[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7434882B2 - Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program - Google Patents

Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program Download PDF

Info

Publication number
JP7434882B2
JP7434882B2 JP2019231813A JP2019231813A JP7434882B2 JP 7434882 B2 JP7434882 B2 JP 7434882B2 JP 2019231813 A JP2019231813 A JP 2019231813A JP 2019231813 A JP2019231813 A JP 2019231813A JP 7434882 B2 JP7434882 B2 JP 7434882B2
Authority
JP
Japan
Prior art keywords
vehicle
image
size
dangerous driving
surrounding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019231813A
Other languages
Japanese (ja)
Other versions
JP2021099720A (en
Inventor
貴之 佐藤
純一 糟谷
功大 中村
紘史 谷山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Priority to JP2019231813A priority Critical patent/JP7434882B2/en
Publication of JP2021099720A publication Critical patent/JP2021099720A/en
Application granted granted Critical
Publication of JP7434882B2 publication Critical patent/JP7434882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Time Recorders, Dirve Recorders, Access Control (AREA)
  • Traffic Control Systems (AREA)

Description

本発明は、周辺車両の危険運転を検出する危険運転判定装置、危険運転判定方法、および危険運転判定プログラムに関する。 The present invention relates to a dangerous driving determination device, a dangerous driving determining method, and a dangerous driving determining program that detect dangerous driving of nearby vehicles.

後方車両のナンバープレートの種類や車体形状から特定される車種に基づいてその後方車両が確保すべき車間距離を算出し、その車間距離を示す映像を道路に照射する技術が知られている(例えば、特許文献1参照)。 There is a known technology that calculates the following distance that the vehicle behind should maintain based on the type of license plate of the vehicle behind it and the vehicle type identified from the shape of the vehicle body, and projects an image showing the calculated distance onto the road (for example, , see Patent Document 1).

特開2019-151169号公報JP 2019-151169 Publication

近年、いわゆる「あおり運転」をはじめとする危険運転の多発が社会問題となっている。この点、上記技術のように車間距離を算出するだけでは、危険運転と正常運転を精度よく区別するのは難しい。そのため、精度よく危険運転を検出できる技術の確立が求められている。 In recent years, the frequent occurrence of dangerous driving, including so-called "distracted driving," has become a social problem. In this regard, it is difficult to accurately distinguish between dangerous driving and normal driving by simply calculating the inter-vehicle distance as in the technique described above. Therefore, there is a need to establish technology that can accurately detect dangerous driving.

本発明はこうした状況に鑑みてなされたものであり、その目的は、車種ごとに精度よく危険運転を検出できる危険運転判定装置を提供することにある。 The present invention has been made in view of these circumstances, and an object thereof is to provide a dangerous driving determination device that can accurately detect dangerous driving for each vehicle type.

上記課題を解決するために、本発明のある態様の危険運転判定装置は、車両の周囲を撮影した画像を取得する画像取得部と、画像取得部で取得される画像から周辺車両を検出する車両検出部と、車両検出部で検出された周辺車両の車種を認識する車種認識部と、車両検出部で検出された周辺車両の画像上のサイズを測定するサイズ測定部と、車種ごとにあらかじめ定められた危険運転と判定するためのサイズの基準を記憶する基準記憶部と、サイズ測定部で測定されたサイズと基準に基づいて周辺車両の危険運転を検出する危険検出部と、を備える。 In order to solve the above problems, a dangerous driving determination device according to an aspect of the present invention includes an image acquisition unit that acquires an image of the surroundings of a vehicle, and a vehicle that detects surrounding vehicles from the image acquired by the image acquisition unit. a detection unit, a vehicle type recognition unit that recognizes the vehicle type of a nearby vehicle detected by the vehicle detection unit, a size measurement unit that measures the size of the nearby vehicle detected by the vehicle detection unit on the image, and a size measurement unit that is determined in advance for each vehicle type. The present invention includes a reference storage section that stores a size reference for determining dangerous driving, and a danger detection section that detects dangerous driving of surrounding vehicles based on the size measured by the size measurement section and the reference.

本発明の別の態様は、危険運転判定方法である。この方法は、車両の周囲を撮影した画像を取得する過程と、画像を取得する過程で取得される画像から周辺車両を検出する過程と、周辺車両を検出する過程で検出された周辺車両の車種を認識する過程と、周辺車両を検出する過程で検出された周辺車両の画像上のサイズを測定する過程と、車種ごとにあらかじめ定められた危険運転と判定するためのサイズの基準を読み出す過程と、サイズを測定する過程で測定されたサイズと基準に基づいて周辺車両の危険運転を検出する過程と、を備える。 Another aspect of the present invention is a dangerous driving determination method. This method involves the process of acquiring an image of the surroundings of a vehicle, the process of detecting surrounding vehicles from the image acquired during the image acquisition process, and the vehicle type of the surrounding vehicle detected in the process of detecting surrounding vehicles. a process of measuring the size of the surrounding vehicle detected in the image of the surrounding vehicle in the process of detecting the surrounding vehicle, and a process of reading out the size standard for determining dangerous driving determined in advance for each vehicle type. , and a step of detecting dangerous driving of surrounding vehicles based on the size measured in the step of measuring the size and a standard.

なお、以上の構成要素の任意の組合せや本発明の構成要素や表現を、方法、装置、システム、プログラムなどの間で相互に置換したものもまた、本発明の態様として有効である。 Note that arbitrary combinations of the above-mentioned constituent elements and mutual substitution of constituent elements and expressions of the present invention among methods, devices, systems, programs, etc. are also effective as aspects of the present invention.

本発明によれば、車種ごとに精度よく危険運転を検出できる危険運転判定装置を提供することができる。 According to the present invention, it is possible to provide a dangerous driving determination device that can accurately detect dangerous driving for each vehicle type.

ドライブレコーダの機能構成を模式的に示すブロック図である。FIG. 2 is a block diagram schematically showing the functional configuration of a drive recorder. 後方カメラの映像における周辺車両の識別状態を模式的に例示する図である。It is a figure which typically illustrates the identification state of the surrounding vehicle in the image of a rear camera. 後方カメラの映像における危険運転車両の認識状態を模式的に例示する図である。FIG. 3 is a diagram schematically illustrating a recognition state of a dangerously driven vehicle in an image taken by a rear camera. 危険運転を検出する過程を示すフローチャートである。It is a flow chart showing a process of detecting dangerous driving.

以下、本発明の実施の形態について、図面を参照しつつ説明する。かかる実施の形態に示す具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書および図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。以下説明する実施の形態においては、危険運転判定装置として主にドライブレコーダおよびナビゲーション装置を例示する。 Embodiments of the present invention will be described below with reference to the drawings. The specific numerical values and the like shown in these embodiments are merely illustrative to facilitate understanding of the invention, and do not limit the invention unless otherwise specified. In this specification and the drawings, elements with substantially the same functions and configurations are given the same reference numerals to omit redundant explanation, and elements not directly related to the present invention are omitted from illustration. do. In the embodiment described below, a drive recorder and a navigation device are mainly exemplified as the dangerous driving determination device.

図1は、ドライブレコーダ10の機能構成を模式的に示すブロック図である。図示する各機能ブロックは、ハードウェア的には、コンピュータのCPUやメモリをはじめとする素子や機械装置で実現でき、ソフトウェア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックとして描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組み合わせによっていろいろなかたちで実現できることは、当業者には理解されるところである。 FIG. 1 is a block diagram schematically showing the functional configuration of the drive recorder 10. As shown in FIG. Each of the functional blocks shown in the figure can be realized in terms of hardware by elements and mechanical devices such as a computer's CPU and memory, and in terms of software by computer programs, etc.; It is depicted as a functional block to be realized. Therefore, those skilled in the art will understand that these functional blocks can be realized in various ways by combining hardware and software.

ドライブレコーダ10は、画像取得部12、音声取得部14、車両情報取得部16、イベント検出部18、記録制御部20、一時記憶部22、通信部24、操作受付部26、画像処理部50、基準記憶部58、危険検出部59、表示制御部28、音声出力部29を備える。画像取得部12は、車両情報取得部16の一部として構成されてもよく、画像取得部12が車両情報取得部16に含まれてもよい。ドライブレコーダ10は、車両に搭載される。通信部24は、外部機器との間で無線通信接続によって情報を送受信する。操作受付部26は、ユーザの操作入力を受け付ける。表示制御部28は、撮影した画像の表示装置49への表示を制御する。表示装置49は、ナビゲーション装置11が備えるモニタであるが、変形例としては、ドライブレコーダ10が表示装置49を内蔵する形で構成してもよいし、図示しないがインフォテインメントシステムや電子ミラー、ヘッドアップディスプレイなどの車両に装備されている表示装置に重畳表示や割り込み表示する形で構成してもよい。音声出力部29は、録音した音声や警告音などの音声を出力するスピーカ47への音声出力を制御する。スピーカ47は、ナビゲーション装置11または車両が備えるスピーカであるが、変形例としては、ドライブレコーダ10がスピーカ47を内蔵する形で構成してもよい。ドライブレコーダ10とナビゲーション装置11の接続は、通信部24を介した無線通信接続であってもよいし、UART(Universal Asynchronous Receiver/Transmitter)やUSB(Universal Serial Bus)などの有線通信接続であってもよい。 The drive recorder 10 includes an image acquisition section 12, an audio acquisition section 14, a vehicle information acquisition section 16, an event detection section 18, a recording control section 20, a temporary storage section 22, a communication section 24, an operation reception section 26, an image processing section 50, It includes a reference storage section 58, a danger detection section 59, a display control section 28, and an audio output section 29. The image acquisition unit 12 may be configured as a part of the vehicle information acquisition unit 16, or the image acquisition unit 12 may be included in the vehicle information acquisition unit 16. Drive recorder 10 is mounted on a vehicle. The communication unit 24 transmits and receives information to and from an external device via a wireless communication connection. The operation reception unit 26 receives operation input from the user. The display control unit 28 controls the display of the photographed image on the display device 49. The display device 49 is a monitor included in the navigation device 11, but as a modification, the drive recorder 10 may have the display device 49 built-in, or an infotainment system, electronic mirror, etc. (not shown) may be used. The information may be displayed in a superimposed manner or in an interrupt manner on a display device installed in the vehicle, such as a head-up display. The audio output unit 29 controls audio output to a speaker 47 that outputs audio such as recorded audio and warning sounds. The speaker 47 is a speaker included in the navigation device 11 or the vehicle, but as a modification, the drive recorder 10 may have the speaker 47 built-in. The connection between the drive recorder 10 and the navigation device 11 may be a wireless communication connection via the communication unit 24 or a wired communication connection such as UART (Universal Asynchronous Receiver/Transmitter) or USB (Universal Serial Bus). Good too.

