[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7427352B2 - exposure equipment - Google Patents

exposure equipment Download PDF

Info

Publication number
JP7427352B2
JP7427352B2 JP2017250763A JP2017250763A JP7427352B2 JP 7427352 B2 JP7427352 B2 JP 7427352B2 JP 2017250763 A JP2017250763 A JP 2017250763A JP 2017250763 A JP2017250763 A JP 2017250763A JP 7427352 B2 JP7427352 B2 JP 7427352B2
Authority
JP
Japan
Prior art keywords
optical filter
exposure
integrated transmittance
transmittance
illumination light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017250763A
Other languages
Japanese (ja)
Other versions
JP2019117271A (en
Inventor
克朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adtec Engineering Co Ltd
Original Assignee
Adtec Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adtec Engineering Co Ltd filed Critical Adtec Engineering Co Ltd
Priority to JP2017250763A priority Critical patent/JP7427352B2/en
Publication of JP2019117271A publication Critical patent/JP2019117271A/en
Application granted granted Critical
Publication of JP7427352B2 publication Critical patent/JP7427352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Description

本発明は、基板にパターンを露光する露光装置に関する。 The present invention relates to an exposure apparatus that exposes a pattern onto a substrate.

プリント基板に配線パターン等を形成するため、光源として複数の半導体レーザ(以下、LDと記載する)を設け、マスクを用いることなく直接基板に露光する直接描画露光装置が知られている。このような直接描画露光装置では、LDを多数並べてそれぞれの光源から出射する光を被照明物体に一様に照射しようとしても、照明光学系から出射する光の指向性がガウス分布に近くなり照射領域の中心付近が強く周辺が弱くなる場合や、逆に照明の中心付近が弱く周辺が強くなる場合がある。このように照明光が均一でなくなると露光不良となりスループットが低下する。 2. Description of the Related Art In order to form wiring patterns and the like on a printed circuit board, a direct drawing exposure apparatus is known that is provided with a plurality of semiconductor lasers (hereinafter referred to as LD) as a light source and directly exposes the board to light without using a mask. In such a direct writing exposure device, even if a large number of LDs are lined up and the light emitted from each light source is attempted to uniformly irradiate the object to be illuminated, the directivity of the light emitted from the illumination optical system approaches a Gaussian distribution, resulting in poor irradiation. The illumination may be strong near the center of the area and weak at the periphery, or conversely, the illumination may be weak near the center and strong at the periphery. If the illumination light is not uniform in this way, exposure will be poor and throughput will be reduced.

このような露光不良を防止するため、特許文献1の図7に開示されているように、インテグレータやディフューザを設けて露光照明光を均一化する技術があるが、露光光源からの露光照明光をインテグレータへ入射させるためには極めて面倒な微調整が必要であり、時間を要していた。そのため、微調整を行わなかった場合、インテグレータへの入射光の調整不足により、露光照明光が不均一になるという問題がある。 In order to prevent such exposure defects, there is a technique to uniformize the exposure illumination light by providing an integrator or diffuser, as disclosed in FIG. 7 of Patent Document 1, but it is possible to In order to make the light enter the integrator, extremely troublesome fine adjustments are required, which takes time. Therefore, if fine adjustment is not performed, there is a problem that the exposure illumination light becomes non-uniform due to insufficient adjustment of the light incident on the integrator.

特開2004-039871号JP 2004-039871

本発明の目的は、前記課題を解決し、露光照明光の照射面での均一性を向上させることができる露光装置を提供するにある。 An object of the present invention is to provide an exposure apparatus that can solve the above problems and improve the uniformity of exposure illumination light on an irradiated surface.

上記課題を解決するため、本願において開示される発明のうち、代表的な露光装置は、基板を露光するための照明光を射出する露光光源であって複数の半導体レーザを含むものと、前記照明光が入射される2次元空間変調器と、前記基板を照明光に対して移動させて走査露光するためのステージとを備える露光装置において、前記露光光源と前記2次元空間変調器との間の照明光の光軸上に配置される光学フィルタを有し、前記光学フィルタは、前記光軸に対して垂直に横切る平面内で透過率が第1の方向には変化するが当該第1の方向と直角な第2の方向には変化せず、前記第1の方向の中心位置での透過率が最も高く、周辺へ向かうにしたがって透過率が低くなることを特徴とする。 In order to solve the above problems, among the inventions disclosed in this application, a typical exposure apparatus includes an exposure light source that emits illumination light for exposing a substrate and includes a plurality of semiconductor lasers; In an exposure apparatus comprising a two-dimensional spatial modulator into which light is incident, and a stage for scanning and exposing the substrate by moving the substrate with respect to illumination light, an optical filter disposed on the optical axis of the illumination light; the optical filter has a transmittance that changes in a first direction within a plane perpendicular to the optical axis; The transmittance does not change in the second direction perpendicular to the first direction, and the transmittance is the highest at the center position in the first direction, and the transmittance decreases toward the periphery.

