[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7423891B2 - Epoxy resin compositions, prepregs and fiber reinforced composites - Google Patents

Epoxy resin compositions, prepregs and fiber reinforced composites Download PDF

Info

Publication number
JP7423891B2
JP7423891B2 JP2018133902A JP2018133902A JP7423891B2 JP 7423891 B2 JP7423891 B2 JP 7423891B2 JP 2018133902 A JP2018133902 A JP 2018133902A JP 2018133902 A JP2018133902 A JP 2018133902A JP 7423891 B2 JP7423891 B2 JP 7423891B2
Authority
JP
Japan
Prior art keywords
component
epoxy resin
resin composition
content
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018133902A
Other languages
Japanese (ja)
Other versions
JP2019023284A (en
Inventor
英喜 高橋
大典 小西
雅幸 三好
啓之 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2019023284A publication Critical patent/JP2019023284A/en
Application granted granted Critical
Publication of JP7423891B2 publication Critical patent/JP7423891B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、スポーツ用途、航空宇宙用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。 The present invention relates to an epoxy resin composition that is preferably used as a matrix resin for fiber-reinforced composite materials suitable for sports, aerospace, and general industrial applications, as well as prepregs and fiber-reinforced composites using this as a matrix resin. be.

エポキシ樹脂は、高い機械特性、耐熱性、接着性を活かし、炭素繊維、ガラス繊維、アラミド繊維などの強化繊維と組合せてなる繊維強化複合材料のマトリックス樹脂として好適に用いられている。 Epoxy resins take advantage of their high mechanical properties, heat resistance, and adhesive properties, and are suitably used as matrix resins for fiber-reinforced composite materials in combination with reinforcing fibers such as carbon fibers, glass fibers, and aramid fibers.

繊維強化複合材料の製造には、強化繊維にエポキシ樹脂を含浸したシート状の中間基材(プリプレグ)が汎用される。プリプレグを積層後、加熱してエポキシ樹脂を硬化する方法で成形品が得られ、プリプレグの積層設計により多彩な特性を発現できるため、航空機やスポーツなど、様々な分野へ応用されている。近年では自動車などの産業用途への適用も進み、量産性を重視した硬化時間の短い速硬化プリプレグが注目されている。 In the production of fiber-reinforced composite materials, a sheet-shaped intermediate base material (prepreg) made of reinforcing fibers impregnated with epoxy resin is widely used. Molded products are obtained by laminating prepregs and then heating them to harden the epoxy resin. The laminated design of the prepregs allows for a wide variety of properties, so it is used in a variety of fields such as aircraft and sports. In recent years, its application to industrial applications such as automobiles has progressed, and fast-curing prepregs with short curing times, with emphasis on mass production, are attracting attention.

一方で、速硬化プリプレグは使用されているエポキシ樹脂の反応性を高めて硬化時間を短縮したものであるため、保存安定性や作業中の品質変化がしばしば問題となり、より安定性に優れるプリプレグが求められている。 On the other hand, since fast-curing prepregs are made by increasing the reactivity of the epoxy resin used and shortening the curing time, storage stability and changes in quality during processing are often problems, so prepregs with better stability are It has been demanded.

特許文献1には、特定の芳香族ウレアを促進剤として使用した、速硬化性と耐熱性に優れた硬化物を与えるエポキシ樹脂組成物およびプリプレグが開示されている。 Patent Document 1 discloses an epoxy resin composition and prepreg that use a specific aromatic urea as an accelerator and provide a cured product with excellent fast curing properties and heat resistance.

特許文献2には、硬化速度に優れ、ガラス転位温度が140℃を超えないエポキシ樹脂組成物が開示されている。 Patent Document 2 discloses an epoxy resin composition that has an excellent curing speed and a glass transition temperature that does not exceed 140°C.

特許文献3には、ジシアンジアミド、芳香族ウレアおよびホウ酸エステルを含む、保存安定性と機械特性に優れたエポキシ樹脂組成物が開示されている。 Patent Document 3 discloses an epoxy resin composition containing dicyandiamide, aromatic urea, and boric acid ester and having excellent storage stability and mechanical properties.

特開2003-128764号公報Japanese Patent Application Publication No. 2003-128764 特表2016-500409号公報Special table 2016-500409 publication 特開2016-148020号公報Japanese Patent Application Publication No. 2016-148020

特許文献1に開示されたエポキシ樹脂組成物は比較的硬化時間が短く室温での作業性も良好であるが、例えば量産車に求められるサイクルタイムや、保存安定性および作業性を満足するには至っていない。 Although the epoxy resin composition disclosed in Patent Document 1 has a relatively short curing time and good workability at room temperature, it is difficult to meet the cycle time, storage stability, and workability required for mass-produced cars, for example. Not yet reached.

特許文献2に開示されたエポキシ樹脂組成物は、速硬化性に優れるが、保存安定性が不十分であった。 The epoxy resin composition disclosed in Patent Document 2 has excellent fast curing properties, but has insufficient storage stability.

特許文献3に開示されたエポキシ樹脂組成物は、保存安定性に優れるが、硬化時間は不十分であった。 The epoxy resin composition disclosed in Patent Document 3 had excellent storage stability, but the curing time was insufficient.

そこで、本発明では、かかる従来技術の欠点を克服し、優れた速硬化性と保存安定性が両立したエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いたプリプレグ、ならびに該プリプレグを硬化して得られる、繊維強化複合材料を提供することを目的とする。 Therefore, the present invention overcomes the drawbacks of the prior art and provides an epoxy resin composition that has both excellent fast curing properties and storage stability, a prepreg using the epoxy resin composition, and a method for curing the prepreg. The present invention aims to provide a fiber-reinforced composite material obtained by the present invention.

本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明のエポキシ樹脂組成物は、以下の構成からなる。 As a result of intensive studies to solve the above problems, the present inventors discovered an epoxy resin composition having the following structure and completed the present invention. That is, the epoxy resin composition of the present invention has the following structure.

次の成分[A]、[B]、[C]、[D]を含み、下記条件[a]、[b]、[c]を満たすエポキシ樹脂組成物。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:芳香族ウレア
[D]:ホウ酸エステル
[a]:0.005≦(成分[D]の含有量/成分[C]の含有量)≦0.045
[b]:0.9≦(成分[A]の活性基モル数/成分[B]の活性水素モル数)≦1.3
[c]:12≦(成分[A]の含有量/成分[C]の含有量)≦26
また、本発明のプリプレグは、上記エポキシ樹脂組成物と強化繊維からなる。
An epoxy resin composition containing the following components [A], [B], [C], and [D] and satisfying the following conditions [a], [b], and [c].
[A]: Epoxy resin [B]: Dicyandiamide [C]: Aromatic urea [D]: Boric acid ester [a]: 0.005≦(Content of component [D]/Content of component [C]) ≦0.045
[b]: 0.9≦(number of moles of active groups in component [A]/number of moles of active hydrogen in component [B])≦1.3
[c]: 12≦(content of component [A]/content of component [C])≦26
Moreover, the prepreg of the present invention consists of the above-mentioned epoxy resin composition and reinforcing fibers.

さらに、本発明の繊維強化複合材料は、上記プリプレグが硬化されてなる。 Furthermore, the fiber-reinforced composite material of the present invention is obtained by curing the above prepreg.

本発明に記載のエポキシ樹脂組成物を用いることで、速硬化性と保存安定性が共に極めて優れたプリプレグおよび繊維強化複合材料を提供することができる。 By using the epoxy resin composition according to the present invention, it is possible to provide prepregs and fiber-reinforced composite materials that have extremely excellent fast curing properties and storage stability.

本発明のエポキシ樹脂組成物は、成分[A]エポキシ樹脂、成分[B]ジシアンジアミド、成分[C]芳香族ウレア化合物、成分[D]ホウ酸エステルを必須成分として含む。まずはこれらの構成要素について説明する。 The epoxy resin composition of the present invention includes component [A] an epoxy resin, component [B] dicyandiamide, component [C] an aromatic urea compound, and component [D] boric acid ester as essential components. First, these components will be explained.

(成分[A])
本発明における成分[A]はエポキシ樹脂である。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ノボラック型エポキシ樹脂、フルオレン骨格を有するエポキシ樹脂、フェノール化合物とジシクロペンタジエンの共重合体を原料とするエポキシ樹脂、ジグリシジルレゾルシノール、テトラキス(グリシジルオキシフェニル)エタン、トリス(グリシジルオキシフェニル)メタンのようなグリシジルエーテル型エポキシ樹脂、テトラグリシジルジアミノジフェニルメタン、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシレンジアミンのようなグリシジルアミン型エポキシ樹脂が挙げられる。エポキシ樹脂は、これらを単独で用いても、複数種類を組み合わせても良い。
(Component [A])
Component [A] in the present invention is an epoxy resin. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, novolac type epoxy resin, epoxy resin having a fluorene skeleton, combination of phenol compound and dicyclopentadiene. Epoxy resins made from polymers, glycidyl ether type epoxy resins such as diglycidylresorcinol, tetrakis(glycidyloxyphenyl)ethane, tris(glycidyloxyphenyl)methane, tetraglycidyldiaminodiphenylmethane, triglycidylaminophenol, triglycidylamino Examples include glycidylamine type epoxy resins such as cresol and tetraglycidylxylene diamine. The epoxy resins may be used alone or in combination.

