[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7427418B2 - Rubber composition for seismic isolation structures and seismic isolation structures - Google Patents

Rubber composition for seismic isolation structures and seismic isolation structures Download PDF

Info

Publication number
JP7427418B2
JP7427418B2 JP2019195204A JP2019195204A JP7427418B2 JP 7427418 B2 JP7427418 B2 JP 7427418B2 JP 2019195204 A JP2019195204 A JP 2019195204A JP 2019195204 A JP2019195204 A JP 2019195204A JP 7427418 B2 JP7427418 B2 JP 7427418B2
Authority
JP
Japan
Prior art keywords
seismic isolation
rubber
silica
isolation structures
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019195204A
Other languages
Japanese (ja)
Other versions
JP2021066849A (en
Inventor
哲也 坪井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Priority to JP2019195204A priority Critical patent/JP7427418B2/en
Publication of JP2021066849A publication Critical patent/JP2021066849A/en
Application granted granted Critical
Publication of JP7427418B2 publication Critical patent/JP7427418B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Prevention Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、免震構造体用ゴム組成物および免震構造体に関する。 The present invention relates to a rubber composition for a seismic isolation structure and a seismic isolation structure.

建築物の基礎免震、橋梁や高架道路などの構造物の支承には、加硫ゴムからなるゴム層と鋼板からなる硬質層とを交互に積層した免震構造体が用いられている。この免震構造体は、上下方向には高い剛性、せん断方向には低い剛性を有する弾性構造体であり、地震の振動数に対して建築物の固有振動数を低減することにより、振動の入力加速度を減少し、建築物あるいはその中の人、設備などに対する被害を最小限にするものである。 For base isolation of buildings and support for structures such as bridges and elevated roads, seismic isolation structures in which rubber layers made of vulcanized rubber and hard layers made of steel plates are alternately laminated are used. This seismic isolation structure is an elastic structure that has high rigidity in the vertical direction and low rigidity in the shear direction, and by reducing the natural frequency of the building relative to the frequency of the earthquake, it is able to absorb vibration input. It reduces acceleration and minimizes damage to buildings, people, equipment, etc. inside them.

免震構造体の使用環境は多岐に渡るため、高減衰性を発揮しつつ、その温度依存性を維持することは重要である。下記特許文献1には、主鎖にC-C結合を有する基材ゴム100重量部に対してシリカを30~200重量部添加し、そのシリカに対して以下の式に示すシラン化合物を5~50重量%配合し混練したシリカ配合高減衰ゴム組成物が記載されている。 Because seismic isolation structures are used in a wide variety of environments, it is important to maintain their temperature dependence while exhibiting high damping properties. Patent Document 1 below discloses that 30 to 200 parts by weight of silica is added to 100 parts by weight of a base rubber having a C-C bond in the main chain, and 5 to 200 parts by weight of a silane compound represented by the following formula is added to the silica. A high damping rubber composition containing 50% by weight of silica and kneaded is described.

特開平7-41603号公報Japanese Patent Application Publication No. 7-41603

本発明者が鋭意検討したところ、前記特許文献1に記載のシリカ配合高減衰ゴム組成物の加硫ゴムでは、特に減衰性の温度依存性の点で改良の余地があることが判明した。 As a result of intensive studies by the present inventors, it has been found that there is room for improvement in the vulcanized rubber of the silica-containing high damping rubber composition described in Patent Document 1, particularly in terms of the temperature dependence of damping properties.

本発明は、上記実情に鑑みて開発されたものであり、高減衰性を発揮しつつ、その温度依存性を維持することが可能な免震構造体の原料となる免震構造体用ゴム組成物、および該免震構造体用ゴム組成物を原料として製造される免震構造体を提供することを目的とする。 The present invention was developed in view of the above circumstances, and provides a rubber composition for seismic isolation structures that can be used as a raw material for seismic isolation structures that can maintain its temperature dependence while exhibiting high damping properties. The present invention aims to provide a seismic isolation structure manufactured using the rubber composition for seismic isolation structures as a raw material.