本発明によれば、露光照明光の照射面での均一性を向上させることができる。 According to the present invention, it is possible to improve the uniformity of the exposure illumination light on the irradiation surface.

本発明の実施形態に係る露光装置の全体構成図である。1 is an overall configuration diagram of an exposure apparatus according to an embodiment of the present invention. 図1における照明光学系を説明するための図である。2 is a diagram for explaining the illumination optical system in FIG. 1. FIG. 図1における光学フィルタを説明するための図である。2 is a diagram for explaining an optical filter in FIG. 1. FIG. 光学フィルタを設けない場合の積算照度を説明するための図である。FIG. 3 is a diagram for explaining integrated illuminance when no optical filter is provided. 光学フィルタを設けた場合の積算照度を説明するための図である。It is a figure for explaining integrated illuminance when an optical filter is provided. 光学フィルタを設けない場合の積算照度のピーク値がシフトした場合を説明するための図である。FIG. 6 is a diagram for explaining a case where the peak value of integrated illuminance shifts when no optical filter is provided. 光学フィルタをX方向に動かして位置決めした場合の積算照度を説明するための図である。FIG. 6 is a diagram for explaining the integrated illuminance when the optical filter is moved and positioned in the X direction. 光学フィルタを設けて回転させた場合の透過率を説明するための図である。It is a figure for explaining the transmittance when an optical filter is provided and rotated.

以下、図面を参照しながら本発明に係る実施の形態を実施例に沿って説明する。なお、以下の説明において、同等な各部には同一の符号を付して説明を省略する。 Embodiments of the present invention will be described below along with examples with reference to the drawings. In addition, in the following description, each equivalent part is given the same code|symbol, and description is abbreviate|omitted.

図1は本願発明の実施形態に係る直接描画露光装置の全体構成図である。1は露光照明ユニットである。2は照明光学系であり、ここから光軸4aで示される方向へ出射され後述する光学フィルタ3を透過した露光照明光4は、ミラー5により、上方にある2次元空間変調器6に入射される。ここでは、2次元空間変調器6としてデジタルミラーデバイスを用いているので、2次元空間変調器をDMDと記載する。 FIG. 1 is an overall configuration diagram of a direct drawing exposure apparatus according to an embodiment of the present invention. 1 is an exposure lighting unit. Reference numeral 2 denotes an illumination optical system, from which exposure illumination light 4 is emitted in the direction indicated by an optical axis 4a and transmitted through an optical filter 3, which will be described later, is incident on a two-dimensional spatial modulator 6 located above by a mirror 5. Ru. Here, since a digital mirror device is used as the two-dimensional spatial modulator 6, the two-dimensional spatial modulator will be referred to as DMD.