本発明においては、成分[A]として3官能以上の多官能エポキシ樹脂を含むことが好ましい。3官能以上の多官能エポキシ樹脂を含むことにより、優れた速硬化性と保管安定性を有しながら、曲げ弾性率に優れたエポキシ樹脂組成物が得られる。 In the present invention, it is preferable that component [A] contains a trifunctional or more polyfunctional epoxy resin. By including a trifunctional or higher polyfunctional epoxy resin, an epoxy resin composition having excellent fast curing properties and storage stability as well as excellent flexural modulus can be obtained.

3官能以上の多官能エポキシ樹脂としては、速硬化性と保管安定性、および硬化物の曲げ弾性率のバランスの観点から、成分[A1]:下記式(I)および/または下記式(II)で示されるエポキシ樹脂を含むことが好ましい。成分[A1]は、一般にフェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはジシクロペンタジエン型エポキシ樹脂として知られているものであり、2官能以上の多官能エポキシ樹脂の混合物として市販されている。 From the viewpoint of quick curing property, storage stability, and balance of flexural modulus of cured product, the trifunctional or higher polyfunctional epoxy resin has component [A1]: the following formula (I) and/or the following formula (II). It is preferable that the epoxy resin shown in the following is included. Component [A1] is generally known as a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a dicyclopentadiene type epoxy resin, and is commercially available as a mixture of bifunctional or higher polyfunctional epoxy resins. .

成分[A1]は、エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部中55~100質量部含むことにより、樹脂硬化物の曲げ弾性率をさらに高めることができる。 By containing 55 to 100 parts by mass of component [A1] out of 100 parts by mass of the total epoxy resin contained in the epoxy resin composition, the flexural modulus of the cured resin product can be further increased.

Figure 0007423891000001
Figure 0007423891000001

(式(I)において、R、R、Rは、それぞれ独立して水素原子またはメチル基を表す。また、nは1以上の整数を表す。) (In formula (I), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group. Also, n represents an integer of 1 or more.)

Figure 0007423891000002
Figure 0007423891000002

(式(II)において、nは1以上の整数を表す)。 (In formula (II), n represents an integer of 1 or more).

成分[A1]の市販品としては、“jER(登録商標)”152、154、180S(以上、三菱化学(株)製)、“Epiclon(登録商標)”N-740、N-770、N-775、N-660、N-665、N-680、N-695、HP7200L、HP7200、HP7200H、HP7200HH、HP7200HHH(以上、DIC(株)製)、PY307、EPN1179、EPN1180、ECN9511、ECN1273、ECN1280、ECN1285,ECN1299(以上、ハンツマン・アドバンスト・マテリアル社製)、YDPN-638、YDPN-638P、YDCN-701、YDCN-702、YDCN-703、YDCN-704(以上、東都化成(株)製)、DEN431、DEN438、DEN439(以上、ダウケミカル社製)などが挙げられる。 Commercially available products of component [A1] include "jER (registered trademark)" 152, 154, 180S (manufactured by Mitsubishi Chemical Corporation), "Epiclon (registered trademark)" N-740, N-770, N- 775, N-660, N-665, N-680, N-695, HP7200L, HP7200, HP7200H, HP7200HH, HP7200HHH (manufactured by DIC Corporation), PY307, EPN1179, EPN1180, ECN9511, ECN1273, ECN1 280, ECN1285 , ECN1299 (manufactured by Huntsman Advanced Materials), YDPN-638, YDPN-638P, YDCN-701, YDCN-702, YDCN-703, YDCN-704 (manufactured by Toto Kasei Co., Ltd.), DEN431, Examples include DEN438 and DEN439 (manufactured by Dow Chemical Company).

(成分[B])
本発明における成分[B]は、ジシアンジアミドである。ジシアンジアミドは、化学式(HN)C=N-CNで表される化合物である。ジシアンジアミドは、樹脂硬化物に高い力学特性や耐熱性を与える点で優れており、エポキシ樹脂の硬化剤として広く用いられる。かかるジシアンジアミドの市販品としては、DICY7、DICY15(以上、三菱化学(株)製)などが挙げられる。
(Component [B])
Component [B] in the present invention is dicyandiamide. Dicyandiamide is a compound represented by the chemical formula (H 2 N) 2 C=N-CN. Dicyandiamide is excellent in providing high mechanical properties and heat resistance to cured resin products, and is widely used as a curing agent for epoxy resins. Commercially available products of such dicyandiamide include DICY7 and DICY15 (all manufactured by Mitsubishi Chemical Corporation).

ジシアンジアミド[B]を粉体としてエポキシ樹脂組成物に配合することは、室温での保存安定性や、プリプレグ製造時の粘度安定性の観点から好ましい。また、ジシアンジアミド[B]を予め成分[A]のエポキシ樹脂の一部に三本ロールなどを用いて分散させておくことは、エポキシ樹脂組成物を均一にし、硬化物の物性を向上させるため好ましい。 It is preferable to blend dicyandiamide [B] in the form of powder into an epoxy resin composition from the viewpoint of storage stability at room temperature and viscosity stability during prepreg production. Further, it is preferable to disperse dicyandiamide [B] into a part of the epoxy resin of component [A] in advance using a triple roll or the like, in order to make the epoxy resin composition uniform and improve the physical properties of the cured product. .

ジシアンジアミドを粉体として樹脂に配合する場合、平均粒径は10μm以下であることが好ましく、さらに好ましくは7μm以下である。例えば、プリプレグ製造工程において加熱加圧により強化繊維束にエポキシ樹脂組成物を含浸させる際、平均粒径が10μm以下であれば、繊維束内部への樹脂の含浸性が良好となる。なお、ここでいう平均粒径とは、体積平均を意味し、レーザー回折型の粒度分布測定装置によって測定することができる。 When dicyandiamide is blended into the resin as a powder, the average particle size is preferably 10 μm or less, more preferably 7 μm or less. For example, when a reinforcing fiber bundle is impregnated with an epoxy resin composition by heating and pressurizing in the prepreg manufacturing process, if the average particle size is 10 μm or less, the impregnation of the resin into the inside of the fiber bundle will be good. In addition, the average particle size here means a volume average, and can be measured by a laser diffraction type particle size distribution measuring device.

ジシアンジアミド[B]は、後述の成分[C]と併用することにより、成分[B]を単独で配合した場合と比較し、樹脂組成物の硬化温度を下げることができる。本発明においては、硬化時間を短縮するために、成分[B]と成分[C]を併用することが必要である。 By using dicyandiamide [B] in combination with component [C] described below, the curing temperature of the resin composition can be lowered compared to when component [B] is blended alone. In the present invention, it is necessary to use component [B] and component [C] together in order to shorten the curing time.

(成分[C])
本発明における成分[C]は、芳香族ウレアである。
(Component [C])
Component [C] in the present invention is aromatic urea.

成分[C]における芳香族ウレア化合物の具体例としては、3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、3-(4-クロロフェニル)-1,1-ジメチルウレア、フェニルジメチルウレア、トルエンビスジメチルウレアなどが挙げられる。また、芳香族ウレア化合物の市販品としては、DCMU99(保土ヶ谷化学工業(株)製)、“Omicure(登録商標)”24(ピィ・ティ・アイ・ジャパン(株)製)、“Dyhard(登録商標)”UR505(4,4’-メチレンビス(フェニルジメチルウレア、CVC製)などが挙げられる。 Specific examples of the aromatic urea compound in component [C] include 3-(3,4-dichlorophenyl)-1,1-dimethylurea, 3-(4-chlorophenyl)-1,1-dimethylurea, and phenyldimethylurea. , toluene bisdimethylurea, and the like. In addition, as commercially available aromatic urea compounds, DCMU99 (manufactured by Hodogaya Chemical Industry Co., Ltd.), "Omicure (registered trademark)" 24 (manufactured by PTI Japan Co., Ltd.), and "Dyhard (registered trademark)" are available. )" UR505 (4,4'-methylenebis(phenyldimethylurea, manufactured by CVC).

(成分[D])
本発明における成分[D]は、ホウ酸エステルである。成分[C]と成分[D]とを併用することにより、保管温度における成分[C]とエポキシ樹脂の反応が抑制されるため、プリプレグの保管安定性が著しく向上する。そのメカニズムは定かではないが、成分[D]はルイス酸性を持つため、成分[C]から遊離したアミン化合物と成分[D]が相互作用し、アミン化合物の反応性を低下させているのではないかと考えられる。
(Component [D])
Component [D] in the present invention is a boric acid ester. By using component [C] and component [D] together, the reaction between component [C] and the epoxy resin at the storage temperature is suppressed, so the storage stability of the prepreg is significantly improved. The mechanism is not clear, but since component [D] has Lewis acidity, the amine compound released from component [C] and component [D] may interact, reducing the reactivity of the amine compound. It is thought that there is.

成分[D]のホウ酸エステルの具体例としては、トリメチルボレート、トリエチルボレート、トリブチルボレート、トリn-オクチルボレート、トリ(トリエチレングリコールメチルエーテル)ホウ酸エステル、トリシクロヘキシルボレート、トリメンチルボレートなどのアルキルホウ酸エステル、トリo-クレジルボレート、トリm-クレジルボレート、トリp-クレジルボレート、トリフェニルボレートなどの芳香族ホウ酸エステル、トリ(1,3-ブタンジオール)ビボレート、トリ(2-メチル-2,4-ペンタンジオール)ビボレート、トリオクチレングリコールジボレートなどが挙げられる。 Specific examples of the boric acid ester of component [D] include trimethylborate, triethylborate, tributylborate, tri-n-octylborate, tri(triethylene glycol methyl ether) borate, tricyclohexylborate, and trimentylborate. Alkyl borates, aromatic borates such as tri-o-cresylborate, tri-m-cresylborate, triphenylborate, triphenylborate, tri(1,3-butanediol)biborate, tri(2-cresylborate), -methyl-2,4-pentanediol) biborate, trioctylene glycol diborate, and the like.