画像取得部12は、車両に設けられる前方カメラ40および後方カメラ42が撮影する動画像の映像データを取得する。前方カメラ40は、車両の周囲、特に自車両の前方を撮影するように構成される。後方カメラ42は、車両の周囲、特に自車両の後方を撮影するように構成される。前方カメラ40は、自車両の前方および室内の双方を撮影するように構成されてもよく、自車両の前方や側方および室内をすべて撮影する構成として、周囲360度を撮影可能な一つの全周カメラで構成してもよいし、前後や側方を撮影する複数のカメラで構成してもよい。前方カメラ40、後方カメラ42は、ドライブレコーダ10に内蔵されてもよいし、ドライブレコーダ10とは別体であってもよい。後方カメラ42は、ナビゲーション装置11にも後方の映像を送るカメラであり、ドライブレコーダ10とナビゲーション装置11の両方のカメラとして兼用される。 The image acquisition unit 12 acquires video data of moving images captured by a front camera 40 and a rear camera 42 provided in the vehicle. The front camera 40 is configured to photograph the surroundings of the vehicle, particularly the front of the own vehicle. The rear camera 42 is configured to photograph the surroundings of the vehicle, particularly the rear of the own vehicle. The front camera 40 may be configured to photograph both the front of the own vehicle and the interior of the vehicle, or may be configured to photograph the entire front, side, and interior of the own vehicle, such as a single camera that can photograph the surrounding 360 degrees. It may be configured with a circumferential camera, or it may be configured with a plurality of cameras that take images of the front, rear, and sides. The front camera 40 and the rear camera 42 may be built into the drive recorder 10 or may be separate from the drive recorder 10. The rear camera 42 is a camera that also sends rear images to the navigation device 11, and is used as a camera for both the drive recorder 10 and the navigation device 11.

画像取得部12は、車両の走行に関する車両情報として前方カメラ40、後方カメラ42が撮影した映像を取得してもよく、画像取得部12を車両情報取得部16の一部とみなしてもよい。画像取得部12は、前方カメラ40からの映像を取得し、また、後方カメラ42からの映像を、ギアがリバースに入れられていることを示す車両情報が取得されるかどうかにかかわらず取得する。表示制御部28は、ギアがドライブやパーキングなどリバース以外に入れられていることを示す車両情報が取得される間は前方カメラ40からの映像を表示装置49に表示させる。ギアがリバースに入れられていることを示す車両情報が取得される間は後方カメラ42からの映像を表示装置49に表示させる。ただし、後述するように、少なくとも危険運転をしている可能性のある周辺車両が検出された場合は、後方カメラ42からの映像を表示装置49に表示させる。変形例としては、ギアがリバースに入れられていることを示す車両情報が取得されるかどうかにかかわらず、前方カメラ40からの映像だけでなく、後方カメラ42からの映像も合わせて表示装置49に常時表示させてもよい。 The image acquisition unit 12 may acquire images captured by the front camera 40 and the rear camera 42 as vehicle information regarding the running of the vehicle, and the image acquisition unit 12 may be considered as part of the vehicle information acquisition unit 16. The image acquisition unit 12 acquires an image from the front camera 40, and also acquires an image from the rear camera 42, regardless of whether vehicle information indicating that the gear is in reverse is acquired. . The display control unit 28 causes the display device 49 to display an image from the front camera 40 while vehicle information indicating that the gear is set to a gear other than reverse, such as drive or parking, is acquired. An image from the rear camera 42 is displayed on the display device 49 while vehicle information indicating that the gear is in reverse is acquired. However, as will be described later, if at least a nearby vehicle that may be driving dangerously is detected, the image from the rear camera 42 is displayed on the display device 49. As a modified example, the display device 49 displays not only the image from the front camera 40 but also the image from the rear camera 42, regardless of whether vehicle information indicating that the gear is in reverse is acquired. may be displayed all the time.

音声取得部14は、車両に設けられるマイク44が取得する音声データを取得する。マイク44は、車両の内外から集音するよう構成される。マイク44は、ドライブレコーダ10に内蔵されてもよいし、ドライブレコーダ10とは別体であってもよいし、前方カメラ40または後方カメラ42と一体であってもよい。あるいは、ナビゲーション装置11に内蔵されてもよい。ナビゲーション装置11に内蔵される場合、マイク44はナビゲーション装置11の音声認識操作に用いられる。音声取得部14は、車両の走行に関する車両情報としてマイク44により音声を取得してもよく、音声取得部14を車両情報取得部16の一部とみなしてもよい。 The audio acquisition unit 14 acquires audio data acquired by a microphone 44 provided in the vehicle. The microphone 44 is configured to collect sounds from inside and outside the vehicle. The microphone 44 may be built into the drive recorder 10, may be separate from the drive recorder 10, or may be integrated with the front camera 40 or the rear camera 42. Alternatively, it may be built into the navigation device 11. When built into the navigation device 11, the microphone 44 is used for voice recognition operations of the navigation device 11. The audio acquisition unit 14 may acquire audio using the microphone 44 as vehicle information regarding the running of the vehicle, or may be considered as part of the vehicle information acquisition unit 16.

車両情報取得部16は、車両に設けられる車載装置46から車両の走行に関する車両情報を取得する。車載装置46の具体例として、車速センサ、舵角センサ、アクセル操作量センサ、ブレーキ操作量センサ、加速度センサ、ジャイロセンサ、レーダセンサ、ライダ(LiDAR;Light Detection and Ranging)、位置情報センサ(例えば、GNSS;Global Navigation Satellite System)、乗員の着座センサなどが挙げられるが、これらに限定されるものではない。車両情報取得部16は、各種制御ECU(Electronic Control Unit)を介して車両情報を取得してもよいし、ナビゲーション装置11を介して車両情報を取得してもよい。また、ナビゲーション装置11が内蔵する位置情報センサから位置情報を取得してもよい。車両情報取得部16は、通信部24を介してユーザの携帯電話等の端末に内蔵された加速度センサ、ジャイロセンサ、位置情報センサ等の各センサによって検出された情報を取得してもよい。車両情報取得部16は、ドライブレコーダ10が内蔵するセンサから車両の走行に関する情報を取得してもよい。例えば、ドライブレコーダ10が加速度センサや位置情報センサなどのセンサを内蔵してもよい。なお、前方カメラ40、後方カメラ42やマイク44を車載装置の一つとしてみなし、車両情報取得部16が画像取得部12や音声取得部14を含むように構成されてもよい。 The vehicle information acquisition unit 16 acquires vehicle information regarding the running of the vehicle from an on-vehicle device 46 provided in the vehicle. Specific examples of the in-vehicle device 46 include a vehicle speed sensor, a steering angle sensor, an accelerator operation amount sensor, a brake operation amount sensor, an acceleration sensor, a gyro sensor, a radar sensor, a lidar (Light Detection and Ranging), and a position information sensor (for example, Examples include, but are not limited to, GNSS (Global Navigation Satellite System) and occupant seating sensors. The vehicle information acquisition section 16 may acquire vehicle information via various control ECUs (Electronic Control Units), or may acquire vehicle information via the navigation device 11. Alternatively, the position information may be acquired from a position information sensor built into the navigation device 11. The vehicle information acquisition section 16 may acquire, via the communication section 24, information detected by sensors such as an acceleration sensor, a gyro sensor, and a position information sensor built into a terminal such as a user's mobile phone. The vehicle information acquisition unit 16 may acquire information regarding the running of the vehicle from a sensor included in the drive recorder 10. For example, the drive recorder 10 may include a built-in sensor such as an acceleration sensor or a position information sensor. Note that the front camera 40, the rear camera 42, and the microphone 44 may be regarded as one of the in-vehicle devices, and the vehicle information acquisition section 16 may be configured to include the image acquisition section 12 and the audio acquisition section 14.

車両情報取得部16は、例えば車両の状態に関する情報、車両に対する操作に関する情報、車両の速度に関する情報、車両の位置に関する情報、車両の周囲の障害物に関する情報、車両の運転支援機能の作動状態に関する情報などを車載装置46から取得する。車両情報取得部16が取得する各種情報は、後述する画像処理部50による画像認識で車両周囲の物体を検出するのとは異なり、カメラ以外のセンサからの検知情報である。車両情報取得部16は、車両の状態に関する情報として、例えばドアや窓の開閉状態を示す情報を取得してもよい。車両情報取得部16は、車両に対する操作に関する情報として、例えばドアや窓の開閉を指示する操作があったことを示す情報を取得してもよい。車両情報取得部16は、車両の周囲の障害物に関する情報として、車両の周囲の一定範囲内に他車両が存在するか否かや、走行中の車線上に歩行者や自転車、落下物や建造物などの障害物が存在するか否かを示す情報を取得してもよい。車両情報取得部16は、車両内に乗員が存在するか否かを示す情報を取得してもよい。車両情報取得部16は、車両の運転支援機能の作動状態に関する状態として、自動運転機能や遠隔操作機能のオンオフに関する情報や、特定の運転支援機能が作動中であるか否かに関する情報を取得してもよい。運転支援機能として、例えば、アダプティブ・クルーズ・コントロール(ACC;Adaptive Cruise Control)やレーン・キープ・アシスト(LKAS;Lane Keeping Assistance System)などが挙げられるが、これらに限定されるものではない。 The vehicle information acquisition unit 16 collects, for example, information related to the state of the vehicle, information related to operations on the vehicle, information related to the speed of the vehicle, information related to the position of the vehicle, information related to obstacles around the vehicle, and information related to the operating state of the driving support function of the vehicle. Information etc. are acquired from the in-vehicle device 46. The various information acquired by the vehicle information acquisition unit 16 is detection information from a sensor other than a camera, unlike detection of objects around the vehicle through image recognition by an image processing unit 50, which will be described later. The vehicle information acquisition unit 16 may acquire, for example, information indicating the open/closed states of doors and windows as information regarding the state of the vehicle. The vehicle information acquisition unit 16 may acquire, as information regarding operations on the vehicle, information indicating that an operation instructing opening/closing of a door or window has been performed, for example. The vehicle information acquisition unit 16 collects information regarding obstacles around the vehicle, such as whether there are other vehicles within a certain range around the vehicle, pedestrians, bicycles, fallen objects, or buildings in the lane in which the vehicle is traveling. Information indicating whether or not an obstacle such as an object exists may be acquired. The vehicle information acquisition unit 16 may acquire information indicating whether or not an occupant is present in the vehicle. The vehicle information acquisition unit 16 acquires information regarding on/off of an automatic driving function and a remote control function, and information regarding whether a specific driving support function is in operation, as the operating state of the driving support function of the vehicle. It's okay. Examples of driving support functions include, but are not limited to, adaptive cruise control (ACC) and lane keeping assist system (LKAS).

イベント検出部18は、画像取得部12が取得する映像データ、音声取得部14が取得する音声データ、車両情報取得部16が取得する車両情報に基づいて、予め定められた各種イベント(以下、「トリガーイベント」という)の発生を検出する。 The event detection unit 18 detects various predetermined events (hereinafter referred to as “ Detects the occurrence of a trigger event (referred to as a trigger event).