DMD6にはXY面内に多数の可動マイクロミラーがマトリックス状に配置されている。後述する制御装置7から各マイクロミラーにON/OFF信号が送られると、ONの信号を受けたマイクロミラーは一定角度傾き、入射した露光照明光を反射させて第1の投影レンズ8に入射させる。また、OFFの状態のマイクロミラーで反射された露光照明光4は第1の投影レンズ8には入射せず、露光には寄与しない。投影レンズ8を透過した露光照明光はマイクロレンズアレー9に入射する。DMD5のマイクロミラーの拡大像(又は縮小像)が形成されるマイクロレンズアレー9の位置にはそれぞれマイクロレンズが配置されている。各マイクロレンズにほぼ垂直に入射する露光照明光4(ON状態のマイクロミラーから来た露光照明光)は第2の投影レンズ10に入射し、第2の投影レンズ10を出射した露光照明光4は基板11上の照射エリア12内に露光パターンを形成する。この場合、露光照明ユニット1に対して基板11を走査方向であるY方向に沿って移動させながら露光することにより、基板11上に露光パターンが走査露光される。 In the DMD 6, a large number of movable micromirrors are arranged in a matrix in the XY plane. When an ON/OFF signal is sent to each micromirror from a control device 7, which will be described later, the micromirror that receives the ON signal tilts at a certain angle, reflects the incident exposure illumination light, and makes it enter the first projection lens 8. . Further, the exposure illumination light 4 reflected by the micromirror in the OFF state does not enter the first projection lens 8 and does not contribute to exposure. The exposure illumination light transmitted through the projection lens 8 enters the microlens array 9. A microlens is arranged at each position of the microlens array 9 where an enlarged image (or reduced image) of the micromirror of the DMD 5 is formed. The exposure illumination light 4 (the exposure illumination light coming from the micromirror in the ON state) that enters each microlens almost perpendicularly enters the second projection lens 10, and the exposure illumination light 4 that exits the second projection lens 10 forms an exposure pattern within the irradiation area 12 on the substrate 11. In this case, an exposure pattern is scanned and exposed on the substrate 11 by exposing the substrate 11 while moving it with respect to the exposure illumination unit 1 along the Y direction, which is the scanning direction.

7は例えばプログラム制御の処理装置を主体にしたものによって実現される制御装置であり、露光照明ユニット1内の照明光学系2、DMD6、ステージ13の動作を制御する。14はステージ駆動部で、制御装置7からの制御指令を受けてステージ13をX、Y及びZ方向に移動させる。15は照度検出手段で、ステージ13上に固定され、例えばCCD型のラインセンサや照度計などの光学センサである。照度検出手段15の受光部のX方向の幅は照射エリア12のX方向の幅よりも十分広く設定されていて、制御装置7からの制御指令を受けてオンオフ制御され、露光照明光4を検出した場合は検出信号を制御装置7へ送信する。 Reference numeral 7 denotes a control device realized by, for example, a program-controlled processing device, which controls the operations of the illumination optical system 2, DMD 6, and stage 13 in the exposure illumination unit 1. Reference numeral 14 denotes a stage drive unit that moves the stage 13 in the X, Y, and Z directions in response to control commands from the control device 7. Reference numeral 15 denotes illuminance detection means, which is fixed on the stage 13 and is, for example, an optical sensor such as a CCD type line sensor or an illuminance meter. The width of the light receiving section of the illuminance detection means 15 in the X direction is set to be sufficiently wider than the width of the irradiation area 12 in the X direction, and is controlled on and off in response to a control command from the control device 7 to detect the exposure illumination light 4. If so, a detection signal is sent to the control device 7.

図2は、図1における照明光学系2を説明するための図である。16は露光光源で、405nm付近(380~ 420nm)の波長の光が400mW程度の出力で出射する青及び紫色LDを基板の上に2次元配列して構成される。個々のLDからの出射光は、集光レンズ(集光光学系)17により、ディフューザ18を透過した後に光インテグレータ19に入射する。このディフューザ18は、波面を変化させる変調器であり、直結されたモータを駆動して回転されるガラス円板で構成される。光インテグレータ19を透過した光は、コンデンサレンズ(コリメートレンズ)20を通り、ミラー5で反射してDMD6に照射する。光インテグレータ19は、集光レンズ17により集光された2次元に配列された多数のLDからの出射光束を空間的に分解して多数の擬似2次光源を生成して重ね合わせて照明する光学系である。なお、露光光源16及びディフューザ18のモータは制御装置7により制御される。 FIG. 2 is a diagram for explaining the illumination optical system 2 in FIG. 1. Reference numeral 16 denotes an exposure light source, which is constructed by two-dimensionally arranging blue and violet LDs on a substrate, which emit light with a wavelength of around 405 nm (380 to 420 nm) with an output of about 400 mW. The light emitted from each LD is transmitted through a diffuser 18 by a condensing lens (condensing optical system) 17, and then enters an optical integrator 19. The diffuser 18 is a modulator that changes the wavefront, and is composed of a glass disk that is rotated by driving a directly connected motor. The light transmitted through the optical integrator 19 passes through a condenser lens (collimating lens) 20, is reflected by a mirror 5, and is irradiated onto the DMD 6. The optical integrator 19 is an optical system that spatially decomposes the light beams emitted from a large number of two-dimensionally arranged LDs that are focused by a condensing lens 17 to generate a large number of pseudo secondary light sources and superimpose them for illumination. It is a system. Note that the motors of the exposure light source 16 and the diffuser 18 are controlled by the control device 7.

