JP7422143B2 - Cold rolled coated steel sheet and its manufacturing method - Google Patents
Cold rolled coated steel sheet and its manufacturing method Download PDFInfo
- Publication number
- JP7422143B2 JP7422143B2 JP2021515544A JP2021515544A JP7422143B2 JP 7422143 B2 JP7422143 B2 JP 7422143B2 JP 2021515544 A JP2021515544 A JP 2021515544A JP 2021515544 A JP2021515544 A JP 2021515544A JP 7422143 B2 JP7422143 B2 JP 7422143B2
- Authority
- JP
- Japan
- Prior art keywords
- rolled steel
- steel sheet
- cold rolled
- temperature
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 100
- 239000010959 steel Substances 0.000 title claims description 100
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000010960 cold rolled steel Substances 0.000 claims description 42
- 238000001816 cooling Methods 0.000 claims description 26
- 229910001566 austenite Inorganic materials 0.000 claims description 23
- 229910001563 bainite Inorganic materials 0.000 claims description 20
- 229910000859 α-Fe Inorganic materials 0.000 claims description 19
- 229910000734 martensite Inorganic materials 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 16
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 15
- 229910052799 carbon Inorganic materials 0.000 claims description 15
- 230000000717 retained effect Effects 0.000 claims description 15
- 239000011572 manganese Substances 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 238000000137 annealing Methods 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052748 manganese Inorganic materials 0.000 claims description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 claims description 9
- 239000011651 chromium Substances 0.000 claims description 9
- 238000005096 rolling process Methods 0.000 claims description 9
- 229910052710 silicon Inorganic materials 0.000 claims description 9
- 239000010936 titanium Substances 0.000 claims description 9
- 229910052782 aluminium Inorganic materials 0.000 claims description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 8
- 239000010703 silicon Substances 0.000 claims description 8
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 7
- 229910052758 niobium Inorganic materials 0.000 claims description 7
- 239000010955 niobium Substances 0.000 claims description 7
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 7
- 239000011593 sulfur Substances 0.000 claims description 7
- 229910052719 titanium Inorganic materials 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 238000005098 hot rolling Methods 0.000 claims description 6
- 238000002791 soaking Methods 0.000 claims description 6
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 4
- 239000011575 calcium Substances 0.000 claims description 4
- 229910052791 calcium Inorganic materials 0.000 claims description 4
- 230000001186 cumulative effect Effects 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 4
- 229910052750 molybdenum Inorganic materials 0.000 claims description 4
- 239000011733 molybdenum Substances 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 3
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052796 boron Inorganic materials 0.000 claims description 3
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 claims description 3
- 238000005097 cold rolling Methods 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910052749 magnesium Inorganic materials 0.000 claims description 3
- 239000011777 magnesium Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000011574 phosphorus Substances 0.000 claims description 3
- 229910052726 zirconium Inorganic materials 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 238000003303 reheating Methods 0.000 claims description 2
- 229910052720 vanadium Inorganic materials 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 238000004804 winding Methods 0.000 claims description 2
- 239000011265 semifinished product Substances 0.000 claims 2
- 229910052742 iron Inorganic materials 0.000 claims 1
- 150000001247 metal acetylides Chemical class 0.000 description 8
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 4
- 238000000576 coating method Methods 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- 238000005266 casting Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001627 detrimental effect Effects 0.000 description 3
- 230000009931 harmful effect Effects 0.000 description 3
- 238000007711 solidification Methods 0.000 description 3
- 230000008023 solidification Effects 0.000 description 3
- 229910001335 Galvanized steel Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000008397 galvanized steel Substances 0.000 description 2
- 238000005246 galvanizing Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 230000000979 retarding effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910000611 Zinc aluminium Inorganic materials 0.000 description 1
- 229910001297 Zn alloy Inorganic materials 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 1
- 238000004881 precipitation hardening Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- -1 titanium nitrides Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C47/00—Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
- B21C47/02—Winding-up or coiling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0273—Final recrystallisation annealing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、自動車用鋼板としての使用に適した冷間圧延被覆鋼板に関する。 The present invention relates to a cold rolled coated steel sheet suitable for use as an automotive steel sheet.
自動車部品には、2つの矛盾した必要性、すなわち成形の容易さ及び強度を満たすことが要求されるが、近年では、地球環境への配慮の点から自動車には燃費向上という3つ目の要件も与えられている。このように、現在では、自動車部品は、複雑な自動車の組立体への取り付けの容易さという基準に適合すべく、高い成形性を有する材料で製作する必要があり、同時に、自動車の重量を低減し燃費を向上させながら、自動車の耐衝突性及び耐久性のための強度を向上させる必要がある。 Automotive parts are required to satisfy two contradictory requirements: ease of molding and strength, but in recent years, from the perspective of consideration for the global environment, automobiles have been given a third requirement: improved fuel efficiency. is also given. Thus, automotive parts now need to be made from materials with high formability in order to meet criteria for ease of installation into complex car assemblies, while at the same time reducing the weight of the car. There is a need to improve the strength of automobiles for crashworthiness and durability while improving fuel efficiency.
そのため、材料の強度を上げることで自動車に利用される材料の量を減らすために、精力的な研究開発努力が行われている。逆に、鋼板の強度の増加は成形性を低下させるので、高強度及び高成形性を併せ持つ材料の開発が必要である。 Therefore, intense research and development efforts are underway to reduce the amount of materials used in automobiles by increasing the strength of the materials. Conversely, an increase in the strength of a steel sheet reduces its formability, so it is necessary to develop a material that has both high strength and high formability.
高強度及び高成形性鋼板の分野における以前の研究及び開発により、高強度及び高成形性鋼板を製造するためのいくつかの方法がもたらされ、そのいくつかを、本発明を最終的に理解するために本明細書に列挙する。 Previous research and development in the field of high strength and high formability steel sheets has led to several methods for producing high strength and high formability steel sheets, some of which were finally understood by the present invention. Listed herein to do so.
US20140234657号は、マルテンサイト及びベイナイトのうちの1つ又は2つを体積分率で合計20%以上99%以下含む微細組織を有する溶融亜鉛めっき鋼板を請求する特許出願であり、残余の組織はフェライト及び残留オーステナイトの1つ又は2つを体積分率で8%未満、並びにパーライトを体積分率10%以下含む。さらにUS20140234657号は980MPaの引張強さに達するが、25%の伸びに達することができない。 US20140234657 is a patent application that claims a hot-dip galvanized steel sheet having a microstructure containing one or two of martensite and bainite in a total volume fraction of 20% to 99%, and the remaining structure is ferrite. and one or two of retained austenite in a volume fraction of less than 8%, and pearlite in a volume fraction of 10% or less. Further, US20140234657 reaches a tensile strength of 980 MPa, but cannot reach an elongation of 25%.
US8657969号は、590MPa以上の引張強さ及び優れた加工性を有する、高強度亜鉛めっき鋼板を請求する。成分組成は、質量%で、C:0.05~0.3%、Si:0.7~2.7%、Mn:0.5~2.8%、P:0.1%以下、S:0.01%以下、Al:0.1%以下及びN:0.008%以下を含み、残余はFe又は不可避の不純物である。微細組織は面積比で、フェライト相:30%~90%、ベイナイト相:3%~30%、マルテンサイト相:5%~40%を含み、マルテンサイト相のうち、アスペクト比が3以上のマルテンサイト相が30%以上の割合で存在する。 No. 8,657,969 claims a high strength galvanized steel sheet with a tensile strength of more than 590 MPa and excellent workability. The component composition is mass%: C: 0.05 to 0.3%, Si: 0.7 to 2.7%, Mn: 0.5 to 2.8%, P: 0.1% or less, S : 0.01% or less, Al: 0.1% or less, and N: 0.008% or less, and the remainder is Fe or unavoidable impurities. The microstructure includes, in terms of area ratio, ferrite phase: 30% to 90%, bainite phase: 3% to 30%, and martensite phase: 5% to 40%. The site phase is present at a ratio of 30% or more.