本発明は、ゴム成分100質量部に対し、シリカを50~90質量部およびフェノール樹脂を1~30質量部含有し、かつ前記シリカの含有量に対する有機シランの含有量が2質量%未満である免震構造体用ゴム組成物に関する。かかる免震構造体用ゴム組成物は、高減衰性を発揮しつつ、その温度依存性を維持することが可能な免震構造体の原料となり得る。本発明において、かかる効果を奏する理由は、例えば以下の如く推定可能である。
(1)ゴム成分100質量部に対し、シリカを50~90質量部配合することにより、免震構造体としたとき、シリカ凝集構造の変化による高減衰性を発現し得る。
(2)シリカの配合量を高めることに伴い、免震構造体用ゴム組成物の加工性悪化が懸念されるが、シランカップリング剤として作用する有機シランを多量に配合すると、シリカの高分散化に伴うエネルギーロスの抑制により、減衰性の悪化が懸念される。
(3)フェノール樹脂を多量に配合すると高減衰性を発現し得るが、ガラス転移点の関係よりシリカに比べて温度の影響を受け易く、温度依存性の悪化が懸念される。
(4)本発明に係る免震構造体用ゴム組成物では、シリカの配合量を50~90質量部に設定し、かつフェノール樹脂および有機シランの含有量を特定の範囲量とする、特にシリカの含有量に対する有機シランの含有量を2質量%未満に設定しつつ、樹脂の中でもフェノール樹脂を選択し、その配合量をゴム成分100質量部に対し、1~30質量部に設定する。
The present invention contains 50 to 90 parts by mass of silica and 1 to 30 parts by mass of phenolic resin with respect to 100 parts by mass of the rubber component, and the content of organic silane with respect to the content of silica is less than 2% by mass. The present invention relates to a rubber composition for seismic isolation structures. Such a rubber composition for a seismic isolation structure can be used as a raw material for a seismic isolation structure that can maintain its temperature dependence while exhibiting high damping properties. In the present invention, the reason why such an effect is produced can be estimated as follows, for example.
(1) By blending 50 to 90 parts by mass of silica to 100 parts by mass of the rubber component, when used as a seismic isolation structure, high damping properties can be achieved due to changes in the silica aggregate structure.
(2) There is a concern that increasing the amount of silica blended will deteriorate the processability of the rubber composition for seismic isolation structures, but if a large amount of organic silane, which acts as a silane coupling agent, is blended, silica will be highly dispersed There is concern that damping performance will deteriorate due to the suppression of energy loss associated with
(3) When a large amount of phenol resin is blended, high attenuation properties can be achieved, but due to the glass transition point, it is more susceptible to temperature effects than silica, and there is a concern that temperature dependence may deteriorate.
(4) In the rubber composition for seismic isolation structures according to the present invention, the content of silica is set at 50 to 90 parts by mass, and the content of phenolic resin and organic silane is set within a specific range. While setting the content of organic silane to less than 2% by mass, phenol resin is selected among the resins, and its blending amount is set to 1 to 30 parts by mass with respect to 100 parts by mass of the rubber component.

上記(1)~(4)により、本発明に係る免震構造体用ゴム組成物を原料として製造される免震構造体は、高減衰性を発揮しつつ、その温度依存性を維持することが可能となる。 According to (1) to (4) above, the seismic isolation structure manufactured using the rubber composition for seismic isolation structures according to the present invention as a raw material can maintain its temperature dependence while exhibiting high damping properties. becomes possible.

本発明に係る免震構造体は、前記いずれかに記載の免震構造体用ゴム組成物を加硫成形してなるゴム層と、鋼板からなる硬質層とを交互に積層した免震構造体である。かかる免震構造体は、高減衰性を発現しつつ、ゴム層の各部位で減衰性がより安定的に均一化されている。 A seismic isolation structure according to the present invention is a seismic isolation structure in which rubber layers formed by vulcanization molding of any of the above-mentioned rubber compositions for seismic isolation structures and hard layers made of steel plates are alternately laminated. It is. Such a seismic isolation structure exhibits high damping properties, and the damping properties are made more stable and uniform in each part of the rubber layer.

減衰性能(heq)測定の際に得られる履歴ループを示す図Diagram showing the history loop obtained when measuring attenuation performance (heq)

本発明に係る免震構造体用ゴム組成物は、ゴム成分、シリカおよびフェノール樹脂を含有する。さらに本発明に係る免震構造体用ゴム組成物は、有機シランを含有しても良いが、その配合量には制限がある。この点については後述する。 The rubber composition for seismic isolation structures according to the present invention contains a rubber component, silica, and a phenolic resin. Further, the rubber composition for seismic isolation structures according to the present invention may contain organic silane, but there is a limit to the amount of organic silane added. This point will be discussed later.

本発明に係る免震構造体用ゴム組成物は、ゴム成分として、例えばジエン系ゴムを含有することが好ましい。ジエン系ゴムとしては、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレンブタジエンゴム(SBR)、ブチルゴム(IIR)、およびアクリロニトリルブタジエンゴム(NBR)などが挙げられる。上記ジエン系ゴムの中でも、天然ゴムおよびイソプレンゴムの少なくとも1種を使用することが好ましい。 The rubber composition for seismic isolation structures according to the present invention preferably contains, for example, diene rubber as a rubber component. Examples of the diene rubber include natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene butadiene rubber (SBR), butyl rubber (IIR), and acrylonitrile butadiene rubber (NBR). Among the diene rubbers mentioned above, it is preferable to use at least one of natural rubber and isoprene rubber.