図3(a)及び(b)は、照明光学系2の近傍に配置される光学フィルタ3を説明するための図で(a)は光軸4aの方向から見た平面図、(b)は光軸4aに対して直角方向の積算透過率の変化を示す図である。光学フィルタ3は図3(a)において破線で示すようにX方向に透過率の変化する円形領域21を有し、円形領域21のZ方向の透過率は全て同じである。 3(a) and (b) are diagrams for explaining the optical filter 3 disposed near the illumination optical system 2, in which (a) is a plan view seen from the direction of the optical axis 4a, and (b) is a diagram for explaining the optical filter 3 disposed near the illumination optical system 2. FIG. 4 is a diagram showing changes in integrated transmittance in a direction perpendicular to the optical axis 4a. The optical filter 3 has a circular region 21 whose transmittance changes in the X direction, as shown by the broken line in FIG. 3A, and the transmittance of the circular region 21 in the Z direction is all the same.

円形領域21のX方向の積算透過率Tは、光学フィルタ3を設けてステージ13を駆動して照度検出手段15をY方向に移動させ照度むらの無い均一な露光照明光4を検出したときの照度検出値をX方向毎に積算した値をD1、光学フィルタ3を設けないで同様に行った場合の値をD2としたとき、次式(1)で表される。
T=(D1/D2)×100 (%) ・・・(1)
これは、円形領域21のX方向の中心位置X5に関して対称であって、中心位置X5から位置X1及び位置X9に向かって単調に増加するような分布となる。
The cumulative transmittance T of the circular area 21 in the X direction is calculated when the optical filter 3 is provided, the stage 13 is driven, the illuminance detection means 15 is moved in the Y direction, and uniform exposure illumination light 4 with no illuminance unevenness is detected. When the value obtained by integrating the illuminance detection values in each X direction is D1, and the value obtained when the same procedure is performed without providing the optical filter 3 is D2, it is expressed by the following equation (1).
T=(D1/D2)×100 (%) ...(1)
This distribution is symmetrical with respect to the center position X5 of the circular region 21 in the X direction, and increases monotonically from the center position X5 toward the positions X1 and X9.

図4(a)及び(b)は、光学フィルタ3を設けない場合の積算照度を説明するための図である。図4(a)は積算照度を示した図であり、図4(b)は照射エリア12の照度分布を示したイメージ図である。図4(b)において、黒色は積算照度の低い部分を、白色は積算照度の高い部分をそれぞれ示している。積算照度は、照度検出手段15をY方向に移動させ露光照明光4を検出した場合に、X方向毎の照度を積算した値である。X方向の中心位置xcが最も高く、位置xa及び位置xeに向かって積算照度が低下する。 FIGS. 4A and 4B are diagrams for explaining the integrated illuminance when the optical filter 3 is not provided. FIG. 4(a) is a diagram showing the integrated illuminance, and FIG. 4(b) is an image diagram showing the illuminance distribution of the irradiation area 12. In FIG. 4(b), black indicates a portion with low integrated illuminance, and white indicates a portion with high integrated illuminance. The integrated illuminance is a value obtained by integrating the illuminance in each X direction when the illuminance detection means 15 is moved in the Y direction and the exposure illumination light 4 is detected. The center position xc in the X direction is the highest, and the integrated illuminance decreases toward the position xa and the position xe.