本発明の目的は、以下を同時に有する冷間圧延鋼及び被覆板を利用可能にすることにより、これらの問題を解決することにある。 The aim of the present invention is to solve these problems by making available a cold-rolled steel and a coated plate that at the same time has:
- 600MPa以上の、好ましくは620MPaを超える極限引張強度、
- 31%以上の、好ましくは33%を超える全伸び。
- ultimate tensile strength of more than 600 MPa, preferably more than 620 MPa,
- a total elongation of more than 31%, preferably more than 33%.
好ましい実施形態において、本発明の鋼板は、320MPa以上の降伏強度を提示することもできる。 In a preferred embodiment, the steel plate of the present invention can also exhibit a yield strength of 320 MPa or more.
好ましい実施形態では、本発明の鋼板は0.6以上の引張強さに対する降伏強度比を示すこともできる。 In preferred embodiments, the steel sheets of the invention may also exhibit a yield strength to tensile strength ratio of 0.6 or more.
好ましくは、このような鋼は、良好な溶接性及び被覆性をもって、成形、特に圧延に対して良好な適性を有することもできる。 Preferably, such steels may also have good suitability for forming, especially rolling, with good weldability and coatability.
本発明の別の目的は、製造パラメータの変化に向けてロバストである一方で、従来の工業用途に適合する、これらの板の製造方法を利用可能にすることでもある。 Another object of the invention is also to make available a method for manufacturing these plates that is robust to changes in manufacturing parameters, while being compatible with conventional industrial applications.
本発明の冷間圧延及び熱処理された鋼板は、任意に亜鉛若しくは亜鉛合金、又はアルミニウム又はアルミニウム合金で被覆して、その耐食性を改善することができる。 The cold rolled and heat treated steel sheets of the present invention can optionally be coated with zinc or zinc alloys, or aluminum or aluminum alloys to improve its corrosion resistance.
炭素は0.13%~0.18%の間で鋼中に存在する。炭素は、ベイナイトなどの低温変態相を生成させて鋼板の強度を高めるために必要な元素であり、さらに炭素はオーステナイトの安定化にも極めて重要な役割を果たし、したがって残留オーステナイトを確保するために必要な元素である。よって、炭素は2つのきわめて重要な役割を果たす。1つは強度を増加させることにおいての役割、もう1つはオーステナイトを保持し延性を付与することにおいての役割である。しかし、0.13%未満の炭素含有量では、本発明の鋼に必要とされる適切な量でオーステナイトを安定化させることができない。一方、炭素含有量が0.18%を超えると、鋼は、不十分なスポット溶接性を示し、自動車部品への応用が制限される。 Carbon is present in the steel between 0.13% and 0.18%. Carbon is a necessary element to increase the strength of steel sheets by generating low-temperature transformation phases such as bainite, and carbon also plays a vital role in stabilizing austenite, thus ensuring retained austenite. It is a necessary element. Carbon therefore plays two very important roles. One role is in increasing strength and the other is in retaining austenite and imparting ductility. However, carbon contents below 0.13% do not stabilize the austenite in adequate amounts required for the steels of the present invention. On the other hand, when the carbon content exceeds 0.18%, the steel exhibits poor spot weldability, limiting its application to automotive parts.
本発明の鋼のマンガン含有率は1.1%~1.8%の間である。この元素はガンマジニアス(gammageneus)である。マンガンを添加する目的は、本質的にオーステナイトを含む組織を得、鋼に強度を付与することである。オーステナイトを安定化すると共に鋼板の強度及び焼入れ性を提供するために、少なくとも1.1重量%のマンガンの量が見出されている。しかし、マンガン含有率が1.8%を超えると、ベイナイト変態のための過時効保持中にオーステナイトからベイナイトへの変態を遅延させるなどの有害作用を生じる。加えて、1.8%を超えるマンガン含有率は延性も低下させ、また、本鋼の溶接性を劣化させ、したがって伸びの目標が達成できない可能性がある。本発明の好ましい含有率は、1.2%~1.8%の間、さらにより好ましくは1.3%~1.7%の間に保つことができる。 The manganese content of the steel of the invention is between 1.1% and 1.8%. This element is gammageneus. The purpose of adding manganese is to obtain a structure that essentially contains austenite and to impart strength to the steel. An amount of manganese of at least 1.1% by weight has been found to stabilize the austenite and provide strength and hardenability of the steel sheet. However, if the manganese content exceeds 1.8%, harmful effects such as retardation of the transformation from austenite to bainite occur during over-aging retention for bainite transformation. In addition, manganese content greater than 1.8% also reduces ductility and deteriorates the weldability of the steel, so elongation goals may not be achieved. The preferred content according to the invention can be kept between 1.2% and 1.8%, even more preferably between 1.3% and 1.7%.
本発明の鋼のケイ素含有率は0.5~0.9%の間である。ケイ素は過時効中の炭化物の析出を遅らせることができる成分であるため、ケイ素の存在により、炭素に富んだオーステナイトは室温で安定化される。さらに、炭化物中のケイ素の溶解性が低いため、ケイ素は炭化物の形成を効果的に阻害又は遅延させ、したがって、また本発明に従って鋼にその必須の特徴を付与するために求められるベイナイト組織の形成を促進する。しかし、ケイ素の不均衡な含有率は、上記の効果を生じず、焼き戻し脆化などの問題につながる。したがって、その濃度は0.9%の上限内に制御される。本発明のための好ましい含有率は、0.6%~0.8%の間に保つことができる。 The silicon content of the steel of the invention is between 0.5 and 0.9%. The presence of silicon stabilizes carbon-rich austenite at room temperature, since silicon is a component that can retard the precipitation of carbides during overaging. Furthermore, due to the low solubility of silicon in carbides, silicon effectively inhibits or retards the formation of carbides and thus the formation of the bainitic structure which is also required according to the invention to impart its essential characteristics to the steel. promote. However, an unbalanced content of silicon does not produce the above effects and leads to problems such as temper embrittlement. Therefore, its concentration is controlled within the upper limit of 0.9%. The preferred content for the present invention can be kept between 0.6% and 0.8%.
アルミニウムは不可欠な元素であり、0.6%~1%の間で鋼中に存在する。アルミニウムはアルファジニアス(alphagenous)であり、本発明の鋼に全伸びを付与する。最低0.6%のアルミニウムが最小のフェライトを有し、それによって本発明の鋼に伸びを付与するために必要である。アルミニウムはまた、本発明の鋼を清浄化するために、溶融状態の鋼から酸素を除去するために使用され、また、酸素が気相を形成するのを妨げる。しかし、アルミニウムが1%を超える場合、本発明の鋼に有害なAlNを形成するため、アルミニウムの存在のための好ましい範囲は0.6%~0.8%の間である。 Aluminum is an essential element and is present in steel between 0.6% and 1%. Aluminum is alphagenic and imparts total elongation to the steel of the present invention. A minimum of 0.6% aluminum is required to have minimal ferrite and thereby impart elongation to the steel of the invention. Aluminum is also used to clean the steel of the present invention, to remove oxygen from the steel in the molten state, and also to prevent oxygen from forming a gas phase. However, the preferred range for the presence of aluminum is between 0.6% and 0.8%, since if it exceeds 1% it will form AlN which is detrimental to the steel of the invention.