本発明に係る免震構造体用ゴム組成物は、ゴム成分100質量部に対し、シリカを50~90質量部含有する。シリカは、通常のゴム補強に用いられる湿式シリカ、乾式シリカ、ゾル-ゲルシリカ、表面処理シリカなどが用いられる。なかでも、湿式シリカが好ましい。また、これらは単独で使用してもよく、また2種以上を混合して使用してもよい。免震構造体用ゴム組成物中のシリカの配合量は、ゴム成分の全量を100質量部としたとき、高減衰性を維持するため、シリカ配合量はゴム成分100質量部に対し、60質量部以上であることが好ましい。一方、免震構造体用ゴム組成物の加工性の悪化を抑制するため、シリカ配合量はゴム成分100質量部に対し、80質量部以下であることがより好ましい。 The rubber composition for seismic isolation structures according to the present invention contains 50 to 90 parts by mass of silica per 100 parts by mass of the rubber component. As the silica, wet silica, dry silica, sol-gel silica, surface-treated silica, etc. used for ordinary rubber reinforcement are used. Among these, wet silica is preferred. Further, these may be used alone or in combination of two or more. The amount of silica blended in the rubber composition for seismic isolation structures is 60 parts by mass per 100 parts by mass of the rubber component in order to maintain high damping properties when the total amount of the rubber component is 100 parts by mass. It is preferable that it is more than 1 part. On the other hand, in order to suppress deterioration in processability of the rubber composition for seismic isolation structures, the amount of silica blended is more preferably 80 parts by mass or less based on 100 parts by mass of the rubber component.

本発明においては、免震構造体用ゴム組成物中にフェノール樹脂を配合することにより、加工性を改良しつつ、免震構造体の減衰性を向上しつつ、その温度依存性を維持することができる。免震構造体用ゴム組成物中のフェノール樹脂の配合量は、ゴム成分100質量部に対し、1~30質量部であり、5~20質量部であることが好ましい。 In the present invention, by blending a phenolic resin into a rubber composition for a seismic isolation structure, it is possible to improve processability, improve the damping properties of the seismic isolation structure, and maintain its temperature dependence. Can be done. The amount of phenol resin blended in the rubber composition for seismic isolation structures is 1 to 30 parts by mass, preferably 5 to 20 parts by mass, based on 100 parts by mass of the rubber component.

本発明においては、免震構造体用ゴム組成物中でのシリカの分散性向上のため、有機シランを配合しても良い。有機シランはシランカップリング剤とも言われ、シリカと併用することにより、免震構造体用ゴム組成物の加工性を向上し得るが、一方で免震構造体の減衰性を悪化し得る。このため、免震構造体用ゴム組成物中の有機シランの配合量は、シリカの含有量に対する有機シランの含有量を2質量%未満とする。ただし、免震構造体の高減衰性を発揮しつつ、その温度依存性を維持するために、免震構造体用ゴム組成物中での有機シランの配合量はできるだけ少ないことが好ましい。具体的には、シリカの含有量に対し、有機シランの含有量が1質量%未満であることが好ましく、0.5質量%未満であることがより好ましく、0.1質量%未満であることがさらに好ましく、免震構造体用ゴム組成物中に有機シランを含有しないことが特に好ましい。 In the present invention, organic silane may be blended to improve the dispersibility of silica in the rubber composition for seismic isolation structures. Organic silane is also called a silane coupling agent, and when used in combination with silica, it can improve the processability of the rubber composition for seismic isolation structures, but on the other hand, it can deteriorate the damping properties of the seismic isolation structures. For this reason, the amount of organic silane blended in the rubber composition for seismic isolation structures is such that the content of organic silane is less than 2% by mass relative to the content of silica. However, in order to maintain the temperature dependence of the seismic isolation structure while exhibiting high damping properties, it is preferable that the amount of organic silane blended in the rubber composition for the seismic isolation structure is as small as possible. Specifically, the content of organic silane is preferably less than 1% by mass, more preferably less than 0.5% by mass, and less than 0.1% by mass with respect to the content of silica. is more preferable, and it is particularly preferable that the rubber composition for seismic isolation structures does not contain organic silane.