トリガーイベントは、車両の事故やトラブル等の重大事象として想定され、その発生や検出があった場合に映像データを上書き禁止データとして保存する契機となる保存契機イベントである。イベント検出部18は、トリガーイベントとして、例えば車両の衝突、接触、横転、転落などの事故や、周辺車両の運転者による粗暴行為や危険運転などのトラブルの発生を検知する。なお、本実施の形態においては、周辺車両の危険運転の検知方法に主な特徴があり、周辺車両の危険運転が検出された場合もまたトリガーイベントが発生したものとするが、その詳細は後述する。イベント検出部18は、例えば前方カメラ40、後方カメラ42によって取得される映像データやマイク44によって取得される音声データから、所定の認識パターンに基づく画像認識や音声認識によって事故やトラブルの発生を検出してもよい。イベント検出部18は、例えば車両の走行速度や加速度の情報、アクセル、ブレーキおよびステアリングなどの操作情報から、急発進、急停止、急旋回などによる車両挙動の急激な変化を認識することでトリガーイベントの発生を検出してもよい。イベント検出部18は、前方カメラ40、後方カメラ42の映像データや車両のレーダセンサなどの情報から、所定の認識パターンに基づいて車両周囲の物体との接近、走行中の車線からの逸脱などを認識することでトリガーイベントの発生を検出してもよい。イベント検出部18は、ドライブレコーダ10に設けられた保存開始ボタンの押下や保存開始を示す音声指示を操作受付部26が受け付けたときにも、これをトリガーイベントの発生として検出してもよい。 A trigger event is a storage trigger event that is assumed to be a serious event such as a vehicle accident or trouble, and is a storage trigger event that, when it occurs or is detected, causes video data to be stored as overwrite-prohibited data. The event detection unit 18 detects, as a trigger event, the occurrence of an accident such as a vehicle collision, contact, rollover, or fall, or a trouble such as rough behavior or dangerous driving by a driver of a nearby vehicle. In addition, in this embodiment, the main feature is the method of detecting dangerous driving of surrounding vehicles, and when dangerous driving of surrounding vehicles is detected, it is assumed that a trigger event has also occurred, but the details will be described later. do. The event detection unit 18 detects the occurrence of an accident or trouble by image recognition or voice recognition based on a predetermined recognition pattern, for example from video data acquired by the front camera 40 and rear camera 42 and audio data acquired by the microphone 44. You may. The event detection unit 18 detects a trigger event by recognizing a sudden change in vehicle behavior due to a sudden start, sudden stop, sudden turn, etc., from information on the vehicle's running speed and acceleration, and operation information such as accelerator, brake, and steering. may also be detected. The event detection unit 18 uses information such as video data from the front camera 40 and rear camera 42 and the radar sensor of the vehicle to detect the approach of objects around the vehicle, deviation from the lane in which the vehicle is running, etc. based on a predetermined recognition pattern. The occurrence of a trigger event may be detected by recognition. The event detection unit 18 may also detect the occurrence of a trigger event when the operation reception unit 26 receives a press of a save start button provided on the drive recorder 10 or a voice instruction indicating the start of save.

画像処理部50は、物体検出部51、車種データ記憶部54、車種認識部55、サイズ測定部56、画像合成部57を有する。物体検出部51は、物体検出エンジン52、車両検出部53を含む。物体検出エンジン52は、画像から様々な物体を検出するための画像認識パターンを予め記憶するとともに、その画像認識パターンに基づいて所定の画像認識アルゴリズムを用いて画像に写る物体を検出する。画像認識パターンは、深層学習などの機械学習によって定義されてもよいし、特にドライブレコーダのカメラによって撮影し得る物体、例えば四輪車、二輪車、歩行者、道路設置物などの道路およびその周辺に存在し得る物体に特化した画像認識パターンであってもよい。物体検出エンジン52は、道路上の白線や車線をさらに認識する。車両検出部53は、後方カメラ42によって撮影される画像から物体検出エンジン52によって検出された物体のうち、四輪車や二輪車などの車両を周辺車両として検出する。車両検出部53は、物体検出エンジン52の一部として一体的に構成されてもよい。 The image processing section 50 includes an object detection section 51 , a vehicle type data storage section 54 , a vehicle type recognition section 55 , a size measurement section 56 , and an image composition section 57 . The object detection section 51 includes an object detection engine 52 and a vehicle detection section 53. The object detection engine 52 stores in advance image recognition patterns for detecting various objects from images, and detects objects appearing in images using a predetermined image recognition algorithm based on the image recognition patterns. The image recognition pattern may be defined by machine learning such as deep learning, and may be based on objects that can be photographed by a drive recorder camera, such as roads and surrounding areas such as four-wheeled vehicles, two-wheeled vehicles, pedestrians, and road installations. It may be an image recognition pattern specialized for objects that may exist. The object detection engine 52 further recognizes white lines and lanes on the road. The vehicle detection unit 53 detects a vehicle such as a four-wheeled vehicle or a two-wheeled vehicle as a surrounding vehicle from among the objects detected by the object detection engine 52 from the image taken by the rear camera 42 . The vehicle detection unit 53 may be integrally configured as a part of the object detection engine 52.

車種データ記憶部54は、あらかじめ収集された多数の車両の画像から深層学習などの機械学習の結果として抽出された車種ごとの形状や色彩などの画像的特徴に関するデータである車種データを保持する。車種としては、乗用車、トラック、バス、バイクといったカテゴリで分けられてもよく、さらにそれぞれのカテゴリの中で大型車、中型車、小型車に分けられてもよいし、あるいは、自動車メーカー名、車名、型式、年式などの詳細な車種で分けられてもよい。車種ごとの画像的特徴のデータは、主に後方カメラ42の映像に写ったときの画像的特徴として車種ごとに前方から見たときの形状や各パーツの配置、色彩などの各特徴に関する情報である。その他、側方から見たときの画像的特徴データや、後方から見たときの画像的特徴のデータも同様に、車種ごとに記憶される。変形例として、車種ごとの画像的特徴のデータとしてその車種の画像そのものを記憶させておき、その画像との近似度の高さによって車種を認識するようにしてもよい。その場合、車種ごとの画像を多数枚ずつ記憶させておいてもよい。 The vehicle type data storage unit 54 holds vehicle type data, which is data related to image characteristics such as the shape and color of each vehicle type, extracted as a result of machine learning such as deep learning from a large number of previously collected vehicle images. Car types may be divided into categories such as passenger cars, trucks, buses, and motorcycles, and within each category may be further divided into large cars, medium-sized cars, and small cars, or car manufacturer names and car names. , model, year, and other detailed vehicle types. The data on image characteristics for each vehicle type mainly includes information regarding the image characteristics when viewed from the front for each vehicle type, such as the shape, arrangement of parts, and color when viewed from the front. be. In addition, image feature data when viewed from the side and image feature data when viewed from the rear are similarly stored for each vehicle type. As a modified example, an image of the vehicle type itself may be stored as image feature data for each vehicle type, and the vehicle type may be recognized based on the degree of similarity to the image. In that case, a large number of images for each vehicle type may be stored.

車種認識部55は、車両検出部53によって画像から検出された周辺車両に関して、その車種を、車種データ記憶部54が保持する車種データに基づいて認識する。車両検出部53によって画像から検出された周辺車両は、画像合成部57によってその画像上で強調表示される。例えば、画像合成部57は、画像から検出された周辺車両の周囲に矩形状の強調枠の線を画像上に重ねて合成する。なお、変形例として、画像から検出されるナンバープレートの大きさを基準の一つとしてその周辺車両の車種を認識するようにしてもよい。 The vehicle type recognition section 55 recognizes the vehicle type of the surrounding vehicle detected from the image by the vehicle detection section 53 based on the vehicle type data held in the vehicle type data storage section 54 . The surrounding vehicles detected from the image by the vehicle detection section 53 are highlighted on the image by the image composition section 57. For example, the image synthesis unit 57 superimposes a rectangular emphasis frame line on the image around the surrounding vehicle detected from the image. In addition, as a modification, the size of the license plate detected from the image may be used as one of the standards to recognize the vehicle type of the surrounding vehicle.

サイズ測定部56は、車両検出部53により検出された周辺車両の画像上のサイズおよび位置を測定する。周辺車両の画像上のサイズは、画像上で検出される車両の像の縦および横のうち少なくともいずれかの長さを示すピクセル数である。例えば、画像合成部57によって周辺車両の像の周囲に合成される強調枠の縦サイズおよび横サイズを周辺車両の画像上のサイズとして扱ってもよい。サイズ測定部56は、周辺車両の縦サイズおよび横サイズの双方を測定する。変形例として縦サイズおよび横サイズの一方のみを測定する仕様としてもよいが、その場合、より誤差が出にくい縦サイズを測定することとしてもよい。測定対象の周辺車両が他の車両の陰に隠れると縦サイズより横サイズの方が幅全体を見えずに測定不能となりやすいためである。あるいは、測定対象の周辺車両を斜めから捉えると車両側方が見えるために横幅が捉えにくくなるためである。また、変形例として、画像上で検出される車両の像の面積を画像上のサイズとしてもよい。サイズ測定部56は、画像取得部12が取得する映像に含まれるフレーム画像ごとに周辺車両の画像上のサイズを測定することで、後述するようにサイズの変化が検出される。 The size measurement unit 56 measures the size and position of the surrounding vehicle detected by the vehicle detection unit 53 on the image. The size of the surrounding vehicle on the image is the number of pixels indicating at least one of the length and width of the image of the vehicle detected on the image. For example, the vertical size and horizontal size of the emphasis frame synthesized around the image of the surrounding vehicle by the image synthesis unit 57 may be treated as the size on the image of the surrounding vehicle. The size measuring unit 56 measures both the vertical size and the horizontal size of surrounding vehicles. As a modified example, only one of the vertical size and the horizontal size may be measured, but in that case, the vertical size, which is less prone to errors, may be measured. This is because if the surrounding vehicle to be measured is hidden behind another vehicle, the horizontal size is more likely to be impossible to measure because the entire width cannot be seen than the vertical size. Alternatively, if the surrounding vehicle to be measured is viewed from an angle, the sides of the vehicle can be seen, making it difficult to determine the width. Further, as a modification, the area of the image of the vehicle detected on the image may be set as the size on the image. The size measurement unit 56 measures the size of the surrounding vehicle on the image for each frame image included in the video acquired by the image acquisition unit 12, thereby detecting a change in size as described later.