本発明の鋼のリン組成は0.002%~0.02%の間である。特に結晶粒界に偏析したり、マンガンと共偏析したりする傾向があるため、リンはスポット溶接性及び熱間延性を低下させる。これらの理由により、その含有率は0.02%に制限され、好ましくは0.014%より低い。 The phosphorus composition of the steel of the invention is between 0.002% and 0.02%. In particular, phosphorus reduces spot weldability and hot ductility because it tends to segregate at grain boundaries or co-segregate with manganese. For these reasons, its content is limited to 0.02%, preferably lower than 0.014%.
硫黄は必須元素ではないが、鋼中に不純物として含まれることがある。本発明の観点からは、硫黄含有量はできるだけ低くすることが好ましいが、製造コストの観点からは0.003%以下である。さらに、より高い硫黄が鋼中に存在する場合は、硫黄は結合して、特にマンガンと結合して硫化物を形成し、本発明の鋼に対するその有益な影響を減少させる。 Although sulfur is not an essential element, it may be present as an impurity in steel. From the viewpoint of the present invention, it is preferable to keep the sulfur content as low as possible, but from the viewpoint of manufacturing cost, it is 0.003% or less. Furthermore, if higher sulfur is present in the steel, the sulfur will combine, especially with manganese, to form sulfides, reducing its beneficial effect on the steel of the invention.
材料の老化を防止し、また、鋼の機械的特性に有害な窒化物が凝固中に析出することを最小限に抑えるために、窒素は0.007%に制限される。 Nitrogen is limited to 0.007% to prevent aging of the material and also to minimize the precipitation of nitrides during solidification that are detrimental to the mechanical properties of the steel.
クロムは、本発明の任意の元素である。クロム含有率は、本発明の鋼中に0.05%~1%の間で存在し得る。クロムは鋼に強度及び焼入れを与える必須元素であるが、1%を超えて使用すると、鋼の表面仕上げを損なう。さらに1%未満のクロム含有率はベイナイト組織中の炭化物の分散パターンを粗大化し、したがってベイナイト中の炭化物の密度を低く保つ。 Chromium is an optional element of the present invention. The chromium content may be present in the steel of the invention between 0.05% and 1%. Chromium is an essential element that gives strength and hardening to steel, but when used in excess of 1% it impairs the surface finish of the steel. Furthermore, a chromium content of less than 1% coarsens the dispersion pattern of carbides in the bainite structure, thus keeping the density of carbides in the bainite low.
モリブデンは、本発明の鋼の0.001%~0.5%を構成する任意の元素である。モリブデンは、焼入れ性及び硬度の決定に有効な役割を果たし、ベイナイトの出現を遅延させ、ベイナイト中の炭化物の析出を回避する。しかし、モリブデンの添加は合金元素の添加のコストを過度に増加させるため、その含有率は経済的理由から0.5%に制限される。 Molybdenum is an optional element that constitutes 0.001% to 0.5% of the steel of the present invention. Molybdenum plays an effective role in determining hardenability and hardness, delays the appearance of bainite, and avoids the precipitation of carbides in bainite. However, since the addition of molybdenum excessively increases the cost of adding alloying elements, its content is limited to 0.5% for economic reasons.
ニオブは本発明の任意の元素である。ニオブ含有率は、本発明の鋼中に0.001~0.1%の間で存在することができ、炭窒化物を形成するために本発明の鋼に添加し、析出硬化により本発明の鋼の強度を付与する。ニオブはまた、炭窒化物としてのその析出を通じて、及び熱処理中の再結晶を遅らせることによって、微細組織の構成要素のサイズに影響を及ぼす。こうして保持温度の終わりに、かつ本発明の鋼の焼入れにつながる焼鈍の完了後の結果として、より微細なミクロ組織が形成される。しかし、0.1%を超えるニオブ含有率は、その影響の飽和効果が観察されることから、経済的に興味を引くことではない。これは、追加の量のニオブは生成物のいかなる強度改善ももたらさないことを意味する。 Niobium is an optional element in the present invention. The niobium content can be present in the steel of the invention between 0.001 and 0.1% and is added to the steel of the invention to form carbonitrides and harden the steel of the invention by precipitation hardening. Gives the strength of steel. Niobium also affects the size of microstructural components through its precipitation as carbonitrides and by retarding recrystallization during heat treatment. Thus, at the end of the holding temperature and after completion of the annealing leading to hardening of the steel of the invention, a finer microstructure is formed. However, niobium contents above 0.1% are not economically interesting since saturation effects of their influence are observed. This means that the additional amount of niobium does not result in any strength improvement of the product.
チタンは任意の元素であり、0.001%~0.1%の間で本発明の鋼に添加することができる。ニオブのように、チタンは炭窒化物形成に関与するので、本発明の鋼の焼入れにおいて役割を果たす。加えて、チタンはまた、鋳造製品の凝固中に現れるチタン窒化物を形成する。成形性に有害な粗大な窒化チタンの形成を避けるために、チタンの量は0.1%に制限される。チタン含有率が0.001%未満の場合、本発明の鋼に何ら影響を与えない。 Titanium is an optional element and can be added to the steel of the present invention in amounts between 0.001% and 0.1%. Like niobium, titanium participates in carbonitride formation and therefore plays a role in the quenching of the steel of the present invention. In addition, titanium also forms titanium nitrides, which appear during solidification of cast products. The amount of titanium is limited to 0.1% to avoid the formation of coarse titanium nitride, which is detrimental to formability. When the titanium content is less than 0.001%, it has no effect on the steel of the present invention.
銅は、鋼の強度を高め、その耐食性を向上させるために、0.01%~2%の量で任意の元素として添加されてもよい。このような効果を得るには最低0.01%の銅が必要である。しかし、その含有率が2%を超えると、表面形態を劣化させる可能性がある。 Copper may be added as an optional element in an amount of 0.01% to 2% to increase the strength of the steel and improve its corrosion resistance. A minimum of 0.01% copper is required to achieve this effect. However, if its content exceeds 2%, the surface morphology may deteriorate.
ニッケルは、0.01~3%の量で任意の元素として加えて、鋼の強度を高め、その靭性を改善することができる。そのような効果を生じるには最低0.01%が必要である。しかし、その含有率が3%を超えると、ニッケルは延性の低下を引き起こす。 Nickel can be added as an optional element in amounts of 0.01-3% to increase the strength of the steel and improve its toughness. A minimum of 0.01% is required to produce such an effect. However, when its content exceeds 3%, nickel causes a decrease in ductility.
本発明の鋼中のカルシウム含有率は0.0001%~0.005%の間である。カルシウムは、特に介在物処理中に任意の元素として本発明の鋼に加えられる。カルシウムは、球状となり有害な硫黄成分を捕捉し、硫黄の有害な影響を抑えることで、鋼の精製に貢献する。 The calcium content in the steel of the invention is between 0.0001% and 0.005%. Calcium is added as an optional element to the steel of the invention, especially during inclusion treatment. Calcium becomes spherical and captures harmful sulfur components, suppressing the harmful effects of sulfur and contributing to the refining of steel.