本発明においては、有機シランとして当業者に公知のシランカップリング剤を使用することが可能であり、例えばビス-(3-(トリエトキシシリル)プロピル)テトラスルフィドなどのスルフィド系、3-メルカプトプロピルトリメトキシシランなどのメルカプト系、3-アミノプロピルトリメトキシシランなどのアミノ系、ビニルトリエトキシシランなどのビニル系などのシランカップリング剤を使用することができる。これらは単独で使用してもよく、また2種以上を混合して使用してもよい。 In the present invention, it is possible to use silane coupling agents known to those skilled in the art as the organic silane, such as sulfide-based agents such as bis-(3-(triethoxysilyl)propyl)tetrasulfide, 3-mercaptopropyl Silane coupling agents such as mercapto type such as trimethoxysilane, amino type such as 3-aminopropyltrimethoxysilane, and vinyl type such as vinyltriethoxysilane can be used. These may be used alone or in combination of two or more.

本発明に係る免震構造体用ゴム組成物は、上記ゴム成分、シリカ、フェノール樹脂、および最小限の有機シランと共に、硫黄、加硫促進剤、カーボンブラック、酸化亜鉛、ステアリン酸、加硫促進助剤、加硫遅延剤、老化防止剤、ワックスやオイルなどの軟化剤、加工助剤などの通常ゴム工業で使用される配合剤を、本発明の効果を損なわない範囲において適宜配合し用いることができる。 The rubber composition for seismic isolation structures according to the present invention contains the above-mentioned rubber components, silica, phenolic resin, and a minimum amount of organic silane, as well as sulfur, a vulcanization accelerator, carbon black, zinc oxide, stearic acid, and a vulcanization accelerator. Compounding agents normally used in the rubber industry, such as auxiliaries, vulcanization retarders, anti-aging agents, softeners such as wax and oil, and processing aids, may be appropriately blended and used within the range that does not impair the effects of the present invention. Can be done.

カーボンブラックとしては、例えばSAF、ISAF、HAF、FEF、GPFなどが用いられる。カーボンブラックは、加硫後のゴムの硬度、補強性、低発熱性などのゴム特性を調整し得る範囲で使用することができる。 As carbon black, for example, SAF, ISAF, HAF, FEF, GPF, etc. are used. Carbon black can be used within a range that allows adjustment of rubber properties such as hardness, reinforcing properties, and low heat build-up of the rubber after vulcanization.

硫黄は通常のゴム用硫黄であればよく、例えば粉末硫黄、沈降硫黄、不溶性硫黄、高分散性硫黄などを用いることができる。 The sulfur may be any ordinary sulfur for rubber, and for example, powdered sulfur, precipitated sulfur, insoluble sulfur, highly dispersed sulfur, etc. can be used.

加硫促進剤としては、ゴム加硫用として通常用いられる、スルフェンアミド系加硫促進剤、チウラム系加硫促進剤、チアゾール系加硫促進剤、チオウレア系加硫促進剤、グアニジン系加硫促進剤、ジチオカルバミン酸塩系加硫促進剤などの加硫促進剤を単独、または適宜混合して使用しても良い。 Examples of vulcanization accelerators include sulfenamide vulcanization accelerators, thiuram vulcanization accelerators, thiazole vulcanization accelerators, thiourea vulcanization accelerators, and guanidine vulcanization accelerators, which are commonly used for rubber vulcanization. Vulcanization accelerators such as accelerators and dithiocarbamate-based vulcanization accelerators may be used alone or in combination as appropriate.

老化防止剤としては、ゴム用として通常用いられる、芳香族アミン系老化防止剤、アミン-ケトン系老化防止剤、モノフェノール系老化防止剤、ビスフェノール系老化防止剤、ポリフェノール系老化防止剤、ジチオカルバミン酸塩系老化防止剤、チオウレア系老化防止剤などの老化防止剤を単独、または適宜混合して使用しても良い。 Examples of anti-aging agents include aromatic amine anti-aging agents, amine-ketone anti-aging agents, monophenol anti-aging agents, bisphenol anti-aging agents, polyphenol anti-aging agents, and dithiocarbamic acid, which are commonly used for rubber. Anti-aging agents such as salt-based anti-aging agents and thiourea-based anti-aging agents may be used alone or in combination as appropriate.

本発明に係る免震構造体用ゴム組成物は、上記ゴム成分、シリカ、フェノール樹脂、および最小限の有機シランと共に、硫黄、加硫促進剤、カーボンブラック、酸化亜鉛、ステアリン酸、加硫促進助剤、加硫遅延剤、老化防止剤、ワックスやオイルなどの軟化剤、加工助剤などの通常ゴム工業で使用される配合剤などを、バンバリーミキサー、ニーダー、ロールなどの通常のゴム工業において使用される混練機を用いて混練りすることにより得られる。 The rubber composition for seismic isolation structures according to the present invention contains the above-mentioned rubber components, silica, phenolic resin, and a minimum amount of organic silane, as well as sulfur, a vulcanization accelerator, carbon black, zinc oxide, stearic acid, and a vulcanization accelerator. Compounding agents normally used in the rubber industry such as auxiliaries, vulcanization retarders, anti-aging agents, softeners such as waxes and oils, and processing aids are used in the normal rubber industry such as Banbury mixers, kneaders, and rolls. It is obtained by kneading using the kneader used.