サイズ測定部56は、車両検出部53により検出された周辺車両の画像上の位置をさらに検出する。周辺車両の画像上の位置は、例えば水平方向における相対的な位置であり、画像を左右に二分する仮想的な垂直中心線に対して左右どちら側にどれだけずれた位置にあるかを示す情報であってもよい。また、物体検出エンジン52が検出する道路上の白線や車線の位置に基づき、対象とする周辺車両の車線からの逸脱度を車両の画像上の位置の情報として検出してもよい。これらの位置情報により、後方の周辺車両が自車両の真後ろを走行しているかどうかを判別することができる。 The size measurement unit 56 further detects the position of the surrounding vehicle detected by the vehicle detection unit 53 on the image. The position of the surrounding vehicle on the image is, for example, a relative position in the horizontal direction, and information indicating how much it is shifted to the left or right with respect to the virtual vertical center line that divides the image into left and right. It may be. Further, based on the position of the white line or lane on the road detected by the object detection engine 52, the degree of deviation of the target surrounding vehicle from the lane may be detected as information on the position of the vehicle on the image. Based on this position information, it is possible to determine whether a nearby vehicle at the rear is running directly behind the host vehicle.

基準記憶部58は、車種ごとにあらかじめ定められた危険運転と判定するための画像上のサイズの閾値を危険判定基準として記憶する。基準記憶部58は、画像上のサイズの閾値だけでなく、車両の画像上における検出位置やその変化態様、サイズの変化態様をさらに危険判定基準として保持する。車両の画像上のサイズは、前方カメラ40および後方カメラ42に搭載されるレンズの歪みなどの特性や画像センサのサイズによって異なるため、レンズや画像センサごとにあらかじめ測定または計算されて定められる。危険判定基準の具体例については後述する。 The reference storage unit 58 stores a size threshold on an image for determining dangerous driving, which is predetermined for each vehicle type, as a risk determination standard. The reference storage unit 58 stores not only the size threshold on the image, but also the detected position of the vehicle on the image, the manner in which it changes, and the manner in which the size changes as danger determination standards. The size of the vehicle image varies depending on the characteristics such as distortion of the lenses mounted on the front camera 40 and the rear camera 42 and the size of the image sensor, and is therefore determined by measurement or calculation in advance for each lens and image sensor. A specific example of the risk determination criteria will be described later.

危険検出部59は、サイズ測定部56により測定された周辺車両の画像上のサイズと、基準記憶部58に保持される危険判定基準とに基づいて、周辺車両の危険運転を検出する。ここで、仮に車種の違いを考慮せずに画像上のサイズのみからその車両の接近を検出しようとすれば、大型車両ほど画像上のサイズが大きくなり、実際の車間距離よりも接近しているとの誤判定をするおそれがある。本実施の形態によれば、車種ごとに実際の車両の大きさに応じて接近時の画像上のサイズがあらかじめ基準として定められるため、精度よく危険な範囲への接近を判定することができる。また、周辺車両と自車両との車間距離を推測したり、計測したりすることなく、画像上のサイズが車種ごとの基準を超えるか否かだけで周辺車両の危険な接近を効率的に検出することができる。危険検出部59は、画像取得部12が取得する映像からだけでなく、音声取得部14が取得する音声からも周辺車両の危険運転を検出する。例えば、周囲の音声からクラクション音を検出した場合であって、そのクラクション音が所定時間以上継続したり、その検出回数が所定回数以上連続したりした場合に、周辺車両の危険運転を検出する。危険検出部59が危険運転を検出した場合、イベント検出部18はトリガーイベントが発生したものとしてこれを検出する。 The danger detection section 59 detects dangerous driving of the surrounding vehicle based on the size of the surrounding vehicle on the image measured by the size measuring section 56 and the danger determination criteria held in the reference storage section 58. If we were to try to detect the approach of a vehicle based only on the size on the image without taking into account differences in vehicle types, the larger the vehicle, the larger the size on the image, and the closer the vehicle would be than the actual distance between vehicles. There is a risk of misjudgment. According to this embodiment, since the size on the image at the time of approach is determined in advance as a reference according to the actual size of the vehicle for each vehicle type, it is possible to accurately determine whether the vehicle is approaching a dangerous range. In addition, without estimating or measuring the distance between surrounding vehicles and your own vehicle, dangerous approaches of nearby vehicles can be efficiently detected just by checking whether the size on the image exceeds the standard for each vehicle type. can do. The danger detection unit 59 detects dangerous driving of nearby vehicles not only from the video acquired by the image acquisition unit 12 but also from the audio acquired by the audio acquisition unit 14. For example, when a horn sound is detected from surrounding sounds, and the horn sound continues for a predetermined period of time or more, or the number of detections continues for a predetermined number of times or more, dangerous driving of nearby vehicles is detected. When the danger detection section 59 detects dangerous driving, the event detection section 18 detects this as the occurrence of a trigger event.

画像合成部57は、表示用の映像に、検出された周辺車両を囲んでその存在を強調するための破線で描く強調枠である識別車両枠を、その周辺車両を囲むように合成する。危険運転が検出された場合、画像合成部57はその危険運転をする車両の周囲に実線で描く強調枠である注意車両枠を表示する。なお、表示用の映像に識別車両枠や注意車両枠を合成する処理は、ナビゲーション装置11に含まれる画像合成部57に相当する機能に実行させる仕様としてもよく、その場合、重ね合わせるオブジェクト画像とその画像を表示する位置座標の情報をナビゲーション装置11に送信してもよい。 The image synthesis unit 57 synthesizes an identification vehicle frame, which is an emphasis frame drawn with a broken line to surround the detected nearby vehicle and emphasize its presence, to the display video so as to surround the detected nearby vehicle. When dangerous driving is detected, the image synthesis unit 57 displays a caution vehicle frame, which is an emphasis frame drawn with a solid line, around the vehicle driving the dangerous vehicle. Note that the process of compositing the identification vehicle frame and the caution vehicle frame with the display video may be performed by a function equivalent to the image compositing unit 57 included in the navigation device 11, in which case the object image to be superimposed and Information on the position coordinates at which the image will be displayed may be transmitted to the navigation device 11.

記録制御部20は、前方カメラ40または後方カメラ42により常時撮影されて画像取得部12が取得した映像データ、マイク44により常時集音されて音声取得部14が取得した音声データ、車両情報取得部16が取得した車両情報を、一時記憶部22へ一時的に記憶させる。記録制御部20は、一時記憶部22に記憶される映像データおよび音声データをリングバッファ方式で記録媒体48に記録する。 The recording control unit 20 records video data that is constantly photographed by the front camera 40 or rear camera 42 and acquired by the image acquisition unit 12, audio data that is constantly collected by the microphone 44 and acquired by the audio acquisition unit 14, and vehicle information acquisition unit. 16 is temporarily stored in the temporary storage section 22. The recording control unit 20 records the video data and audio data stored in the temporary storage unit 22 onto the recording medium 48 using a ring buffer method.

一時記憶部22は、フラッシュメモリないしソリッドステートドライブ(SSD;Solid State Drive)などの不揮発性メモリ、または、DRAMなどの揮発性メモリで構成されるバッファメモリであってもよい。記録媒体48は、例えば、SDカード(登録商標)などのメモリカードであり、ドライブレコーダ10に設けられるスロットに挿入して使用され、ドライブレコーダ10から取り外し可能となるよう構成される。記録媒体48は、ソリッドステートドライブやハードディスクドライブなどの補助記憶装置で構成されてもよいし、このような補助記憶装置としてナビゲーション装置11が内蔵する補助記憶装置を利用してもよい。なお、一時記憶部22へ記憶させる音声データや記録媒体48に記録される音声データは、映像データと合成された動画像データの形式で記憶ないし記録される。ただし、ユーザが選択するモードに応じて、音声データが含まれない無音の映像データとして動画像データが記憶ないし記録される場合もある。したがって、以下に説明する「映像データ」の概念には、特に説明しないが、音声データが含まれる場合と含まれない場合とがあり得る。 The temporary storage unit 22 may be a buffer memory configured with a nonvolatile memory such as a flash memory or a solid state drive (SSD), or a volatile memory such as a DRAM. The recording medium 48 is, for example, a memory card such as an SD card (registered trademark), is used by being inserted into a slot provided in the drive recorder 10, and is configured to be removable from the drive recorder 10. The recording medium 48 may be composed of an auxiliary storage device such as a solid state drive or a hard disk drive, or an auxiliary storage device built into the navigation device 11 may be used as such an auxiliary storage device. Note that the audio data stored in the temporary storage unit 22 and the audio data recorded on the recording medium 48 are stored or recorded in the form of moving image data combined with video data. However, depending on the mode selected by the user, the moving image data may be stored or recorded as silent video data that does not include audio data. Therefore, although not specifically explained, the concept of "video data" described below may or may not include audio data.

一時記憶部22へ記憶させる映像データは、MPEG2-TSなどの所定時間で区切られたストリーミング形式の動画像データとして記憶させてもよい。記録媒体48へ記録する映像データは、一時記憶部22へ記憶させる映像データと同じ形式でもよいし、異なる形式、例えばMP4形式などのより圧縮率の高い形式でもよい。 The video data to be stored in the temporary storage unit 22 may be stored as moving image data in a streaming format, such as MPEG2-TS, separated by a predetermined time period. The video data recorded on the recording medium 48 may be in the same format as the video data stored in the temporary storage unit 22, or may be in a different format, for example, a format with a higher compression rate such as the MP4 format.

記録制御部20は、映像データをリングバッファ方式で一時記憶部22および記録媒体48へ記録するため、一時記憶部22および記録媒体48に記録されたデータが容量一杯になると、最も古いデータから上書きされる。記録制御部20は、映像データを上書き可能の属性で一時記憶部22および記録媒体48にいったん記録する。 Since the recording control unit 20 records video data in the temporary storage unit 22 and the recording medium 48 using a ring buffer method, when the data recorded in the temporary storage unit 22 and the recording medium 48 reach their capacity, the oldest data is overwritten. be done. The recording control unit 20 temporarily records the video data in the temporary storage unit 22 and the recording medium 48 with an overwritable attribute.

記録制御部20は、イベント検出部18によりトリガーイベントの発生が検出された場合に、記録媒体48に記録された映像データのうち、少なくともトリガーイベントの検出タイミングを含む期間の映像データに上書き不可の保存形式を設定する。この「トリガーイベントの発生」には、危険検出部59によって危険運転が検出された場合も含まれる。上書き可能および上書き不可の属性は、例えば映像データに含まれる所定のフラグ等に書き込むことによって設定してもよいし、映像データから独立したインデックス等の管理ファイルに上書き可否の属性を書き込むことによって設定してもよい。元の映像データ自体に上書き可否の属性を書き込む場合、例えば元の映像データのうち上書き不可とする保存対象の期間の開始位置と終了位置を示す情報を書き込んでもよい。この場合、保存対象以外の部分、すなわち上書き可能とする部分を後から別データで上書きする際に、保存対象の開始位置から終了位置までが結果的に切り出されて残るようにそれ以外の部分に上書きする。また、保存対象とする部分を元の映像データから切り出して独立させたファイルの形で別途保存することで、上書き可能と上書き不可を区別する仕様としてもよい。保存対象として切り出す部分が複数の映像データをまたぐ場合、それぞれの映像データから切り出して連結したファイルを保存してもよい。独立させたファイルの形で別途保存する場合、上書き可能なデータが記録された領域とは異なる特定の領域、例えば特定のフォルダに記録することで、上書き可能と上書き不可を区別する仕様としてもよい。上書き不可の属性が設定されたデータは、ユーザの明示的な操作によって削除または上書き可能の属性への変更がされるまで上書き禁止の状態が保持される。記録制御部20は、危険運転の検出をトリガーイベントとして映像データを保存する場合、危険検出部59による危険運転の検出が終了するまで、または、注意車両枠で囲んだ周辺車両が画像取得部12で取得する映像から検出されなくなるまで、映像データを保存する。周辺車両の危険運転が検出されたことを契機として映像データを保存することにより、例えば衝突や事故などの重大事由が発生していなくとも、その前段階から映像データを保存でき、保存の確実性を高めることができる。 When the occurrence of a trigger event is detected by the event detection unit 18, the recording control unit 20 controls the video data recorded on the recording medium 48 to prevent overwriting of video data for a period that includes at least the detection timing of the trigger event. Set the save format. This “occurrence of a trigger event” includes a case where dangerous driving is detected by the danger detection unit 59. The overwritable and non-overwritable attributes may be set, for example, by writing in a predetermined flag included in the video data, or by writing the overwritable or non-overwritable attribute in a management file such as an index that is independent of the video data. You may. When writing an attribute indicating whether or not overwriting is possible in the original video data itself, for example, information indicating the start position and end position of a storage target period in which overwriting is not possible may be written in the original video data. In this case, when you later overwrite the part other than the part to be saved, that is, the part that can be overwritten, with other data, the other part is cut out and left as a result from the start position to the end position of the part to be saved. Overwrite. Alternatively, a specification may be adopted in which overwritable and non-overwritable parts are distinguished by cutting out the part to be saved from the original video data and saving it separately in the form of an independent file. If the portion to be saved spans multiple pieces of video data, a file may be saved that is cut out from each piece of video data and concatenated. When saving separately in the form of an independent file, it may be possible to distinguish between overwritable and non-overwritable data by recording it in a specific area, for example a specific folder, that is different from the area in which overwritable data is recorded. . Data set with an attribute that cannot be overwritten is maintained in an overwrite-inhibited state until it is deleted or changed to an overwrite-enabled attribute by an explicit operation by the user. When the recording control unit 20 stores video data using the detection of dangerous driving as a trigger event, the recording control unit 20 stores the video data until the detection of dangerous driving by the danger detection unit 59 is completed, or until the surrounding vehicles surrounded by the caution vehicle frame are stored in the image acquisition unit 12. Save the video data until it is no longer detected from the video acquired with. By saving video data when dangerous driving of nearby vehicles is detected, it is possible to save video data from the previous stage even if a serious event such as a collision or accident has not occurred, increasing the reliability of storage. can be increased.

表示制御部28は、画像合成部57によって合成される識別車両枠や注意車両枠をナビゲーション装置11の画面に表示させることにより、危険運転をする車両が周囲に存在することを運転者や同乗者に視覚的に報知する。表示制御部28は、後続の車両が危険運転をしていると判定された場合に、後方カメラ42に設けられた赤色LEDランプを点灯または点滅させることで録画中であることを示し、危険運転車両の運転手に警告してもよい。音声出力部29は、危険検出部59によって危険運転が検出された場合に、危険運転をする車両が周囲に存在することを運転者や同乗者に聴覚的に報知する。本実施の形態における報知態様として、視覚的な報知および聴覚的な報知を例示したが、変形例においては触覚による報知、例えばステアリングに振動を与えることにより運転者に注意喚起する報知態様を実現してもよい。 The display control unit 28 displays the identification vehicle frame and the caution vehicle frame synthesized by the image synthesis unit 57 on the screen of the navigation device 11, thereby informing the driver and passengers that there is a vehicle driving dangerously nearby. Visually notify. When it is determined that the following vehicle is driving dangerously, the display control unit 28 lights up or flashes a red LED lamp provided on the rear camera 42 to indicate that recording is in progress, thereby indicating that the vehicle following the vehicle is driving dangerously. The driver of the vehicle may be warned. When dangerous driving is detected by the danger detection section 59, the audio output section 29 audibly notifies the driver and fellow passengers that a vehicle driving dangerously is present in the surrounding area. Although visual notification and auditory notification are illustrated as examples of notification modes in this embodiment, in a modified example, tactile notification, for example, a notification mode in which vibration is applied to the steering wheel to alert the driver, can be realized. It's okay.

なお、危険検出部59は、危険運転を検出した場合に、車両の属性別、例えば車種別や色別の危険度に関するフィードバック情報として基準記憶部58に蓄積してもよい。例えば、危険度が高い属性の車両ほど、画像上のサイズの閾値を小さくして、より早いタイミングで危険運転であると判定できるようにしてもよいし、逆に危険度が低い属性の車両ほど、画像上のサイズの閾値を大きくして、安易に危険運転であるとの判定がされにくいようにしてもよい。危険検出部59は、車両の属性別の危険度に関するフィードバック情報を通信部24を介して所定のサーバへ送信し、車両の属性ごとの危険度の傾向を深層学習によって認識するための学習データとして蓄積させてもよい。こうしたデータは、危険運転が発生しやすいエリアの統計情報としても活用でき、あるいは自動車の保険料の算定根拠として活用することもできる。 Note that, when dangerous driving is detected, the danger detection section 59 may store feedback information in the reference storage section 58 regarding the degree of danger for each vehicle attribute, for example, for each vehicle type or color. For example, the higher the risk attribute of a vehicle, the smaller the size threshold on the image so that it can be determined to be dangerous driving at an earlier timing, and conversely, the lower the risk attribute of a vehicle , the size threshold on the image may be increased to make it difficult to easily determine that dangerous driving is occurring. The danger detection unit 59 transmits feedback information regarding the degree of danger for each attribute of the vehicle to a predetermined server via the communication unit 24, and uses the feedback information as learning data for recognizing the tendency of the degree of danger for each attribute of the vehicle by deep learning. It may be accumulated. Such data can be used as statistical information on areas where dangerous driving is likely to occur, or as a basis for calculating car insurance premiums.

図2は、後方カメラ42の映像における周辺車両の識別状態を模式的に例示する。本図の映像例では、後方カメラ42の映像である後方画像66に4台の周辺車両である第1周辺車両60a、第2周辺車両60b、第3周辺車両60c、第4周辺車両60dが写っている。車両検出部53が後方画像66から周辺車両60を検出し、それぞれに一意の識別情報を付与して車両を区別する。図示しないが前方カメラ40の映像からも同様に、車両検出部53が周辺車両60を検出し、それぞれに一意の識別情報を付与する。ただし、後方画像66から検出された周辺車両60が自車両を追い越して前方カメラ40の映像に写るようになった場合は、同一の車両が同じ識別情報を引き継ぐように付与する。同様に、前方カメラ40の映像から検出された周辺車両60を自車両が追い越して後方画像66に写るようになった場合は、同一の車両が同じ識別情報を引き継ぐように付与する。 FIG. 2 schematically illustrates the identification state of surrounding vehicles in the image of the rear camera 42. In the video example shown in this figure, four surrounding vehicles, namely a first surrounding vehicle 60a, a second surrounding vehicle 60b, a third surrounding vehicle 60c, and a fourth surrounding vehicle 60d, are reflected in the rear image 66, which is the image of the rear camera 42. ing. The vehicle detection unit 53 detects surrounding vehicles 60 from the rear image 66, and assigns unique identification information to each vehicle to distinguish the vehicles. Although not shown, the vehicle detection unit 53 similarly detects surrounding vehicles 60 from the image of the front camera 40 and assigns unique identification information to each vehicle. However, if a nearby vehicle 60 detected from the rear image 66 passes the own vehicle and appears in the image of the front camera 40, the same identification information is given so that the same vehicle takes over. Similarly, when the own vehicle passes a nearby vehicle 60 detected from the image of the front camera 40 and appears in the rear image 66, the same identification information is assigned so that the same vehicle takes over.

車両検出部53により検出された周辺車両60の車種を車種認識部55が認識する。これら周辺車両60の周囲には、各車両を囲むように識別車両枠64が表示される。識別車両枠64は破線で描かれた矩形である。識別車両枠64の大きさは、周辺車両60の輪郭が識別車両枠64に内接するように設定される。画像上の周辺車両60が移動してサイズが変化した場合はその変化に追随するように識別車両枠64の大きさも変化させる。識別車両枠64の矩形の縦サイズと横サイズが周辺車両60の画像上のサイズとしてサイズ測定部56により測定されてもよい。変形例においては、識別車両枠64を車種ごとに区別できるよう異なる線種や太さ、色彩で表示してもよいし、画像上のサイズが大きいほど強調されるよう異なる線種や太さ、色彩で表示してもよい。あるいは、周辺車両60を検出して車種を識別した場合であっても、特に識別車両枠64のような識別状態を映像内に表示しない仕様としてもよい。 The vehicle type recognition unit 55 recognizes the vehicle type of the surrounding vehicle 60 detected by the vehicle detection unit 53. An identification vehicle frame 64 is displayed around these surrounding vehicles 60 so as to surround each vehicle. The identification vehicle frame 64 is a rectangle drawn with broken lines. The size of the identification vehicle frame 64 is set so that the outline of the surrounding vehicle 60 is inscribed in the identification vehicle frame 64. When the size of the surrounding vehicle 60 on the image changes due to movement, the size of the identification vehicle frame 64 is also changed to follow the change. The length and width of the rectangle of the identification vehicle frame 64 may be measured by the size measurement unit 56 as the size of the surrounding vehicle 60 on the image. In a modified example, the identification vehicle frame 64 may be displayed with different line types, thicknesses, and colors to distinguish each vehicle type, or may be displayed with different line types, thicknesses, and colors so that the larger the size on the image, the more emphasized it is. It may be displayed in color. Alternatively, even if the surrounding vehicle 60 is detected and the vehicle type is identified, the specification may be such that the identification state such as the identification vehicle frame 64 is not displayed in the video.

図3は、後方カメラ42の映像における危険運転車両の認識状態を模式的に例示する。検出された周辺車両60のうち、危険運転が検出された車両に対しては、識別車両枠64に代えて注意車両枠62で囲むように表示する。図3の例では、第1周辺車両60aが自車両に接近し、後方画像66上の車両のサイズが閾値を超えた状態となったことにより危険運転であると判定している。例えば、注意車両枠62の縦サイズは、図2の第1周辺車両60aを囲む識別車両枠64の縦サイズの1.2倍となっており、この車種の危険判定基準である所定の閾値を超えていることから、危険運転車両であると判定されている。注意車両枠62の矩形状の線は、識別車両枠64の矩形状の線よりも太く目立つ線種であり、その存在が識別車両枠64よりも強調される実線で描かれる。注意車両枠62の大きさは、周辺車両60の輪郭が注意車両枠62に内接するように設定される。画像上の周辺車両60が移動してサイズが変化した場合はその変化に追随するように注意車両枠62の位置や大きさも変化させる。注意車両枠62の線種や線の太さ、色彩は、危険度のレベルに応じて異なる態様としてもよい。例えば、危険度が高い車両ほど赤や黄色などの強調の度合いが強い色で表示する。基準記憶部58が保持するフィードバック情報に基づき、車両の属性ごとの危険度の高さによって識別車両枠64や注意車両枠62を色分けしてもよい。 FIG. 3 schematically illustrates the recognition state of a dangerous driving vehicle in the image of the rear camera 42. Among the detected surrounding vehicles 60, a vehicle in which dangerous driving has been detected is displayed so as to be surrounded by a caution vehicle frame 62 instead of an identification vehicle frame 64. In the example of FIG. 3, the first surrounding vehicle 60a approaches the host vehicle and the size of the vehicle on the rear image 66 exceeds a threshold value, so it is determined that dangerous driving is occurring. For example, the vertical size of the caution vehicle frame 62 is 1.2 times the vertical size of the identification vehicle frame 64 surrounding the first surrounding vehicle 60a in FIG. The vehicle has been determined to be a dangerously driven vehicle. The rectangular line of the caution vehicle frame 62 is a line type that is thicker and more conspicuous than the rectangular line of the identification vehicle frame 64, and is drawn as a solid line so that its presence is emphasized more than that of the identification vehicle frame 64. The size of the caution vehicle frame 62 is set so that the outline of the surrounding vehicle 60 is inscribed in the caution vehicle frame 62. When the surrounding vehicle 60 on the image moves and changes in size, the position and size of the caution vehicle frame 62 are also changed to follow the change. The line type, line thickness, and color of the caution vehicle frame 62 may be different depending on the level of danger. For example, the more dangerous a vehicle is, the more emphasized the color, such as red or yellow, is displayed. Based on the feedback information held by the reference storage unit 58, the identification vehicle frame 64 and the caution vehicle frame 62 may be color-coded depending on the level of risk for each attribute of the vehicle.

危険運転の多くは、一般に「あおり運転」と呼ばれる。「あおり運転」にも様々な態様があるものの、そのほとんどが最初に後方から車間距離を極端に詰めて威嚇する行為から始まる点で共通する。そこで、本実施の形態では危険運転車両を検出するために、後方画像66から車間距離を過度に接近させる周辺車両を特定する。その時点でいったん危険運転であると判定するが、偶発的に接近してしまったにすぎない危険運転ではない車両についても危険運転であると誤判定してしまう場合があり得る。そのため、いったん危険運転と判定した周辺車両は注意車両枠62で囲んで表示するとともに、その後の画像上のサイズの変化や画像上の検出位置の変化を追随することで、「あおり運転」の各態様に対応する危険判定基準を満たすかどうかが判定される。危険運転の態様としては、(1)車間距離の過度な接近だけでなく、例えば(2)蛇行運転、(3)幅寄せ、(4)強引な進路変更による追い越しや割り込み、(5)前方を塞ぐ急減速や急停止、などがある。また、(6)クラクション、ハイビーム、パッシングによる威嚇、といった行為も含まれる。これらの危険運転を判定するための危険判定基準として、画像上の車両サイズに基づいて判定するものと、画像上の車両位置に基づいて判定するもの、車両サイズの変化態様や車両位置の変化態様に基づいて判定するものがある。危険検出部59は、基準記憶部58が保持する危険判定基準に基づいて周辺車両の危険運転を判定する。以下、各危険判定基準と判定方法について説明する。 Most types of dangerous driving are commonly referred to as ``distracted driving.'' Although there are various forms of ``distracted driving,'' most of them have one thing in common: it begins with an act of threatening behavior by extremely closing the distance between vehicles from behind. Therefore, in this embodiment, in order to detect a dangerously driven vehicle, a nearby vehicle that causes the inter-vehicle distance to approach the vehicle excessively is identified from the rear image 66. At that point, it is once determined that the vehicle is driving dangerously, but it may also be incorrectly determined that a vehicle that is not driving dangerously but has only accidentally approached the vehicle is driving dangerously. Therefore, surrounding vehicles that have been determined to be driving dangerously are displayed surrounded by a caution vehicle frame 62, and by following subsequent changes in size and detection position on the image, each vehicle that has been determined to be driving in a dangerous manner is displayed. It is determined whether the risk determination criteria corresponding to the aspect are satisfied. Dangerous driving includes not only (1) excessively close following distance, but also (2) meandering driving, (3) swerving, (4) overtaking or cutting in by forcefully changing course, and (5) driving in front of the vehicle. This includes sudden deceleration and sudden stopping. Also includes (6) intimidation by honking, high beams, and passing. These risk criteria for determining dangerous driving include one based on the size of the vehicle on the image, one based on the position of the vehicle on the image, and the manner in which the vehicle size changes and the position of the vehicle. There are judgments based on The danger detection unit 59 determines dangerous driving of surrounding vehicles based on the danger determination criteria held in the reference storage unit 58. Below, each risk judgment standard and judgment method will be explained.

(1)車間距離の過度な接近に関する危険判定基準
後方に位置する周辺車両と自車両との車間距離が所定の危険な距離(例えば3メートル)となったときのその車両の画像上のサイズの閾値が車種ごとに危険判定基準としてあらかじめ定義される。危険検出部59は、車両検出部53により検出された周辺車両の画像上のサイズが、図3に示すように、その車種の危険判定基準として定義される画像上のサイズの閾値以上となったときに、その車両が自車両からの危険な範囲、すなわち過度な接近範囲まで迫ったと判定する。危険検出部59は、車両の画像上のサイズが所定の閾値以上となった瞬間に危険運転であると判定してもよいし、その閾値以上となった状態が所定時間以上経過したときに危険運転であると判定してもよい。あるいは、車両の画像上のサイズが所定の閾値以上となった瞬間に識別車両枠64で囲んで表示するとともに、その閾値以上となった状態が所定時間以上経過したときに危険度が高まったとして識別車両枠64の表示色を強調色に変更することで、強調の度合いを高める表示をしてもよい。
(1) Danger judgment criteria regarding excessively close following distance When the distance between the vehicle and the surrounding vehicle located behind becomes a predetermined dangerous distance (for example, 3 meters), the size of the vehicle on the image Threshold values are defined in advance as danger determination criteria for each vehicle type. The danger detection unit 59 detects that the size of the nearby vehicle detected by the vehicle detection unit 53 on the image is equal to or larger than the threshold of the size on the image defined as the danger determination criterion for the vehicle type, as shown in FIG. In some cases, the system determines that the vehicle has come within a dangerous range, that is, an excessively close range, from the own vehicle. The danger detection unit 59 may determine that driving is dangerous the moment the size of the vehicle on the image exceeds a predetermined threshold, or may determine that driving is dangerous when the size of the vehicle on the image exceeds the threshold for a predetermined period of time. It may be determined that the user is driving. Alternatively, the moment the size of the vehicle on the image exceeds a predetermined threshold, it is displayed surrounded by an identification vehicle frame 64, and when the size of the vehicle exceeds the threshold for a predetermined period of time, it is determined that the degree of danger has increased. The display color of the identification vehicle frame 64 may be changed to an emphasis color to increase the degree of emphasis.

危険判定基準として、車両の画像上のサイズの閾値だけでなく、そのサイズの変化態様がさらに定義されてもよい。例えば、周辺車両が接近、離脱、接近を交互に繰り返す場合のサイズの変化態様が定義される。この場合、画像上のサイズが閾値以上となったり閾値未満となったりを交互に繰り返す変化態様となる。また例えば、周辺車両が急激に接近した場合のようにサイズ変化が急速である変化態様が危険判定基準として定義される。危険検出部59は、後方画像66における周辺車両60のサイズや位置の変化態様が危険判定基準に合致したときに危険運転であると判定する。なお、危険検出部59は、危険運転でなくとも車間距離が狭くなりやすい、停車中や渋滞中といった状況を除外してもよい。例えば、車両情報取得部16から取得が取得する速度情報や画像取得部12が取得する映像から画像認識によって測定する自車両の速度情報に基づいて、自車両の速度が所定の低い時速以下にあるときは危険運転とは判定しないようにしてもよく、これらの状況が除外されるような速度情報に関する条件が危険判定基準に定められてもよい。 As the risk determination criterion, not only the threshold value of the size of the vehicle on the image, but also the manner in which the size changes may be further defined. For example, the manner in which the size changes when surrounding vehicles alternately approach, leave, and approach is defined. In this case, the size on the image alternately becomes larger than the threshold value and becomes smaller than the threshold value. Further, for example, a change mode in which the size changes rapidly, such as when a nearby vehicle approaches rapidly, is defined as a danger determination criterion. The danger detection unit 59 determines that driving is dangerous when the changes in the size and position of the surrounding vehicle 60 in the rear image 66 match the danger determination criteria. Note that the danger detection unit 59 may exclude situations such as when the vehicle is stopped or in traffic jams, where the distance between vehicles tends to become narrow even if the driving is not dangerous. For example, based on the speed information acquired from the vehicle information acquisition unit 16 or the speed information of the own vehicle measured by image recognition from the image acquired by the image acquisition unit 12, the speed of the own vehicle is below a predetermined low speed. In some cases, it may not be determined that dangerous driving is occurring, and conditions related to speed information that exclude these situations may be set in the danger determination criteria.

(2)蛇行運転に関する危険判定基準
(1)の基準によりいったん危険運転が検出された周辺車両60について、後方画像66上の車両の検出位置が中心線を境に左右に交互に移動を繰り返すような変化態様が蛇行運転の危険判定基準として定められる。左右に交互に移動を繰り返す回数としては、例えば左右の移動を2往復以上繰り返したことを危険判定基準として定義してもよい。また、画像上の車両の検出位置が左右に移動を繰り返す蛇行運転の間は過度な接近状態になくてもよく、したがってその間は画像上の車両のサイズが(1)の基準以上となっていなくてもよい。これにより、自車両の後方に過度に接近した後に蛇行を繰り返すことで威嚇するような危険運転を継続的に検出することができる。
(2) Danger Judgment Criteria for Meandering Driving For the surrounding vehicles 60 whose dangerous driving has been detected according to the criteria in (1), the detection position of the vehicle on the rear image 66 repeatedly moves alternately left and right with the center line as the border. These changes are determined as the criteria for determining the danger of meandering driving. As for the number of times that the left and right movements are repeated, for example, repeating the left and right movements two or more times may be defined as a danger determination criterion. Also, during meandering driving where the detected position of the vehicle on the image repeatedly moves left and right, it is not necessary to be in an excessively close state, and therefore, during that time, the size of the vehicle on the image does not exceed the criterion (1). It's okay. This makes it possible to continuously detect dangerous driving that threatens to occur by repeatedly meandering after getting too close to the rear of the own vehicle.

(3)幅寄せに関する危険判定基準
(1)の基準によりいったん危険運転が検出された周辺車両60が自車両の側方へ移動して並走し、幅寄せする行為を検出する危険判定基準として、その周辺車両60が前方カメラ40の側方画像において自車両に対する危険な接近位置にあるときのその車両の画像上のサイズの閾値が車種ごとに定義される。危険検出部59は、前方カメラ40の側方画像上の車両のサイズが所定の閾値以上となっている状態を危険運転であると判定する。ただし、前方カメラ40による側方の映像は、側方の窓越しの映像であるため、周辺車両が自車両の側方に接近しすぎた状況ではその周辺車両の全体が窓越しに写るとは限らない。そのため、側方画像上の車両のサイズとしては、車両全体のサイズの代わりに車両の一部、例えば窓等のサイズの閾値が定義されてもよい。これにより、自車両の後方に過度に接近した後で自車両の側方に過度に接近する幅寄せ行為で威嚇するような危険運転を継続的に検出することができる。
(3) Danger Judgment Criteria for Side Pulling As a risk judgment standard for detecting an act in which the surrounding vehicle 60, whose dangerous driving has been detected according to the criteria in (1), moves to the side of the own vehicle and runs parallel to the own vehicle, and then pulls to the side. , a threshold value of the size of the vehicle on the image when the surrounding vehicle 60 is in a dangerously close position to the own vehicle in the side image of the front camera 40 is defined for each vehicle type. The danger detection unit 59 determines that the state in which the size of the vehicle on the side image of the front camera 40 is equal to or larger than a predetermined threshold is dangerous driving. However, since the side image taken by the front camera 40 is the image through the side window, in a situation where the surrounding vehicle is too close to the side of the own vehicle, the entire surrounding vehicle may not be reflected through the window. Not exclusively. Therefore, as the size of the vehicle on the side image, a threshold value of the size of a part of the vehicle, such as a window, may be defined instead of the size of the entire vehicle. As a result, it is possible to continuously detect dangerous driving in which the driver approaches the rear of the host vehicle too much and then approaches the side of the host vehicle to threaten the driver.

(4)強引な進路変更による追い越しや割り込みに関する危険判定基準
強引な進路変更による追い越しに関する危険判定基準として、(1)の基準により危険運転が検出された周辺車両60について、後方画像66上における検出位置が所定の速度以上で中心線を外れて車線を逸脱する変化態様と、前方カメラ40の側方画像上における検出位置が所定の速度以上で前進する変化態様が定義される。また強引な進路変更による割り込みに関する危険判定基準として、(1)の基準により危険運転が検出された周辺車両60について、前方カメラ40の側方画像上における検出位置が所定の速度以上で前進する変化態様と、前方カメラ40の側方画像上における検出位置が所定の速度以上で自車両の正面に移動する変化態様が定義される。これにより、自車両の後方に過度に接近した後で急加速で強引に自車両を追い越して強引に正面に割り込むような危険運転を継続的に検出することができる。
(4) Danger Judgment Criteria for Overtaking or Interrupting Due to Forcible Course Change As a risk judgment criterion for overtaking due to forcible course change, detection on the rear image 66 of surrounding vehicles 60 whose dangerous driving was detected according to the criteria in (1) A change mode in which the position deviates from the center line and deviates from the lane at a predetermined speed or higher, and a change mode in which the detected position on the side image of the front camera 40 moves forward at a predetermined speed or higher are defined. In addition, as a risk judgment criterion regarding an interruption due to a forcible course change, regarding the surrounding vehicle 60 whose dangerous driving was detected according to the criterion (1), the detection position on the side image of the front camera 40 moves forward at a predetermined speed or more. and a change mode in which the detected position on the side image of the front camera 40 moves toward the front of the own vehicle at a predetermined speed or higher. This makes it possible to continuously detect dangerous driving in which the driver approaches the rear of the own vehicle excessively, then suddenly accelerates to overtake the own vehicle and forcibly cuts in front of the own vehicle.

(5)前方を塞ぐ急減速や急停止に関する危険判定基準
(1)の基準により危険運転が検出された周辺車両60が自車両を追い越して前方に割り込んだ上で、前方を塞ぐ急減速や急停止をする行為を検出するための危険判定基準として、その周辺車両60が前方で過度に接近した状態の前方カメラ40の画像上におけるサイズの閾値が車種ごとに定義される。また、周辺車両60が前方で急減速や急停止をする場合、自車両との車間距離が急速に詰まることから、周辺車両60の前方カメラ40の画像上におけるサイズの変化速度の閾値がさらに定義され、その閾値以上の変化速度でサイズが大きくなった場合に急減速や急停止があったと判定してもよい。また、前方カメラ40の画像上で周辺車両60のブレーキランプの点灯を画像処理で検出することで急減速や急停止があったと判定してもよい。これにより、自車両の後方に過度に接近した後で自車両を追い越して前方を塞ぐ形で急減速や急停止するような危険運転を継続的に検出することができる。
(5) Danger Judgment Criteria for Sudden Deceleration or Sudden Stop that Blocks the Front Side When a nearby vehicle 60 whose dangerous driving has been detected according to the criteria in (1) overtakes the host vehicle and cuts in front of the own vehicle, then suddenly decelerates or suddenly stops that blocks the front area. As a risk judgment criterion for detecting the act of stopping, a threshold value of the size on the image taken by the front camera 40 in which the surrounding vehicle 60 approaches excessively in front is defined for each vehicle type. In addition, when the surrounding vehicle 60 suddenly decelerates or suddenly stops in front of the vehicle, the distance between the host vehicle and the own vehicle rapidly decreases, so a threshold value for the speed of change in the size of the surrounding vehicle 60 on the image of the front camera 40 is further defined. If the size increases at a rate of change greater than or equal to the threshold value, it may be determined that there has been a sudden deceleration or sudden stop. Alternatively, it may be determined that there has been a sudden deceleration or sudden stop by detecting the lighting of the brake lamps of the surrounding vehicles 60 on the image of the front camera 40 through image processing. This makes it possible to continuously detect dangerous driving in which the driver suddenly decelerates or suddenly stops in such a way as to overtake the vehicle and block the front of the vehicle after coming too close to the rear of the vehicle.

(6)ハイビーム、パッシング、クラクションなどによる威嚇行為に関する危険判定基準
(1)の基準によりいったん危険運転が検出された周辺車両60について、後方画像66上におけるヘッドライトのハイビーム点灯への切替や瞬間的なハイビーム点灯の繰り返し(いわゆるパッシング)を画像認識により検出するための画像認識パターンが威嚇行為に関する危険判定基準として定義される。また、周囲の音声からクラクション音等の警笛音を過度に鳴らす行為を検出するための音声認識パターンが威嚇行為に関する危険判定基準として定義される。あるいは周辺車両60の運転手や同乗者が窓から身を乗り出したり下車したりして威嚇するような状態を検出するための画像認識パターンや、それら運転手や同乗者が大声で威嚇する状態を検出するための音声認識パターンがさらに定義されてもよい。
(6) Danger Judgment Criteria for Intimidating Acts Using High Beams, Passing, Horns, etc. For surrounding vehicles 60 whose dangerous driving has been detected according to the criteria in (1), the headlights may be switched to high beam lighting on the rear image 66 or instantaneously An image recognition pattern for detecting repeated high beam lighting (so-called passing) by image recognition is defined as a risk judgment standard for threatening behavior. In addition, a voice recognition pattern for detecting an act of excessively sounding a horn such as a horn sound from surrounding sounds is defined as a risk judgment standard regarding an intimidation act. Alternatively, an image recognition pattern can be used to detect a situation in which the driver or passenger of a nearby vehicle 60 is threatening by leaning out of the window or getting off the vehicle, or a situation in which the driver or passenger is loudly threatening. A speech recognition pattern for detection may further be defined.

なお、(1)~(6)の危険判定基準のうち一つまたは複数を繰り返す状態の経過時間の長さによって危険度を分けた上で、その危険度に応じて注意車両枠62を色分けしてもよい。 In addition, the degree of danger is divided according to the length of time that has elapsed in which one or more of the danger judgment criteria of (1) to (6) are repeated, and the caution vehicle frame 62 is color-coded according to the degree of danger. It's okay.

図4は、危険運転を検出する過程を示すフローチャートである。画像取得部12が画像を取得し(S10)、車両検出部53が後方画像66から周辺車両60を検出した場合(S12のY)、その検出された周辺車両60の車種を車種認識部55が認識する(S14)。危険検出部59は、車種ごとの危険判定基準を読み出し(S16)、周辺車両60の画像上のサイズが車種ごとの危険判定基準以上であった場合に(S18のY)、その周辺車両60に対して危険運転であると判定し(S20)、記録制御部20が映像データを保存するとともに表示制御部28が危険運転の車両を運転者に報知する(S22)。S12において車両検出部53が後方画像66から周辺車両60を検出しない場合はS14以降の処理をスキップする(S12のN)。S18において、周辺車両60の画像上のサイズが車種ごとの危険判定基準以上でなかった場合はS20以降の処理をスキップする(S18のN)。 FIG. 4 is a flowchart showing the process of detecting dangerous driving. When the image acquisition unit 12 acquires an image (S10) and the vehicle detection unit 53 detects the surrounding vehicle 60 from the rear image 66 (Y in S12), the vehicle type recognition unit 55 identifies the vehicle type of the detected surrounding vehicle 60. Recognize (S14). The danger detection unit 59 reads out the danger determination standard for each vehicle type (S16), and when the size of the surrounding vehicle 60 on the image is equal to or larger than the danger determination standard for each vehicle type (Y in S18), the danger detection unit 59 reads out the danger determination standard for each vehicle type (S16). However, it is determined that the vehicle is driving dangerously (S20), and the recording control unit 20 saves the video data, and the display control unit 28 notifies the driver of the dangerous driving vehicle (S22). If the vehicle detection unit 53 does not detect the surrounding vehicle 60 from the rear image 66 in S12, the process from S14 onward is skipped (N in S12). In S18, if the size of the surrounding vehicle 60 on the image is not larger than the danger determination standard for each vehicle type, the process from S20 onward is skipped (N in S18).

以上、実施の形態において説明したように、車種ごとに実際の車両の大きさに応じて接近時の画像上のサイズがあらかじめ基準として定められるため、精度よく危険な範囲への接近を判定することができる。また、周辺車両と自車両との車間距離を推測したり、計測したりすることなく、画像上のサイズが車種ごとの基準を超えるか否かだけで周辺車両の危険な接近を効率的に検出することができる。さらに、周辺車両の危険運転が検出されたことを契機として映像データを保存することにより、例えば衝突や事故などの重大事由が発生していなくとも、その前段階から映像データを保存でき、保存の確実性を高めることができる。 As described above in the embodiment, the size on the image at the time of approach is determined in advance as a reference according to the actual size of the vehicle for each vehicle type, so it is possible to accurately determine whether the vehicle is approaching a dangerous area. Can be done. In addition, without estimating or measuring the distance between surrounding vehicles and your own vehicle, dangerous approaches of nearby vehicles can be efficiently detected just by checking whether the size on the image exceeds the standard for each vehicle type. can do. Furthermore, by saving video data when dangerous driving of nearby vehicles is detected, it is possible to save video data from the previous stage even if a serious event such as a collision or accident has not occurred. Can increase certainty.

以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。 The present invention has been described above based on the embodiments. Those skilled in the art will understand that this embodiment is merely an example, and that various modifications can be made to the combinations of the constituent elements and processing processes, and that such modifications are also within the scope of the present invention. be.

10 ドライブレコーダ、 11 ナビゲーション装置、 12 画像取得部、 20 記録制御部、 40 前方カメラ、 42 後方カメラ、 53 車両検出部、 54 車種データ記憶部、 55 車種認識部、 56 サイズ測定部、 58 基準記憶部、 59 危険検出部、 60 周辺車両。 10 drive recorder, 11 navigation device, 12 image acquisition unit, 20 recording control unit, 40 front camera, 42 rear camera, 53 vehicle detection unit, 54 vehicle type data storage unit, 55 vehicle type recognition unit, 56 size measurement unit, 58 reference storage Department, 59 Hazard Detection Department, 60 Surrounding Vehicles.

Claims (5)

車両の周囲を撮影した画像を取得する画像取得部と、
前記画像取得部で取得される画像から周辺車両を検出する車両検出部と、
前記車両検出部で検出された周辺車両の車種を認識する車種認識部と、
前記車両検出部で検出された周辺車両の画像上のサイズを測定するサイズ測定部と、
車種ごとにあらかじめ定められた危険運転と判定するための車両の画像上のサイズである危険判定基準サイズを記憶する基準記憶部と、
前記サイズ測定部で測定されたサイズと前記危険判定基準サイズとの比較に基づいて周辺車両の危険運転を判定する危険検出部と、
を備えることを特徴とする危険運転判定装置。
an image acquisition unit that acquires an image of the surroundings of the vehicle;
a vehicle detection unit that detects surrounding vehicles from the image acquired by the image acquisition unit;
a vehicle type recognition unit that recognizes the vehicle type of a nearby vehicle detected by the vehicle detection unit;
a size measuring unit that measures the size of the surrounding vehicle detected by the vehicle detecting unit on the image;
a reference storage unit that stores a danger determination reference size that is a size on an image of a vehicle for determining dangerous driving that is predetermined for each vehicle type;
a danger detection unit that determines dangerous driving of surrounding vehicles based on a comparison between the size measured by the size measurement unit and the danger determination reference size ;
A dangerous driving determination device comprising:
前記危険判定基準サイズは、車種ごとにあらかじめ定められた危険運転と判定するための車両の画像上の縦サイズを含み、
前記危険検出部は、前記サイズ測定部で測定されたサイズのうち縦サイズのみと前記危険判定基準サイズに含まれる縦サイズとの比較に基づいて周辺車両の危険運転を判定することを特徴とする請求項1に記載の危険運転判定装置。
The risk determination standard size includes a vertical size on an image of a vehicle for determining dangerous driving that is predetermined for each vehicle type,
The danger detection unit determines dangerous driving of surrounding vehicles based on a comparison between only the vertical size among the sizes measured by the size measurement unit and the vertical size included in the danger determination reference size. The dangerous driving determination device according to claim 1.
前記画像取得部が取得する画像は、前記車両の後方を撮影した後方画像であり、
前記車両検出部が検出する周辺車両は、前記後方画像から検出する車両であり、
前記基準記憶部が記憶する危険判定基準サイズは、車両の後方を撮影した画像から検出される車両を危険運転と判定するための車両の画像上のサイズであることを特徴とする請求項1または2に記載の危険運転判定装置。
The image acquired by the image acquisition unit is a rear image taken of the rear of the vehicle,
The surrounding vehicle detected by the vehicle detection unit is a vehicle detected from the rear image,
2. The risk determination reference size stored in the reference storage unit is a size on an image of a vehicle detected from an image taken of the rear of the vehicle to determine that the vehicle is driving dangerously. 2. The dangerous driving determination device according to 2.
車両の周囲を撮影した画像を取得する過程と、
前記画像を取得する過程で取得される画像から周辺車両を検出する過程と、
前記周辺車両を検出する過程で検出された周辺車両の車種を認識する過程と、
前記周辺車両を検出する過程で検出された周辺車両の画像上のサイズを測定する過程と、
車種ごとにあらかじめ定められた危険運転と判定するための車両の画像上のサイズである危険判定基準サイズを読み出す過程と、
前記サイズを測定する過程で測定されたサイズと前記危険判定基準サイズとの比較に基づいて周辺車両の危険運転を判定する過程と、
コンピュータが実現する過程として備えることを特徴とする危険運転判定方法。
a process of acquiring an image of the surroundings of the vehicle;
a step of detecting surrounding vehicles from an image acquired in the process of acquiring the image;
a step of recognizing the vehicle type of the surrounding vehicle detected in the step of detecting the surrounding vehicle;
a step of measuring the size of the detected surrounding vehicle on the image in the process of detecting the surrounding vehicle;
a process of reading out a danger determination standard size, which is a size on an image of a vehicle for determining dangerous driving, which is predetermined for each vehicle type;
a step of determining dangerous driving of surrounding vehicles based on a comparison between the size measured in the step of measuring the size and the dangerous determination reference size ;
A method for determining dangerous driving, comprising : a process realized by a computer .
車両の周囲を撮影した画像を取得する機能と、
前記画像を取得する機能で取得される画像から周辺車両を検出する機能と、
前記周辺車両を検出する機能で検出された周辺車両の車種を認識する機能と、
前記周辺車両を検出する機能で検出された周辺車両の画像上のサイズを測定する機能と、
車種ごとにあらかじめ定められた危険運転と判定するための車両の画像上のサイズである危険判定基準サイズを記憶する機能と、
前記サイズを測定する機能で測定されたサイズと前記危険判定基準サイズとの比較に基づいて周辺車両の危険運転を判定する機能と、
をコンピュータに実現させることを特徴とする危険運転判定プログラム。
A function to acquire images of the surroundings of the vehicle,
a function of detecting surrounding vehicles from an image acquired by the image acquisition function;
a function of recognizing the model of a nearby vehicle detected by the function of detecting a nearby vehicle;
a function of measuring the size of the surrounding vehicle detected by the function of detecting the surrounding vehicle on the image;
A function that stores a dangerous judgment standard size, which is the size of the vehicle image on which dangerous driving is determined in advance for each vehicle type;
a function that determines dangerous driving of surrounding vehicles based on a comparison between the size measured by the size measuring function and the dangerous determination reference size ;
A dangerous driving determination program characterized by causing a computer to realize the following.
JP2019231813A 2019-12-23 2019-12-23 Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program Active JP7434882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019231813A JP7434882B2 (en) 2019-12-23 2019-12-23 Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019231813A JP7434882B2 (en) 2019-12-23 2019-12-23 Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program

Publications (2)

Publication Number Publication Date
JP2021099720A JP2021099720A (en) 2021-07-01
JP7434882B2 true JP7434882B2 (en) 2024-02-21

Family

ID=76541297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019231813A Active JP7434882B2 (en) 2019-12-23 2019-12-23 Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program

Country Status (1)

Country Link
JP (1) JP7434882B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7298063B1 (en) 2022-11-15 2023-06-27 Pciソリューションズ株式会社 machine learning recognition system
CN116844340B (en) * 2023-08-29 2023-11-21 临沂大学 Road traffic risk prediction method based on artificial intelligence

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085285A (en) 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Dangerous vehicle prediction device
JP2010086269A (en) 2008-09-30 2010-04-15 Mazda Motor Corp Vehicle identification device and drive support device using the same
JP2018195301A (en) 2017-05-15 2018-12-06 キヤノン株式会社 Control device and control method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006085285A (en) 2004-09-14 2006-03-30 Matsushita Electric Ind Co Ltd Dangerous vehicle prediction device
JP2010086269A (en) 2008-09-30 2010-04-15 Mazda Motor Corp Vehicle identification device and drive support device using the same
JP2018195301A (en) 2017-05-15 2018-12-06 キヤノン株式会社 Control device and control method

Also Published As

Publication number Publication date
JP2021099720A (en) 2021-07-01

Similar Documents

Publication Publication Date Title
US10741082B2 (en) Driving assistance device
US10336323B2 (en) Predictive human-machine interface using eye gaze technology, blind spot indicators and driver experience
US12077046B2 (en) Interactive safety system for vehicles
US20070126565A1 (en) Process for monitoring blind angle in motor vehicles
US20110184617A1 (en) Driver assistance system for avoiding collisions of a vehicle with pedestrians
US10410514B2 (en) Display device for vehicle and display method for vehicle
JP2010125923A (en) Emergency refuge device
JP2005328181A (en) Periphery confirming apparatus
JP2007286810A (en) Driving support device
JP7434882B2 (en) Dangerous driving determination device, dangerous driving determination method, and dangerous driving determination program
JP2024029051A (en) On-vehicle display device, method, and program
CN112428953A (en) Blind area monitoring alarm method and device
WO2018168097A1 (en) Driving state determination device, driving state determination method, and program for determining driving state
JP4873255B2 (en) Vehicle notification system
JP6367531B2 (en) OBE
JP2004302621A (en) Vehicle collision preventing device
CN113715736A (en) Vehicle lane change early warning method, device and system, automobile and storage medium
JP2015005168A (en) Drive recorder (dr) having lane departure warning system (ldws), and forward collision warning system (fcws)
KR101405785B1 (en) System for assigning automobile level and method thereof
US9815485B2 (en) Method and device for outputting an acoustic warning signal of a rail vehicle and warning system for a rail vehicle
JP6760231B2 (en) Collision avoidance support device
JP7487460B2 (en) Driving assistance device, driving assistance method, and driving assistance program
CN112550282A (en) Warning method and warning system for motor vehicle
JP7582214B2 (en) Road marking detection device, notification system including same, and road marking detection method
JP7582338B2 (en) In-vehicle device, processing method and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240122

R150 Certificate of patent or registration of utility model

Ref document number: 7434882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150