バナジウムは炭化物又は炭窒化物を形成して鋼の強度を高めるのに有効であり、経済的理由から上限は0.1%である。セリウム、ホウ素、マグネシウム又はジルコニウムのような他の元素は、以下の重量比で、個別に又は組み合わせて添加することができる。すなわち、セリウム≦0.1%、ホウ素≦0.003%、マグネシウム≦0.010%及びジルコニウム≦0.010%である。示された最大含有量レベルまで、これらの元素は凝固中に粒を微細化することを可能にする。鋼の組成の残りは、鋼及び加工に起因する不可避の不純物からなる。 Vanadium is effective in forming carbides or carbonitrides to increase the strength of steel, and for economic reasons the upper limit is 0.1%. Other elements such as cerium, boron, magnesium or zirconium can be added individually or in combination in the following weight ratios: That is, cerium≦0.1%, boron≦0.003%, magnesium≦0.010%, and zirconium≦0.010%. Up to the maximum content levels indicated, these elements make it possible to refine the grains during solidification. The remainder of the steel composition consists of unavoidable impurities resulting from the steel and processing.
鋼板の微細組織は、以下を含む。 The microstructure of the steel plate includes the following:
フェライトは、面積分率で、本発明の鋼について微細組織の60%~75%を構成する。フェライトはマトリックスとして鋼の主要相を構成する。本発明において、フェライトは、ポリゴナルフェライトと針状フェライトとを累積的に含み、本発明の鋼に伸びと共に高強度を付与する。31%以上、好ましくは33%以上の伸びを確保するためには、60%のフェライトを有する必要がある。本発明の鋼では焼鈍後の冷却時にフェライトが形成される。しかし、本発明の鋼中に75%を超えるフェライト含有量が存在するときはいつでも、前記強度は達成されない。 Ferrite constitutes, in area fraction, 60% to 75% of the microstructure for the steels of the invention. Ferrite constitutes the main phase of steel as a matrix. In the present invention, the ferrite cumulatively includes polygonal ferrite and acicular ferrite, which imparts elongation and high strength to the steel of the present invention. In order to ensure an elongation of 31% or more, preferably 33% or more, it is necessary to have 60% ferrite. In the steel of the present invention, ferrite is formed during cooling after annealing. However, whenever a ferrite content of more than 75% is present in the steel of the invention, said strength is not achieved.
ベイナイトは、面積分率で、本発明の鋼について微細組織の20%~30%を構成する。本発明において、ベイナイトは累積的にラスベイナイトとグラニュラーベイナイトとからなる。620MPa以上、好ましくは630MPa以上の引張強さを確保するためには、20%のベイナイトを有することが必要である。過時効保持時にベイナイトが形成される。 Bainite constitutes 20% to 30% of the microstructure for the steels of the invention in terms of area fraction. In the present invention, bainite cumulatively consists of lath bainite and granular bainite. In order to ensure a tensile strength of 620 MPa or more, preferably 630 MPa or more, it is necessary to have 20% bainite. Bainite is formed during overaging.
残留オーステナイトは、面積分率で、鋼の10%~15%を構成する。残留オーステナイトは、ベイナイトよりも炭素の溶解性が高いことが知られており、このため効果的な炭素トラップとして作用し、よってベイナイトにおける炭化物の形成を遅らせる。本発明の残留オーステナイト内部の炭素の割合は、好ましくは0.9%より高く、好ましくは1.1%より低い。本発明による鋼の残留オーステナイトは、延性を高める。 Retained austenite constitutes 10% to 15% of the steel in terms of area fraction. Retained austenite is known to have a higher solubility of carbon than bainite and thus acts as an effective carbon trap, thus retarding the formation of carbides in bainite. The proportion of carbon within the retained austenite of the present invention is preferably higher than 0.9%, preferably lower than 1.1%. The retained austenite in the steel according to the invention increases its ductility.
マルテンサイトは、面積分率で、微細組織の0%~5%の間を構成し、微量で見られる。本発明のマルテンサイトは、フレッシュマルテンサイト及び焼戻しマルテンサイトの両方を含む。本発明は、焼鈍後の冷却によりマルテンサイトを形成し、過時効保持中に焼戻される。フレッシュマルテンサイトは冷間圧延鋼板の被覆後の冷却中にも生成する。マルテンサイトが5%未満であると、マルテンサイトは本発明の鋼に延性及び強度を付与する。マルテンサイトが5%を超えると、過剰な強度を与えるが、許容限度を超えて伸びを減少させる。マルテンサイトに対する好ましい限度は0%~3%の間である。 Martensite constitutes between 0% and 5% of the microstructure in area fraction and is found in trace amounts. The martensite of the present invention includes both fresh martensite and tempered martensite. In the present invention, martensite is formed by cooling after annealing, and is tempered during over-aging. Fresh martensite is also generated during cooling of cold-rolled steel sheets after coating. At less than 5% martensite, martensite imparts ductility and strength to the steel of the invention. More than 5% martensite provides excessive strength but reduces elongation beyond acceptable limits. Preferred limits for martensite are between 0% and 3%.
フェライト及び残留オーステナイトの総量は、31%の全伸びを有するためには常に70%~80%の間でなければならず、600MPaの引張強さを有しながら、31%を超える全伸びを確保するためには最低70%が必要である。フェライト及び残留オーステナイトは、マルテンサイト及びベイナイトに比べて軟質相であるため、伸び及び延性を与えるが、累積存在が80%を超えるときはいつでも、強度は許容限界を超えて低下する。 The total amount of ferrite and retained austenite must always be between 70% and 80% to have a total elongation of 31%, ensuring a total elongation of more than 31% while having a tensile strength of 600 MPa In order to achieve this, a minimum of 70% is required. Ferrite and retained austenite are soft phases compared to martensite and bainite, thus imparting elongation and ductility, but whenever their cumulative presence exceeds 80%, strength decreases beyond acceptable limits.
前述した微細組織に加えて、冷間圧延及び熱処理された鋼板の微細組織は、鋼板の機械的特性を損なうことなく、パーライト及びセメンタイトなどの微細組織成分を含まない。 In addition to the microstructures mentioned above, the microstructure of cold-rolled and heat-treated steel sheets is free of microstructural components such as pearlite and cementite, without impairing the mechanical properties of the steel sheets.
本発明の鋼板は、任意の適切な方法によって生産することができる。好ましい方法は、本発明による化学組成を有する鋼の半完成鋳造品を提供することからなる。鋳造は、インゴットに、又は薄いスラブ又は薄いストリップの形態で連続的に行うことができる。すなわち、スラブのための約220mmから薄いストリップのための数十mmまでの範囲の厚さを有する。 The steel plate of the present invention can be produced by any suitable method. A preferred method consists of providing a semi-finished casting of steel having a chemical composition according to the invention. Casting can be carried out continuously in ingots or in the form of thin slabs or thin strips. ie, with thicknesses ranging from about 220 mm for slabs to several tens of mm for thin strips.
