shearing, there is a method described in Patent Document 1. In this method, the sheared scrap is pushed up by a punch opposing the punch, and the sheared end faces are spread apart. However, such a plastic working method requires a special equipment configuration such as opposed punches, and the lead time of the shearing process also increases. Therefore, this method was not necessarily easy to apply.
Conventionally, in molded products using high-strength steel plates, especially ultra-high-strength steel plates, there has been concern about delayed fracture occurring from the sheared end surfaces of the plates.

高橋雄三ら: 突起付きパンチを用いた張力下の打ち抜きによる高強度薄鋼板の打ち抜き穴広げ性の改善、 塑性と加工、 54-627(2013)、343-347Yuzo Takahashi et al.: Improving the expandability of punched holes in high-strength thin steel plates by punching under tension using a punch with protrusions, Plasticity and Processing, 54-627 (2013), 343-347 中川威雄、吉田清太:削り抜き法-せん断面の伸び変形能の向上策-、塑性と加工、10-104(1969)、665-671Takeo Nakagawa, Seita Yoshida: Cutting method - Measures to improve the elongation deformability of the sheared surface -, Plasticity and Processing, 10-104 (1969), 665-671

特許第6562070号公報Patent No. 6562070

本発明は、上記のような点に着目してなされたもので、簡易な方法によって成形後のせん断端面からの遅れ破壊を抑制することを目的とする。このために、本発明は、高強度鋼板からなる金属板の遅れ破壊特性を改善して、遅れ破壊特性の良好な成形品を提供可能にすることを目的とする。 The present invention has been made with attention to the above points, and an object of the present invention is to suppress delayed fracture from a sheared end surface after forming by a simple method. For this reason, an object of the present invention is to improve the delayed fracture characteristics of a metal plate made of a high-strength steel plate, thereby making it possible to provide a molded product with good delayed fracture characteristics.

本開示は、超高強度鋼板などの高強度鋼板であっても、適用が容易なせん断後の塑性加工によって、金属板の遅れ破壊特性を改善する技術である。
すなわち、課題解決のために、本発明の一態様は、板端部の少なくとも一部にせん断端面を有し且つ高強度鋼板からなる金属板の遅れ破壊特性を改善する遅れ破壊特性改善方法であって、上記金属板の上記せん断端面の少なくとも一部に対し、塑性変形を付与する、ことを要旨とする。
上記塑性変形は、少なくともせん断端面、例えばせん断端面を含む端部に付与されれば良い。
また、上記の塑性変形は、せん断端面の全部に対し必ずしも付与する必要はない。本開示は、例えば、せん断端面のうち、少なくとも所定以上の遅れ破壊が発生すると推定される箇所に対し、上記の塑性変形が付与されればよい。
The present disclosure is a technology for improving the delayed fracture characteristics of metal plates by plastic working after shearing, which is easy to apply, even for high-strength steel plates such as ultra-high strength steel plates.
That is, in order to solve the problem, one aspect of the present invention is a method for improving delayed fracture characteristics of a metal plate made of a high-strength steel plate and having a sheared end face on at least a part of the plate end. The gist of the present invention is to apply plastic deformation to at least a portion of the sheared end surface of the metal plate.
The above-mentioned plastic deformation may be applied to at least the sheared end face, for example, the end portion including the sheared end face.
Moreover, the above-mentioned plastic deformation does not necessarily need to be applied to the entire sheared end face. In the present disclosure, for example, the above-described plastic deformation may be applied to a portion of the sheared end face where it is estimated that at least a predetermined amount of delayed fracture will occur.

本発明の態様によれば、高強度鋼板であっても刃の摩耗やせん断条件の管理が必ずしも必要ではない。且つ、本発明の態様によれば、簡易な方法によって、せん断加工時に発生する鋼板のせん断端面の引張り残留応力を低減することができる。この結果、本発明の態様によれば、自動車のパネル部品、構造・骨格部品等の各種部品に高強度鋼板を適用する際に遅れ破壊特性を向上することができる。 According to the aspect of the present invention, it is not necessarily necessary to control blade wear and shear conditions even when using a high-strength steel plate. Further, according to the aspect of the present invention, it is possible to reduce the tensile residual stress on the sheared end surface of the steel plate that occurs during shearing by a simple method. As a result, according to the aspect of the present invention, delayed fracture characteristics can be improved when high-strength steel plates are applied to various parts such as panel parts and structural/skeletal parts of automobiles.

本発明に基づく実施形態に係る成形品の製造工程の例を示す図である。It is a figure showing an example of a manufacturing process of a molded article concerning an embodiment based on the present invention. せん断端面の模式図であり、(a)は断面図、(b)は端面方向から見た平面図である。It is a schematic diagram of a sheared end face, (a) is a sectional view, and (b) is a plan view seen from the end face direction. せん断端面を有する端部での応力分布の例を示す図である。It is a figure which shows the example of stress distribution in the edge part which has a sheared end surface. 加工によるせん断端面付近の応力の緩和機構を説明する図である。FIG. 3 is a diagram illustrating a stress relaxation mechanism near a sheared end surface due to processing. プレス成形による曲げ曲げ戻し加工を示す図である。It is a figure which shows the bending and unbending process by press forming. レベラーを用いたレベリングによる曲げ曲げ戻し加工を示す図である。It is a figure which shows the bending unbending process by leveling using a leveler. せん断端面の輪郭線(端面の延在方向)と曲げ曲げ戻しの曲げ方向のなす角度θ(曲げの角度)を示す図である。It is a figure which shows the angle (theta) (angle of bending) which the outline of a sheared end surface (extending direction of an end surface) and the bending direction of bending and unbending make. 曲げ曲げ戻し加工における、最終的な曲げ加工後の、曲げ内外に生じる残留応力の例を示す図である。(a)が曲げ加工を施した状態を示す図である。(b)は金型から金属板を解放した状態(スプリングバック発生)を示す図である。It is a figure which shows the example of the residual stress which arises in the inside and outside of bending after the final bending process in bending and unbending process. (a) is a diagram showing a state in which bending has been performed. (b) is a diagram showing a state in which the metal plate is released from the mold (springback occurs).

次に、本発明の態様について図面を参照して説明する。
(構成)
本実施形態の成形品製造の方法は、図1に示すように、ブランク材製造工程1と、プレス成形工程2とを備える。
本発明は、対象とする金属板が、高強度鋼板、特に引張強度が980MPa以上の高強度鋼板の場合に好適である。
(ブランク材製造工程1)
ブランク材製造工程1は、成形品の形状にプレス成形するプレス成形工程2で使用するブランク材(金属板)を製造する工程である。そのブランク材製造工程1は、せん断工程1Aと、端面改善工程1Bとを備える。
Next, aspects of the present invention will be described with reference to the drawings.
(composition)
As shown in FIG. 1, the method for manufacturing a molded product of this embodiment includes a blank manufacturing process 1 and a press molding process 2.
The present invention is suitable when the target metal plate is a high-strength steel plate, particularly a high-strength steel plate having a tensile strength of 980 MPa or more.
(Blank material manufacturing process 1)
The blank material manufacturing process 1 is a process of manufacturing a blank material (metal plate) used in the press forming process 2, which is press-molded into the shape of a molded product. The blank manufacturing process 1 includes a shearing process 1A and an end surface improvement process 1B.