また、ホウ酸エステルとして、分子内に環状構造を有する環状ホウ酸エステルを用いることもできる。環状ホウ酸エステルとしては、トリス-o-フェニレンビスボレート、ビス-o-フェニレンピロボレート、ビス-2,3-ジメチルエチレンフェニレンピロボレート、ビス-2,2-ジメチルトリメチレンピロボレートなどが挙げられる。 Further, as the boric acid ester, a cyclic boric acid ester having a cyclic structure within the molecule can also be used. Examples of the cyclic boric acid ester include tris-o-phenylene bisborate, bis-o-phenylene pyroborate, bis-2,3-dimethylethylenephenylene pyroborate, bis-2,2-dimethyltrimethylene pyroborate, and the like. .

かかるホウ酸エステルを含む製品としては、たとえば、“キュアダクト(登録商標)”L-01B(四国化成工業(株))、“キュアダクト(登録商標)”L-07N(四国化成工業(株))(ホウ酸エステル化合物を5質量部含む組成物)、“キュアダクト(登録商標)”L-07E(四国化成工業(株))(ホウ酸エステル化合物を5質量部含む組成物)などが挙げられる。 Examples of products containing such boric acid esters include "Cure Duct (registered trademark)" L-01B (Shikoku Kasei Kogyo Co., Ltd.) and "Cure Duct (registered trademark)" L-07N (Shikoku Kasei Kogyo Co., Ltd.). ) (composition containing 5 parts by mass of a boric acid ester compound), "Cure Duct (registered trademark)" L-07E (Shikoku Kasei Kogyo Co., Ltd.) (composition containing 5 parts by mass of a boric acid ester compound), etc. It will be done.

本発明のエポキシ樹脂組成物は、以下の条件[a]を満たす。
[a]:0.005≦(成分[D]の含有量/成分[C]の含有量)≦0.045。
The epoxy resin composition of the present invention satisfies the following condition [a].
[a]: 0.005≦(content of component [D]/content of component [C])≦0.045.

条件[a]について、エポキシ樹脂組成物の成分[D]の含有量/成分[C]の含有量で示される値が0.005~0.045の範囲内にあると、速硬化性と保存安定性のバランスが優れたプリプレグが得られる。成分[D]の含有量/成分[C]の含有量が0.005未満の場合、保存安定性が不十分なものとなる。成分[D]の含有量/成分[C]の含有量が0.045を超える場合、硬化時間が不十分なものとなる。なお、成分[C]の含有量または成分[D]の含有量とは、成分[A]のエポキシ樹脂100質量部に対する[C]ホウ酸エステルまたは[D]ホウ酸エステルの配合量のことである。 Regarding condition [a], if the value represented by the content of component [D]/the content of component [C] of the epoxy resin composition is within the range of 0.005 to 0.045, the fast curing property and storage property are improved. A prepreg with an excellent balance of stability can be obtained. If the content of component [D]/content of component [C] is less than 0.005, storage stability will be insufficient. When the content of component [D]/content of component [C] exceeds 0.045, the curing time becomes insufficient. The content of component [C] or the content of component [D] refers to the amount of boric acid ester [C] or boric acid ester [D] based on 100 parts by mass of the epoxy resin of component [A]. be.

本発明のエポキシ樹脂組成物の保存安定性は、40℃、75%RHで14日間保存した後のガラス転移温度の変化が20℃以下であると、該エポキシ樹脂組成物からなるプリプレグが常温でも優れた保存安定性を示す。 The storage stability of the epoxy resin composition of the present invention is determined if the change in glass transition temperature after storage at 40°C and 75% RH for 14 days is 20°C or less, and the prepreg made of the epoxy resin composition can be maintained at room temperature. Shows excellent storage stability.

本発明のエポキシ樹脂組成物の保存安定性は、例えば、示差走査熱量分析(DSC)にて、ガラス転移温度の変化を追跡することで評価できる。具体的には、エポキシ樹脂組成物を、恒温恒湿槽などで所定の期間保管し、保管前後のガラス転移温度変化をDSCにより-20℃から150℃まで5℃/分で昇温して測定することで判定できる。 The storage stability of the epoxy resin composition of the present invention can be evaluated, for example, by tracking changes in glass transition temperature using differential scanning calorimetry (DSC). Specifically, an epoxy resin composition is stored for a predetermined period of time in a constant temperature and humidity chamber, etc., and the change in glass transition temperature before and after storage is measured by DSC by increasing the temperature from -20°C to 150°C at a rate of 5°C/min. You can judge by doing this.

本発明のエポキシ樹脂組成物の硬化時間は、例えば、ローターレスタイプの加硫/硬化特性試験機(“キュラストメーター(登録商標)”V型)などを用いて評価することができる。具体的には、調製したエポキシ樹脂組成物を150℃に加熱されたダイスにサンプルを入れ、ねじり応力をかけてサンプルの硬化の進行にともなう粘度上昇をダイスに伝わるトルクとし、最大ピークトルクの70%に達する時間を脱型可能な時間とし評価する。最大ピークトルクの70%に達する時間を硬化時間として定義することで、評価が可能である。 The curing time of the epoxy resin composition of the present invention can be evaluated using, for example, a rotorless type vulcanization/curing property tester (“Curelastometer (registered trademark)” V type). Specifically, a sample of the prepared epoxy resin composition was placed in a die heated to 150°C, torsional stress was applied, and the increase in viscosity as the sample hardened was defined as the torque transmitted to the die, and the maximum peak torque was 70°C. % is evaluated as the time when demolding is possible. Evaluation is possible by defining the time to reach 70% of the maximum peak torque as the curing time.

本発明のエポキシ樹脂組成物は、以下の条件[b]を満たす。
[b]:0.9≦(成分[A]の活性基モル数/成分[B]の活性水素モル数)≦1.3。
The epoxy resin composition of the present invention satisfies the following condition [b].
[b]: 0.9≦(number of moles of active groups in component [A]/number of moles of active hydrogen in component [B])≦1.3.

条件[b]について、成分[A]の活性基モル数/成分[B]の活性水素モル数で示される値が、0.9~1.3の範囲にある場合、速硬化性に優れるエポキシ樹脂組成物を与える。成分[A]の活性基モル数/成分[B]の活性水素モル数が、1.3を超える場合には、速硬化性が不十分なものとなる。一方、成分[A]の活性基モル数/成分[B]の活性水素モル数が、0.9未満の場合には、硬化物の機械特性が不十分なものとなる。 Regarding condition [b], if the value expressed by the number of moles of active groups in component [A]/the number of moles of active hydrogen in component [B] is in the range of 0.9 to 1.3, the epoxy resin has excellent fast curing properties. A resin composition is provided. If the ratio of the number of moles of active groups in component [A]/the number of moles of active hydrogen in component [B] exceeds 1.3, the rapid curing property will be insufficient. On the other hand, if the number of moles of active groups in component [A]/the number of moles of active hydrogen in component [B] is less than 0.9, the mechanical properties of the cured product will be insufficient.

なお、成分[A]の活性基モル数とは、各エポキシ樹脂活性基のモル数の和のことであり、下式で表される。
成分[A]の活性基モル数=(樹脂A質量/樹脂Aのエポキシ当量)+(樹脂B質量/樹脂Bのエポキシ当量)+・・・・+(樹脂W質量/樹脂Wのエポキシ当量)。
Note that the number of moles of active groups in component [A] is the sum of the number of moles of each epoxy resin active group, and is expressed by the following formula.
Number of moles of active groups in component [A] = (mass of resin A / epoxy equivalent of resin A) + (mass of resin B / epoxy equivalent of resin B) + ... + (mass of resin W / epoxy equivalent of resin W) .

また、成分[B]の活性水素モル数は、ジシアンジアミド質量をジシアンジアミドの活性水素当量で除することにより求められ、下式で表される。
成分[B]の活性水素モル数=ジシアンジアミド質量/ジシアンジアミド活性水素当量。
Moreover, the active hydrogen mole number of component [B] is determined by dividing the mass of dicyandiamide by the active hydrogen equivalent of dicyandiamide, and is expressed by the following formula.
Number of active hydrogen moles of component [B] = dicyandiamide mass/dicyandiamide active hydrogen equivalent.

本発明のエポキシ樹脂組成物は、以下の条件[c]を満たす。
[c]:12≦(成分[A]の含有量/成分[C]の含有量)≦26。
The epoxy resin composition of the present invention satisfies the following condition [c].
[c]: 12≦(content of component [A]/content of component [C])≦26.

本発明のエポキシ樹脂組成物が条件[c]を満たす、つまりエポキシ樹脂組成物の成分[A]の含有量/成分[C]の含有量で示される値が、12~26の範囲にある場合、速硬化性に優れるエポキシ樹脂組成物を与える。成分[A]の含有量/成分[C]の含有量が、26を超える場合には、速硬化性が不十分なものとなる。一方、成分[A]の含有量/成分[C]の含有量が、12未満の場合には、硬化物の機械特性が不十分となる。 When the epoxy resin composition of the present invention satisfies condition [c], that is, when the value represented by the content of component [A]/content of component [C] of the epoxy resin composition is in the range of 12 to 26. , to provide an epoxy resin composition with excellent rapid curing properties. If the content of component [A]/content of component [C] exceeds 26, the fast curing properties will be insufficient. On the other hand, if the content of component [A]/content of component [C] is less than 12, the mechanical properties of the cured product will be insufficient.