例えば、上記の化学組成を有するスラブは、連続鋳造によって製造され、ここで、スラブは、中心部偏析を回避し、公称炭素に対する局所炭素の比率を1.10未満に保つようにするために、連続鋳造工程の間に、任意に直接軽圧下鋳造を受けた。連続鋳造工程によって提供されるスラブは、連続鋳造の後、高温で直接使用することができ、又は最初に室温まで冷却され、次いで、熱間圧延のために再加熱することができる。 For example, a slab with the above chemical composition is produced by continuous casting, where the slab is cast in order to avoid center segregation and to keep the local carbon to nominal carbon ratio below 1.10. During the continuous casting process, it was optionally subjected to direct light reduction casting. The slabs provided by the continuous casting process can be used directly at elevated temperatures after continuous casting or can be first cooled to room temperature and then reheated for hot rolling.
熱間圧延に供されるスラブの温度は、少なくとも1150℃であり、1280℃未満でなければならない。スラブの温度が1150℃より低い場合、圧延機に過大な荷重が加わる。このため、最終的な圧延温度が常にAc1+50℃を超えて留まりながら、Ac1+50℃~Ac1+250℃、好ましくはAc1+50℃~Ac1+200℃の間の温度範囲で熱間圧延が完了できるように、スラブの温度は十分に高いことが好ましい。1280℃を超える温度での再加熱は、工業的に費用がかかるため避けなければならない。 The temperature of the slab subjected to hot rolling must be at least 1150°C and less than 1280°C. If the temperature of the slab is lower than 1150°C, an excessive load is applied to the rolling mill. For this reason, the temperature of the slab is adjusted such that hot rolling can be completed in the temperature range between Ac1+50°C and Ac1+250°C, preferably between Ac1+50°C and Ac1+200°C, while the final rolling temperature always remains above Ac1+50°C. Preferably, it is sufficiently high. Reheating at temperatures above 1280° C. is industrially expensive and must be avoided.
Ac1+50℃~Ac1+250℃の間の最終的な圧延温度範囲は、再結晶化及び圧延に好都合な組織を有するために好ましい。この温度未満では鋼板は圧延性の著しい低下を示すため、最終圧延パスをAc1+50℃よりも高い温度で行う必要がある。次に、この方法で得られた板を、30℃/秒を超える冷却速度で、625℃未満でなければならない巻取り温度まで冷却する。好ましくは、冷却速度は200℃/秒以下とする。 A final rolling temperature range between Ac1+50°C and Ac1+250°C is preferred to have a structure favorable to recrystallization and rolling. Below this temperature, the steel plate exhibits a significant decrease in rollability, so the final rolling pass must be performed at a temperature higher than Ac1+50°C. The plate obtained in this way is then cooled at a cooling rate of more than 30° C./sec to the coiling temperature, which must be below 625° C. Preferably, the cooling rate is 200° C./second or less.
次いで、熱間圧延鋼板は、楕円化を避けるために625℃未満、好ましくはスケール形成を避けるために600℃未満の巻取り温度で巻取られる。このような巻取り温度の好ましい範囲は、350℃~600℃の間である。巻き取られた熱間圧延鋼板は、任意の熱間帯焼鈍に供する前に室温まで冷却してもよい。 The hot rolled steel sheet is then coiled at a coiling temperature below 625°C to avoid ovalization, preferably below 600°C to avoid scale formation. The preferred range of such winding temperature is between 350°C and 600°C. The wound hot rolled steel sheet may be cooled to room temperature before being subjected to any hot zone annealing.
熱間圧延鋼板は、任意の熱間帯焼鈍の前に熱間圧延中に形成されたスケールを除去するために、任意のスケール除去ステップに供することができる。次に、熱間圧延板に、少なくとも12時間かつ96時間以下の間、400℃~750℃の間の温度で任意の熱間帯焼鈍を施してもよく、温度は、熱間圧延された微細組織を部分的に変質させ、そのため微細組織の均一性を失わないようにするために、750℃未満に留まる。その後、この熱間圧延鋼板の任意のスケール除去ステップを、例えばこのような板の酸洗によって実施することができる。この熱間圧延鋼板に冷間圧延を施し、圧下率35~90%の間の冷間圧延鋼板を得る。次いで、冷間圧延方法から得られた冷間圧延鋼板を焼鈍し、微細組織及び機械的特性を本発明の鋼に付与する。 The hot rolled steel sheet may be subjected to an optional descaling step to remove scale formed during hot rolling prior to any hot zone annealing. The hot rolled plate may then be subjected to an optional hot zone annealing at a temperature between 400° C. and 750° C. for at least 12 hours and no more than 96 hours, where the temperature The temperature remains below 750° C. in order not to partially alter the structure and thus lose the homogeneity of the microstructure. An optional descaling step of this hot rolled steel plate can then be carried out, for example by pickling such a plate. This hot-rolled steel plate is subjected to cold rolling to obtain a cold-rolled steel plate with a rolling reduction of between 35% and 90%. The cold rolled steel sheet obtained from the cold rolling process is then annealed to impart microstructure and mechanical properties to the steel of the invention.
焼鈍において、Ac1+30℃~Ac3の間の均熱温度に達するように、2ステップの加熱を施した冷間圧延鋼板であって、本鋼のAc1及びAc3は、次式により算出される。 Ac1 and Ac3 of this steel, which is a cold rolled steel plate subjected to two steps of heating to reach a soaking temperature between Ac1+30°C and Ac3 during annealing, are calculated by the following formula.
Ac1=723-10.7[Mn]-16[Ni]+29.1[Si]+16.9[Cr]+6.38[W]+290[As]
Ac3=910-203[C]^(1/2)-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]-30[Mn]-11[Cr]-20[Cu]+700[P]+400[Al]+120[As]+400[Ti]
式中、元素含有率は重量パーセントで表される。
Ac1=723-10.7[Mn]-16[Ni]+29.1[Si]+16.9[Cr]+6.38[W]+290[As]
Ac3=910-203[C]^(1/2)-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]-30[Mn]-11 [Cr]-20[Cu]+700[P]+400[Al]+120[As]+400[Ti]
In the formula, the elemental content is expressed in weight percent.
ステップ1では、冷間圧延鋼板は、10℃/秒~40℃/秒の間の加熱速度で550~650℃の間の温度範囲に加熱される。その後、続く第2のステップの加熱において、冷間圧延鋼板は、1℃/秒~5℃/秒の間の加熱速度で、焼鈍の均熱温度まで加熱される。 In step 1, the cold rolled steel plate is heated to a temperature range between 550 and 650°C at a heating rate between 10°C/sec and 40°C/sec. Thereafter, in the subsequent second heating step, the cold rolled steel plate is heated to the soaking temperature for annealing at a heating rate of between 1° C./sec and 5° C./sec.