<せん断工程1A>
せん断工程1Aは、成形品製造のために好適なブランク形状に、金属板を切断する工程である。
<端面改善工程1B>
端面改善工程1Bは、せん断工程1A後の金属板における、せん断端面の少なくとも一部の端面に対し、塑性変形を付与する工程である。塑性変形は、端面の延在方向に沿ってゆがみが入力される変形とする。
<Shearing process 1A>
The shearing step 1A is a step of cutting a metal plate into a blank shape suitable for manufacturing a molded product.
<End face improvement process 1B>
The end surface improvement step 1B is a step of applying plastic deformation to at least a portion of the sheared end surface of the metal plate after the shearing step 1A. Plastic deformation is defined as deformation in which distortion is input along the extending direction of the end face.

このとき、例えば、CAE等の構造解析などで、せん断によって、予め設定した残留応力が発生すると推定される端面の箇所を含む領域にだけ、塑性変形を付与してもよい。
また、上記の塑性変形で、端面の延在方向に沿った方向の、0より大きな塑性ひずみを付与する。付与する塑性ひずみの上限について規定はないが、割れが発生しないだけの塑性変形を付与する。
At this time, plastic deformation may be applied only to a region including a portion of the end face where it is estimated that a preset residual stress will occur due to shearing, for example, by structural analysis such as CAE.
Furthermore, the plastic deformation described above applies a plastic strain greater than 0 in the direction along the extending direction of the end face. Although there is no regulation regarding the upper limit of the plastic strain to be applied, the plastic deformation should be applied to an extent that does not cause cracking.

塑性変形の付与は、曲げ曲げ戻し加工で行うことが好ましい。
このとき、各曲げ及び曲げ戻しの際における、塑性変形を付与する各端面位置における曲げの角度が、90度未満となるように設定することが好ましい。「曲げの角度を90度未満」について図7を参照して説明する。この曲げの角度は、塑性変形が付加されるせん断端面の箇所で、せん断端面の延在方向に沿った直線(接線方向)と、曲げ曲げ戻しの各曲げ方向とのなす角を指す。ただし、上記の曲げは、端面の延在方向に沿った方向に、0より大きな塑性ひずみが付与される曲げであることを前提とする。
It is preferable to apply plastic deformation by bending and unbending.
At this time, during each bending and unbending, it is preferable to set the bending angle at each end face position where plastic deformation is applied to be less than 90 degrees. "Bending angle less than 90 degrees" will be explained with reference to FIG. 7. This bending angle refers to the angle formed by a straight line (tangential direction) along the extending direction of the sheared end surface and each bending direction of bending and unbending at a location on the sheared end surface where plastic deformation is applied. However, the above-mentioned bending is based on the premise that a plastic strain larger than 0 is applied in the direction along the extending direction of the end face.

曲げ曲げ戻し加工は、例えばプレス成形による曲げ加工によって行う(図5参照)。また、曲げ曲げ戻し加工は、例えば、板の搬送方向に並んだ複数のロールを有するレベラーを用いたレベリング加工によって行う(図6参照)。レベリング加工は、板を平坦化する際に使用される加工方法である。 The bending and unbending process is performed, for example, by bending process by press forming (see FIG. 5). Further, the bending and unbending process is performed, for example, by leveling process using a leveler having a plurality of rolls lined up in the conveyance direction of the plate (see FIG. 6). Leveling processing is a processing method used when flattening a plate.

曲げ曲げ戻し加工は、同一のせん断端面に対し、板厚方向に向けて、曲げと、曲げ戻しによる曲げ(逆曲げ)とを複数回実行する。その際に、その最後の曲げについて、曲げ外側が、せん断端面のバリ側になるように設定することが好ましい。バリ側とは、板厚方向における、せん断によってバリが形成される側である。
ここで、上記の塑性変形が、対象とするせん断端面を含む端部(例えば端面から1mmの範囲を含む範囲)に付与されるようにして、曲げ曲げ戻し加工を行えばよい。
また、端面改善工程1Bで塑性変形を付与した後の板端部が、平坦となるように、当該塑性変形の付与を設定することが好ましい。
In the bending and unbending process, bending and unbending (reverse bending) are performed multiple times on the same sheared end surface in the plate thickness direction. At this time, it is preferable to set the final bend so that the outer side of the bend is on the burr side of the sheared end surface. The burr side is the side in the plate thickness direction where burrs are formed due to shearing.
Here, the bending and unbending process may be performed such that the plastic deformation described above is applied to the end portion including the target sheared end surface (for example, a range including a range of 1 mm from the end surface).
Further, it is preferable that the plastic deformation is applied so that the plate end after the plastic deformation is applied in the end face improvement step 1B becomes flat.

(プレス成形工程2)
プレス成形工程2は、ブランク材製造工程1で製造した金属板からなるブランク材を、目的の部品形状にプレス成形する工程である。プレス成形は、1回のプレス加工、又は多段階のプレス加工で実行される。
(プレス成形品)
本実施形態の製造方法で製造されたプレス成形品(製品)は、せん断端面の少なくとも一部に対し、端面の延在方向に沿った方向の、0より大きな塑性ひずみが付与されている。
これによって、本実施形態のプレス成形品は、遅れ破壊特性が改善されたプレス成形品となる。
(Press molding process 2)
The press forming step 2 is a step of press forming the blank material made of the metal plate manufactured in the blank material manufacturing step 1 into the desired part shape. Press forming is performed in one press process or in multiple stages.
(Press molded product)
In the press-formed product (product) manufactured by the manufacturing method of the present embodiment, a plastic strain greater than 0 is applied to at least a portion of the sheared end face in a direction along the extending direction of the end face.
As a result, the press-formed product of this embodiment becomes a press-formed product with improved delayed fracture characteristics.

(変形例)
以上の実施形態は、金属板を目的の製品形状にプレス加工する工程の前のブランク材の製造に対して、本開示を適用した例である。すなわち、上記の実施形態では、プレス加工の前処理として、本開示の金属板の遅れ破壊特性改善方法(端面改善工程1B)を適用した場合を例示した。
本開示の端面改善工程1Bを、目的の製品形状に成形するプレス加工の途中やプレス加工後に適用しても良い。具体的には、本開示の端面改善工程1Bを、板外周の整形のための端部のせん断加工で生じたせん断端面に対し適用してもよい。
例えば、目的の製品形状に成形したのちに、部品形状の整形のために板端部をせん断した場合に、そのせん断端面に対し、上記の端面改善工程1Bの処理を適用してもよい。
ただし、端面改善工程1Bでの塑性変形は、板を目的の製品形状に成形するためのプレス成形とは異なる。製品形状に成形するためのプレス成形への影響を考慮すると、次のように実行することが好ましい。すなわち、せん断端面を有する端部だけ(例えばフランジ部だけ)に、端面改善工程1Bでの塑性変形を付与する処理を実行することが好ましい。
(Modified example)
The above embodiment is an example in which the present disclosure is applied to the manufacture of a blank material before the step of press-working a metal plate into a desired product shape. That is, in the above embodiment, a case is illustrated in which the method for improving delayed fracture characteristics of a metal plate (end face improvement step 1B) of the present disclosure is applied as a pretreatment for press working.
The end surface improvement step 1B of the present disclosure may be applied during or after press processing to form the desired product shape. Specifically, the end surface improvement step 1B of the present disclosure may be applied to a sheared end surface generated by shearing an end portion for shaping the outer periphery of a plate.
For example, when the end of the plate is sheared to shape the part after being molded into the desired product shape, the process of the end face improvement step 1B described above may be applied to the sheared end face.
However, the plastic deformation in the end face improvement step 1B is different from press forming for forming the plate into the desired product shape. Considering the influence on press molding for molding into a product shape, it is preferable to carry out the following procedure. That is, it is preferable to perform the process of applying plastic deformation in the end surface improvement step 1B only to the end portion having the sheared end surface (for example, only the flange portion).

(効果)
本実施形態では、せん断端面に塑性加工による塑性変形を施す。好ましくは、本開示の塑性加工は曲げ曲げ戻し加工で施す。これによって、金属板(ブランク材)が超高強度鋼板などの高強度鋼板であっても、簡易な方法によって、せん断端面の残留応力を低減させることができる。しかも、本実施形態では、板の形状をせん断後と同様の平坦な状態に保ちつつ上記効果を得ることが可能である。
また、せん断端面の残留応力の低減により、遅れ破壊の発生が抑制される。すなわち、金属板のせん断端面での遅れ破壊特性が改善される。
(effect)
In this embodiment, the sheared end face is subjected to plastic deformation by plastic working. Preferably, the plastic working of the present disclosure is performed by bending and unbending. As a result, even if the metal plate (blank material) is a high-strength steel plate such as an ultra-high-strength steel plate, the residual stress at the sheared end surface can be reduced by a simple method. Moreover, in this embodiment, it is possible to obtain the above effects while maintaining the shape of the plate in the same flat state as after shearing.
Further, by reducing the residual stress at the sheared end face, the occurrence of delayed fracture is suppressed. That is, the delayed fracture characteristics at the sheared end face of the metal plate are improved.

ここで、曲げ曲げ戻し加工における各せん断端面の箇所での各曲げの角度を90度未満とすることで、せん断端面に対し十分な塑性変形を導入可能となる。
なお、曲げ曲げ戻し加工を、プレス成形による曲げ変形や、板を平坦化するレベリング加工によって行うことで、板の端面に対し簡易に塑性変形を付与することができる。
このとき、最終的な曲げ加工による曲げ外側は、せん断端面のバリ側になるようにすることが望ましい。ここで、板厚方向におけるバリ側は、バリや表面性状の荒れの影響で遅れ破壊が生じやすい部位である。この場合、バリを起点とする遅れ破壊をより抑制可能となる。
Here, by setting the angle of each bend at each sheared end surface in the bending and unbending process to less than 90 degrees, it is possible to introduce sufficient plastic deformation to the sheared end surface.
Note that plastic deformation can be easily imparted to the end face of the plate by performing the bending and unbending process by bending deformation by press forming or leveling process to flatten the plate.
At this time, it is desirable that the outer side of the final bending process be on the burr side of the sheared end surface. Here, the burr side in the plate thickness direction is a site where delayed fracture is likely to occur due to the influence of burrs and rough surface texture. In this case, delayed fracture starting from the burr can be further suppressed.

(作用(機序)その他について)
<塑性変形による応力の緩和について>
以下、本開示の適用によって発生する、せん断端面の塑性変形による応力の緩和について説明する。
図2は、板の端部を、上側から下側に向けてせん断刃を移動して切断した場合の板端部の状態を示す図である。図2の場合、バリ側が下方となっている。
この場合、せん断端面10A及びそのせん断端面10Aを含む端部では、せん断端面10Aの延在方向に沿った方向での残留応力は、図3のようになっている。このとき、せん断端面10Aの延在方向に沿った方向は、板幅方向(図2(b)参照)である。図3は、図2(a)の矢印のように、せん断端面10Aから離れる方向(端面10Aに直交する方向)の応力分布の一例を表している。
(About action (mechanism) and others)
<About stress relaxation due to plastic deformation>
Hereinafter, relaxation of stress due to plastic deformation of the sheared end surface, which is generated by applying the present disclosure, will be explained.
FIG. 2 is a diagram showing the state of the end of the board when the end of the board is cut by moving the shearing blade from the upper side toward the lower side. In the case of FIG. 2, the burr side is downward.
In this case, in the sheared end surface 10A and the end portion including the sheared end surface 10A, the residual stress in the direction along the extending direction of the sheared end surface 10A is as shown in FIG. At this time, the direction along the extending direction of the sheared end surface 10A is the plate width direction (see FIG. 2(b)). FIG. 3 shows an example of stress distribution in a direction away from the sheared end surface 10A (direction perpendicular to the end surface 10A), as indicated by the arrow in FIG. 2(a).

この図3から分かるように、せん断端面10Aから内側に向けて、第1~第3の領域ARA1、ARA2、ARA3が存在する。第1の領域ARA1は、せん断端面表面の強い引張残留応力を有する領域である。第2の領域ARA2は、その引張残留応力に釣り合うように圧縮残留応力を有する領域である。第3の領域ARA3は、第2の領域ARA2よりも内部である残留応力の存在しない領域である。
この3つの領域ARA1~3のうちの、第1及び第2の領域ARA1、2を中心に、バリ側を曲げ外とする曲げ加工や引張加工による一様な引張ひずみによる塑性変形を導入する。その後、塑性変形を導入した板を一様にスプリングバックさせると、図4の(a)から(c)のようになる。すなわち、第1の領域ARA1では、応力-ひずみ履歴によって初期に存在した引張残留応力が緩和する。そして、表面側の第1の領域ARA1での応力と、内部の第2の領域ARA2での応力の差が減少する。これは、せん断で導入される塑性ひずみが圧縮ひずみである場合も同様である。
As can be seen from FIG. 3, first to third regions ARA1, ARA2, and ARA3 exist inward from the sheared end surface 10A. The first region ARA1 is a region having strong tensile residual stress on the surface of the sheared end face. The second region ARA2 is a region having compressive residual stress to balance the tensile residual stress. The third area ARA3 is an area where no residual stress exists, which is inside the second area ARA2.
Among these three areas ARA1 to ARA3, plastic deformation is introduced by uniform tensile strain caused by bending and tensile working, with the burr side being the outside of the bend, centering on the first and second areas ARA1 and ARA2. After that, when the plastically deformed plate is uniformly spring-backed, it becomes as shown in FIGS. 4(a) to 4(c). That is, in the first region ARA1, the initially existing tensile residual stress is relaxed due to the stress-strain history. Then, the difference between the stress in the first region ARA1 on the front side and the stress in the second region ARA2 inside is reduced. This also applies when the plastic strain introduced by shearing is compressive strain.

以上のことから、十分な引張又は圧縮の塑性ひずみを、せん断端面10Aに導入することができれば、せん断端面10A表面の残留応力を緩和することが可能であることが分かる。
特に、曲げ曲げ戻し加工を塑性ひずみの導入方法として採用すれば、様々な板の形状をせん断後と同様の平坦な状態に保ちつつ、応力を緩和することが可能である。
ただし、本開示において念頭に置いているせん断端面10Aとは、例えば、せん断により作製された任意の形状の金属板10のせん断端面である。そして、本開示では、せん断端面10Aとして、穴抜き部の端面10Aやブランク材の外形を規定する輪郭線を構成する端面10Aを意図している。
From the above, it can be seen that if sufficient tensile or compressive plastic strain can be introduced into the sheared end face 10A, it is possible to relieve the residual stress on the surface of the sheared end face 10A.
In particular, if bending and unbending is employed as a method for introducing plastic strain, it is possible to relieve stress while maintaining the shape of various plates in the same flat state as after shearing.
However, the sheared end surface 10A that is considered in the present disclosure is, for example, a sheared end surface of a metal plate 10 of an arbitrary shape produced by shearing. In the present disclosure, the sheared end surface 10A is intended to be an end surface 10A of a punched portion or an end surface 10A forming a contour line defining the outer shape of the blank material.

ここで、図3は、引張強度980MPaの高強度鋼板からなる試料片を用いた場合である。この場合、端面10Aから上記第2の領域ARA2と第3の領域ARA3との境界までの深さdは、1mmであった。このため、塑性変形を付与する領域は、せん断によって作製された端面10A表面から深さd=1mm以内の、せん断によるひずみと応力が存在する領域とすればよい。すなわち、少なくともせん断端面10Aから1mmの領域の端部に対してせん断変形を付与するように曲げ曲げ戻し加工を施せばよい。なお、第1の領域ARA1の深さdは、例えば100μmである。 Here, FIG. 3 shows a case where a sample piece made of a high-strength steel plate with a tensile strength of 980 MPa was used. In this case, the depth d from the end surface 10A to the boundary between the second area ARA2 and the third area ARA3 was 1 mm. Therefore, the region to which plastic deformation is applied may be a region within a depth d=1 mm from the surface of the end face 10A produced by shearing, where strain and stress due to shearing exist. That is, the bending and unbending process may be performed so as to apply shear deformation to the end portion at least in a region of 1 mm from the sheared end surface 10A. Note that the depth d of the first region ARA1 is, for example, 100 μm.

<塑性変形付与の方法について>
ここで、仮に一軸引張や一軸圧縮で塑性ひずみを導入した場合を考える。この場合、塑性ひずみの導入によって、板の厚さが変化してしまう。更に、複雑な形状のブランクでは引張軸に対して垂直な方向の幅が狭い部分にひずみが集中するため、一様に変形させることができない。また、単純な曲げ成形で塑性ひずみを導入した場合、ブランク全体が成形後に大きく曲がってしまう。したがって、金属板10がせん断後と同様の平坦な状態を保つことが不可能である。
<About the method of imparting plastic deformation>
Here, let us consider the case where plastic strain is introduced by uniaxial tension or uniaxial compression. In this case, the thickness of the plate changes due to the introduction of plastic strain. Furthermore, in the case of a blank with a complicated shape, the strain is concentrated in the narrow portion in the direction perpendicular to the tension axis, so that the blank cannot be deformed uniformly. Furthermore, if plastic strain is introduced through simple bending, the entire blank will bend significantly after forming. Therefore, it is impossible for the metal plate 10 to maintain the same flat state as after shearing.

このようなことから、塑性変形の付与は、曲げ曲げ戻し加工で行うことが好ましいことが分かる。なお、端面10Aが延在方向の輪郭形状が、端面10Aに直交する方向に変化するような曲線形状の場合、次のように行えば良い。すなわち、一番凹んでいる箇所のせん断端面10Aの端部で上記端面10A表面から深さ1mm以内が確保できるようにして曲げ曲げ戻し加工を行えばよい。
なお、単純な1回の曲げ加工だけでも良いが、元の平坦などの形状に戻すことを考慮して、曲げ曲げ戻し加工を採用する。
From these facts, it can be seen that it is preferable to apply plastic deformation by bending and unbending. Note that when the end surface 10A has a curved shape in which the contour shape in the extending direction changes in a direction perpendicular to the end surface 10A, the following procedure may be performed. That is, the bending and unbending process may be performed such that a depth of 1 mm or less from the surface of the end surface 10A is secured at the end of the sheared end surface 10A, which is the most concave portion.
It should be noted that although a simple bending process may be performed only once, bending and unbending processes are employed in consideration of returning to the original flat shape.

曲げ曲げ戻し加工は、図5に示すようなプレス成形による曲げ加工や、図6に示すようなレベリングによる加工を施す。この場合、曲げ曲げ戻し変形をせん断端面10A表面に生じさせて、せん断端面10Aの残留応力を緩和し、遅れ破壊を抑制する。
図5で示される、曲げ加工用のダイ20とパンチ21、曲げ戻しを行う逆曲げ加工用のダイ22とパンチ23は、同じ金型を持ちしても良いし、違う金型を使用してもよい。
また、レベラー用のロール30の各径も同じでなくても良い。
The bending and unbending process is performed by bending by press forming as shown in FIG. 5 or by leveling as shown in FIG. In this case, bending and unbending deformation is caused on the surface of the sheared end surface 10A to relieve residual stress on the sheared end surface 10A and suppress delayed fracture.
The die 20 and punch 21 for bending and the die 22 and punch 23 for reverse bending shown in FIG. 5 may have the same mold, or may use different molds. Good too.
Furthermore, the diameters of the leveler rolls 30 do not have to be the same.

ここで、曲げ曲げ戻し加工はプレス成形による曲げ変形によって行うことも可能である。しかし、ブランキング工程とその後の成形工程の間に、少なくとも二工程のプレス工程と成形用の金型の追加が必要となる。
一方で、曲げ曲げ戻し加工をレベリング加工によって行うことで、せん断によるブランキング工程とその後の成形工程の間でレベラーのみを用いて比較的容易に行うことができる。ただし、本開示においては、引張強度980MPa級以上の鋼板に対しても塑性ひずみを導入できるだけの、十分に強力なレベラーを使用しなければならない。
Here, the bending and unbending process can also be performed by bending and deforming by press forming. However, between the blanking process and the subsequent molding process, at least two pressing processes and the addition of a mold are required.
On the other hand, by performing the bending and unbending process by leveling process, it can be performed relatively easily using only a leveler between the blanking process by shearing and the subsequent forming process. However, in the present disclosure, it is necessary to use a sufficiently strong leveler that can introduce plastic strain even into a steel plate with a tensile strength of 980 MPa or higher.

<曲げ角θについて>
せん断端面10Aの残留応力の緩和による遅れ破壊特性の改善のためには、塑性変形が十分に入る程度の曲げ曲げ戻し変形が好ましい。その効果を得るためには、せん断端面10Aに対する引張又は圧縮の塑性ひずみが0.003以上になることが必要である。好ましくは、塑性ひずみが0.005以上であればせん断端面10Aの残留応力を顕著に緩和することが可能である。
なお、この塑性ひずみが導入される加工工程は、曲げ曲げ戻し変形のうち、曲げと曲げ戻し変形のいずれでも構わず、一度でも十分な塑性ひずみが導入されれば残留応力は緩和される。
<About bending angle θ>
In order to improve the delayed fracture characteristics by relaxing the residual stress of the sheared end face 10A, bending and unbending deformation to the extent that sufficient plastic deformation occurs is preferable. In order to obtain this effect, it is necessary that the tensile or compressive plastic strain on the sheared end surface 10A be 0.003 or more. Preferably, if the plastic strain is 0.005 or more, residual stress at the sheared end surface 10A can be significantly alleviated.
Note that the processing step in which this plastic strain is introduced may be either bending or unbending deformation, and if sufficient plastic strain is introduced even once, the residual stress will be alleviated.