また、上記各成分の配合方法は特に限定されず、硫黄および加硫促進剤などの加硫系成分以外の配合成分を予め混練してマスターバッチとし、残りの成分を添加してさらに混練する方法、各成分を任意の順序で添加し混練する方法、全成分を同時に添加して混練する方法などのいずれでもよい。 The method of blending each of the above components is not particularly limited, and the method is to knead components other than vulcanization components such as sulfur and vulcanization accelerator to form a masterbatch in advance, and then add the remaining components and knead further. , a method in which each component is added in any order and kneaded, or a method in which all components are added and kneaded simultaneously.

本発明に係る免震構造体は、ロールやローラヘッド付押出機などを用いて、混練りすることにより得られた未加硫の免震構造体用ゴム組成物をシート状に成形し、ついで円板状に打ち抜いた後、鋼板(硬質層)と未加硫のシート状のゴム層(免震構造体用ゴム組成物)とを交互に積層し、必要に応じて加圧しつつ、所定の温度で加硫成形することにより製造することができる。 The seismic isolation structure according to the present invention is produced by forming an unvulcanized rubber composition for seismic isolation structure into a sheet by kneading it using a roll or an extruder with a roller head, and then forming the rubber composition into a sheet. After punching into a disc shape, a steel plate (hard layer) and an unvulcanized sheet-like rubber layer (rubber composition for seismic isolation structures) are alternately laminated, and the predetermined shape is applied while applying pressure as necessary. It can be manufactured by vulcanization molding at high temperature.

なお、硬質層とゴム層とを積層する前に、加硫接着剤を塗工することが好ましい。加硫接着剤は、鋼板とゴムとの接着性に優れたものを適宜選択すれば良い。 Note that it is preferable to apply a vulcanized adhesive before laminating the hard layer and the rubber layer. The vulcanization adhesive may be appropriately selected from those that have excellent adhesion between the steel plate and rubber.

本発明に係る免震構造体は、減衰性に優れ、かつその温度依存性に優れる。このため、使用環境を問わず、様々な分野で好適に使用可能である。 The seismic isolation structure according to the present invention has excellent damping properties and excellent temperature dependence. Therefore, it can be suitably used in various fields regardless of the usage environment.

以下に、この発明の実施例を記載してより具体的に説明する。 EXAMPLES Below, examples of the present invention will be described in more detail.

(ゴム組成物の調製)
ゴム成分100質量部に対して、表1の配合処方に従い、実施例1~5、比較例1~5のゴム組成物を配合し、通常のバンバリーミキサーを用いて混練し、ゴム組成物を調整した。表1に記載の各配合剤を以下に示す。
(Preparation of rubber composition)
The rubber compositions of Examples 1 to 5 and Comparative Examples 1 to 5 were blended with 100 parts by mass of the rubber component according to the compounding recipe in Table 1, and the rubber compositions were kneaded using a normal Banbury mixer to prepare the rubber composition. did. Each compounding agent listed in Table 1 is shown below.