次に冷間圧延鋼板を10~500秒間の均熱温度で保持し、強加工焼入れされた初期組織のオーステナイト微細組織への少なくとも30%の変態を確保する。次いで、冷間圧延鋼板を過時効保持温度まで2段階冷却で冷却する。ステップ1の冷却では、冷間圧延鋼板は、5℃/秒未満、好ましくは3℃/秒未満の冷却速度で、600℃~720℃の間、好ましくは625℃~720℃の間の温度範囲まで冷却される。このステップ1の冷却の間に、本発明のフェライトマトリックスが形成される。その後、続く第2の冷却ステップにおいて、冷間圧延鋼板は、10℃/秒~100℃/秒の間の冷却速度で、250℃~470℃の間の過時効温度範囲まで冷却される。次に冷間圧延鋼板を、過時効温度範囲で5~500秒間保持する。次に、冷間圧延鋼板を400℃~480℃の被覆浴温度範囲の温度にして、冷間圧延鋼板の被覆を容易にする。次に、電気亜鉛めっき、JVD、PVD、溶融亜鉛めっき(GI)などの既知の工業的方法のいずれかによって、冷間圧延鋼板を被覆する。 The cold rolled steel sheet is then held at a soaking temperature for 10 to 500 seconds to ensure at least 30% transformation of the initial hard work hardened structure to an austenitic microstructure. Next, the cold rolled steel plate is cooled to the overaging holding temperature by two-step cooling. In step 1 cooling, the cold rolled steel sheet is cooled in a temperature range between 600°C and 720°C, preferably between 625°C and 720°C, with a cooling rate of less than 5°C/s, preferably less than 3°C/s. cooled down to During this step 1 cooling, the ferrite matrix of the present invention is formed. Thereafter, in a subsequent second cooling step, the cold rolled steel sheet is cooled to an overaging temperature range of between 250° C. and 470° C. at a cooling rate between 10° C./sec and 100° C./sec. The cold rolled steel plate is then held in the overaging temperature range for 5 to 500 seconds. Next, the cold rolled steel sheet is brought to a temperature in the coating bath temperature range of 400° C. to 480° C. to facilitate coating of the cold rolled steel sheet. The cold rolled steel sheet is then coated by any of the known industrial methods such as electrogalvanizing, JVD, PVD, hot dip galvanizing (GI).
本明細書に提示された以下の試験、実施例、比喩的例示及び表は、本質的に限定的ではなく、例示の目的のみで考慮されなければならず、本発明の有利な特徴を示す。 The following tests, examples, figurative illustrations and tables presented herein are not limiting in nature and should be considered for illustrative purposes only, and indicate advantageous features of the invention.
組成の異なる鋼製の鋼板を表1にまとめ、鋼板をそれぞれ表2に規定した工程パラメータに従って製造する。その後、表3に試験中に得られた鋼板の微細組織をまとめ、表4に得られた特性の評価結果をまとめた。 Steel plates made of steels with different compositions are summarized in Table 1, and each steel plate is manufactured according to the process parameters specified in Table 2. Thereafter, Table 3 summarizes the microstructures of the steel sheets obtained during the test, and Table 4 summarizes the evaluation results of the properties obtained.
<表2>
表2は、表1の鋼に実施された焼鈍工程パラメータをまとめた。鋼組成A及びBは、本発明による板の製造に役立つ。この表は、表にC及びDと指定されている参考鋼も明記している。また、表2にAc1及びAc3の一覧を示す。これらのAc1及びAc3は、本発明の鋼及び参考鋼について、以下のように定義される。
<Table 2>
Table 2 summarizes the annealing process parameters performed on the steels in Table 1. Steel compositions A and B are useful for producing plates according to the invention. The table also specifies the reference steels designated C and D in the table. Further, Table 2 shows a list of Ac1 and Ac3. These Ac1 and Ac3 are defined as follows for the steel of the present invention and the reference steel.
Ac1=723-10.7[Mn]-16[Ni]+29.1[Si]+16.9[Cr]+6.38[W]+290[As]
Ac3=910-203[C]^(1/2)-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]-30[Mn]-11[Cr]-20[Cu]+700[P]+400[Al]+120[As]+400[Ti]
式中、元素含有率は重量パーセントで表される。
Ac1=723-10.7[Mn]-16[Ni]+29.1[Si]+16.9[Cr]+6.38[W]+290[As]
Ac3=910-203[C]^(1/2)-15.2[Ni]+44.7[Si]+104[V]+31.5[Mo]+13.1[W]-30[Mn]-11 [Cr]-20[Cu]+700[P]+400[Al]+120[As]+400[Ti]
In the formula, the elemental content is expressed in weight percent.
すべての板を熱間圧延後34℃/秒の冷却速度で冷却し、最終的には被覆前に460℃の温度にした。すべての板が65%の冷間圧下率を有する。 All plates were cooled after hot rolling at a cooling rate of 34°C/sec and finally brought to a temperature of 460°C before coating. All plates have a cold reduction of 65%.
表2は以下の通りである。 Table 2 is as follows.
<表3>
表3は、本発明の鋼及び参考鋼の両方の微細組織を決定するための、走査型電子顕微鏡のような異なる顕微鏡に関する標準に従って行われた試験の結果を例示する。
<Table 3>
Table 3 illustrates the results of tests carried out according to standards on different microscopes, such as scanning electron microscopes, for determining the microstructure of both the inventive steel and the reference steel.
以下のとおり、結果を明記する。 Specify the results as follows.
<表4>
表4は、本発明の鋼及び参考鋼の両方の機械的特性を例示する。引張強さ、降伏強度、全伸びを求めるため、JIS Z2241規格に従って引張試験を行う。
<Table 4>
Table 4 illustrates the mechanical properties of both the inventive steel and the reference steel. In order to determine tensile strength, yield strength, and total elongation, a tensile test is conducted according to the JIS Z2241 standard.
前記規格に従って実施された種々の機械的試験の結果をまとめる。 The results of various mechanical tests carried out according to said standards are summarized.
Claims (19)
0.13%≦炭素≦0.18%
1.1%≦マンガン≦1.8%
0.5%≦ケイ素≦0.9%
0.6%≦アルミニウム≦1%
0.002%≦リン≦0.02%
0%≦硫黄≦0.003%
0%≦窒素≦0.007%
を含み、以下の任意の元素のうちの1つ以上、すなわち
0.05%≦クロム≦1%
0.001%≦モリブデン≦0.5%
0.001%≦ニオブ≦0.1%
0.001%≦チタン≦0.1%
0.01%≦銅≦2%
0.01%≦ニッケル≦3%
0.0001%≦カルシウム≦0.005%
0%≦バナジウム≦0.1%
0%≦ホウ素≦0.003%
0%≦セリウム≦0.1%
0%≦マグネシウム≦0.010%
0%≦ジルコニウム≦0.010%
を含むことができ、組成の残余は、鉄及び加工に起因する不可避の不純物から構成される組成を有し、前記鋼板の微細組織は、面積分率で、60~70%のフェライト、20~30%のベイナイト、10~15%の残留オーステナイト、及び0~5%のマルテンサイトを含み、残留オーステナイト及びフェライトの累積量は70%~80%の間である、鋼板。 Cold-rolled steel sheet containing the following elements expressed in weight percent: 0.13%≦carbon≦0.18%
1.1%≦manganese≦1.8%
0.5%≦Silicon≦0.9%
0.6%≦aluminum≦1%
0.002%≦phosphorus≦0.02%
0%≦sulfur≦0.003%
0%≦nitrogen≦0.007%
containing one or more of the following arbitrary elements, i.e. 0.05%≦Chromium≦1%
0.001%≦Molybdenum≦0.5%
0.001%≦niobium≦0.1%
0.001%≦Titanium≦0.1%
0.01%≦Copper≦2%
0.01%≦nickel≦3%
0.0001%≦Calcium≦0.005%
0%≦vanadium≦0.1%
0%≦Boron≦0.003%
0%≦Cerium≦0.1%
0%≦Magnesium≦0.010%
0%≦zirconium≦0.010%
The remainder of the composition is composed of iron and unavoidable impurities resulting from processing, and the microstructure of the steel sheet has an area fraction of 60 to 70 % ferrite, 20 to 70% ferrite. A steel plate comprising 30% bainite, 10-15% retained austenite, and 0-5% martensite, with a cumulative amount of retained austenite and ferrite between 70% and 80%.