図5(a)及び(b)は、光学フィルタ3を設けた場合の照射エリア12の積算照度を説明するための図である。図5(a)は積算照度を示した図であり、図5(b)は照射エリア12の照度分布を示したイメージ図である。円形領域21の中心22と光軸4aの中心が一致するように光学フィルタ3を照明光学系2の近傍に位置決めすることにより、X方向の中心位置xcの積算照度が最も高くなるというような照度むらが良好に補正され、基板11上において図5(b)に示すようにほぼ均一な照度分布が実現される。なお、本実施例では、透過率が円形領域21のX方向の中心位置X5から位置X1及び位置X9に向かって単調に増加するような分布の光学フィルタ3を用いた場合を説明したが、中心位置X5の透過率が最も高く中心位置X5から位置X1及び位置X9に向かって単調に減少するような分布の光学フィルタ3を用いても良い。この場合、X方向の中心位置xcが最も低く、位置xa及び位置xeに向かって積算照度が高くなる照射エリア12の照度分布を補正することができる。 FIGS. 5A and 5B are diagrams for explaining the integrated illuminance of the irradiation area 12 when the optical filter 3 is provided. FIG. 5(a) is a diagram showing the integrated illuminance, and FIG. 5(b) is an image diagram showing the illuminance distribution of the irradiation area 12. By positioning the optical filter 3 near the illumination optical system 2 so that the center 22 of the circular area 21 and the center of the optical axis 4a coincide, the illuminance is adjusted so that the integrated illuminance at the center position xc in the X direction is the highest. The unevenness is well corrected, and a substantially uniform illuminance distribution is realized on the substrate 11 as shown in FIG. 5(b). In this embodiment, a case has been described in which the optical filter 3 has a distribution in which the transmittance increases monotonically from the center position X5 in the X direction of the circular region 21 toward the positions X1 and X9. It is also possible to use an optical filter 3 having a distribution such that the transmittance is highest at position X5 and monotonically decreases from center position X5 toward positions X1 and X9. In this case, it is possible to correct the illuminance distribution of the irradiation area 12 where the center position xc in the X direction is the lowest and the integrated illuminance increases toward the positions xa and xe.

図6(a)及び(b)は、光学フィルタ3を設けない場合であって、積算照度の高くなる位置がX方向の中心位置からシフトしている場合を説明するための図である。図6(a)は積算照度を示した図であり、図6(b)は照射エリア12の照度分布を示したイメージ図である。積算照度の最も高くなる位置が位置xcから位置xbへシフトしていて、このような場合、図5(a)と(b)を用いて説明した光学フィルタ3を設けても照度むらを十分に補正することができない。 FIGS. 6A and 6B are diagrams for explaining a case where the optical filter 3 is not provided and the position where the integrated illuminance becomes high is shifted from the center position in the X direction. FIG. 6(a) is a diagram showing the integrated illuminance, and FIG. 6(b) is an image diagram showing the illuminance distribution of the irradiation area 12. The position where the cumulative illuminance is highest has shifted from position xc to position xb, and in such a case, even if the optical filter 3 described using FIGS. Cannot be corrected.

図7(a)及び(b)は、光学フィルタ3を設けた場合であって、積算照度の高くなる位置がX方向の中心位置からシフトさせた場合を説明するための図である。図7(a)は積算照度を示した図であり、図7(b)は照射エリア12の照度分布を示したイメージ図である。光学フィルタ3の中心位置X5を照明光学系2に対してX方向に動かして位置決めすることにより、図7(a)及び(b)に示すように照度むらが補正され、ほぼ均一な照度分布が実現される。 FIGS. 7A and 7B are diagrams for explaining the case where the optical filter 3 is provided and the position where the integrated illuminance becomes high is shifted from the center position in the X direction. FIG. 7(a) is a diagram showing the integrated illuminance, and FIG. 7(b) is an image diagram showing the illuminance distribution of the irradiation area 12. By moving and positioning the center position X5 of the optical filter 3 in the X direction with respect to the illumination optical system 2, the uneven illuminance is corrected as shown in FIGS. 7(a) and (b), and a substantially uniform illuminance distribution is achieved. Realized.

図8(a)及び(b)は、光学フィルタ3を設けてその中心22を基準として光学フィルタ3を回転させた場合の積算透過率を説明するための図で、(a)は光軸4aの方向から見た平面図、(b)は光軸4aに対して直角方向の積算透過率の変化を示す図である。光学フィルタ3を時計回りに30度回転させた場合がR1、60度回転させた場合がR2、90度回転させた場合がR3である。光学フィルタ3を回転させない場合がR0で、この場合図3と同等の積算透過率となる。 FIGS. 8(a) and 8(b) are diagrams for explaining the integrated transmittance when the optical filter 3 is provided and the optical filter 3 is rotated with the center 22 as a reference. FIG. 3B is a plan view seen from the direction of FIG. When the optical filter 3 is rotated 30 degrees clockwise, it is R1, when it is rotated 60 degrees, it is R2, and when it is rotated 90 degrees, it is R3. The case where the optical filter 3 is not rotated is R0, and in this case, the integrated transmittance is equivalent to that in FIG. 3.