通常、エポキシ樹脂の速硬化性と保存安定性はトレードオフの関係にあり、個別の技術の組み合わせでは両立できない。本発明のエポキシ樹脂組成物が[a]、[b]および[c]の条件を同時に満たすことではじめて、トレードオフが打破され、速硬化性と保存安定性を極めて高いバランスで両立可能となる。[a]から[c]のいずれか1つ、あるいは2つの組み合わせでは、速硬化性と保存安定性を極めて高いバランスで両立できない。さらに、[a]、[b]、[c]の全ての条件を満すことで、エポキシ樹脂硬化物の機械特性、特に曲げ弾性率を適切な水準に維持することができるため、該エポキシ樹脂組成物用いたプリプレグからなる繊維強化複合材料は、機械強度が高いものとなる。 Usually, there is a trade-off between the fast curing properties and storage stability of epoxy resins, and it is not possible to achieve both by combining individual technologies. Only when the epoxy resin composition of the present invention satisfies conditions [a], [b], and [c] at the same time can the trade-off be overcome and rapid curing properties and storage stability coexist in an extremely high balance. . Any one of [a] to [c], or a combination of two, cannot achieve both rapid curing property and storage stability in an extremely high balance. Furthermore, by satisfying all the conditions [a], [b], and [c], the mechanical properties of the cured epoxy resin, especially the flexural modulus, can be maintained at an appropriate level, so the epoxy resin A fiber-reinforced composite material made of prepreg using the composition has high mechanical strength.

本発明のエポキシ樹脂組成物は、本発明の効果を失わない範囲において、粘弾性を調整し、プリプレグのタッグやドレープ特性を改良する目的や、樹脂組成物の機械特性や靭性を高めるなどの目的で、成分[E]として熱可塑性樹脂を含むことができる。熱可塑性樹脂としては、エポキシ樹脂に可溶な熱可塑性樹脂や、ゴム粒子および熱可塑性樹脂粒子等の有機粒子、シリカなどの無機粒子、CNTやグラフェンなどのナノ粒子等を選択することができる。 The epoxy resin composition of the present invention can be used for purposes such as adjusting viscoelasticity and improving the tag and drape properties of prepreg, and increasing the mechanical properties and toughness of the resin composition, within a range that does not impair the effects of the present invention. A thermoplastic resin can be included as component [E]. As the thermoplastic resin, a thermoplastic resin soluble in epoxy resin, organic particles such as rubber particles and thermoplastic resin particles, inorganic particles such as silica, nanoparticles such as CNT and graphene, etc. can be selected.

エポキシ樹脂に可溶な熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂、ポリビニルアルコール、フェノキシ樹脂、ポリアミド、ポリイミド、ポリビニルピロリドン、ポリスルホンを挙げることができる。 Examples of thermoplastic resins soluble in epoxy resins include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral, polyvinyl alcohol, phenoxy resins, polyamides, polyimides, polyvinylpyrrolidone, and polysulfones.

ゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子を挙げることができる。 Examples of the rubber particles include crosslinked rubber particles and core-shell rubber particles in which a different polymer is graft-polymerized on the surface of the crosslinked rubber particles.

本発明のエポキシ樹脂組成物の調製には、例えばニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機といった機械を用いて混練しても良いし、均一な混練が可能であれば、ビーカーとスパチュラなどを用い、手で混ぜても良い。 The epoxy resin composition of the present invention may be kneaded using a machine such as a kneader, a planetary mixer, a three-roll extruder, or a twin-screw extruder, or may be kneaded using a beaker if uniform kneading is possible. You can also mix by hand using a spatula.

本発明で得られるエポキシ樹脂組成物を用いて繊維強化複合材料を得るにあたり、あらかじめエポキシ樹脂組成物と強化繊維からなるプリプレグとしておくことが好ましい。プリプレグは繊維の配置および樹脂の割合を精密に制御でき、複合材料の特性を最大限に引き出すことのできる材料形態である。プリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ホットメルト法(ドライ法)などを挙げることができる。ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または離型紙などの上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。 When obtaining a fiber-reinforced composite material using the epoxy resin composition obtained in the present invention, it is preferable to prepare a prepreg made of the epoxy resin composition and reinforcing fibers in advance. Prepreg is a material form that allows for precise control of fiber arrangement and resin ratio, and allows for maximizing the properties of composite materials. The prepreg can be obtained by impregnating a reinforcing fiber base material with the epoxy resin composition of the present invention. Examples of the impregnating method include a hot melt method (dry method). The hot melt method is a method in which reinforcing fibers are directly impregnated with an epoxy resin composition whose viscosity has been lowered by heating, or a film is prepared by coating the epoxy resin composition on release paper, etc., and then both sides of the reinforcing fibers are coated with the epoxy resin composition. Alternatively, the reinforcing fibers are impregnated with resin by stacking the films on one side and applying heat and pressure.

積層したプリプレグを成形する方法としては、例えばプレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法などを適宜使用することができる。 As a method for molding the laminated prepreg, for example, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, etc. can be used as appropriate.

次に、繊維強化複合材料について説明する。本発明の繊維強化複合材料は、本発明のプリプレグを硬化させてなるものである。より具体的には、本発明のエポキシ樹脂組成物からなるプリプレグを積層した後、加熱し硬化させることにより、本発明のエポキシ樹脂組成物の樹脂硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。 Next, the fiber reinforced composite material will be explained. The fiber-reinforced composite material of the present invention is obtained by curing the prepreg of the present invention. More specifically, prepregs made of the epoxy resin composition of the present invention are laminated and then heated and cured to obtain a fiber-reinforced composite material containing a cured resin of the epoxy resin composition of the present invention as a matrix resin. be able to.

本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維などが使用できる。これらの繊維を2種以上混合して用いても構わない。軽量かつ高剛性な繊維強化複合材料が得られる観点から、炭素繊維を用いることが好ましい。 The reinforcing fibers used in the present invention are not particularly limited, and glass fibers, carbon fibers, aramid fibers, boron fibers, alumina fibers, silicon carbide fibers, and the like can be used. Two or more of these fibers may be used in combination. From the viewpoint of obtaining a lightweight and highly rigid fiber-reinforced composite material, it is preferable to use carbon fiber.

本発明のエポキシ樹脂組成物の樹脂硬化物と、強化繊維を含む繊維強化複合材料は、スポーツ用途、航空宇宙用途および一般産業用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット、ホッケーなどのスティック、およびスキーポールなどに好ましく用いられる。また、航空宇宙用途では、主翼、尾翼およびフロアビーム等の航空機一次構造材用途、および内装材等の二次構造材用途に好ましく用いられる。さらに一般産業用途では、自動車、自転車、船舶および鉄道車両などの構造材に好ましく用いられる。なかでも、本発明のエポキシ樹脂組成物と炭素繊維からなるプリプレグは、保存安定性に優れ、冷凍の必要なく長期保存が可能で、同時に速硬化性にも優れることから、ハイサイクルを必要とする自動車部材に適している。また、本発明のエポキシ樹脂組成物からなるプリプレグは、加熱加圧して硬化させる成形方法、すなわち、プレス成形に好適に用いられる。あらかじめ加熱した金型に、前記プリプレグの積層体を配置し加圧することにより、さらに短時間で繊維強化複合材料を得ることができる。加えて、速硬化性に優れる特徴を生かし、プレス成形でしばしば問題となる繊維の配向乱れを抑制することができるため、成形品の力学特性を向上させることができる。 A fiber-reinforced composite material containing a resin cured product of the epoxy resin composition of the present invention and reinforcing fibers is preferably used for sports, aerospace, and general industrial applications. More specifically, in sports applications, it is preferably used in golf shafts, fishing rods, tennis and badminton rackets, hockey sticks, and ski poles. Furthermore, in aerospace applications, it is preferably used for primary structural materials of aircraft such as main wings, tails, and floor beams, and for secondary structural materials such as interior materials. Furthermore, in general industrial applications, it is preferably used for structural materials such as automobiles, bicycles, ships, and railway vehicles. Among these, the prepreg made of the epoxy resin composition and carbon fiber of the present invention has excellent storage stability and can be stored for a long time without the need for refrigeration, and at the same time has excellent fast curing properties, so it requires high cycles. Suitable for automobile parts. Moreover, the prepreg made of the epoxy resin composition of the present invention is suitably used in a molding method in which the prepreg is cured by heating and pressing, that is, press molding. By placing the prepreg laminate in a preheated mold and applying pressure, a fiber-reinforced composite material can be obtained in a shorter time. In addition, by taking advantage of its excellent rapid curing properties, it is possible to suppress disordered fiber orientation, which is often a problem in press molding, thereby improving the mechanical properties of molded products.

以下に実施例を示し、本発明をさらに具体的に説明するが、本発明はこれら実施例の記載に限定されるものではない。 EXAMPLES The present invention will be explained in more detail by way of Examples below, but the present invention is not limited to the description of these Examples.

本実施例で用いる構成要素は以下の通りである。 The components used in this example are as follows.

<使用した材料>
・成分[A]:エポキシ樹脂
[A1]-1 “jER(登録商標)”154(フェノールノボラック型エポキシ樹脂、エポキシ当量:176~180、平均官能基数:3.0個/分子、三菱化学(株)製)、
[A1]-2 “Epiclon(登録商標)”N-740(フェノールノボラック型エポキシ樹脂、エポキシ当量:177~187、平均官能基数:3.7個/分子、DIC(株)製)、
[A1]-3 “Epiclon(登録商標)”N-770(フェノールノボラック型エポキシ樹脂、エポキシ当量:183~193、平均官能基数:6.0個/分子、DIC(株)製)、
[A1]-4 “Epiclon(登録商標)”HP-7200H(ジシクロペンタジエン型エポキシ樹脂、エポキシ当量:272~284、平均官能基数:3.0個/分子、DIC(株)製)、
[A1]-5 “Epotec(登録商標)”YDPN-638(フェノールノボラック型エポキシ樹脂、エポキシ当量:170~190、平均官能基数:3.6個/分子、東都化成(株)製)、
[A]-1 “jER(登録商標)”828(ビスフェノールA型エポキシ樹脂、エポキシ当量:184~194、三菱化学(株)製)、
[A]-2 “jER(登録商標)”1007FS(ビスフェノールA型エポキシ樹脂、エポキシ当量:1200~1400、三菱化学(株)製)、
[A]-3 “jER(登録商標)”1001(ビスフェノールA型エポキシ樹脂、三菱化学(株)製)、
[A]-4 “Epotec(登録商標)”YD136(ビスフェノールA型エポキシ樹脂、エポキシ当量:290~335、KUKDO社製)、
[A]-5 “EPON(登録商標)”2005(ビスフェノールA型エポキシ樹脂、Resolution Performance Products社製)、
[A]-6 “Epiclon(登録商標)”830(ビスフェノールF型エポキシ樹脂、エポキシ当量:165~177、DIC(株)製)、
[A]-7 “エポトート(登録商標)”YDF-2001(ビスフェノールF型エポキシ樹脂、エポキシ当量:440~530、東都化成(株)製)、
[A]-8 “jER(登録商標)”4010P(ビスフェノールF型エポキシ樹脂、エポキシ当量:3800~4600、三菱化学(株)製)、
[A]-9 “スミエポキシ(登録商標)”ELM434(ジアミノジフェニルメタン型エポキシ樹脂、エポキシ当量:119、住友化学工業(株)製)。
<Materials used>
・Component [A]: Epoxy resin [A1]-1 "jER (registered trademark)" 154 (phenol novolac type epoxy resin, epoxy equivalent: 176-180, average number of functional groups: 3.0 pieces/molecule, Mitsubishi Chemical Corporation ),
[A1]-2 “Epiclon (registered trademark)” N-740 (phenol novolac type epoxy resin, epoxy equivalent: 177 to 187, average number of functional groups: 3.7/molecule, manufactured by DIC Corporation),
[A1]-3 “Epiclon (registered trademark)” N-770 (phenol novolac type epoxy resin, epoxy equivalent: 183 to 193, average number of functional groups: 6.0/molecule, manufactured by DIC Corporation),
[A1]-4 “Epiclon (registered trademark)” HP-7200H (dicyclopentadiene type epoxy resin, epoxy equivalent: 272 to 284, average number of functional groups: 3.0/molecule, manufactured by DIC Corporation),
[A1]-5 “Epotec (registered trademark)” YDPN-638 (phenol novolac type epoxy resin, epoxy equivalent: 170 to 190, average number of functional groups: 3.6/molecule, manufactured by Toto Kasei Co., Ltd.),
[A]-1 "jER (registered trademark)" 828 (bisphenol A type epoxy resin, epoxy equivalent: 184-194, manufactured by Mitsubishi Chemical Corporation),
[A]-2 "jER (registered trademark)" 1007FS (bisphenol A epoxy resin, epoxy equivalent: 1200-1400, manufactured by Mitsubishi Chemical Corporation),
[A]-3 "jER (registered trademark)" 1001 (bisphenol A epoxy resin, manufactured by Mitsubishi Chemical Corporation),
[A]-4 “Epotec (registered trademark)” YD136 (bisphenol A epoxy resin, epoxy equivalent: 290-335, manufactured by KUKDO),
[A]-5 "EPON (registered trademark)" 2005 (bisphenol A epoxy resin, manufactured by Resolution Performance Products),
[A]-6 “Epiclon (registered trademark)” 830 (bisphenol F type epoxy resin, epoxy equivalent: 165-177, manufactured by DIC Corporation),
[A]-7 “Epotote (registered trademark)” YDF-2001 (bisphenol F type epoxy resin, epoxy equivalent: 440-530, manufactured by Toto Kasei Co., Ltd.),
[A]-8 "jER (registered trademark)" 4010P (bisphenol F type epoxy resin, epoxy equivalent: 3800-4600, manufactured by Mitsubishi Chemical Corporation),
[A]-9 “Sumi Epoxy (registered trademark)” ELM434 (diaminodiphenylmethane type epoxy resin, epoxy equivalent: 119, manufactured by Sumitomo Chemical Co., Ltd.).

・成分[B]:ジシアンジアミド
[B]-1 DICY7(ジシアンジアミド、活性水素当量21g/eq、三菱化学(株)製)。
- Component [B]: dicyandiamide [B]-1 DICY7 (dicyandiamide, active hydrogen equivalent 21 g/eq, manufactured by Mitsubishi Chemical Corporation).

・成分[C]:芳香族ウレア
[C]-1 “Omicure(登録商標)”24(トルエンビスジメチルウレア、ピィ・ティ・アイ・ジャパン(株)製)、
[C]-2 DCMU99(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、保土ヶ谷化学工業(株)製)、
・Component [C]: aromatic urea [C]-1 “Omicure (registered trademark)” 24 ( toluene bisdimethylurea , manufactured by PTI Japan Co., Ltd.),
[C]-2 DCMU99 (3-(3,4-dichlorophenyl)-1,1-dimethylurea, manufactured by Hodogaya Chemical Industry Co., Ltd.),

・成分[D]:ホウ酸エステル
[D]-1 “キュアダクト(登録商標)”L-07E(全体量100質量部中にホウ酸エステル化合物を5質量部含む組成物、四国化成工業(株)製)。
・Component [D]: Boric acid ester [D]-1 “Cure Duct (registered trademark)” L-07E (composition containing 5 parts by mass of a boric acid ester compound in 100 parts by mass of the total amount , Shikoku Kasei Kogyo Co., Ltd. ).

・成分[E]:熱可塑性樹脂
[E]-1 “ビニレック(登録商標)”K(ポリビニルホルマール、JNC(株)製)、
[E]-2 “スミカエクセル(登録商標)”PES3600P(ポリエーテルスルホン、住友化学(株)製)、
[E]-3 YP-50(フェノキシ樹脂、新日鉄住金化学(株)製)。
・Component [E]: Thermoplastic resin [E]-1 “Vinylec (registered trademark)” K (polyvinyl formal, manufactured by JNC Corporation),
[E]-2 “Sumika Excel (registered trademark)” PES3600P (polyether sulfone, manufactured by Sumitomo Chemical Co., Ltd.),
[E]-3 YP-50 (phenoxy resin, manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).

<エポキシ樹脂組成物の調製方法>
ステンレスビーカーに、[B]ジシアンジアミド、[C]芳香族ウレアおよび[D]ホウ酸エステル以外の成分を所定量入れ、60~150℃まで昇温し、各成分が相溶するまで適宜混練した。60℃まで降温させた後、[D]ホウ酸エステル成分を配合し、混練した。別途、ポリエチレン製カップに所定量の[A]-1(“jER(登録商標)”828)および[B]ジシアンジアミドを添加し、三本ロールを用いて混合物をロール間に2回通し、ジシアンジアミドマスターを作製した。所定の配合割合になるように上記で作製した主剤成分とジシアンジアミドマスターを60℃以下で混練し、最後に[C]芳香族ウレアを添加し、60℃において30分間混練することにより、エポキシ樹脂組成物を得た。
<Method for preparing epoxy resin composition>
Predetermined amounts of components other than [B] dicyandiamide, [C] aromatic urea, and [D] boric ester were placed in a stainless beaker, heated to 60 to 150° C., and kneaded as appropriate until each component was dissolved. After the temperature was lowered to 60° C., the [D] boric acid ester component was blended and kneaded. Separately, a predetermined amount of [A]-1 ("jER (registered trademark)" 828) and [B] dicyandiamide were added to a polyethylene cup, the mixture was passed twice between the rolls using three rolls, and the dicyandiamide master was created. The main component prepared above and the dicyandiamide master are kneaded at a temperature below 60°C so as to have a predetermined blending ratio, and finally [C] aromatic urea is added and kneaded at 60°C for 30 minutes to form an epoxy resin composition. I got something.

<エポキシ樹脂組成物の硬化時間の評価方法>
エポキシ樹脂組成物の硬化時間は、前記<エポキシ樹脂組成物の調製方法>に従って得たエポキシ樹脂組成物を2mL秤量し、キュラストメーター(日合商事(株)製、JSRキュラストメーターV型)を用いて測定した。測定温度150℃、振動波形は正弦波、振動数100cpm、振幅角±1°の条件下で測定を行い、トルクの上昇を観測し、最大トルクの70%に到達するまでの時間を硬化時間とした。
<Method for evaluating curing time of epoxy resin composition>
The curing time of the epoxy resin composition was determined by weighing 2 mL of the epoxy resin composition obtained according to the above <Method for Preparing an Epoxy Resin Composition> and using a Curelastometer (JSR Curelastometer Type V, manufactured by Nigo Shoji Co., Ltd.). Measured using The measurement temperature was 150℃, the vibration waveform was a sine wave, the frequency was 100cpm, and the amplitude angle was ±1°.The increase in torque was observed, and the time required to reach 70% of the maximum torque was determined as the curing time. did.