以下の連続ステップ
- 請求項1~6のいずれか一項に記載の鋼組成を提供するステップ、
- 半完成品を1150℃~1280℃の間の温度に再加熱するステップ、
- 熱間圧延仕上げ温度がAc1+50℃~Ac1+250℃の間となるように、オーステナイト範囲において前記半製品を圧延して、熱間圧延鋼板を得るステップ、
- 30℃/秒を超える冷却速度で625℃未満の巻取り温度まで板を冷却し、前記熱間圧延板を巻き取るステップ、
- 前記熱間圧延板を室温まで冷却するステップ、
- 任意に、前記熱間圧延鋼板にスケール除去処理を実施するステップ、
- 任意に、熱間圧延鋼板を400℃~750℃の間の温度で焼鈍を実施するステップ、
- 任意に、前記熱間圧延鋼板にスケール除去処理を実施するステップ、
- 35~90%の間の圧下率で前記熱間圧延鋼板を冷間圧延し、冷間圧延鋼板を得るステップ、
- 次に、前記冷間圧延鋼板を2段階加熱によって加熱することにより、Ac1+30℃~Ac3の間の均熱温度で10~500秒間の間焼鈍を実施するステップ、ここで
・ 加熱ステップ1において、前記冷間圧延鋼板を10℃/秒~40℃/秒の間の加熱速度で550~650℃の間の温度範囲まで加熱するステップ、
・ その後、加熱ステップ2において、前記冷間圧延鋼板を1℃/秒~5℃/秒の間の加熱速度で550~650℃の間の温度範囲から鋼板が維持される焼鈍均熱温度まで加熱するステップ、
- 次いで、前記冷間圧延鋼板を2段階冷却で冷却するステップ、ここで
・ 冷却ステップ1において、前記冷間圧延鋼板を5℃/秒未満の冷却速度で600℃~720℃の間の温度範囲まで冷却するステップ、
・ その後、冷却ステップ2において、前記板を10~100℃/秒の間の冷却速度で600℃~720℃の間の温度範囲から過時効温度まで冷却するステップ、
- 次に、前記冷間圧延鋼板を5~500秒間の間250~470℃の間の温度範囲で過時効処理するステップ、
- 次に室温まで冷却して、冷間圧延鋼板を得るステップ
を含み、得られる冷間圧延鋼板の微細組織は、面積分率で、60~70%のフェライト、20~30%のベイナイト、10~15%の残留オーステナイト、及び0~5%のマルテンサイトを含み、残留オーステナイト及びフェライトの累積量は70%~80%の間である、
方法。 A method for manufacturing a cold rolled steel plate, the method comprising:
Sequential steps of - providing a steel composition according to any one of claims 1 to 6;
- reheating the semi-finished product to a temperature between 1150°C and 1280°C;
- rolling the semi-finished product in the austenitic range such that the hot rolling finishing temperature is between Ac1+50°C and Ac1+250°C to obtain a hot rolled steel sheet;
- cooling the plate to a coiling temperature of less than 625°C at a cooling rate of greater than 30°C/sec and coiling the hot rolled plate;
- cooling the hot rolled sheet to room temperature;
- optionally carrying out a descaling treatment on the hot rolled steel sheet;
- optionally carrying out annealing of the hot rolled steel sheet at a temperature between 400°C and 750°C;
- optionally carrying out a descaling treatment on the hot rolled steel sheet;
- cold rolling the hot rolled steel sheet at a reduction rate between 35 and 90% to obtain a cold rolled steel sheet;
- Next, heating the cold rolled steel plate by two-stage heating to perform annealing at a soaking temperature between Ac1 + 30 ° C. and Ac3 for 10 to 500 seconds, where - In heating step 1, heating the cold rolled steel sheet to a temperature range between 550 and 650°C at a heating rate between 10°C/sec and 40°C/sec;
- Then, in heating step 2, the cold rolled steel plate is heated at a heating rate between 1°C/sec and 5°C/sec from a temperature range between 550 and 650°C to an annealing soaking temperature at which the steel plate is maintained. step,
- then cooling said cold-rolled steel sheet in a two-stage cooling, wherein: in cooling step 1, said cold-rolled steel sheet is cooled at a temperature range between 600°C and 720°C at a cooling rate of less than 5°C/sec; a step of cooling until
- Then, in a cooling step 2, cooling the plate from a temperature range between 600°C and 720°C to an overaging temperature at a cooling rate between 10 and 100°C/sec;
- then overaging the cold rolled steel sheet at a temperature range between 250 and 470° C. for 5 to 500 seconds;
- Then cooling to room temperature to obtain a cold-rolled steel sheet, and the microstructure of the obtained cold-rolled steel sheet has an area fraction of 60-70 % ferrite, 20-30% bainite, 10% ~15% retained austenite and 0-5% martensite, with a cumulative amount of retained austenite and ferrite between 70% and 80%;
Method.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IBPCT/IB2018/057253 | 2018-09-20 | ||
PCT/IB2018/057253 WO2020058748A1 (en) | 2018-09-20 | 2018-09-20 | Cold rolled and coated steel sheet and a method of manufacturing thereof |
PCT/IB2019/057795 WO2020058829A1 (en) | 2018-09-20 | 2019-09-17 | Cold rolled and coated steel sheet and a method of manufacturing thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022501504A JP2022501504A (en) | 2022-01-06 |
JP7422143B2 true JP7422143B2 (en) | 2024-01-25 |
Family
ID=63794567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021515544A Active JP7422143B2 (en) | 2018-09-20 | 2019-09-17 | Cold rolled coated steel sheet and its manufacturing method |
Country Status (15)
Country | Link |
---|---|
US (1) | US20220033925A1 (en) |
EP (1) | EP3853387B1 (en) |
JP (1) | JP7422143B2 (en) |
KR (1) | KR102647462B1 (en) |
CN (1) | CN112689684B (en) |
CA (1) | CA3110629C (en) |
ES (1) | ES2946086T3 (en) |
FI (1) | FI3853387T3 (en) |
HU (1) | HUE062231T2 (en) |
MA (1) | MA53640B1 (en) |
MX (1) | MX2021003290A (en) |
PL (1) | PL3853387T3 (en) |
UA (1) | UA126725C2 (en) |
WO (2) | WO2020058748A1 (en) |
ZA (1) | ZA202101225B (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115181898B (en) * | 2021-04-02 | 2023-10-13 | 宝山钢铁股份有限公司 | 1280 MPa-level low-carbon low-alloy Q & P steel and rapid heat treatment manufacturing method thereof |
WO2022263887A1 (en) * | 2021-06-16 | 2022-12-22 | Arcelormittal | Method for producing a steel part and steel part |
CN115323275B (en) * | 2022-09-05 | 2023-07-04 | 东北大学 | High-strength high-toughness rare earth warm-rolled low-carbon low-manganese TRIP steel and preparation method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030081A (en) | 2007-07-24 | 2009-02-12 | Sumitomo Metal Ind Ltd | High-tension cold-rolled steel sheet and producing method therefor |
JP2009185370A (en) | 2008-02-08 | 2009-08-20 | Sumitomo Metal Ind Ltd | High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor |
JP2011149066A (en) | 2010-01-22 | 2011-08-04 | Sumitomo Metal Ind Ltd | Cold rolled steel sheet, hot rolled steel sheet, and method for producing them |
JP2014523478A (en) | 2011-06-07 | 2014-09-11 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Cold-rolled steel sheet coated with zinc or zinc alloy, method for producing the same, and use of such steel sheet |
CN108026601A (en) | 2015-09-22 | 2018-05-11 | 现代制铁株式会社 | Coated steel plate and its manufacture method |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2601581B2 (en) * | 1991-09-03 | 1997-04-16 | 新日本製鐵株式会社 | Manufacturing method of high strength composite structure cold rolled steel sheet with excellent workability |
JP2860438B2 (en) * | 1991-10-28 | 1999-02-24 | 新日本製鐵株式会社 | Manufacturing method of high-strength thin steel sheet with extremely excellent workability |