R0の位置から光学フィルタ3を30度回転させるとR1となり、X方向の中心位置X5が最も低く、位置X1及び位置X9に向かって積算照度が高くなる。光学フィルタ3を回転させない場合に対して比較的緩やかに中心位置X5からX1及びX9へ増加しているため、中心位置X5の照度が高くX1及びX9へ比較的緩やかに照度が低くなる場合に適用できる。 When the optical filter 3 is rotated 30 degrees from the position R0, it becomes R1, the center position X5 in the X direction is the lowest, and the integrated illuminance increases toward the positions X1 and X9. Compared to the case where the optical filter 3 is not rotated, it increases relatively gradually from the center position X5 to X1 and X9, so it is applicable when the illuminance is high at the center position X5 and decreases relatively gradually to X1 and X9. can.

R1の位置から光学フィルタ3を30度(R0の位置から60度)時計回りに回転させるとR2となり、X3からX7が低く、位置X1及び位置X9に向かって積算照度が2.5%程度高くなる。X3からX7の照度が高くX1及びX9へ緩やかに照度が低くなる露光照明光4に適用できる。 When the optical filter 3 is rotated 30 degrees clockwise from the R1 position (60 degrees from the R0 position), it becomes R2, where X3 to X7 are low, and the integrated illuminance is about 2.5% higher toward positions X1 and X9. Become. It can be applied to the exposure illumination light 4 where the illuminance is high from X3 to X7 and gradually decreases from X1 to X9.

R2の位置から光学フィルタ3を30度(R0の位置から90度)回転させるとR3となり、X3からX7が高く、位置X1及び位置X9に向かって積算照度が9%程度低くなる。X3からX7の照度が低く、X1及びX9へ緩やかに照度が高くなる露光照明光4に適用できる。 When the optical filter 3 is rotated by 30 degrees from the position of R2 (90 degrees from the position of R0), it becomes R3, where X3 to X7 are high and the integrated illuminance decreases by about 9% toward positions X1 and X9. It can be applied to exposure illumination light 4 where the illuminance is low from X3 to X7 and gradually increases from X1 to X9.

以上の実施形態によれば、光学フィルタ3を設けたことで照度むらのある露光照明ユニット1を用いた場合でも均一な露光照明光4を照射することができる。また、光学フィルタ3を回転させることで様々な照度むらを補正し均一な露光照明光4を照射することが可能となる。 According to the above embodiment, by providing the optical filter 3, uniform exposure illumination light 4 can be emitted even when the exposure illumination unit 1 with uneven illuminance is used. Furthermore, by rotating the optical filter 3, it is possible to correct various illuminance irregularities and emit uniform exposure illumination light 4.

なお、上述した実施形態では、基板11に対して露光照明ユニット1が1つ配置される場合を説明したが、露光照明ユニット1をX方向に2個以上設けて、同時に露光するようにしてもよい。この場合、一度に露光する面積が増えるのでスループットの向上が可能となる。 In the above-described embodiment, the case where one exposure illumination unit 1 is arranged for the substrate 11 has been described, but two or more exposure illumination units 1 may be provided in the X direction and exposed simultaneously. good. In this case, the area that is exposed at one time increases, making it possible to improve throughput.

また、本発明は上記実施例に限定されるものではなく種々の変形が可能で有り、特許請求の範囲に記載された技術思想に含まれる技術的事項の全てが本発明の対象となる。 Further, the present invention is not limited to the above embodiments, and various modifications are possible, and all technical matters included in the technical idea described in the claims are covered by the present invention.

1 露光照明ユニット
2 照明光学系
3 光学フィルタ
4 露光照明光
5 ミラー
6 DMD
7 制御装置
8 第1の投影レンズ
9 マイクロレンズアレー
10 第2の投影レンズ
11 基板
1 Exposure illumination unit 2 Illumination optical system 3 Optical filter 4 Exposure illumination light 5 Mirror 6 DMD
7 Control device 8 First projection lens 9 Microlens array 10 Second projection lens 11 Substrate

Claims (3)

基板を露光するための照明光を射出する露光光源であって複数の半導体レーザを含むものと、前記照明光が入射される2次元空間変調器と、前記基板を照明光に対して移動させて走査露光するためのステージと、前記露光光源と前記2次元空間変調器との間の照明光の光軸上に配置される光学フィルタと、を備え、前記基板を走査方向に沿って連続的に移動させることに並行して、前記基板上の照射エリアに形成する露光パターンに対応する像を、前記2次元空間変調器において、画素単位で移動させながら形成する露光装置において、
前記光学フィルタは、前記光軸を中心に回転するように配置されており、
前記光学フィルタを回転させない初期状態において、前記光学フィルタの透過率は、前記光軸に対して垂直に横切る平面内で第1の方向には変化するが前記第1の方向と直角な第2の方向には変化せず、
前記初期状態においては、前記第1の方向の中心位置における前記光学フィルタの積算透過率が最も低く、周辺へ向かうにしたがって前記光学フィルタの積算透過率が高くなり、
前記光学フィルタを前記初期状態から90°回転させた状態においては、前記第1の方向の中心位置における前記光学フィルタの積算透過率が最も高く、周辺へ向かうにしたがって前記光学フィルタの積算透過率が低くなる、露光装置。
an exposure light source that emits illumination light for exposing a substrate and includes a plurality of semiconductor lasers; a two-dimensional spatial modulator into which the illumination light is incident; and a two-dimensional spatial modulator that moves the substrate with respect to the illumination light. a stage for scanning exposure; and an optical filter disposed on the optical axis of illumination light between the exposure light source and the two-dimensional spatial modulator, and the substrate is continuously scanned along the scanning direction. In an exposure apparatus that forms an image corresponding to an exposure pattern formed on an irradiation area on the substrate while moving pixel by pixel in the two-dimensional spatial modulator in parallel with the movement;
The optical filter is arranged to rotate around the optical axis,
In an initial state in which the optical filter is not rotated, the transmittance of the optical filter changes in a first direction within a plane perpendicular to the optical axis, but changes in a second direction perpendicular to the first direction. no change in direction,
In the initial state, the integrated transmittance of the optical filter at the center position in the first direction is the lowest, and the integrated transmittance of the optical filter increases toward the periphery,
When the optical filter is rotated by 90 degrees from the initial state, the integrated transmittance of the optical filter is highest at the center position in the first direction, and the integrated transmittance of the optical filter increases toward the periphery. Exposure equipment lowers.
前記光学フィルタを前記初期状態から30°回転させた状態においては、前記第1の方向の中心位置における前記光学フィルタの積算透過率が最も低く、周辺へ向かうにしたがって前記光学フィルタの積算透過率が高くなり、この際、前記初期状態に対して比較的緩やかに前記光学フィルタの積算透過率が増加する、請求項1に記載の露光装置。 When the optical filter is rotated by 30 degrees from the initial state, the integrated transmittance of the optical filter at the center position in the first direction is the lowest, and the integrated transmittance of the optical filter increases toward the periphery. 2. The exposure apparatus according to claim 1, wherein the integrated transmittance of the optical filter increases relatively slowly with respect to the initial state. 前記光学フィルタを前記初期状態から60°回転させた状態においては、前記第1の方向の中心位置を含む中心領域における前記光学フィルタの積算透過率が低く、前記中心領域から外側の領域へ向かうにしたがって前記光学フィルタの積算透過率が緩やかに増加する、請求項1又は2に記載の露光装置。 When the optical filter is rotated by 60 degrees from the initial state, the integrated transmittance of the optical filter in the central region including the center position in the first direction is low, and as it goes from the central region to the outer region. The exposure apparatus according to claim 1 or 2, wherein the integrated transmittance of the optical filter increases gradually.
JP2017250763A 2017-12-27 2017-12-27 exposure equipment Active JP7427352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017250763A JP7427352B2 (en) 2017-12-27 2017-12-27 exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017250763A JP7427352B2 (en) 2017-12-27 2017-12-27 exposure equipment

Publications (2)

Publication Number Publication Date
JP2019117271A JP2019117271A (en) 2019-07-18
JP7427352B2 true JP7427352B2 (en) 2024-02-05

Family

ID=67304411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017250763A Active JP7427352B2 (en) 2017-12-27 2017-12-27 exposure equipment

Country Status (1)