<エポキシ樹脂組成物の保存安定性の評価方法>
エポキシ樹脂組成物の保存安定性は、前記の方法で得た初期のエポキシ樹脂組成物をアルミカップに3g秤量し、40℃、75%RHの環境下で14日間恒温恒湿槽内に静置した後のガラス転移温度をTa、初期のガラス転移温度Tbとした時に、ガラス転移温度の変化量をΔTg=Ta-Tbと定義し、ΔTgの値で保存安定性を判定した。ガラス転移温度は、保存後のエポキシ樹脂3mgをサンプルパンに量り取り、示差走査熱量分析計(Q-2000:TAインスツルメント社製)を用い、-20℃から150℃まで5℃/分で昇温して測定した。得られた発熱カーブの変曲点の中点をガラス転移温度として取得した。
<Method for evaluating storage stability of epoxy resin composition>
The storage stability of the epoxy resin composition was determined by weighing 3 g of the initial epoxy resin composition obtained by the above method into an aluminum cup, and leaving it in a constant temperature and humidity chamber for 14 days at 40°C and 75% RH. The amount of change in the glass transition temperature was defined as ΔTg=Ta−Tb, and the storage stability was determined based on the value of ΔTg. The glass transition temperature was determined by weighing 3 mg of the epoxy resin after storage into a sample pan, and using a differential scanning calorimeter (Q-2000, manufactured by TA Instruments), measuring the temperature from -20°C to 150°C at 5°C/min. The temperature was raised and the measurement was performed. The midpoint of the inflection point of the obtained exothermic curve was obtained as the glass transition temperature.

<樹脂硬化物の曲げ弾性率の評価方法>
前記<エポキシ樹脂組成物の調製方法>に従って得たエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製スペーサーにより厚み2mmになるように設定したモールド中で、150℃の温度で2時間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを10mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、曲げ弾性率を測定した。この際、サンプル数n=6で測定した値を曲げ弾性率の値として採用した。
<Evaluation method of flexural modulus of cured resin material>
After degassing the epoxy resin composition obtained according to the above <Method for Preparing an Epoxy Resin Composition> in a vacuum, it was placed in a mold set to a thickness of 2 mm using a 2 mm thick "Teflon (registered trademark)" spacer. The resin was cured at a temperature of 150° C. for 2 hours to obtain a plate-shaped cured resin product with a thickness of 2 mm. A test piece with a width of 10 mm and a length of 60 mm was cut from this cured resin product, and using an Instron universal testing machine (manufactured by Instron), the span was set to 32 mm, and the crosshead speed was set to 10 mm/min. Three-point bending was performed according to the method, and the bending elastic modulus was measured. At this time, the value measured with the number of samples n=6 was adopted as the value of the bending elastic modulus.

<プリプレグの作製方法>
上記<エポキシ樹脂組成物の調製方法>に従い調製したエポキシ樹脂組成物を、ナイフコーターを用いて離型紙上に塗布し、39g/mの目付の樹脂フィルムを2枚作製した。次に、シート状に一方向に配列させた炭素繊維“トレカ(登録商標)”T700S-12K-60E(東レ(株)製、目付150g/m)に、得られた樹脂フィルム2枚を炭素繊維の両面から重ね、温度90℃、圧力2MPaの条件で加圧加熱してエポキシ樹脂組成物を含浸させ、一方向プリプレグを得た。
<一方向繊維強化複合材料のプレス成形方法>
上記<プリプレグの作製方法>に従って作製したプリプレグを240mm角の大きさにカットし、繊維方向を揃え、16プライ積層し、240mm角のプリプレグ積層体を作製した。
<Method for producing prepreg>
The epoxy resin composition prepared according to the above <Method for Preparing an Epoxy Resin Composition> was applied onto release paper using a knife coater to produce two resin films with a basis weight of 39 g/m 2 . Next, two of the obtained resin films were placed on carbon fiber “Torayka (registered trademark)” T700S-12K-60E (manufactured by Toray Industries, Inc., basis weight 150 g/m 2 ) arranged in one direction in the form of a sheet. The fibers were stacked on both sides and heated under pressure at a temperature of 90° C. and a pressure of 2 MPa to impregnate the epoxy resin composition to obtain a unidirectional prepreg.
<Press molding method for unidirectional fiber reinforced composite material>
The prepreg produced according to the above <Prepreg production method> was cut into a size of 240 mm square, the fiber direction was aligned, and 16 plies were laminated to produce a 240 mm square prepreg laminate.

成形における金型は両面型であって、下型は凹形状となっており、縦横の幅がいずれも250mmであり、25mmのキャビティを有している。上型凸形状となっており、凸部は下型のキャビティ部を埋めるような形状であり、金型の材質はSS400である。あらかじめ、両面型を150℃に加熱・温調した状態で、下型キャビティ部中央に、上記方法で作製したプリプレグの積層体を配置した後、型を閉じ、面圧3MPaで5分間加圧した。5分間経過後、両面型からプリプレグ積層体を脱型し、一方向繊維強化複合材料を得た。 The mold for molding is a double-sided mold, and the lower mold is concave, and has a vertical and horizontal width of 250 mm and a cavity of 25 mm. The upper mold has a convex shape, and the convex portion fills the cavity of the lower mold, and the material of the mold is SS400. With the double-sided mold heated and temperature controlled to 150°C in advance, the prepreg laminate produced by the above method was placed in the center of the lower mold cavity, the mold was closed, and pressure was applied for 5 minutes at a surface pressure of 3 MPa. . After 5 minutes, the prepreg laminate was removed from the double-sided mold to obtain a unidirectional fiber-reinforced composite material.

<一方向繊維強化複合材料の曲げ強度の評価方法>
上記<一方向繊維強化複合材料のプレス成形方法>に従って得られた積層板から、幅15mm、長さ100mmとなるように切り出し、インストロン万能試験機(インストロン社製)を用い、JIS K7017(1988)に従って3点曲げを実施した。クロスヘッド速度5.0mm/分、スパン80mm、厚子径10mm、支点径4mmで測定を行い、曲げ強度を測定した。かかる0°曲げ強度は、6個の試料について測定し、繊維質量含有率を60質量%とした換算値を算出して、その平均を0°曲げ強度として求めた。
<Evaluation method of bending strength of unidirectional fiber reinforced composite material>
The laminate obtained according to the above <Press molding method for unidirectional fiber-reinforced composite material> was cut into pieces with a width of 15 mm and a length of 100 mm. Three-point bending was performed according to (1988). The bending strength was measured at a crosshead speed of 5.0 mm/min, a span of 80 mm, a thickness of 10 mm, and a fulcrum diameter of 4 mm. The 0° bending strength was measured for six samples, a converted value was calculated with the fiber mass content being 60% by mass, and the average thereof was determined as the 0° bending strength.

(実施例1)
[A]エポキシ樹脂として“jER(登録商標)”828を80質量部、“jER(登録商標)”154を20質量部、[B]ジシアンジアミドとしてDICY7を11.3質量部、および[C]芳香族ウレア化合物として“Omicure(登録商標)”24を4.5質量部、[D]ホウ酸エステルを含む混合物として“キュアダクト(登録商標)”L-07Eを3.0質量部用いて、上記<エポキシ樹脂組成物の調製方法>に従ってエポキシ樹脂組成物を調製した。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.033、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.0、[c]成分[A]の含有量/成分[C]の含有量は22であった。
(Example 1)
[A] 80 parts by mass of "jER (registered trademark)" 828 as an epoxy resin, 20 parts by mass of "jER (registered trademark)" 154, [B] 11.3 parts by mass of DICY7 as dicyandiamide, and [C] aroma Using 4.5 parts by mass of "Omicure (registered trademark)" 24 as a group urea compound and 3.0 parts by mass of "Cure Duct (registered trademark)" L-07E as a mixture containing [D] boric acid ester, the above An epoxy resin composition was prepared according to <Method for Preparing Epoxy Resin Composition>. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.033, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 1.0, and the content of [c] component [A]/content of component [C] was 22.

このエポキシ樹脂組成物を、<樹脂組成物の硬化時間の評価方法>に従って測定したところ、118秒であり、良好な硬化時間を示した。 When this epoxy resin composition was measured according to <Method for evaluating curing time of resin composition>, the curing time was 118 seconds, indicating a good curing time.

また、このエポキシ樹脂組成物を、<樹脂組成物の保存安定性の評価方法>に従って評価したΔTgは14℃であり、良好な保存安定性を示した。 Further, the ΔTg of this epoxy resin composition evaluated according to <Method for evaluating storage stability of resin composition> was 14° C., indicating good storage stability.

<樹脂硬化物の曲げ弾性率の評価方法>に従って曲げ弾性率を測定したところ、3.5GPaと良好なものであった。 When the flexural modulus was measured according to <Method for evaluating flexural modulus of cured resin product>, it was found to be a good 3.5 GPa.

<プリプレグの作製方法>に記載の方法で、プリプレグを作製し、<一方向繊維強化複合材料のプレス成形方法>に従って作製した繊維強化複合材料を、<一方向繊維強化複合材料の曲げ強度の評価方法>に従って、0°曲げ強度を評価したところ、1588MPaと良好な値を示した。 Prepreg was produced by the method described in <Prepreg production method>, and the fiber reinforced composite material produced according to <Press molding method for unidirectional fiber reinforced composite material> was evaluated in <Bending strength evaluation of unidirectional fiber reinforced composite material. When the 0° bending strength was evaluated according to method>, it showed a good value of 1588 MPa.