ここで図7に示すような、せん断端面10Aの輪郭線(端面10Aの延在方向)と、曲げ曲げ戻しの曲げ方向のなす曲げ角θは、例えば0度以上75度以下の範囲とする。曲げ角θは、好ましくは0度以上45度以下の範囲であることが望ましい。これは、曲げ方向とせん断端面10Aの輪郭線とが90度に近い場合、せん断端面10A表面にひずみを導入することが困難となるからである。その理由は、曲げによる端面10Aに沿った方向の引張・圧縮の変形方向に対し、せん断端面10A表面は開放されているためである。なお、図7では、せん断端面10Aの曲げ前の輪郭線は直線で示されているが、この端面10Aの輪郭線は曲線や部分的に不連続な線であっても良い。 Here, as shown in FIG. 7, the bending angle θ formed by the contour line of the sheared end face 10A (extending direction of the end face 10A) and the bending direction of the bending and unbending is, for example, in the range of 0 degrees or more and 75 degrees or less. The bending angle θ is preferably in the range of 0 degrees or more and 45 degrees or less. This is because when the bending direction and the contour line of the sheared end surface 10A are close to 90 degrees, it becomes difficult to introduce strain into the surface of the sheared end surface 10A. The reason for this is that the surface of the sheared end surface 10A is open to the deformation direction of tension and compression in the direction along the end surface 10A due to bending. In FIG. 7, the outline of the sheared end face 10A before bending is shown as a straight line, but the outline of the end face 10A may be a curved line or a partially discontinuous line.

<最終的な曲げ方向>
最終的な曲げ加工によって、図8の(a)→(b)のように、引張部には引張ひずみが入る。なお、図8は、最終的な曲げが下方の場合である。このため、プレスの拘束を解除した際のスプリングバック後には、その分の残留応力が圧縮側による。そのため、最終的な曲げ加工による曲げ外側(図8では下側)は、せん断端面10Aのバリ側になるようにすることが望ましい。なお、バリ側は、バリや表面性状の荒れの影響で遅れ破壊が生じやすい部位である。バリ側を曲げ外側とすることにより、せん断端面10Aのバリ側における残留応力が、成形による圧縮の残留応力分だけ減少される。
<Final bending direction>
Due to the final bending process, tensile strain is applied to the tensile part as shown in FIGS. 8(a) to 8(b). Note that FIG. 8 shows a case where the final bending is downward. For this reason, after springback when the press is released, the residual stress is due to the compression side. Therefore, it is desirable that the outer side of the final bending process (the lower side in FIG. 8) be on the burr side of the sheared end surface 10A. Note that the burr side is a site where delayed fracture is likely to occur due to the influence of burrs and rough surface texture. By making the burr side the outer side of the bend, the residual stress on the burr side of the sheared end surface 10A is reduced by the residual stress due to compression due to forming.

(その他)
本開示は、次の構成も取り得る。
(1)板端部の少なくとも一部にせん断端面を有し且つ高強度鋼板からなる金属板の遅れ破壊特性を改善する遅れ破壊特性改善方法であって、上記金属板の上記せん断端面の少なくとも一部に対し、塑性変形を付与する。
(2)上記塑性変形で、上記せん断端面の少なくとも一部に対し、端面の延在方向に沿った方向の、0より大きな塑性ひずみを付与する。
(3)上記塑性変形の付与は、曲げ曲げ戻し加工で行われる。
(4)上記曲げ曲げ戻し加工における、各曲げの角度を90度未満にする。
(5)上記曲げ曲げ戻し加工は、プレス成形による曲げ加工によって行う。
(6)上記曲げ曲げ戻し加工は、複数のロールを用いたレベリング加工によって行う。
(7)上記曲げ曲げ戻し加工における最後の曲げについて、曲げ外側が、せん断端面のバリ側になるように設定した。
(others)
The present disclosure can also take the following configuration.
(1) A method for improving delayed fracture characteristics of a metal plate made of a high-strength steel plate and having a sheared end face on at least a part of the plate end, the method comprising: Apply plastic deformation to the part.
(2) In the plastic deformation, a plastic strain greater than 0 is applied to at least a portion of the sheared end face in a direction along the extending direction of the end face.
(3) The above-mentioned plastic deformation is performed by bending and unbending.
(4) The angle of each bend in the bending and unbending process is less than 90 degrees.
(5) The above bending and unbending process is performed by bending process by press forming.
(6) The bending and unbending process is performed by leveling process using a plurality of rolls.
(7) The final bend in the bending and unbending process was set so that the outside of the bend was on the burr side of the sheared end surface.

(8)上記金属板は、引張強度が980MPa以上の高強度鋼板である。
(9)プレス成形用のブランク材の製造方法であって、高強度鋼板からなる金属板にせん断加工を施す工程と、上記せん断加工を施す工程の後の工程であって、上記記載の本開示の遅れ破壊特性改善方法によって、せん断端面に塑性変形を付与する工程と、を備える。
(10)高強度鋼板からなる金属板をプレス成形して成形品を製造する方法であって、高強度鋼板からなる金属板にせん断加工を施す工程と、上記せん断加工を施す工程の後の工程であって、上記記載の本開示の遅れ破壊特性改善方法によって、せん断端面に塑性変形を付与する工程と、を備える。
(11)板端部の少なくとも一部にせん断端面を有し且つ高強度鋼板なる金属板を加工してなるプレス成形品であって、上記せん断端面の少なくとも一部に対し、端面の延在方向に沿った方向の、0より大きな塑性ひずみが付与されている。
(8) The metal plate is a high-strength steel plate with a tensile strength of 980 MPa or more.
(9) A method for manufacturing a blank material for press forming, comprising a step of shearing a metal plate made of a high-strength steel plate, and a step after the shearing step, the present disclosure as described above. applying plastic deformation to the sheared end face by the method for improving delayed fracture characteristics.
(10) A method for manufacturing a molded product by press-forming a metal plate made of a high-strength steel plate, which includes a step of shearing the metal plate made of a high-strength steel plate, and a step after the shearing step. and a step of applying plastic deformation to the sheared end face by the method for improving delayed fracture characteristics of the present disclosure described above.
(11) A press-formed product formed by processing a metal plate made of a high-strength steel plate and having a sheared end face on at least a part of the plate end, in which at least a part of the sheared end face is formed in the direction in which the end face extends. A plastic strain greater than 0 is applied in the direction along.

次に、本実施形態に基づく実施例について説明する。
ここでは、板厚1.4mmの引張強度1470MPaの鋼板を用いた供試材Aを対象に実施例を説明する。なお、本開示は、引張強度1470MPaの鋼板に限るものではない。本開示は、せん断端面に遅れ破壊が発生するような、引張強度が980MPa以上の鋼板をはじめとした、金属材料に対して適用が可能である。
(せん断加工について)
本実施例では、初めに、供試材Aをせん断して、評価の対象とする長さ500mmの直線状のせん断端面を作製した。なお、せん断加工時のクリアランスは板厚に対して12%とした。
Next, an example based on this embodiment will be described.
Here, an example will be described using a test material A using a steel plate having a thickness of 1.4 mm and a tensile strength of 1470 MPa. Note that the present disclosure is not limited to steel plates having a tensile strength of 1470 MPa. The present disclosure can be applied to metal materials such as steel plates with a tensile strength of 980 MPa or more, which cause delayed fracture at sheared end faces.
(About shearing)
In this example, first, sample material A was sheared to produce a linear sheared end face with a length of 500 mm to be evaluated. Note that the clearance during shearing was 12% of the plate thickness.

(曲げ曲げ戻し加工)
作製したせん断端面に対し、図5に示すようなプレス成形、又は図6に示すようなレベリングによる、曲げ戻しを、各工程での最大の塑性ひずみが変化するように行った。
ここで、図7に定義するせん断端面の輪郭線と曲げ曲げ戻しの曲げ方向のなす角も変化させて、それぞれ実行して、曲げ曲げ戻し加工後の各サンプルを作製した。
なお、レベリングにおいては通常実施されるように、最初の方のロールで大きなひずみを与えた。このとき、最後の方のロールに向けて徐々に与えるひずみが減っていくように、各ロールの押し込み量を調整した。
(bending and unbending processing)
The produced sheared end surfaces were bent back by press forming as shown in FIG. 5 or leveling as shown in FIG. 6 so that the maximum plastic strain in each step was changed.
Here, the angle between the contour line of the sheared end surface defined in FIG. 7 and the bending direction of bending and unbending was also changed, and each sample after bending and unbending was fabricated.
Note that during leveling, a large strain was applied with the first roll, as is usually done. At this time, the pushing amount of each roll was adjusted so that the strain applied gradually decreased toward the last roll.

(評価)
サンプル作製後、X線による切断後のせん断端面の残留応力測定を実施した。更に、各サンプルをPH1の塩酸の浴に96時間浸漬し、サンプルの割れの有無と割れの発生時間を確認した。このとき、せん断端面の遅れ破壊による表面亀裂の板厚貫通を以て、遅れ破壊が発生したと判定した。また、X線による測定は測定範囲を直径500μmとした。そして、板厚の中央部について、せん断加工後のせん断端面と平行方向に対し、板厚中央の応力を測定した。
(evaluation)
After the sample was prepared, the residual stress of the sheared end surface after cutting using X-rays was measured. Furthermore, each sample was immersed in a hydrochloric acid bath with a pH of 1 for 96 hours, and the presence or absence of cracks in the sample and the time at which cracks occurred were confirmed. At this time, it was determined that delayed fracture had occurred since the surface crack penetrated through the plate thickness due to delayed fracture of the sheared end face. In addition, the measurement range for the X-ray measurement was set to 500 μm in diameter. Then, the stress at the center of the plate thickness was measured in the direction parallel to the sheared end surface after shearing.

(実施例1)
実施例1における、サンプル形成条件とその評価結果を表1及び表2にそれぞれ示す。表1に示す実施例では、曲げ曲げ戻し加工をプレス成形で実行した。
表1には、プレス成形において、せん断端面の輪郭線と曲げ曲げ戻しの曲げ方向のなす角を0度としたときの結果を示した。具体的には、表1に、曲げ-曲げ戻しで導入した最大の塑性ひずみ量と、遅れ破壊の発生の有無、並びに遅れ破壊の発生時間、残留応力の関係を示した。
(Example 1)
Sample forming conditions and evaluation results in Example 1 are shown in Tables 1 and 2, respectively. In the examples shown in Table 1, the bending and unbending process was performed by press forming.
Table 1 shows the results when the angle between the contour line of the sheared end face and the bending direction of bending and unbending in press molding was set to 0 degrees. Specifically, Table 1 shows the relationship between the maximum amount of plastic strain introduced during bending and unbending, the presence or absence of delayed fracture, the time at which delayed fracture occurs, and residual stress.

Figure 0007435895000001
Figure 0007435895000001

また、表2では、曲げ曲げ戻し加工をプレス成形で実行した。
表2には、レベリングにおいて、せん断端面の輪郭線と曲げ曲げ戻しの曲げ方向のなす角を0度としたときの結果を示した。具体的には、表2に、曲げ-曲げ戻しで導入した最大の塑性ひずみ量と、遅れ破壊の発生の有無、並びに遅れ破壊の発生時間、残留応力の関係を示した。
Further, in Table 2, the bending and unbending process was performed by press molding.
Table 2 shows the results when the angle between the contour line of the sheared end face and the bending direction of bending and unbending was set to 0 degrees in leveling. Specifically, Table 2 shows the relationship between the maximum amount of plastic strain introduced during bending and unbending, whether delayed fracture occurs, the time at which delayed fracture occurs, and residual stress.

Figure 0007435895000002
Figure 0007435895000002

ここで、表1、表2の例のいずれでも、曲げ曲げ戻し加工における最終的な曲げ外側はせん断端面におけるダレ側になるようにした。
表1、2から分かるように、0.003以下の塑性ひずみで、遅れ破壊発生までの時間が延長された。更に、塑性ひずみ0.005以上では、遅れ破壊が発生しなくなった。また、遅れ破壊の発生時間又は遅れ破壊の発生の有無は、残留応力と相関がみられた。
Here, in both of the examples shown in Tables 1 and 2, the final bent outer side in the bending and unbending process was set to be the sagging side of the sheared end surface.
As can be seen from Tables 1 and 2, when the plastic strain was 0.003 or less, the time until delayed fracture occurred was extended. Further, when the plastic strain was 0.005 or more, delayed fracture no longer occurred. Furthermore, the time at which delayed fracture occurred or the presence or absence of delayed fracture was found to be correlated with residual stress.

(実施例2)
実施例2では、曲げ曲げ戻し加工の各曲げ角を変化させた場合の、曲げ-曲げ戻しで導入した最大の塑性ひずみ量と、遅れ破壊の発生の有無、並びに遅れ破壊の発生時間の関係を調査した例である。
表3は、曲げ曲げ戻し加工をレベリングにて行った場合の例である。
ただし、曲げ曲げ戻し加工における最終的な曲げ外側はせん断端面におけるダレ側になるようにした。また、最大の塑性ひずみ量は0.005とした。
(Example 2)
In Example 2, we investigated the relationship between the maximum amount of plastic strain introduced during bending and unbending, the presence or absence of delayed fracture, and the occurrence time of delayed fracture when each bending angle in bending and unbending was changed. This is an example of what we investigated.
Table 3 shows an example where the bending and unbending process is performed by leveling.
However, the final bent outer side in the bending and unbending process was made to be on the sagging side of the sheared end surface. Further, the maximum amount of plastic strain was set to 0.005.

Figure 0007435895000003
Figure 0007435895000003

表3から分かるように、せん断端面の輪郭線と曲げ曲げ戻しの曲げ方向のなす角が0度から85度で、90度の場合に比べて、遅れ破壊の発生が抑制されることが確認された。すなわち、90度より小さい場合、90度の場合に比べて、遅れ破壊の発生が抑制されることが確認された。特にせん断端面の輪郭線と曲げ曲げ戻しの曲げ方向のなす曲げ角が0度から75度の場合、顕著な効果が得られた。
なお、表3に示す実施例においては、レベリングの場合において、せん断端面の輪郭線と曲げ曲げ戻しの曲げ方向のなす角の影響について説明した。しかし、本開示はこれに限るものでない。プレス成形による曲げ曲げ戻し加工においても、また塑性ひずみ量が0.005と異なる場合でも前記角度範囲において良好な結果が得られる。
As can be seen from Table 3, it was confirmed that the occurrence of delayed fracture is suppressed when the angle between the contour line of the sheared end face and the bending direction of bending and unbending is between 0 degrees and 85 degrees, compared to when the angle is 90 degrees. Ta. That is, it was confirmed that when the angle is smaller than 90 degrees, the occurrence of delayed fracture is suppressed compared to when the angle is 90 degrees. In particular, remarkable effects were obtained when the bending angle between the contour line of the sheared end face and the bending direction of bending and unbending was from 0 degrees to 75 degrees.
In addition, in the example shown in Table 3, in the case of leveling, the influence of the angle formed by the contour line of the sheared end face and the bending direction of bending and unbending was explained. However, the present disclosure is not limited thereto. Even in bending and unbending processing by press forming, good results can be obtained within the above angle range even when the amount of plastic strain is different from 0.005.

(実施例3)
実施例3では、曲げ曲げ戻し加工をプレス成形、レベリングで行う場合において、それぞれ、上記遅れ破壊の発生時間又は遅れ破壊の発生の有無と、残留応力を示している。この実施例3では、曲げ曲げ戻しの最終的な曲げ外側がバリ側になる場合と、最終的な曲げ外側がダレ側になる場合とについて記載した。ただし最大の塑性ひずみ量は0.003とした。また、曲げ方向とせん断端面10Aのなす角は0度とした。
その結果を表4に示す。
ここで、表4では、X線による測定は測定範囲を直径250μmとし、板厚のバリ側とダレ側のそれぞれについて、板表面から0.25mmの位置について測定した。その測定は、せん断加工後のせん断端面10Aと平行方向に対して測定した。前者をバリ側残留応力とし、後者をダレ側残留応力とした。
(Example 3)
In Example 3, when the bending and unbending process is performed by press forming and leveling, the occurrence time of delayed fracture, the presence or absence of occurrence of delayed fracture, and the residual stress are shown, respectively. In Example 3, a case where the final outside of the bend in bending and unbending becomes the burr side, and a case where the final outside of the bend becomes the sag side are described. However, the maximum amount of plastic strain was set to 0.003. Further, the angle formed between the bending direction and the sheared end surface 10A was 0 degree.
The results are shown in Table 4.
Here, in Table 4, the measurement range for the X-ray measurement was set to 250 μm in diameter, and measurements were made at a position 0.25 mm from the plate surface on each of the burr side and the sag side of the plate thickness. The measurement was performed in a direction parallel to the sheared end surface 10A after shearing. The former was defined as the burr side residual stress, and the latter was defined as the sagging side residual stress.

Figure 0007435895000004
Figure 0007435895000004

表4から分かるように、曲げ曲げ戻しの最終的な曲げ内側では残留応力が増加して引張側に向かう傾向がある。一方で、表4から分かるように、最終的な曲げ外側には残留応力が減少して圧縮側に向かう傾向があった。
その差異はプレス加工による曲げ曲げ戻しの場合の方が、レベリング加工よりも大きかった。その理由は、レベリング加工においては、加工の開始から終了にかけて、徐々に曲げ曲げ戻しの変形量が減っていくため、板厚方向の応力の差異が平準化されていたためである。
As can be seen from Table 4, residual stress tends to increase on the inner side of the final bend after bending and unbending, and tends to move toward the tensile side. On the other hand, as can be seen from Table 4, there was a tendency for the residual stress to decrease on the outer side of the final bending and move toward the compression side.
The difference was greater in the case of bending and unbending by pressing than in the case of leveling. The reason for this is that in the leveling process, the amount of deformation due to bending and unbending gradually decreases from the start to the end of the process, so that the difference in stress in the plate thickness direction is equalized.

また、遅れ破壊の発生までの時間については、バリ側の残留応力が低いほどに長くなった。これはバリ側の方が元々の残留応力が高いのに加え、バリや表面性状の荒れの影響で遅れ破壊が生じやすい部位であるためである。
したがって、曲げ曲げ戻しの最終的な曲げ外側がせん断端面のバリ側になるようにすることで、より一層の遅れ破壊の抑制を実現できることが分かった。
Furthermore, the time until delayed fracture occurred was longer as the residual stress on the burr side was lower. This is because the original residual stress is higher on the burr side, and delayed fracture is more likely to occur due to the influence of burrs and rough surface texture.
Therefore, it has been found that delayed fracture can be further suppressed by making the final outer side of the bending and unbending become the burr side of the sheared end face.

ここで、本願が優先権を主張する、日本国特許出願2021-146245(2021年09月08日出願)の全内容は、参照により本開示の一部をなす。ここでは、限られた数の実施形態を参照しながら説明したが、権利範囲はそれらに限定されるものではなく、上記の開示に基づく各実施形態の改変は当業者にとって自明なことである。 Here, the entire contents of Japanese Patent Application No. 2021-146245 (filed on September 8, 2021), to which this application claims priority, constitute a part of the present disclosure by reference. Although the description has been made here with reference to a limited number of embodiments, the scope of rights is not limited thereto, and modifications of each embodiment based on the above disclosure will be obvious to those skilled in the art.

1 ブランク材製造工程
1A せん断工程
1B 端面改善工程(遅れ破壊特性改善方法)
2 プレス成形工程
10 金属板
10A せん断端面
θ 曲げの角度
1 Blank manufacturing process 1A Shearing process 1B End face improvement process (delayed fracture characteristic improvement method)
2 Press forming process 10 Metal plate 10A Sheared end surface θ Bending angle

Claims (9)

プレス成形にて成形品を製造する際に使用される金属板であって、板端部の少なくとも一部にせん断端面を有し且つ高強度鋼板からなる金属板の、遅れ破壊特性を改善する遅れ破壊特性改善方法であって、
せん断加工で上記せん断端面が形成された上記金属板における、上記せん断端面の少なくとも一部に対し、せん断端面の延在方向に沿って塑性ひずみが入力されるように、塑性変形を付与し、
上記塑性変形の付与は、複数のプレス成形工程による曲げ曲げ戻し加工で行われる、
ことを特徴とする金属板の遅れ破壊特性改善方法。
A delay in improving the delayed fracture characteristics of a metal plate used when manufacturing a molded product by press forming, which has a sheared end surface on at least a part of the plate edge and is made of a high-strength steel plate. A method for improving fracture characteristics,
Applying plastic deformation to at least a portion of the sheared end surface of the metal plate on which the sheared end surface has been formed by shearing processing so that plastic strain is input along the extending direction of the sheared end surface ,
The above-mentioned plastic deformation is performed by bending and unbending processing through multiple press forming steps.
A method for improving delayed fracture characteristics of a metal plate.
上記塑性変形で、上記せん断端面の少なくとも一部に対し、端面の延在方向に沿った方向の、0より大きな塑性ひずみを付与する、
ことを特徴とする請求項1に記載した金属板の遅れ破壊特性改善方法。
In the plastic deformation, a plastic strain greater than 0 is applied to at least a portion of the sheared end face in a direction along the extending direction of the end face.
The method for improving delayed fracture characteristics of a metal plate according to claim 1.
上記曲げ曲げ戻し加工における、各曲げの角度を90度未満にする、ことを特徴とする請求項1に記載した金属板の遅れ破壊特性改善方法。 2. The method for improving delayed fracture characteristics of a metal plate according to claim 1 , wherein the angle of each bend in the bending and unbending process is less than 90 degrees. 上記曲げ曲げ戻し加工は、プレス成形による曲げ加工によって行う、ことを特徴とする請求項に記載した金属板の遅れ破壊特性改善方法。 2. The method for improving delayed fracture characteristics of a metal plate according to claim 1 , wherein the bending and unbending process is performed by bending process by press forming. 上記曲げ曲げ戻し加工は、複数のロールを用いたレベリング加工によって行う、ことを特徴とする請求項に記載した金属板の遅れ破壊特性改善方法。 2. The method for improving delayed fracture characteristics of a metal plate according to claim 1 , wherein the bending and unbending process is performed by leveling process using a plurality of rolls. 上記曲げ曲げ戻し加工における最後の曲げについて、曲げ外側が、せん断端面のバリ側になるように設定した、請求項に記載した金属板の遅れ破壊特性改善方法。 2. The method for improving delayed fracture characteristics of a metal plate according to claim 1 , wherein the last bend in the bending and unbending process is set so that the outer side of the bend is on the burr side of the sheared end surface. 上記金属板は、引張強度が980MPa以上の鋼板である、請求項1に記載した金属板の遅れ破壊特性改善方法。 The method for improving delayed fracture characteristics of a metal plate according to claim 1, wherein the metal plate is a steel plate having a tensile strength of 980 MPa or more. プレス成形用のブランク材の製造方法であって、
金属板にせん断加工を施す工程と、
上記せん断加工を施す工程の後の工程であって、請求項1~請求項のいずれか1項に記載の遅れ破壊特性改善方法によって、せん断端面に塑性変形を付与する工程と、
を備えるブランク材の製造方法。
A method for producing a blank material for press forming, the method comprising:
A process of shearing a metal plate,
A step after the step of applying the shearing process, a step of applying plastic deformation to the sheared end face by the method for improving delayed fracture characteristics according to any one of claims 1 to 7 ;
A method for producing a blank material comprising:
高強度鋼板からなる金属板をプレス成形して成形品を製造する方法であって、
金属板にせん断加工を施す工程と、
上記せん断加工を施す工程の後の工程であって、請求項1~請求項のいずれか1項に記載の遅れ破壊特性改善方法によって、せん断端面に塑性変形を付与する工程と、
を備えるプレス成形品の製造方法。
A method of manufacturing a molded product by press-forming a metal plate made of high-strength steel plate, the method comprising:
A process of shearing a metal plate,
A step after the step of applying the shearing process, a step of applying plastic deformation to the sheared end face by the method for improving delayed fracture characteristics according to any one of claims 1 to 7 ;
A method for manufacturing a press-formed product comprising:
JP2023502853A 2021-09-08 2022-09-01 Method for improving delayed fracture characteristics of metal plate, method for producing blank material, and method for producing press-formed product Active JP7435895B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021146245 2021-09-08
JP2021146245 2021-09-08
PCT/JP2022/032988 WO2023037961A1 (en) 2021-09-08 2022-09-01 Method for improving delayed fracture characteristics of steel sheet, method for producing blank, method for producing press-formed article, and press-formed article

Publications (3)

Publication Number Publication Date
JPWO2023037961A1 JPWO2023037961A1 (en) 2023-03-16
JPWO2023037961A5 JPWO2023037961A5 (en) 2023-08-16
JP7435895B2 true JP7435895B2 (en) 2024-02-21

Family

ID=85506679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023502853A Active JP7435895B2 (en) 2021-09-08 2022-09-01 Method for improving delayed fracture characteristics of metal plate, method for producing blank material, and method for producing press-formed product

Country Status (6)

Country Link
EP (1) EP4382222A4 (en)
JP (1) JP7435895B2 (en)
KR (1) KR20240046543A (en)
CN (1) CN117897239A (en)
MX (1) MX2024002626A (en)
WO (1) WO2023037961A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024224677A1 (en) * 2023-04-26 2024-10-31 Jfeスチール株式会社 Delayed fracture characteristic evaluation method, delayed fracture prediction method, program, press-molded article production method, and shearing device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224151A (en) 2005-02-18 2006-08-31 Nippon Steel Corp Method for punching high-strength steel sheet
JP2017125228A (en) 2016-01-13 2017-07-20 Jfeスチール株式会社 Manufacturing method of molding member
JP2020111828A (en) 2019-01-16 2020-07-27 Jfeスチール株式会社 Manufacturing method of press-formed product and press-formed product

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855128A (en) * 1981-09-28 1983-04-01 Nippon Steel Metal Prod Co Ltd Method and apparatus for continuous cold roll forming of channel steel
JPH06530Y2 (en) 1988-10-28 1994-01-05 新日軽株式会社 Sash locking device
JPH09122756A (en) * 1995-10-31 1997-05-13 Kawasaki Steel Corp Control of camber in longitudinal direction of roller leveller
JP7059572B2 (en) * 2017-11-10 2022-04-26 日本製鉄株式会社 Welded joint manufacturing method and welded joint
JP2019218643A (en) * 2018-06-17 2019-12-26 株式会社寿製作所 Metallic heald, and manufacturing method of metallic heald
KR102499446B1 (en) * 2019-03-14 2023-02-13 제이에프이 스틸 가부시키가이샤 Manufacturing method of press parts
JP6839315B1 (en) 2020-03-17 2021-03-03 有限会社中川商会 Surface modification method for the object to be treated

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006224151A (en) 2005-02-18 2006-08-31 Nippon Steel Corp Method for punching high-strength steel sheet
JP2017125228A (en) 2016-01-13 2017-07-20 Jfeスチール株式会社 Manufacturing method of molding member
JP2020111828A (en) 2019-01-16 2020-07-27 Jfeスチール株式会社 Manufacturing method of press-formed product and press-formed product

Also Published As

Publication number Publication date
EP4382222A4 (en) 2024-10-30
CN117897239A (en) 2024-04-16
EP4382222A1 (en) 2024-06-12
KR20240046543A (en) 2024-04-09
MX2024002626A (en) 2024-03-22
JPWO2023037961A1 (en) 2023-03-16
WO2023037961A1 (en) 2023-03-16

Similar Documents

Publication Publication Date Title
CN111163875B (en) Deformation limit evaluation method, fracture prediction method, and press die design method
JP6142927B2 (en) Steel sheet punching tool and punching method
WO2016092657A1 (en) Blank, molded article, mold and method for producing blank
CN113365752B (en) Method for manufacturing stamped member and method for manufacturing blank
JPWO2016143820A1 (en) Burring method
TWI711498B (en) Formed material manufacturing method and formed material
JP7435895B2 (en) Method for improving delayed fracture characteristics of metal plate, method for producing blank material, and method for producing press-formed product
CN111565863A (en) Method for producing press-molded article
JP7188457B2 (en) METHOD FOR SHEARING METAL PLATE AND METHOD FOR MANUFACTURING PRESS PARTS
JP7318602B2 (en) METHOD FOR MANUFACTURE OF TEST SPECIMEN AND METHOD FOR EVALUATION OF DELAYED FRACTURE CHARACTERISTICS OF HIGH-STRENGTH STEEL STEEL
WO2020184711A1 (en) Pressed component manufacturing method
JP6977913B1 (en) Manufacturing method of pressed parts and manufacturing method of blank material
KR101834850B1 (en) Press forming method, and method for manufacturing press-formed part
JP2006224121A (en) Steel sheet punching tool, and punching method using the same
JP7205520B2 (en) METHOD FOR MANUFACTURING PRESS PARTS AND METAL PLATE FOR PRESS MOLDING
JP6773255B1 (en) Bending crack evaluation method, bending crack evaluation system, and manufacturing method of press-formed parts
JP6908078B2 (en) Manufacturing method of pressed parts and design method of lower die
JPH1190534A (en) Formation of arched press forming product excellent in shape-freezability
JP6493331B2 (en) Manufacturing method of press-molded products
JP7338573B2 (en) Shearing blade, shearing mold, shearing method for metal plate, and method for manufacturing pressed parts
JP7506354B1 (en) Peripheral structures for through holes in metal sheets, blanks and automotive parts
Saengkhiao et al. Increasing the hole expansion ability of high strength steel sheet by improving the pre-hole shearing process
WO2021241024A1 (en) Press-forming method
JP7456429B2 (en) Method for manufacturing press parts, press parts, and blank material manufacturing method
JP2020062664A (en) Method for manufacturing press component

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231020

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7435895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150