Country Link
JP (1) JP7427352B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240101699A (en) * 2021-12-28 2024-07-02 가부시키가이샤 니콘 exposure device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100561A (en) 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
JP2004039871A (en) 2002-07-03 2004-02-05 Hitachi Ltd Illuminating method, exposure method and equipment for the methods
JP2005055881A (en) 2003-07-22 2005-03-03 Fuji Photo Film Co Ltd Drawing method and drawing apparatus
JP2006019702A (en) 2004-06-04 2006-01-19 Canon Inc Illumination optical system and exposure apparatus
JP2006066429A (en) 2004-08-24 2006-03-09 Nikon Corp Lighting optical device, aligner, and exposure method
JP2006186291A (en) 2004-11-30 2006-07-13 Shinko Electric Ind Co Ltd Direct aligner and direct exposure method
US20070296936A1 (en) 2005-01-25 2007-12-27 Nikon Corporation Exposure Apparatus, Exposure Method, and Producing Method of Microdevice
JP2009086015A (en) 2007-09-27 2009-04-23 Hitachi Via Mechanics Ltd Maskless exposure apparatus
JP2010157649A (en) 2008-12-30 2010-07-15 Nikon Corp Correction unit, illumination optical system, aligner, and device manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293917B2 (en) * 1992-01-20 2002-06-17 株式会社東芝 Projection exposure equipment

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002100561A (en) 2000-07-19 2002-04-05 Nikon Corp Aligning method and aligner and method for fabricating device
JP2004039871A (en) 2002-07-03 2004-02-05 Hitachi Ltd Illuminating method, exposure method and equipment for the methods
JP2005055881A (en) 2003-07-22 2005-03-03 Fuji Photo Film Co Ltd Drawing method and drawing apparatus
JP2006019702A (en) 2004-06-04 2006-01-19 Canon Inc Illumination optical system and exposure apparatus
JP2006066429A (en) 2004-08-24 2006-03-09 Nikon Corp Lighting optical device, aligner, and exposure method
JP2006186291A (en) 2004-11-30 2006-07-13 Shinko Electric Ind Co Ltd Direct aligner and direct exposure method
US20070296936A1 (en) 2005-01-25 2007-12-27 Nikon Corporation Exposure Apparatus, Exposure Method, and Producing Method of Microdevice
JP2009086015A (en) 2007-09-27 2009-04-23 Hitachi Via Mechanics Ltd Maskless exposure apparatus
JP2010157649A (en) 2008-12-30 2010-07-15 Nikon Corp Correction unit, illumination optical system, aligner, and device manufacturing method

Also Published As

Publication number Publication date
JP2019117271A (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP5326259B2 (en) Illumination optical apparatus, exposure apparatus, and device manufacturing method
JP5286744B2 (en) Spatial light modulation unit, illumination optical system, exposure apparatus, and device manufacturing method
TWI448833B (en) An exposure device and a light source device
JP7023601B2 (en) Direct imaging exposure equipment and direct imaging exposure method
US9310697B2 (en) Digital exposure device using digital micro-mirror device and a method for controlling the same
US20100220306A1 (en) Solid-state array for lithography illumination
JP2012049433A (en) Exposure device
JP5064778B2 (en) Laser processing equipment
WO2014002312A1 (en) Pattern drawing device, pattern drawing method
US7006295B2 (en) Illumination system and method for efficiently illuminating a pattern generator
JP7427352B2 (en) exposure equipment
JP2006343684A (en) Pattern drawing device
JP4235972B2 (en) Pattern drawing apparatus and pattern drawing method
JP2007140166A (en) Direct exposure apparatus and illumination adjustment method
JP4679249B2 (en) Pattern drawing device
JP2009086015A (en) Maskless exposure apparatus
KR102013194B1 (en) Exposure optics for adjusting direction of irradiating light incident on digital micromirror device and light illumination optics thereof
US20160091794A1 (en) Drawing method
JP4570151B2 (en) Mask manufacturing method
JP4510429B2 (en) Mask drawing method and mask drawing apparatus
JP7196271B2 (en) Direct imaging exposure apparatus and direct imaging exposure method
KR102151254B1 (en) Exposing apparatus and method thereof
KR100764179B1 (en) A laser direct patterning apparatus using a polygon mirror controlled by corresponding signal from recognizing light path
JP6857585B2 (en) Exposure device
KR101718529B1 (en) Exposure apparatus based on dmd

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180511

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220908

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220922

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220926

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221125

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240124

R150 Certificate of patent or registration of utility model

Ref document number: 7427352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150