(実施例2~18)
樹脂組成をそれぞれ表1および2に示したように変更した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。これらのエポキシ樹脂組成物の条件[a]:成分[D]の含有量/成分[C]の含有量は0.005~0.045、条件[b]:成分[A]の活性基モル数/成分[B]の活性水素モル数は0.9~1.3、条件[c]:成分[A]の含有量/成分[C]の含有量は12~26の範囲内であった。
(Examples 2 to 18)
An epoxy resin composition, a prepreg, and a fiber-reinforced composite material were produced in the same manner as in Example 1, except that the resin compositions were changed as shown in Tables 1 and 2, respectively. Conditions [a] of these epoxy resin compositions: Content of component [D]/content of component [C] is 0.005 to 0.045, Condition [b]: Number of moles of active groups of component [A] /The active hydrogen mole number of component [B] was 0.9 to 1.3, and conditions [c]: Content of component [A]/content of component [C] was within the range of 12 to 26.

得られた樹脂組成物は、いずれも実施例1と同様、硬化時間、保存安定性、および、硬化物の曲げ弾性率は良好であった。また、繊維強化複合材料の0°曲げ強度も良好なものであった。 As with Example 1, the resulting resin compositions had good curing time, storage stability, and flexural modulus of the cured product. Furthermore, the 0° bending strength of the fiber reinforced composite material was also good.

(比較例1)
樹脂組成を表3に示したように変更して、[D]ホウ酸エステルを添加しなかったこと以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.0、[c]成分[A]の含有量/成分[C]の含有量は23であった。
(Comparative example 1)
The epoxy resin composition, prepreg, and fiber reinforced composite material were prepared in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3 and [D] boric acid ester was not added. Created. The resin composition and evaluation results are shown in Table 3. In this epoxy resin composition, [a] content of component [D]/content of component [C] is 0, [b] number of moles of active groups in component [A]/number of moles of active hydrogen in component [B] 1.0, [c] content of component [A]/content of component [C] was 23.

得られた樹脂組成物の硬化時間は118秒と良好であったが、ΔTgが40℃と保存安定性が不足した。エポキシ樹脂硬化物の曲げ弾性率は3.3GPaと不十分であった。また、繊維強化複合材料の0°曲げ強度は1468MPaと低いものであった。 Although the resulting resin composition had a good curing time of 118 seconds, the storage stability was insufficient with ΔTg of 40°C. The flexural modulus of the cured epoxy resin was 3.3 GPa, which was insufficient. Furthermore, the 0° bending strength of the fiber reinforced composite material was as low as 1468 MPa.

(比較例2)
樹脂組成を表3に示したように変更して、[B]ジシアンジアミドとしてDICY7を6.9部と減量した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.033、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.7、[c]成分[A]の含有量/成分[C]の含有量は22であった。
(Comparative example 2)
The epoxy resin composition, prepreg, and fiber-reinforced composite were prepared in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3, and DICY7 was reduced to 6.9 parts as [B] dicyandiamide. The material was prepared. The resin composition and evaluation results are shown in Table 3. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.033, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 1.7, and the content of [c] component [A]/content of component [C] was 22.

得られた樹脂組成物の保存安定性および曲げ弾性率は良好であったが、硬化時間が315秒と不十分であった。また、繊維強化複合材料の0°曲げ強度は1414MPaと不足した。 Although the storage stability and flexural modulus of the obtained resin composition were good, the curing time was 315 seconds, which was insufficient. Furthermore, the 0° bending strength of the fiber reinforced composite material was insufficient at 1414 MPa.

(比較例3)
樹脂組成を表3に示したように変更して、[C]芳香族ウレアとして“Omicure(登録商標)”24を3部と減量した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.050、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.0、[c]成分[A]の含有量/成分[C]の含有量は33であった。
(Comparative example 3)
An epoxy resin composition was prepared in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3, and the amount of "Omicure (registered trademark)" 24 was reduced to 3 parts as [C] aromatic urea. Prepreg and fiber-reinforced composite materials were produced. The resin composition and evaluation results are shown in Table 3. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.050, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 1.0, and the content of [c] component [A]/content of component [C] was 33.

得られた樹脂組成物の保存安定性および曲げ弾性率は良好であったが、硬化時間が272秒と不足した。また、繊維強化複合材料の0°曲げ強度は1492MPaと不足した。 Although the storage stability and flexural modulus of the obtained resin composition were good, the curing time was insufficient at 272 seconds. Furthermore, the 0° bending strength of the fiber reinforced composite material was insufficient at 1492 MPa.

(比較例4)
樹脂組成を表3に示したように変更して、[B]ジシアンジアミドとしてDICY7を6.3部に減量し、さらに[C]芳香族ウレアとして“Omicure(登録商標)”24を3部と減量した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.050、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.8、[c]成分[A]の含有量/成分[C]の含有量は33であった。
(Comparative example 4)
The resin composition was changed as shown in Table 3, and DICY7 was reduced to 6.3 parts as [B] dicyandiamide, and "Omicure (registered trademark)" 24 was reduced to 3 parts as [C] aromatic urea. An epoxy resin composition, a prepreg, and a fiber-reinforced composite material were produced in the same manner as in Example 1 except for the following. The resin composition and evaluation results are shown in Table 3. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.050, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 1.8, and the content of [c] component [A]/content of component [C] was 33.

得られた樹脂組成物の保存安定性および曲げ弾性率は良好であったが、硬化時間351秒と不十分なものであった。また、繊維強化複合材料の0°曲げ強度は1422MPaと不足した。 Although the storage stability and flexural modulus of the obtained resin composition were good, the curing time was 351 seconds, which was insufficient. Furthermore, the 0° bending strength of the fiber reinforced composite material was insufficient at 1422 MPa.

(比較例5)
樹脂組成を表3に示したように変更して、[B]ジシアンジアミドとしてDICY7を13.7部と増量した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.025、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は0.8、[c]成分[A]の含有量/成分[C]の含有量は16であった。
(Comparative example 5)
The epoxy resin composition, prepreg, and fiber-reinforced composite were prepared in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3, and the amount of DICY7 was increased to 13.7 parts as [B] dicyandiamide. The material was prepared. The resin composition and evaluation results are shown in Table 3. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.025, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 0.8, and the content of [c] component [A]/content of component [C] was 16.

得られた樹脂組成物の硬化時間および保存安定性は良好であったが、該エポキシ樹脂硬化物中に白色の固体が析出し、また、曲げ弾性率が3.0GPaと、著しく低いものとなった。また、繊維強化複合材料の0°曲げ強度は1333MPaと不足した。 Although the curing time and storage stability of the obtained resin composition were good, a white solid was precipitated in the cured epoxy resin product, and the flexural modulus was extremely low at 3.0 GPa. Ta. Furthermore, the 0° bending strength of the fiber reinforced composite material was insufficient at 1333 MPa.

(比較例6)
樹脂組成を表3に示したように変更して、[C]芳香族ウレアとして“Omicure(登録商標)”24を11部と増量した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。樹脂組成および評価結果は表3に示した。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.014、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.0、[c]成分[A]の含有量/成分[C]の含有量は9であった。
(Comparative example 6)
An epoxy resin composition was prepared in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3, and the amount of "Omicure (registered trademark)" 24 was increased to 11 parts as [C] aromatic urea. Prepreg and fiber-reinforced composite materials were produced. The resin composition and evaluation results are shown in Table 3. The resin composition and evaluation results are shown in Table 3. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.014, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 1.0, and the content of [c] component [A]/content of component [C] was 9.

得られた樹脂組成物の硬化時間は良好であったが、保存安定性および曲げ弾性率は不十分であった。また、繊維強化複合材料の0°曲げ強度が1335MPaと低いものであった。 Although the curing time of the resulting resin composition was good, the storage stability and flexural modulus were insufficient. Furthermore, the 0° bending strength of the fiber reinforced composite material was as low as 1335 MPa.

(比較例7)
樹脂組成を表3に示したように変更して、[D]ホウ酸エステルとして“キュアダクト(登録商標)”L-07Eを7部に増量した以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。樹脂組成および評価結果は表3に示した。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.048、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.0、[c]成分[A]の含有量/成分[C]の含有量は14であった。
(Comparative example 7)
Epoxy resin was prepared in the same manner as in Example 1, except that the resin composition was changed as shown in Table 3, and the amount of "Cure Duct (registered trademark)" L-07E was increased to 7 parts as the [D] boric acid ester. A composition, prepreg, and fiber-reinforced composite material were produced. The resin composition and evaluation results are shown in Table 3. The resin composition and evaluation results are shown in Table 3. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.048, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 1.0, and the content of [c] component [A]/content of component [C] was 14.

得られた樹脂組成物の保存安定性および曲げ弾性率は良好であったが、硬化時間が202秒と不十分でものであった。また、繊維強化複合材料の0°曲げ強度は1493MPaであった。 Although the storage stability and flexural modulus of the obtained resin composition were good, the curing time was 202 seconds, which was insufficient. Moreover, the 0° bending strength of the fiber reinforced composite material was 1493 MPa.

(比較例
樹脂組成を表3に示したように変更して、[B]ジシアンジアミドとしてDICY7を5部に減量し、さらに[D]ホウ酸エステルを添加しなかったこと以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0[c]成分[A]の含有量/成分[C]の含有量は24であった。
(Comparative example 8 )
The same method as Example 1 was used except that the resin composition was changed as shown in Table 3, DICY7 was reduced to 5 parts as [B] dicyandiamide, and [D] boric acid ester was not added. An epoxy resin composition, prepreg, and fiber reinforced composite material were produced. The resin composition and evaluation results are shown in Table 3. The content of [a] component [D]/content of component [C] of this epoxy resin composition was 0 , and the content of [c] component [A]/content of component [C] was 24. .

得られた樹脂組成物の保存安定性が不十分なものであった。硬化時間は367秒と、不足した。また、繊維強化複合材料の0°曲げ強度は1356MPaと低いものであった。 The storage stability of the obtained resin composition was insufficient. The curing time was 367 seconds, which was insufficient. Furthermore, the 0° bending strength of the fiber reinforced composite material was as low as 1356 MPa.

(比較例
樹脂組成を表3に示したように変更して、[B]ジシアンジアミドとしてDICY7を5.3部に減量し、さらに[C]芳香族ウレアとしてDCMU99を3部とした以外は、実施例1と同じ方法でエポキシ樹脂組成物、プリプレグ、および、繊維強化複合材料を作製した。樹脂組成および評価結果は表3に示したとおりである。このエポキシ樹脂組成物の[a]成分[D]の含有量/成分[C]の含有量は0.050、[b]成分[A]の活性基モル数/成分[B]の活性水素モル数は1.8、[c]成分[A]の含有量/成分[C]の含有量は33であった。
(Comparative Example 9 )
Example 1 except that the resin composition was changed as shown in Table 3, DICY7 was reduced to 5.3 parts as [B] dicyandiamide, and DCMU99 was further changed to 3 parts as [C] aromatic urea. An epoxy resin composition, prepreg, and fiber-reinforced composite material were produced using the same method. The resin composition and evaluation results are shown in Table 3. [a] Content of component [D]/content of component [C] of this epoxy resin composition is 0.050, [b] Number of moles of active groups of component [A]/mol of active hydrogen of component [B] The number was 1.8, and the content of [c] component [A]/content of component [C] was 33.

得られた樹脂組成物の保存安定性は良好であったが、硬化時間が287秒となり、不十分なものであった。また、繊維強化複合材料の0°曲げ強度は1455MPaであった。 Although the storage stability of the resulting resin composition was good, the curing time was 287 seconds, which was unsatisfactory. Moreover, the 0° bending strength of the fiber reinforced composite material was 1455 MPa.

Figure 0007423891000003
Figure 0007423891000003

Figure 0007423891000004
Figure 0007423891000004

Figure 0007423891000005
Figure 0007423891000005

なお、表中の各成分の単位は質量部である。 In addition, the unit of each component in the table is parts by mass.

本発明に記載のエポキシ樹脂組成物を用いることで、速硬化性と保存安定性が共に優れたプリプレグを提供することができる。また、硬化したときの機械特性にも優れるために、繊維強化複合材料のマトリックス樹脂として好適に用いられる。特に、ハイサイクル成形を必要とする産業用途に好ましく用いられる。
By using the epoxy resin composition according to the present invention, it is possible to provide a prepreg with excellent fast curing properties and storage stability. Furthermore, since it has excellent mechanical properties when cured, it is suitably used as a matrix resin for fiber-reinforced composite materials. In particular, it is preferably used for industrial applications requiring high-cycle molding.

Claims (7)

次の成分[A]、[B]、[C]、[D]からなり、下記条件[a]、[b]、[c]を満たすエポキシ樹脂組成物。
[A]:エポキシ樹脂
[B]:ジシアンジアミド
[C]:芳香族ウレア
[D]:ホウ酸エステル
[a]:0.005≦(成分[D]の含有量/成分[C]の含有量)≦0.045
[b]:0.9≦(成分[A]の活性基(すなわち、エポキシ基)モル数/成分[B]の活性水素モル数)≦1.3
[c]:14≦(成分[A]の含有量/成分[C]の含有量)≦26
An epoxy resin composition comprising the following components [A], [B], [C], and [D] and satisfying the following conditions [a], [b], and [c].
[A]: Epoxy resin [B]: Dicyandiamide [C]: Aromatic urea [D]: Boric acid ester [a]: 0.005≦(Content of component [D]/Content of component [C]) ≦0.045
[b]: 0.9≦(number of moles of active groups (i.e., epoxy groups) of component [A]/number of moles of active hydrogen of component [B])≦1.3
[c]: 14≦(content of component [A]/content of component [C])≦26
40℃、75%RHで14日間保存した後のガラス転移温度の変化が20℃以下である、請求項1に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1, wherein the change in glass transition temperature after storage at 40°C and 75% RH for 14 days is 20°C or less. 成分[A]が3官能以上の多官能エポキシ樹脂を含む、請求項1または2に記載のエポキシ樹脂組成物。 The epoxy resin composition according to claim 1 or 2, wherein component [A] contains a trifunctional or higher polyfunctional epoxy resin. 成分[A]100質量部中、3官能以上の多官能エポキシ樹脂として次の成分[A1]を55~100質量部含む、請求項3に記載のエポキシ樹脂組成物。
[A1]:式(I)で示されるエポキシ樹脂および/または式(II)で示されるエポキシ樹脂
Figure 0007423891000006
(式(I)において、R、R、Rは、それぞれ独立して水素原子またはメチル基を表す。また、nは1以上の整数を表す。)
Figure 0007423891000007
(式(II)において、nは1以上の整数を表す。)
The epoxy resin composition according to claim 3, which contains 55 to 100 parts by mass of the following component [A1] as a trifunctional or higher polyfunctional epoxy resin in 100 parts by mass of component [A].
[A1]: Epoxy resin represented by formula (I) and/or epoxy resin represented by formula (II)
Figure 0007423891000006
(In formula (I), R 1 , R 2 , and R 3 each independently represent a hydrogen atom or a methyl group. Also, n represents an integer of 1 or more.)
Figure 0007423891000007
(In formula (II), n represents an integer of 1 or more.)
条件[a]が、0.020≦(成分[D]の含有量/成分[C]の含有量)≦0.045である、請求項1~4のいずれかに記載のエポキシ樹脂組成物。 The epoxy resin composition according to any one of claims 1 to 4, wherein the condition [a] is 0.020≦(content of component [D]/content of component [C])≦0.045. 請求項1~5のいずれかに記載のエポキシ樹脂組成物と強化繊維からなるプリプレグ。 A prepreg comprising the epoxy resin composition according to any one of claims 1 to 5 and reinforcing fibers. 請求項6に記載のプリプレグが硬化されてなる繊維強化複合材料。 A fiber reinforced composite material obtained by curing the prepreg according to claim 6.
JP2018133902A 2017-07-21 2018-07-17 Epoxy resin compositions, prepregs and fiber reinforced composites Active JP7423891B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017141641 2017-07-21
JP2017141641 2017-07-21

Publications (2)

Publication Number Publication Date
JP2019023284A JP2019023284A (en) 2019-02-14
JP7423891B2 true JP7423891B2 (en) 2024-01-30

Family

ID=65368813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018133902A Active JP7423891B2 (en) 2017-07-21 2018-07-17 Epoxy resin compositions, prepregs and fiber reinforced composites

Country Status (1)

Country Link
JP (1) JP7423891B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7180446B2 (en) * 2018-02-28 2022-11-30 東レ株式会社 Resin feedstock, preform, and method for producing fiber-reinforced composite material using same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148020A (en) 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2016148021A (en) 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2016199857A1 (en) 2015-06-11 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition, molded article, prepreg, fiber-reinforced composite material and structure
WO2019017365A1 (en) 2017-07-21 2019-01-24 東レ株式会社 Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2019023281A (en) 2017-07-21 2019-02-14 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016148020A (en) 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2016148021A (en) 2015-02-09 2016-08-18 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material
WO2016199857A1 (en) 2015-06-11 2016-12-15 三菱レイヨン株式会社 Epoxy resin composition, molded article, prepreg, fiber-reinforced composite material and structure
WO2019017365A1 (en) 2017-07-21 2019-01-24 東レ株式会社 Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP2019023281A (en) 2017-07-21 2019-02-14 東レ株式会社 Epoxy resin composition, prepreg and fiber-reinforced composite material

Also Published As

Publication number Publication date
JP2019023284A (en) 2019-02-14

Similar Documents

Publication Publication Date Title
JP6771883B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP6771884B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
EP2947109A1 (en) Epoxy resin composition, prepreg, and carbon-fiber-reinforced composite material
KR102389775B1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP6977560B2 (en) Prepreg and fiber reinforced composites
JP6771885B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
KR101878128B1 (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2017020004A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
KR102557230B1 (en) Epoxy resin compositions, prepregs and fiber-reinforced composite materials
WO2022039050A1 (en) Epoxy resin composition, prepreg, and fiber-reinforced composite material
JP7423891B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP2019023281A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP7215001B2 (en) Epoxy resin compositions, prepregs and fiber reinforced composites
JP7215002B2 (en) Epoxy resin composition, prepreg and fiber reinforced composite
JP7180446B2 (en) Resin feedstock, preform, and method for producing fiber-reinforced composite material using same
TWI805651B (en) Prepregs and Fiber Reinforced Composites
JP2019210464A (en) Epoxy resin composition, prepreg, and fiber reinforced composite material
JP2023067809A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material
JP2015108052A (en) Epoxy resin composition, prepreg and fiber reinforced composite material
JP2022033710A (en) Epoxy resin composition, prepreg and fiber-reinforced composite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230303

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230313

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R151 Written notification of patent or utility model registration

Ref document number: 7423891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151