(a)ゴム成分(IR)(商品名「IR2200L」、日本ゼオン社製)
(b)シリカ(商品名「Nipsil AQ」、東ソー・シリカ社製)
(c)有機シラン(シランカップリング剤)(商品名「Si69」、エボニックデグサ社製)
(d)カーボンブラック(商品名「シースト9」、東海カーボン社製)
(e)フェノール樹脂(商品名「スミライトレジンPR-12686」、住友ベークライト社製)
(f)ロジン樹脂(商品名「ハリエスターS」、ハリマ化成社製)
(g)オイル(商品名「プロセスX-140」、JX日鉱日石エネルギー社製)
(h)酸化亜鉛(商品名「亜鉛華3号」、三井金属鉱業社製)
(i)脂肪酸(商品名「工業用ステアリン酸」、花王社製)
(j)老化防止剤(商品名「ノクラック6C」、大内振興化学社製)
(k)硫黄(粉末硫黄)(商品名「5%オイル処理硫黄」、細井化学工業社製)
(l)加硫促進剤(商品名「ノクセラーNS-P」、大内新興化学工業社製)
(m)リターダー(N-シクロヘキシルチオフタルイミド)(商品名「リターダーCTP」、大内新興化学工業社製)
(a) Rubber component (IR) (product name "IR2200L", manufactured by Nippon Zeon Co., Ltd.)
(b) Silica (product name "Nipsil AQ", manufactured by Tosoh Silica Co., Ltd.)
(c) Organic silane (silane coupling agent) (trade name "Si69", manufactured by Evonik Degussa)
(d) Carbon black (product name "SEAST 9", manufactured by Tokai Carbon Co., Ltd.)
(e) Phenol resin (trade name "Sumilite Resin PR-12686", manufactured by Sumitomo Bakelite Co., Ltd.)
(f) Rosin resin (trade name "Hariestar S", manufactured by Harima Kasei Co., Ltd.)
(g) Oil (product name "Process X-140", manufactured by JX Nippon Oil & Energy Corporation)
(h) Zinc oxide (trade name “Zinc Hua No. 3”, manufactured by Mitsui Kinzoku Mining Co., Ltd.)
(i) Fatty acid (trade name “Industrial Stearic Acid”, manufactured by Kao Corporation)
(j) Anti-aging agent (trade name “Nocrack 6C”, manufactured by Ouchi Shinko Kagaku Co., Ltd.)
(k) Sulfur (powdered sulfur) (trade name "5% oil treated sulfur", manufactured by Hosoi Chemical Industry Co., Ltd.)
(l) Vulcanization accelerator (trade name “Noxeler NS-P”, manufactured by Ouchi Shinko Kagaku Kogyo Co., Ltd.)
(m) Retarder (N-cyclohexylthiophthalimide) (trade name "Retarder CTP", manufactured by Ouchi Shinko Chemical Industry Co., Ltd.)

(加工性評価(ムーニー粘度))
JIS-K 6300-1に基づき、配合後の未加硫ゴム組成物のムーニー粘度(ML1+4(100℃))を測定した。さらに、混練後の未加硫ゴム組成物の纏まり性で加工性を評価した。「〇」は纏まり性良好で加工性に優れる、「△」は纏まり性がやや劣るため加工性にもやや劣る、「×」は纏まり性が悪く、加工性も悪い、ことをそれぞれ意味する。結果を表1に示す。
(Workability evaluation (Mooney viscosity))
Based on JIS-K 6300-1, the Mooney viscosity (ML 1+4 (100°C)) of the unvulcanized rubber composition after compounding was measured. Further, the processability of the unvulcanized rubber composition after kneading was evaluated based on the cohesiveness of the unvulcanized rubber composition. "〇" means good cohesiveness and excellent workability, "△" means slightly poor cohesion and therefore workability, and "x" means poor cohesion and poor workability. The results are shown in Table 1.

(加硫ゴムの減衰性および減衰性の温度依存性)
ゴムシートから25mm×25mmの形状に成形したゴムシートを作製し、これを25mm×120mm×厚さ3mmの、接着剤を塗布した2枚の鉄板で、断面クランク状となるように挟み、これを加硫接着させて試験片とした。これを1軸せん断試験機に設置し、せん断変形を生じさせる繰り返し載荷を試料厚みに対して±200%の条件で4回行い、引き続き±150%の条件で4回行い、150%条件の3波目の履歴特性を測定した。測定は20℃で行った。
履歴特性の測定により得られた履歴ループを図1に示す。この履歴ループは下記水平特性値を規定している。
W(N・mm):ひずみエネルギー(図1の斜線部で示される1つの三角形の面積。)
ΔW(N・mm):吸収エネルギーの合計(図1の履歴ループで囲まれた面積。)
Keq(N/mm):等価剛性(変位最大点における履歴ループの傾き。)
前記水平特性値から、減衰性能を示すHeqは下記式(1)で計算される数値であり、この数値が大きいほど、減衰性能が高い。
Heq=(1/4π)・(ΔW/W) (1)
得られた履歴ループから、図1に示すような水平特性値ΔW、Wが得られ、それをもとに数式(1)により高減衰ゴムの等価粘性減衰定数(Heq)を求めた。
また、減衰性の温度依存性に関しては、-10℃にて1時間以上状態調整したのち測定を行った。前記の20℃でのHeqの値(Heq20℃)を1とした場合の、-10℃でのHeqの値(Heq-10℃)との比である(Heq-10℃)/(Heq20℃)を、等価粘性減衰定数の温度依存性の指標として表した。(Heq-10℃)/(Heq20℃)が1に近いほど、加硫ゴムの減衰性の温度依存性に優れることを意味する。
(Damping properties of vulcanized rubber and temperature dependence of damping properties)
A rubber sheet was formed into a shape of 25 mm x 25 mm, and this was sandwiched between two iron plates coated with adhesive, each measuring 25 mm x 120 mm x 3 mm, so that it had a crank-shaped cross section. A test piece was prepared by vulcanization and adhesion. This was installed in a uniaxial shear tester, and repeated loading that caused shear deformation was performed 4 times under the condition of ±200% of the sample thickness, then 4 times under the condition of ±150%, and 3 times under the 150% condition. The hysteresis characteristics of the waves were measured. Measurements were performed at 20°C.
FIG. 1 shows the history loop obtained by measuring the history characteristics. This history loop defines the following horizontal characteristic values.
W (N mm): Strain energy (area of one triangle shown in the shaded area in Figure 1)
ΔW (N mm): Total absorbed energy (area surrounded by the history loop in Figure 1)
Keq (N/mm): Equivalent stiffness (slope of hysteresis loop at maximum displacement point)
From the horizontal characteristic value, Heq indicating the damping performance is a numerical value calculated by the following formula (1), and the larger this numerical value is, the higher the damping performance is.
Heq=(1/4π)・(ΔW/W) (1)
From the obtained history loop, horizontal characteristic values ΔW and W as shown in FIG. 1 were obtained, and based on these, the equivalent viscous damping constant (Heq) of the high damping rubber was determined using the formula (1).
Furthermore, regarding the temperature dependence of the attenuation property, the measurement was carried out after adjusting the condition at -10°C for more than 1 hour. (Heq -10°C ) / (Heq 20 °C ) was expressed as an index of the temperature dependence of the equivalent viscous damping constant. The closer (Heq -10°C )/(Heq 20°C ) is to 1, the better the temperature dependence of the damping properties of the vulcanized rubber.

減衰性については、実施例2~5および比較例1~5の結果に関し、実施例1の測定結果を100として指数評価を行い、実施例1と比較して変化が5%以内である場合は「〇」、変化が5~10%である場合は「△」、変化が10%である場合を「×」で示す。実施例1と比較して、変化が小さいほど減衰性に優れることを意味する。また、減衰性の温度依存性についても、実施例2~5および比較例1~4の結果に関し、実施例1の測定結果を100として指数評価を行い、実施例1と比較して変化が5%以内である場合は「〇」、変化が5~10%である場合は「△」、変化が10%である場合を「×」で示す。実施例1と比較して、変化が小さいほど減衰性に優れることを意味する。結果を表1に示す。 Regarding damping properties, an index evaluation was performed regarding the results of Examples 2 to 5 and Comparative Examples 1 to 5, with the measurement results of Example 1 set as 100, and if the change was within 5% compared to Example 1, If the change is 5 to 10%, it is indicated by "△"; if the change is 10%, it is indicated by "x". Compared to Example 1, the smaller the change, the better the damping properties. Regarding the temperature dependence of damping properties, an index evaluation was performed regarding the results of Examples 2 to 5 and Comparative Examples 1 to 4, with the measurement results of Example 1 set as 100. If the change is within %, mark it as "○"; if the change is between 5% and 10%, mark as "△"; and if the change is within 10%, mark as "x". Compared to Example 1, the smaller the change, the better the damping properties. The results are shown in Table 1.

Figure 0007427418000001
Figure 0007427418000001

表1の結果から、実施例1~5に係るゴム組成物は加工性に優れ、かつその加硫ゴムは減衰特性およびその温度依存性に優れることがわかる。 From the results in Table 1, it can be seen that the rubber compositions according to Examples 1 to 5 have excellent processability, and the vulcanized rubbers thereof have excellent damping properties and temperature dependence.

Claims (2)

ゴム成分100質量部に対し、シリカ(ただし、「BET法による窒素吸着比表面積50~300m /gのシリカが第一の被覆材料と第二の被覆材料で順次被覆された樹脂被覆シリカであって、前記第一の被覆材料はフェノール類を含み、前記第二の被覆材料は(A)ノボラック型フェノール樹脂と硬化剤、及び(B)レゾール型フェノール樹脂の少なくとも一方を含むことを特徴とする樹脂被覆シリカ」を除く)を50~90質量部およびフェノール樹脂を1~30質量部含有し、かつ前記シリカの含有量に対する有機シランの含有量が2質量%未満である免震構造体用ゴム組成物。 100 parts by mass of the rubber component, silica (However, "silica with a nitrogen adsorption specific surface area of 50 to 300 m 2 /g by BET method is resin-coated silica coated sequentially with a first coating material and a second coating material. The first coating material contains phenols, and the second coating material contains at least one of (A) a novolac-type phenolic resin and a curing agent, and (B) a resol-type phenolic resin. Rubber for seismic isolation structures, which contains 50 to 90 parts by mass of phenolic resin (excluding "resin-coated silica") and 1 to 30 parts by mass of phenolic resin, and has an organic silane content of less than 2% by mass relative to the silica content. Composition. 請求項1に記載の免震構造体用ゴム組成物を加硫成形してなるゴム層と、鋼板からなる硬質層とを交互に積層した免震構造体。 A seismic isolation structure in which rubber layers formed by vulcanization molding of the rubber composition for seismic isolation structures according to claim 1 and hard layers made of steel plates are alternately laminated.
JP2019195204A 2019-10-28 2019-10-28 Rubber composition for seismic isolation structures and seismic isolation structures Active JP7427418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019195204A JP7427418B2 (en) 2019-10-28 2019-10-28 Rubber composition for seismic isolation structures and seismic isolation structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019195204A JP7427418B2 (en) 2019-10-28 2019-10-28 Rubber composition for seismic isolation structures and seismic isolation structures

Publications (2)

Publication Number Publication Date
JP2021066849A JP2021066849A (en) 2021-04-30
JP7427418B2 true JP7427418B2 (en) 2024-02-05

Family

ID=75636715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019195204A Active JP7427418B2 (en) 2019-10-28 2019-10-28 Rubber composition for seismic isolation structures and seismic isolation structures

Country Status (1)

Country Link
JP (1) JP7427418B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179840A (en) 2000-12-18 2002-06-26 Nitta Ind Corp High damping rubber composition
JP2009235336A (en) 2008-03-28 2009-10-15 Tokai Rubber Ind Ltd Highly damping rubber composition and vibration control damper obtained by using the same
JP2012116972A (en) 2010-12-01 2012-06-21 Gun Ei Chem Ind Co Ltd Resin coated silica, rubber composition and tire
WO2019142501A1 (en) 2018-01-19 2019-07-25 株式会社ブリヂストン Rubber composition, tire, conveyor belt, rubber crawler, vibration-damping device, seismic isolator, and hose

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179840A (en) 2000-12-18 2002-06-26 Nitta Ind Corp High damping rubber composition
JP2009235336A (en) 2008-03-28 2009-10-15 Tokai Rubber Ind Ltd Highly damping rubber composition and vibration control damper obtained by using the same
JP2012116972A (en) 2010-12-01 2012-06-21 Gun Ei Chem Ind Co Ltd Resin coated silica, rubber composition and tire
WO2019142501A1 (en) 2018-01-19 2019-07-25 株式会社ブリヂストン Rubber composition, tire, conveyor belt, rubber crawler, vibration-damping device, seismic isolator, and hose

Also Published As

Publication number Publication date
JP2021066849A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP5656854B2 (en) Rubber composition for tire tread and pneumatic tire
JP2009126907A (en) Rubber composition
JP2009030016A (en) High damping rubber composition and damping member
KR101805206B1 (en) High damping composition
JP2017082171A (en) High attenuation rubber composition and viscoelastic damper
JP7427418B2 (en) Rubber composition for seismic isolation structures and seismic isolation structures
JP2019178199A (en) Electric vehicle vibration-proof rubber composition and electric vehicle vibration-proof rubber member
JP5574616B2 (en) Rubber composition for laminated rubber of seismic isolation structure
WO2018110396A1 (en) Rubber composition, cover rubber for conveyer belt, and conveyer belt
JP5621183B2 (en) Rubber composition for seismic isolation structure
JP2010121033A (en) Rubber composition for high damping laminate, and high damping laminate
JP2019031607A (en) High attenuation rubber composition and viscoelastic damper
JP2024013244A (en) High-damping rubber composition and earthquake-resistant rubber bearing
JP5987489B2 (en) Rubber composition for high damping rubber bearing and high damping rubber bearing
JP2017210532A (en) High attenuation rubber composition and viscoelastic damper
JP5950358B2 (en) High damping composition and viscoelastic damper
JP2023019875A (en) High damping rubber composition and base-isolation rubber
JP2015038169A (en) Rubber composition for base-isolated structure, and rubber for base-isolated structure
JP2010215884A (en) Rubber composition for tire and tire using the same
JP2015038171A (en) Rubber composition for base-isolated structure, and rubber for base-isolated structure
JP7488640B2 (en) Rubber composition for seismic isolation structure and seismic isolation structure
JP2021066848A (en) Rubber composition for base-isolation structure and base-isolation structure
JP2020090665A (en) Rubber composition for vibration-proof rubber and vibration-proof rubber
JP4938287B2 (en) Rubber composition
US11912866B2 (en) Rubber composition for anti-vibration rubber and an anti-vibration rubber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240124

R150 Certificate of patent or registration of utility model

Ref document number: 7427418

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150