JP3569307B2 (en) * | 1994-01-12 | 2004-09-22 | 新日本製鐵株式会社 | High strength composite structure cold rolled steel sheet having excellent workability and a tensile strength of 45 to 65 kgf / mm2, and a method for producing the same |
JP3596316B2 (en) * | 1997-12-17 | 2004-12-02 | 住友金属工業株式会社 | Manufacturing method of high tensile high ductility galvanized steel sheet |
JP2002317249A (en) * | 2001-04-18 | 2002-10-31 | Nippon Steel Corp | Low yield ratio type high strength steel sheet having excellent ductility and production method therefor |
CA2462260C (en) * | 2001-10-04 | 2012-02-07 | Nippon Steel Corporation | High-strength thin steel sheet drawable and excellent in shape fixation property and method of producing the same |
EP1767659A1 (en) * | 2005-09-21 | 2007-03-28 | ARCELOR France | Method of manufacturing multi phase microstructured steel piece |
JP4894863B2 (en) | 2008-02-08 | 2012-03-14 | Jfeスチール株式会社 | High-strength hot-dip galvanized steel sheet excellent in workability and manufacturing method thereof |
JP5177261B2 (en) * | 2011-08-01 | 2013-04-03 | 新日鐵住金株式会社 | Controlled rolling method of seamless steel pipe with excellent strength and low temperature toughness |
CN103827341B (en) | 2011-09-30 | 2016-08-31 | 新日铁住金株式会社 | Hot-dip galvanized steel sheet and manufacture method thereof |
KR20240117158A (en) * | 2015-12-15 | 2024-07-31 | 타타 스틸 이즈무이덴 베.뷔. | High strength hot dip galvanised steel strip |
WO2017109540A1 (en) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a high strength steel sheet having improved ductility and formability, and obtained steel sheet |
WO2017109538A1 (en) * | 2015-12-21 | 2017-06-29 | Arcelormittal | Method for producing a steel sheet having improved strength, ductility and formability |
WO2017125773A1 (en) * | 2016-01-18 | 2017-07-27 | Arcelormittal | High strength steel sheet having excellent formability and a method of manufacturing the same |
WO2018115936A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
WO2018115935A1 (en) * | 2016-12-21 | 2018-06-28 | Arcelormittal | Tempered and coated steel sheet having excellent formability and a method of manufacturing the same |
-
2018
- 2018-09-20 WO PCT/IB2018/057253 patent/WO2020058748A1/en active Application Filing
-
2019
- 2019-09-17 PL PL19772880.1T patent/PL3853387T3/en unknown
- 2019-09-17 FI FIEP19772880.1T patent/FI3853387T3/en active
- 2019-09-17 MX MX2021003290A patent/MX2021003290A/en unknown
- 2019-09-17 US US17/276,240 patent/US20220033925A1/en active Pending
- 2019-09-17 JP JP2021515544A patent/JP7422143B2/en active Active
- 2019-09-17 KR KR1020217011078A patent/KR102647462B1/en active IP Right Grant
- 2019-09-17 MA MA53640A patent/MA53640B1/en unknown
- 2019-09-17 UA UAA202102067A patent/UA126725C2/en unknown
- 2019-09-17 CA CA3110629A patent/CA3110629C/en active Active
- 2019-09-17 CN CN201980059157.2A patent/CN112689684B/en active Active
- 2019-09-17 EP EP19772880.1A patent/EP3853387B1/en active Active
- 2019-09-17 HU HUE19772880A patent/HUE062231T2/en unknown
- 2019-09-17 WO PCT/IB2019/057795 patent/WO2020058829A1/en active Application Filing
- 2019-09-17 ES ES19772880T patent/ES2946086T3/en active Active
-
2021
- 2021-02-23 ZA ZA2021/01225A patent/ZA202101225B/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009030081A (en) | 2007-07-24 | 2009-02-12 | Sumitomo Metal Ind Ltd | High-tension cold-rolled steel sheet and producing method therefor |
JP2009185370A (en) | 2008-02-08 | 2009-08-20 | Sumitomo Metal Ind Ltd | High-tensile-strength hot-dip galvanized steel sheet and manufacturing method therefor |
JP2011149066A (en) | 2010-01-22 | 2011-08-04 | Sumitomo Metal Ind Ltd | Cold rolled steel sheet, hot rolled steel sheet, and method for producing them |
JP2014523478A (en) | 2011-06-07 | 2014-09-11 | アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ | Cold-rolled steel sheet coated with zinc or zinc alloy, method for producing the same, and use of such steel sheet |
CN108026601A (en) | 2015-09-22 | 2018-05-11 | 现代制铁株式会社 | Coated steel plate and its manufacture method |
Also Published As
Publication number | Publication date |
---|---|
EP3853387A1 (en) | 2021-07-28 |
WO2020058748A1 (en) | 2020-03-26 |
UA126725C2 (en) | 2023-01-11 |
BR112021003583A2 (en) | 2021-05-18 |
JP2022501504A (en) | 2022-01-06 |
KR102647462B1 (en) | 2024-03-13 |
CA3110629C (en) | 2023-03-14 |
US20220033925A1 (en) | 2022-02-03 |
ES2946086T3 (en) | 2023-07-12 |
MX2021003290A (en) | 2021-05-13 |
FI3853387T3 (en) | 2023-06-15 |
CN112689684A (en) | 2021-04-20 |
PL3853387T3 (en) | 2023-07-10 |
HUE062231T2 (en) | 2023-10-28 |
EP3853387B1 (en) | 2023-05-10 |
CA3110629A1 (en) | 2020-03-26 |
MA53640B1 (en) | 2023-05-31 |
MA53640A (en) | 2022-03-30 |
KR20210061382A (en) | 2021-05-27 |
CN112689684B (en) | 2022-12-09 |
ZA202101225B (en) | 2022-01-26 |
WO2020058829A1 (en) | 2020-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102451862B1 (en) | Cold rolled steel sheet and manufacturing method thereof | |
US11365468B2 (en) | Cold rolled and heat treated steel sheet and a method of manufacturing thereof | |
JP2023011852A (en) | Cold rolled and heat treated steel sheet and method of manufacturing thereof | |
JP7117381B2 (en) | Cold-rolled coated steel sheet and its manufacturing method | |
JP7422143B2 (en) | Cold rolled coated steel sheet and its manufacturing method | |
JP2022535254A (en) | Cold-rolled and coated steel sheet and method for producing same | |
JP2022535255A (en) | Cold-rolled and coated steel sheet and method for producing same | |
RU2778467C1 (en) | Cold-rolled coated steel sheet and method for production thereof | |
JP2024156942A (en) | Cold rolled steel sheet and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220425 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220510 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20221109 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230322 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20230616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230922 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240115 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7422143 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |