[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7417419B2 - wood fiber board - Google Patents

wood fiber board Download PDF

Info

Publication number
JP7417419B2
JP7417419B2 JP2019239401A JP2019239401A JP7417419B2 JP 7417419 B2 JP7417419 B2 JP 7417419B2 JP 2019239401 A JP2019239401 A JP 2019239401A JP 2019239401 A JP2019239401 A JP 2019239401A JP 7417419 B2 JP7417419 B2 JP 7417419B2
Authority
JP
Japan
Prior art keywords
wood
fiber board
fibers
fiber
defibrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019239401A
Other languages
Japanese (ja)
Other versions
JP2021107135A (en
Inventor
英治 山野
雄介 前田
建吾 若松
泰則 木村
祐治 木下
大起 猪野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eidai Co Ltd
Original Assignee
Eidai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eidai Co Ltd filed Critical Eidai Co Ltd
Priority to JP2019239401A priority Critical patent/JP7417419B2/en
Publication of JP2021107135A publication Critical patent/JP2021107135A/en
Application granted granted Critical
Publication of JP7417419B2 publication Critical patent/JP7417419B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Dry Formation Of Fiberboard And The Like (AREA)

Description

本発明は、針葉樹を原料とする木削片を解繊した繊維から成形された木質繊維ボードおよびその製造方法に関する。 The present invention relates to a wood fiber board formed from fibers made from defibrated wood chips made from softwood, and a method for manufacturing the same.

従来から、木質繊維ボードは、フレーク、チップ、繊維等を熱圧成形して製造される。例えば、特許文献1には、水分を含む雰囲気下で針葉樹を原料とする木削片を加熱した後、加熱した木削片から繊維に解繊し、解繊した繊維を加圧および加熱することで木質繊維ボードを成形している。ここで、繊維に解繊する前の木削片の加熱条件の一例として、飽和蒸気圧下で5分、0.8MPa(具体的には加熱温度が170℃)の条件で、木削片を加熱している。 Traditionally, wood fiber boards are manufactured by hot-pressing flakes, chips, fibers, and the like. For example, Patent Document 1 discloses that after heating wood chips made from coniferous trees in an atmosphere containing moisture, the heated wood chips are defibrated into fibers, and the defibrated fibers are pressurized and heated. The wood fiber board is formed using Here, as an example of the heating conditions for the wood shavings before being defibrated into fibers, the wood shavings are heated under saturated steam pressure for 5 minutes at 0.8 MPa (specifically, the heating temperature is 170°C). are doing.

特開2012-214011号公報Japanese Patent Application Publication No. 2012-214011

しかしながら、特許文献1に示す製造方法で木質繊維ボードを製造した場合、原料の木削片(針葉樹)の色と、木質繊維ボードの色とを比べると、解繊前の木削片の色に対して、木質繊維ボードの色が黒ずんでいることに発明者らは気付いた。 However, when a wood fiber board is manufactured using the manufacturing method shown in Patent Document 1, when comparing the color of the raw material wood shavings (softwood) and the color of the wood fiber board, it is found that the color of the wood shavings before defibration differs from that of the wood fiber board. In contrast, the inventors noticed that the color of the wood fiber board was darkening.

本発明は、このような点を鑑みてなされたものであり、その目的とするところは、解繊前の木削片の色に近い白みを帯びた木質繊維ボードとこれを製造する製造方法を提供することにある。 The present invention has been made in view of these points, and its purpose is to provide a wood fiber board with a whitish color similar to the color of wood chips before defibration, and a manufacturing method for manufacturing the same. Our goal is to provide the following.

発明者らが、鋭意検討を重ねた結果、木質繊維ボードの色の黒ずみは、解繊工程において、単繊維への加工時の加工熱により単繊維の表面が変色することが原因であると突き止めた。特に、単繊維の状態でリファイナの歯の間を移動する際に、繊維が加熱され続ける場合があることがわかった。したがって、単繊維に加工された直後から単繊維がリファイナの歯の間を移動する間に、単繊維を集合させた繊維集合体を残せば、本来加熱される単繊維の熱を繊維集合体に吸熱させ、単繊維の変色を抑えることができると考えた。 After extensive research, the inventors determined that the darkening of the color of wood fiber boards is due to discoloration of the surface of the single fibers due to processing heat during processing into single fibers during the fibrillation process. Ta. In particular, it has been found that the fibers may continue to be heated as they move between the teeth of the refiner in a single fiber state. Therefore, if a fiber aggregate made up of single fibers is left behind while the single fibers move between the teeth of the refiner immediately after being processed into single fibers, the heat of the single fibers that would normally be heated can be transferred to the fiber aggregate. We thought that it would be possible to absorb heat and suppress discoloration of single fibers.

本発明は、発明者らの新たな知見に基づくものであり、本発明に係る木質繊維ボードの製造方法は、水分を含む雰囲気下で針葉樹を原料とする木削片を加熱した後、加熱した木削片から繊維に解繊する解繊工程と、前記解繊した繊維を加圧および加熱することで木質繊維ボードを成形する成形工程と、を含む木質繊維ボードの製造方法であって、前記解繊工程は、前記木削片から、前記繊維として、単繊維と、単繊維に解繊される前の状態の繊維集合体と、を生成するものであり、前記解繊工程において、目開きが150μmの篩を通過しない繊維集合体が、前記解繊した繊維に対して、40質量%~52質量%の範囲となるように、前記木削片を解繊することを特徴とする。 The present invention is based on the new findings of the inventors, and the method for manufacturing a wood fiber board according to the present invention involves heating wood shavings made from coniferous trees in an atmosphere containing moisture, and then heating them. A method for manufacturing a wood fiber board, comprising: a defibration step of defibrating wood chips into fibers; and a molding step of molding a wood fiber board by pressurizing and heating the defibrated fibers, the method comprising: In the defibration step, single fibers and fiber aggregates in a state before being defibrated into single fibers are produced as the fibers from the wood chips, and in the defibration step, the opening The method is characterized in that the wood shavings are defibrated so that the fiber aggregates that do not pass through a sieve with a diameter of 150 μm are in the range of 40% to 52% by mass based on the defibrated fibers.

本発明によれば、目開きが150μmの篩を通過しないものは、単繊維が集合した繊維集合体であり、この繊維集合体が、解繊した繊維に対して、40質量%~52質量%の範囲となるように、木削片を解繊する。 According to the present invention, what does not pass through a sieve with an opening of 150 μm is a fiber aggregate made up of single fibers, and this fiber aggregate accounts for 40% to 52% by mass of the defibrated fibers. The wood shavings are defibrated to a range of .

これにより、解繊工程において、単繊維および繊維集合体に加工された直後の加工熱で単繊維および繊維集合体が加熱されたとしても、繊維集合体の熱容量は単繊維に比べて大きいため、繊維集合体に加工熱が吸熱される。これにより、単繊維の変色を抑えることができる。木削片を解繊した繊維の色は、加熱前の木削片の色に近いため、この繊維から成形した木質繊維ボードの色も、加熱前の木削片の色に近い。このような結果、木材固有の色を有した木質繊維ボードを製造することができる。 As a result, even if single fibers and fiber aggregates are heated by processing heat immediately after being processed into single fibers and fiber aggregates in the fibrillation process, the heat capacity of the fiber aggregates is larger than that of single fibers, so Processing heat is absorbed by the fiber aggregate. Thereby, discoloration of single fibers can be suppressed. The color of the fibers made from defibrated wood chips is close to the color of the wood chips before heating, so the color of the wood fiber board formed from these fibers is also close to the color of the wood chips before heating. As a result, a wood fiber board having a color unique to wood can be manufactured.

特に、針葉樹は、広葉樹に比べて白みを帯びているので、本発明の如く、針葉樹を原料とする木削片を用いれば、白みを帯びた木質繊維ボードを得ることができる。この結果、木質繊維ボードに、たとえば白色の突板を貼り合わせたとしても、突板の表面に、木質繊維ボードの表面の黒ずみが映り込むことを抑えることができる。 In particular, coniferous trees are whitish compared to hardwoods, so if wood shavings made from coniferous trees are used as in the present invention, a wood fiber board with a whitish appearance can be obtained. As a result, even if a white veneer, for example, is bonded to the wood fiber board, dark spots on the surface of the wood fiber board can be prevented from being reflected on the surface of the veneer.

解繊工程において、目開きが150μmの篩を通過しない繊維集合体が、解繊した繊維全体に対して、40質量%未満となるように木削片を解繊した場合、単繊維の量が多く、繊維集合体の量が少ないため、単繊維に加工熱が入熱され易い。この結果、単繊維の変色を十分に抑えることができない。 In the defibration process, if the wood shavings are defibrated so that the fiber aggregates that do not pass through a sieve with an opening of 150 μm are less than 40% by mass of the total defibrated fibers, the amount of single fibers is Since the amount of fiber aggregates is small, processing heat is easily input to the single fibers. As a result, discoloration of single fibers cannot be sufficiently suppressed.

一方、解繊工程において、目開きが150μmの篩を通過しない繊維集合体が、解繊した繊維全体に対して、52質量%を超えるように木削片を解繊した場合、繊維集合体の割合が多いため、この繊維で成形された木質繊維ボードの加湿環境下および吸水環境下における寸法変化が大きくなることがある。 On the other hand, in the defibration process, if the wood shavings are defibrated so that the fiber aggregate that does not pass through a sieve with an opening of 150 μm exceeds 52% by mass of the total defibrated fibers, the fiber aggregate Because the proportion is high, the dimensional change of a wood fiber board formed from this fiber may become large under humidified and water-absorbed environments.

さらに、発明者らは、製造された木質繊維ボードの黒ずみは、解繊前に木削片を加熱した際に、木削片に含まれるヘミセルロースが熱により変色したことによると考えた。この変色は、木削片に入熱される熱エネルギに依存するため、木削片を解繊できる程度に、木削片に入熱される熱エネルギを抑えることが重要であるとの新たな知見を、発明者らは得た。 Furthermore, the inventors thought that the darkening of the manufactured wood fiber board was due to the hemicellulose contained in the wood chips being discolored by the heat when the wood chips were heated before defibration. This discoloration depends on the heat energy applied to the wood shavings, so new findings show that it is important to suppress the heat energy applied to the wood shavings to the extent that the wood shavings can be defibrated. , the inventors obtained.

より好ましい態様としては、前記解繊工程において、前記木削片を加熱する加熱温度が155℃~170℃の範囲であり、前記木削片を加熱する加熱時間が3分~6分の範囲であって、前記加熱温度と前記加熱時間とのグラフにおいて、加熱温度170℃、加熱時間3分となる第1の点と、加熱温度155℃、加熱時間3分となる第2の点と、加熱温度155℃、加熱時間6分となる第3の点と、を結んだ線分で囲まれた領域内の加熱温度および加熱時間で、前記木削片を加熱する。 More preferably, in the defibration step, the heating temperature for heating the wood chips is in the range of 155°C to 170°C, and the heating time for heating the wood chips is in the range of 3 to 6 minutes. In the graph of the heating temperature and the heating time, there is a first point where the heating temperature is 170°C and a heating time of 3 minutes, a second point where the heating temperature is 155°C and a heating time of 3 minutes, and The wood shavings are heated at a heating temperature and heating time within a region surrounded by a line segment connecting the third point at a temperature of 155° C. and a heating time of 6 minutes.

本発明によれば、解繊工程において、第1~第3の点を結んだ領域内の加熱温度および加熱時間で、木削片を加熱することにより、木削片が熱により黒色に変色することを抑えることができる。これにより、木削片を解繊した繊維の色は、加熱前の木削片の色に近いため、この繊維から成形した木質繊維ボードの色も、加熱前の木削片の色に近い。このような結果、木材固有の色である白色の木質繊維ボードを製造することができる。 According to the present invention, in the defibration step, the wood chips are heated at a heating temperature and heating time within the region connecting the first to third points, so that the wood chips turn black due to heat. You can suppress things. As a result, the color of the fibers obtained by defibrating the wood chips is close to the color of the wood chips before heating, and the color of the wood fiber board formed from these fibers is also close to the color of the wood chips before heating. As a result, a white wood fiber board, which is a color unique to wood, can be manufactured.

ここで、加熱温度が155℃未満である場合には、木削片の解繊される繊維が微細化(微粉化)する傾向にあり、木質繊維ボードの強度が低下するおそれがある。一方、加熱時間が、170℃を超える場合には、木削片が熱により黒色に変色し易く、この木削片を解繊した繊維から木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Here, if the heating temperature is less than 155° C., the fibers of the wood chips that are defibrated tend to become fine (pulverized), which may reduce the strength of the wood fiber board. On the other hand, if the heating time exceeds 170°C, the wood shavings tend to turn black due to the heat, and even if a wood fiber board is formed from fibers made by defibrating the wood shavings, the wood fiber board will turn black. Sometimes it happens.

また、加熱時間が3分未満である場合には、木削片の解繊される繊維が微細化(微粉化)する傾向にあり、木質繊維ボードの強度が低下するおそれがある。一方、加熱時間が、6分を超える場合には、木削片が熱により黒色に変色し易く、この木削片を解繊した繊維から木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Furthermore, if the heating time is less than 3 minutes, the fibers of the wood chips that are defibrated tend to become fine (pulverized), which may reduce the strength of the wood fiber board. On the other hand, if the heating time exceeds 6 minutes, the wood shavings tend to turn black due to the heat, and even if a wood fiber board is formed from fibers made from defibrated wood shavings, the wood fiber board will turn black. Sometimes it happens.

さらに、木削片を加熱する加熱温度が155℃~170℃の範囲であり、木削片を加熱する加熱時間が3分~6分の範囲であっても、本発明で規定する領域を外れた場合には、木削片への入熱が多いため、この熱により黒色に変色し易い。したがって、この木削片を解繊した繊維から木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Furthermore, even if the heating temperature for heating the wood shavings is in the range of 155°C to 170°C and the heating time for heating the wood shavings is in the range of 3 minutes to 6 minutes, it is outside the range defined by the present invention. In this case, there is a lot of heat input into the wood chips, which tends to cause them to turn black. Therefore, even if a wood fiber board is formed from fibers made from defibrated wood chips, the wood fiber board may turn dark.

本明細書では、本発明として、木質繊維ボードをも開示する。本発明に係る木質繊維ボードは、針葉樹を原料とする木削片を解繊した繊維から成形された木質繊維ボードであって、前記繊維は、単繊維と、前記単繊維に解繊される前の状態の繊維集合体と、を備えており、前記木質繊維ボードは、目開きが150μmの篩を通過しない繊維集合体を、前記解繊した繊維に対して、40質量%~52質量%の範囲で含有し、JIS Z 8781-4で規定されるL、a、およびbから算出される色差を△Eとしたときに、前記原料の針葉樹の色に対する木質繊維ボードの色の色差△Eが5.1以下であることを特徴とする。 A wood fiber board is also disclosed herein as the present invention. The wood fiber board according to the present invention is a wood fiber board formed from fibers obtained by defibrating wood chips made from coniferous trees, and the fibers include single fibers and the fibers before being defibrated into the single fibers. and a fiber aggregate in a state of When the color difference calculated from L * , a * , and b * specified in JIS Z 8781-4 is △E, the color difference between the color of the wood fiber board and the color of the coniferous wood of the raw material It is characterized in that ΔE is 5.1 or less.

本発明によれば、目開きが150μmの篩を通過しない繊維集合体が、解繊した繊維に対して、40質量%~52質量%の範囲となる木質繊維ボードは、上述した如く、解繊時において、繊維が黒ずむような変色が抑えられたものであるといえる。このような木質繊維ボードは、原料の針葉樹の色に対する木質繊維ボードの色の色差△Eが5.1以下であることから、針葉樹固有の色である白みのある色の木質繊維ボードである。 According to the present invention, a wood fiber board in which the fiber aggregate that does not pass through a sieve with an opening of 150 μm is in the range of 40% to 52% by mass based on the defibrated fibers, It can be said that discoloration, which would sometimes cause the fibers to darken, is suppressed. This type of wood fiber board is a wood fiber board with a whitish color, which is a color unique to softwood, because the color difference ΔE between the color of the wood fiber board and the color of the raw material softwood is 5.1 or less. .

より好ましい態様としては、前記木質繊維ボードの表面には、前記木質繊維ボードの表面のLよりも高いLを有した化粧材が設けられている。この態様によれば、木質繊維ボードの単繊維および繊維集合体の露出した表面に、L(明度)が高い化粧材を設けた場合であっても、化粧材の木質繊維ボードの表面が映り込むことを抑えることができる。 In a more preferred embodiment, the surface of the wood fiber board is provided with a decorative material having L * higher than L * of the surface of the wood fiber board. According to this aspect, even when a decorative material with high L * (brightness) is provided on the exposed surface of the single fibers and fiber aggregates of the wood fiber board, the surface of the wood fiber board of the decorative material is reflected. You can prevent it from getting too crowded.

本発明によれば、解繊前の針葉樹の木削片の色に近い白みを帯びた木質繊維ボードを得ることができる。 According to the present invention, it is possible to obtain a wood fiber board that has a whitish color similar to that of coniferous wood chips before defibration.

本発明の実施形態に係る木質繊維ボードの製造方法を説明するためのフロー図である。FIG. 1 is a flow diagram for explaining a method for manufacturing a wood fiber board according to an embodiment of the present invention. 図1に示す解繊工程に用いるリファイナの模式図である。FIG. 2 is a schematic diagram of a refiner used in the defibration step shown in FIG. 1. FIG. 図2に示すリファイナで解繊された繊維の模式図である。3 is a schematic diagram of fibers defibrated by the refiner shown in FIG. 2. FIG. 図1に示す解繊工程において木削片の加熱温度と加熱時間の関係を示したグラフである。2 is a graph showing the relationship between heating temperature and heating time of wood chips in the defibration process shown in FIG. 1. FIG. 図1に示す製造方法で製造された木質繊維ボードの表面に化粧材を貼着した状態を示す模式的断面図である。FIG. 2 is a schematic cross-sectional view showing a state in which a decorative material is adhered to the surface of a wood fiber board manufactured by the manufacturing method shown in FIG. 1. FIG.

以下に、本発明に係る実施形態を説明する。
本実施形態に係る木質繊維ボードの製造方法は、木削片を木質繊維に解繊し、解繊した木質繊維から木質繊維ボードを製造する方法であり、中質繊維板(MDF)などの乾式の木質繊維ボードを製造する方法である。
Embodiments according to the present invention will be described below.
The method for manufacturing a wood fiber board according to the present embodiment is a method of defibrating wood chips into wood fibers and manufacturing a wood fiber board from the defibrated wood fibers. This is a method of manufacturing wood fiber board.

まず、本実施形態に係る木質繊維ボードについて、図1および図2を参照しながら、説明し、この製造方法について説明する。 First, a wood fiber board according to this embodiment will be described with reference to FIGS. 1 and 2, and a manufacturing method thereof will be described.

本実施形態における木質繊維ボード1の製造方法は、以下に示す、解繊工程S11、集積工程S12、成形工程S13を少なくとも含む。以下に、各工程について説明する。 The method for manufacturing the wood fiber board 1 in this embodiment includes at least a defibration step S11, an accumulation step S12, and a molding step S13 shown below. Each step will be explained below.

解繊工程S11について
解繊工程S11を図1~図3を参照しながら、以下に説明する。まず、実施形態の木質繊維ボード1の出発材料として、チップ状の木削片を準備する。木削片としては、例えば、スギ、マツ、ヒノキなどの針葉樹を原料とした木削片Tを準備する。
Regarding the defibration step S11 The defibration step S11 will be described below with reference to FIGS. 1 to 3. First, chip-shaped wood shavings are prepared as a starting material for the wood fiber board 1 of the embodiment. As the wood chips, for example, wood chips T made from coniferous trees such as cedar, pine, and cypress are prepared.

次に、このような木削片Tを水分を含む雰囲気下で加熱後、加熱した木削片Tから湿式繊維Fに解繊する。具体的には、材料供給部32を介して木削片Tを、圧力容器33に投入し、蒸気供給部31を介して蒸気sを圧力容器33に供給する。 Next, such wood chips T are heated in an atmosphere containing moisture, and then the heated wood chips T are defibrated into wet fibers F. Specifically, wood chips T are put into the pressure vessel 33 via the material supply section 32, and steam s is supplied to the pressure vessel 33 via the steam supply section 31.

次に、圧力容器33の排出部34から、蒸煮処理した木削片Tを刃型35に送り込む。具体的には、図示しないが、刃型35の内部に、加熱された状態(具体的には温度が保持された状態)の木削片Tが供給され、この木削片Tが、刃型35、36の間に送り込まれる。刃型36には、モータ37の出力軸が連結されている。 Next, the steamed wood chips T are fed into the blade mold 35 from the discharge part 34 of the pressure vessel 33. Specifically, although not shown, a heated wood chip T (specifically, a state where the temperature is maintained) is supplied into the blade mold 35, and this wood chip T is fed into the blade mold 35. It is sent between 35 and 36. The output shaft of a motor 37 is connected to the blade die 36 .

これにより、刃型36が回転し、刃型35、36間において、木削片Tが解繊され、その回転中心からその外周に向かって、単繊維faおよび繊維集合体fbからなる繊維Fが放出される。本実施形態では、刃型35、36の間隔dをこれまでよりも広くすることにより、解繊工程S11において、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維F全体に対して、40質量%~52質量%の範囲となるように、木削片Tを解繊する。 As a result, the blade die 36 rotates, the wood chips T are defibrated between the blade types 35 and 36, and the fibers F consisting of the single fiber fa and the fiber aggregate fb are distributed from the center of rotation toward the outer periphery. released. In this embodiment, by making the interval d between the blades 35 and 36 wider than before, the fiber aggregate fb that does not pass through a sieve with an opening of 150 μm in the defibrating step S11 is reduced to the entire defibrated fiber F. The wood shavings T are defibrated so that the content is in the range of 40% by mass to 52% by mass.

ここで、目開きとは、JIS Z 8801-1(2019)に規定された公称目開きのことであり、後述する解繊工程後に、解繊された繊維を分級することにより、目開きが150μmの篩を通過しない繊維集合体fbの割合を確認することができる。 Here, the opening is the nominal opening defined in JIS Z 8801-1 (2019), and by classifying the defibrated fibers after the defibration process described below, the opening is 150 μm. The percentage of the fiber aggregate fb that does not pass through the sieve can be confirmed.

目開きが150μmの篩を通過しないものは、単繊維faが集合した繊維集合体fbであり、これを通過するものは、単繊維faである。この繊維集合体fbが、解繊した繊維Fに対して、40質量%~52質量%の範囲となるように、木削片Tを解繊することにより、単繊維faおよび繊維集合体fbに加工された直後の加工熱で単繊維faおよび繊維集合体fbが加熱されたとしても、繊維集合体fbに単繊維faの熱が吸熱される。これにより、単繊維faの変色を抑えることができる。 The fibers that do not pass through the sieve with an opening of 150 μm are the fiber aggregate fb, which is a collection of single fibers fa, and the fibers that pass through the sieve are the single fibers fa. By defibrating the wood chips T so that the fiber aggregate fb is in the range of 40% to 52% by mass based on the defibrated fiber F, the single fiber fa and the fiber aggregate fb are Even if the single fiber fa and the fiber aggregate fb are heated by processing heat immediately after being processed, the heat of the single fiber fa is absorbed by the fiber aggregate fb. Thereby, discoloration of the single fiber fa can be suppressed.

解繊工程S11において、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維F全体に対して、40質量%未満となるように木削片Tを解繊した場合、単繊維faの量が多いため、単繊維faに加工熱が入熱され易い。この結果、単繊維faの変色を十分に抑えることができない。 In the defibrating step S11, when the wood chips T are defibrated so that the fiber aggregates fb that do not pass through a sieve with an opening of 150 μm are less than 40% by mass of the entire defibrated fibers F, Since the amount of fiber fa is large, processing heat is easily input into the single fiber fa. As a result, discoloration of the single fiber fa cannot be sufficiently suppressed.

一方、解繊工程S11において、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維F全体に対して、52質量%を超えるように木削片Tを解繊した場合、単繊維faの量が少なくなるため、繊維Fで成形された木質繊維ボード1の強度が低下することがある。 On the other hand, in the defibrating step S11, when the wood chips T are defibrated so that the fiber aggregate fb that does not pass through a sieve with an opening of 150 μm exceeds 52% by mass of the entire defibrated fibers F, Since the amount of single fibers fa decreases, the strength of the wood fiber board 1 formed from the fibers F may decrease.

解繊工程S11において、圧力容器33内の木削片Tを加熱する加熱温度は155℃~170℃の範囲であることが好ましく、前記木削片を加熱する加熱時間は3分~6分の範囲であることが好ましい。特に、図4に示すように、加熱温度と前記加熱時間とのグラフにおいて、加熱温度170℃、加熱時間3分となる第1の点P1と、加熱温度155℃、加熱時間3分となる第2の点P2と、加熱温度155℃、加熱時間6分となる第3の点P3と、を結んだ線分で囲まれた領域S内の加熱温度および加熱時間で、木削片Tを加熱することが好ましい。 In the defibration step S11, the heating temperature for heating the wood chips T in the pressure vessel 33 is preferably in the range of 155°C to 170°C, and the heating time for heating the wood chips is 3 minutes to 6 minutes. Preferably, the range is within the range. In particular, as shown in FIG. 4, in the graph of heating temperature and heating time, there is a first point P1 where the heating temperature is 170°C and a heating time of 3 minutes, and a second point where the heating temperature is 155°C and a heating time of 3 minutes. The wood shavings T are heated at the heating temperature and heating time within the area S surrounded by the line segment connecting the point P2 of No. 2 and the third point P3, which has a heating temperature of 155° C. and a heating time of 6 minutes. It is preferable to do so.

後述する発明者らの実験からも明らかなように、解繊工程S11において、第1~第3の点P1~P3を結んだ領域S内の加熱温度および加熱時間で、木削片Tを加熱することにより、木削片Tが熱により黒色に変色することを抑えることができる。これにより、木削片Tを解繊した繊維の色は、加熱前の木削片Tの色に近くなる。 As is clear from experiments conducted by the inventors to be described later, in the defibration step S11, the wood shavings T are heated at the heating temperature and heating time within the region S connecting the first to third points P1 to P3. By doing so, it is possible to suppress the wood chips T from turning black due to heat. As a result, the color of the fibers obtained by defibrating the wood chips T becomes close to the color of the wood chips T before heating.

ここで、加熱温度が155℃未満である場合には、木削片Tの解繊される繊維Fが微細化(微粉化)する傾向にあり、木質繊維ボードの強度が低下するおそれがある。一方、加熱温度が、170℃を超える場合には、木削片Tが熱により黒色に変色し易く、この木削片Tを解繊した繊維Fから木質繊維ボードを成形しても、木質繊維ボードが黒ずんでしまうことがある。 Here, if the heating temperature is less than 155° C., the fibers F of the wood chips T that are defibrated tend to become fine (pulverized), which may reduce the strength of the wood fiber board. On the other hand, if the heating temperature exceeds 170°C, the wood chips T tend to discolor to black due to the heat, and even if a wood fiber board is formed from the fibers F obtained by defibrating the wood chips T, the wood fibers The board may turn black.

また、加熱時間が3分未満である場合には、木削片Tの解繊される繊維が微細化(微粉化)する傾向にあり、木質繊維ボード1の強度が低下するおそれがある。一方、加熱時間が、6分を超える場合には、木削片Tが熱により黒色に変色し易く、この木削片Tを解繊した繊維から木質繊維ボード1を成形しても、木質繊維ボード1が黒ずんでしまうことがある。 Furthermore, if the heating time is less than 3 minutes, the fibers of the wood chips T that are defibrated tend to become fine (pulverized), which may reduce the strength of the wood fiber board 1. On the other hand, if the heating time exceeds 6 minutes, the wood shavings T tend to discolor to black due to the heat, and even if the wood fiber board 1 is formed from the fibers obtained by defibrating the wood shavings T, the wood fibers Board 1 may turn black.

さらに、木削片を加熱する加熱温度が155℃~170℃の範囲であり、木削片を加熱する加熱時間が3分~6分の範囲であっても、本発明で規定する領域を外れた場合には、木削片Tへの入熱が多いため、この熱により黒色に変色し易い。したがって、この木削片Tを解繊した繊維から木質繊維ボード1を成形しても、木質繊維ボード1が黒ずんでしまうことがある。 Furthermore, even if the heating temperature for heating the wood shavings is in the range of 155°C to 170°C and the heating time for heating the wood shavings is in the range of 3 minutes to 6 minutes, it is outside the range defined by the present invention. In this case, a large amount of heat is input to the wood shavings T, and this heat tends to cause the wood shavings T to discolor to black. Therefore, even if the wood fiber board 1 is formed from the fibers obtained by defibrating the wood chips T, the wood fiber board 1 may become darkened.

集積工程S12について
この工程では、解繊された繊維Fに接着剤を添加後に乾燥させて、マット状に集積する(木質マットを成形する)。接着剤は、熱硬化性樹脂からなる接着剤、熱可塑性樹脂からなる接着剤のいずれであってもよい。熱硬化性樹脂としては、常温硬化型または熱硬化型の熱硬化性樹脂でよく、例えば、ユリア樹脂、メラミン樹脂、フェノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂、またはアルキド樹脂等を挙げることができる。
About accumulation step S12 In this step, an adhesive is added to the defibrated fibers F, and then dried, and accumulated into a mat shape (forming a wood mat). The adhesive may be either an adhesive made of a thermosetting resin or an adhesive made of a thermoplastic resin. The thermosetting resin may be a room temperature curing type or a thermosetting type thermosetting resin, such as urea resin, melamine resin, phenol resin, epoxy resin, unsaturated polyester resin, polyurethane resin, diallyl phthalate resin, silicone resin. , or alkyd resins.

成形工程S13について
この工程では、成形された木質マットをプレス機に投入して、加圧・加熱(熱圧)することにより、木質繊維ボードを成形する。具体的には、木質マットを、成形装置に投入し、加熱温度を160℃~260℃、加圧条件として、0.2MPa~5MPaで加圧保持時間30秒~5分間で熱圧する。
Regarding the molding step S13 In this step, the molded wood mat is put into a press and pressurized and heated (thermal pressure) to mold the wood fiber board. Specifically, a wood mat is placed in a molding device and hot-pressed at a heating temperature of 160° C. to 260° C., a pressurizing condition of 0.2 MPa to 5 MPa, and a pressure holding time of 30 seconds to 5 minutes.

木質繊維ボード1について
このようにして得られた木質繊維ボード1は、針葉樹を原料とする木削片Tを解繊した繊維Fから成形された木質繊維ボード1である。図5に示すように、繊維Fは、単繊維faと、単繊維faに解繊される前の状態の繊維集合体fbと、を備えている。木質繊維ボード1は、目開きが150μmの篩を通過しない繊維集合体fbを、解繊した繊維Fに対して、40質量%~52質量%の範囲で含有することになる。
Regarding the wood fiber board 1 The wood fiber board 1 thus obtained is a wood fiber board 1 formed from fibers F obtained by defibrating wood chips T made from coniferous trees. As shown in FIG. 5, the fiber F includes a single fiber fa and a fiber aggregate fb in a state before being defibrated into single fibers fa. The wood fiber board 1 contains fiber aggregates fb that do not pass through a sieve with an opening of 150 μm in a range of 40% by mass to 52% by mass based on the defibrated fibers F.

本発明によれば、目開きが150μmの篩を通過しない繊維集合体fbが、解繊した繊維Fに対して、40質量%~52質量%の範囲となる木質繊維ボードは、上述した如く、解繊時において、繊維Fが黒ずむような変色が抑えられたものである。 According to the present invention, the wood fiber board in which the fiber aggregates fb that do not pass through a sieve with an opening of 150 μm is in the range of 40% by mass to 52% by mass based on the defibrated fibers F, as described above, Discoloration such as darkening of the fiber F during defibration is suppressed.

したがって、木削片Tを解繊した繊維Fの色は、加熱前の木削片Tの色に近いため、この繊維から成形した木質繊維ボード1の色も、加熱前の木削片Tの色に近い。このような結果、木材固有の色を有した木質繊維ボード1を製造することができる。 Therefore, since the color of the fiber F obtained by defibrating the wood chips T is close to the color of the wood chips T before heating, the color of the wood fiber board 1 formed from this fiber also differs from that of the wood chips T before heating. Close to color. As a result, a wood fiber board 1 having a color unique to wood can be manufactured.

具体的には、JIS Z 8781-4(2013)(CIE1976表色系)で規定されるL、a、およびbから算出される色差を△Eとしたときに、解繊前の針葉樹の色に対する木質繊維ボード1の色の色差△Eが5.1以下である。したがって、木質繊維ボード1は、色差△Eが5.1以下である。特に、針葉樹は、広葉樹に比べて白みを帯びているので、本実施形態の如く、針葉樹を原料とする木削片Tを用いれば、白みを帯びた木質繊維ボード1を得ることができる。 Specifically, when the color difference calculated from L * , a * , and b * specified in JIS Z 8781-4 (2013) (CIE1976 color system) is △E, the softwood before defibration The color difference ΔE between the color of the wood fiber board 1 and the color of is 5.1 or less. Therefore, the wood fiber board 1 has a color difference ΔE of 5.1 or less. In particular, coniferous trees are whitish compared to hardwoods, so if wood shavings T made from coniferous trees are used as in this embodiment, it is possible to obtain a whitish wood fiber board 1. .

図5に示すように、木質繊維ボード1の表面に接着剤を介して化粧材50を貼り付けてもよい。ここで接着剤としては、たとえば、酢酸ビニル樹脂エマルジョン接着剤、ユリア樹脂接着剤、エポキシ樹脂接着剤、フェノール樹脂接着剤、合成ゴム系接着剤などの溶液系(有機溶媒系も含む)、または水分散系の接着剤、を挙げることができる。接着剤の代わりに、粘着剤を用いてもよく、粘着剤としては、アクリル樹脂系粘着剤、合成ゴム系粘着剤、天然ゴム系粘着剤、ビニルエーテル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤など粘着剤を挙げることができる。 As shown in FIG. 5, a decorative material 50 may be attached to the surface of the wood fiber board 1 with an adhesive. Examples of adhesives used here include solution-based adhesives (including organic solvent-based adhesives) such as vinyl acetate resin emulsion adhesives, urea resin adhesives, epoxy resin adhesives, phenolic resin adhesives, and synthetic rubber adhesives, or water-based adhesives. Examples include dispersion adhesives. An adhesive may be used instead of the adhesive, and examples of the adhesive include acrylic resin adhesive, synthetic rubber adhesive, natural rubber adhesive, vinyl ether adhesive, silicone adhesive, and urethane adhesive. Adhesives such as adhesives can be mentioned.

化粧材50は、木質繊維ボード1の表面のL(明度)よりも低いLを有したものであることが好ましい。通常、このようなL(明度)が高い化粧材50は、白みを帯びているので、木質繊維ボードの表面の黒ずんだ色が映り込み易い。しかしながら、本実施形態では、露出した表面に、L(明度)が高い化粧材50を設けた場合であっても、化粧材の木質繊維ボードの表面が映り込むことを抑えることができる。 It is preferable that the decorative material 50 has L * (lightness) lower than the L * (lightness) of the surface of the wood fiber board 1. Normally, the decorative material 50 having a high L * (lightness) is whitish, so the dark color of the surface of the wood fiber board is likely to be reflected therein. However, in this embodiment, even when the decorative material 50 with high L * (lightness) is provided on the exposed surface, it is possible to suppress the reflection of the surface of the decorative wood fiber board.

化粧材50としては、上述した針葉樹からなる突板またはクラフト紙などを挙げることができ、突板である場合には、下地となる木質繊維ボード1の表面が映り込み易い0.2~0.6mm程度の厚さの突板であることが好ましい。 Examples of the decorative material 50 include the above-mentioned coniferous veneer or craft paper, and in the case of veneer, the surface of the wood fiber board 1 serving as the base is likely to be reflected, and the thickness is about 0.2 to 0.6 mm. It is preferable that the veneer has a thickness of .

以下に、本発明の実施例を説明する。 Examples of the present invention will be described below.

〔実施例1〕
木削片として、図2に示すリファイナを用いて、大きさ数センチの針葉樹チップ(スギ)を、加熱温度(蒸煮温度)160℃にし、加熱時間(蒸煮時間)を3分で蒸煮した後、この針葉樹チップの加熱温度を保持した状態で、針葉樹チップをリファイナで解繊した。刃型の間隔は、従来設定されている間隔の2倍に設定した。解繊した繊維の重量を測定し、JIS Z 8801-1(2019)に準拠して、目開きが150μmの篩で分級し、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Example 1]
As wood chips, coniferous wood chips (cedar) several centimeters in size were steamed at a heating temperature (steaming temperature) of 160°C for a heating time (steaming time) of 3 minutes using the refiner shown in Figure 2. While the heating temperature of the softwood chips was maintained, the softwood chips were defibrated using a refiner. The spacing between the blades was set to twice the conventional spacing. Measure the weight of the defibrated fibers, classify them using a sieve with an opening of 150 μm in accordance with JIS Z 8801-1 (2019), and measure the total mass of fiber aggregates that do not pass through the sieve with an opening of 150 μm. The percentage was measured. The results are shown in Table 1.

〔実施例2〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、繊維集合体の割合がより多くなるように、刃型の間隔を調整した。そして、実施例1と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Example 2]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. The difference from Example 1 is that the spacing between the blade shapes was adjusted so that the proportion of fiber aggregates was higher than in Example 1. Then, in the same manner as in Example 1, the total mass of the fiber aggregates that did not pass through the sieve having an opening of 150 μm was measured, and the proportion thereof was determined. The results are shown in Table 1.

〔実施例3および4〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例3が、実施例1と相違する点は、実施例1に対して、蒸煮温度を165℃にした点である。実施例4が、実施例1と相違する点は、実施例1に対して、蒸煮温度を165℃にした点と、実施例2の刃型の間隔で解繊した点である。そして、実施例1と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Example 3 and 4]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. Example 3 differs from Example 1 in that the steaming temperature was set at 165°C. Example 4 differs from Example 1 in that the steaming temperature was set to 165° C. and that the fibers were defibrated at the spacing between the blades of Example 2. Then, in the same manner as in Example 1, the total mass of the fiber aggregates that did not pass through the sieve having an opening of 150 μm was measured, and the proportion thereof was determined. The results are shown in Table 1.

〔比較例1〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、特許文献1に示した条件で、繊維集合体の割合が少なくなるように、刃型の間隔を狭くし、蒸煮温度、および蒸煮時間を調整した。そして、実施例1と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Comparative example 1]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. The difference from Example 1 is that, with respect to Example 1, under the conditions shown in Patent Document 1, the spacing between the blades was narrowed so that the proportion of fiber aggregates was reduced, and the steaming temperature and steaming time were changed. adjusted. Then, in the same manner as in Example 1, the total mass of the fiber aggregates that did not pass through the sieve having an opening of 150 μm was measured, and the proportion thereof was determined. The results are shown in Table 1.

〔比較例2〕
実施例3と同じようにして、針葉樹チップをリファイナで解繊した。実施例3と相違する点は、実施例3に対して、特許文献1に示した条件で、刃型の間隔を従来通りの間隔となるように狭くした。そして、実施例3と同様に、目開きが150μmの篩を通過しない繊維集合体の総質量を測定し、その割合を測定した。この結果を表1に示す。
[Comparative example 2]
In the same manner as in Example 3, the softwood chips were defibrated using a refiner. The difference from Example 3 is that, with respect to Example 3, the spacing between the blade dies was narrowed to the conventional spacing under the conditions shown in Patent Document 1. Then, in the same manner as in Example 3, the total mass of the fiber aggregates that did not pass through the sieve having an opening of 150 μm was measured, and the proportion thereof was determined. The results are shown in Table 1.

(評価試験)
実施例1~4および比較例1で得られた繊維から、マット成形機を用いて、木質マットに成形した。この木質マットを、プレス機に投入して、加熱条件、すなわち熱圧温度185℃、熱圧時間50秒、厚さ3mmとなるように加圧することにより、木質繊維ボードを得た。なお、比較例1は、市販されている木質繊維ボードに近い状態である。
(Evaluation test)
The fibers obtained in Examples 1 to 4 and Comparative Example 1 were molded into wood mats using a mat molding machine. This wood mat was put into a press and pressed under heating conditions, namely, a heat-pressing temperature of 185° C. and a heat-pressing time of 50 seconds, to obtain a wood fiber board to a thickness of 3 mm. In addition, Comparative Example 1 is in a state close to that of commercially available wood fiber boards.

得られた木質繊維ボードの表面に対して、分光色彩計(日本電色、SE7700)を用いて、JIS Z 8781-4(2013)で規定されるL、a、およびbを測定した。さらに、木質繊維ボードの原材料と同じ配合で木削片(辺材+心材)が変色しないように破砕し、この紛体のL、a、およびbを測定した。以下の数1により、解繊前の針葉樹(スギ)の色に対する木質繊維ボードの色の色差△Eを算出した。なお、以下の数1では、基準となるスギ紛体のL、a、およびbが、L、a、およびbであり、木質繊維ボードのL、a、およびbが、L、a、およびbである。この結果を表1に示す。 L * , a * , and b * specified in JIS Z 8781-4 (2013) were measured on the surface of the obtained wood fiber board using a spectrocolorimeter (Nippon Denshoku, SE7700). . Furthermore, wood shavings (sapwood + heartwood) were crushed in the same composition as the raw material for the wood fiber board so as not to discolor, and L * , a * , and b * of this powder were measured. The color difference ΔE between the color of the wood fiber board and the color of the softwood (cedar) before defibration was calculated using the following equation 1. In addition, in Equation 1 below, L * , a * , and b * of the cedar powder serving as a reference are L0, a0 , and b0 , and L * , a* , and b * of the wood fiber board. are L 1 , a 1 , and b 1 . The results are shown in Table 1.

Figure 0007417419000001
Figure 0007417419000001

Figure 0007417419000002
Figure 0007417419000002

実施例1~4の木質繊維ボードでは、木質繊維ボードの色差が△5.1以下であり、針葉樹チップ(スギ)固有の色に近かった。一方、比較例1および2の木質繊維ボードでは、木質繊維ボードの色差が7.0を超えており、針葉樹チップ(スギ)固有の色よりも黒い色になっていることが確認された。 In the wood fiber boards of Examples 1 to 4, the color difference of the wood fiber boards was Δ5.1 or less, which was close to the color inherent to softwood chips (cedar). On the other hand, in the wood fiber boards of Comparative Examples 1 and 2, the color difference of the wood fiber boards exceeded 7.0, and it was confirmed that the color was darker than the color inherent to softwood chips (cedar).

実施例1~4は、比較例1、2に比べて、繊維集合体の割合が多い。このことから、単繊維および繊維集合体に加工された直後の加工熱で単繊維および繊維集合体が加熱されたとしても、実施例1~4では、繊維集合体に単繊維および繊維集合体の熱が吸熱されるため、単繊維の変色を抑えることができたと考えられる。この結果、実施例1~4では、針葉樹を原料とする木削片に近い白みを帯びた木質繊維ボードを得ることができたと考えられる。 Examples 1 to 4 have a higher proportion of fiber aggregates than Comparative Examples 1 and 2. From this, even if single fibers and fiber aggregates are heated by processing heat immediately after being processed into single fibers and fiber aggregates, in Examples 1 to 4, single fibers and fiber aggregates are It is thought that discoloration of the single fibers could be suppressed because heat was absorbed. As a result, it is considered that in Examples 1 to 4, wood fiber boards with a whitish color similar to wood chips made from coniferous trees could be obtained.

〔実施例5〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度170℃、加熱時間3分にした点であり、図3のグラフの第1の点P1に相当する。
[Example 5]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. The difference from Example 1 is that, with respect to Example 1, the heating temperature was 170° C. and the heating time was 3 minutes, which corresponds to the first point P1 in the graph of FIG.

〔実施例6〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度155℃、加熱時間3分にした点であり、図3のグラフの第1の点P2に相当する。
[Example 6]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. The difference from Example 1 is that, with respect to Example 1, the heating temperature was 155° C. and the heating time was 3 minutes, which corresponds to the first point P2 in the graph of FIG.

〔実施例7〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度155℃、加熱時間6分にした点であり、図3のグラフの第1の点P3に相当する。
[Example 7]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. The difference from Example 1 is that, with respect to Example 1, the heating temperature was 155° C. and the heating time was 6 minutes, which corresponds to the first point P3 in the graph of FIG.

〔比較例3〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度160℃、加熱時間7分にした点である。
[Comparative example 3]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. The difference from Example 1 is that the heating temperature was 160° C. and the heating time was 7 minutes.

〔比較例4〕
実施例1と同じようにして、針葉樹チップをリファイナで解繊した。実施例1と相違する点は、実施例1に対して、加熱温度165℃、加熱時間7分にした点である。
[Comparative example 4]
In the same manner as in Example 1, softwood chips were defibrated using a refiner. The difference from Example 1 is that the heating temperature was 165° C. and the heating time was 7 minutes.

(評価試験)
実施例1と同様に、実施例5~7および比較例3、4で得られた繊維から、マット成形機を用いて、木質マットを成形し、この木質マットを、プレス機に投入して、木質繊維ボードを製造した。実施例1と同様に、得られた木質繊維ボードの表面に対して、L、a、およびbを測定し、解繊前の針葉樹(スギ)の色に対する木質繊維ボードの色の色差△Eを算出した。
(Evaluation test)
In the same manner as in Example 1, a wood mat was formed from the fibers obtained in Examples 5 to 7 and Comparative Examples 3 and 4 using a mat forming machine, and this wood mat was put into a press machine. Manufactured wood fiber board. Similarly to Example 1, L * , a * , and b * were measured on the surface of the obtained wood fiber board, and the color difference between the color of the wood fiber board and the color of the softwood (cedar) before defibration was determined. ΔE was calculated.

Figure 0007417419000003
Figure 0007417419000003

実施例5~7に係る木質繊維ボードでは、木質繊維ボードの色差が4程度、針葉樹チップ(スギ)固有の色に近かった。一方、比較例3および4の木質繊維ボードでは、木質繊維ボードの色差が6程度であり、針葉樹チップ(スギ)固有の色よりも黒い色になっていることが確認された。 In the wood fiber boards according to Examples 5 to 7, the color difference of the wood fiber boards was about 4, which was close to the color specific to softwood chips (cedar). On the other hand, in the wood fiber boards of Comparative Examples 3 and 4, the color difference of the wood fiber boards was about 6, and it was confirmed that the color was darker than the color specific to softwood chips (cedar).

実施例4~6では、解繊工程において、木削片に加熱された加熱温度および加熱時間からも明らかなように、比較例3、4に比べて、入熱される熱は少ない。このことから、図4に示すグラフの領域Sの範囲内においては、針葉樹を原料とする木削片に近い白みを帯びた木質繊維ボードを得ることができることが想定される。 In Examples 4 to 6, less heat was input in the defibration step than in Comparative Examples 3 and 4, as is clear from the heating temperature and heating time at which the wood chips were heated. From this, it is assumed that within the region S of the graph shown in FIG. 4, it is possible to obtain a wood fiber board with a whitish color similar to that of wood chips made from coniferous trees.

以上、本発明の一実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。 Although one embodiment of the present invention has been described in detail above, the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the spirit of the present invention as set forth in the claims. The design can be changed.

1:木質繊維ボード、S11:解繊工程、S13:成形工程、F:繊維、fa:単繊維、fb:繊維集合体、T:木削片、P1:第1の点、P2:第2の点、P3:第3の点 1: wood fiber board, S11: fibrillation process, S13: molding process, F: fiber, fa: single fiber, fb: fiber aggregate, T: wood shavings, P1: first point, P2: second point Point, P3: third point

Claims (2)

針葉樹を原料とする木削片を解繊した繊維から成形された木質繊維ボードであって、
前記繊維は、単繊維と、前記単繊維に解繊される前の状態の繊維集合体と、を備えており、
前記木質繊維ボードは、目開きが150μmの篩を通過しない繊維集合体を、前記解繊した繊維に対して、40質量%~52質量%の範囲で含有し、
JIS Z 8781-4で規定されるL、a、およびbから算出される色差を△Eとしたときに、前記原料の針葉樹の色に対する木質繊維ボードの色の色差△Eが5.1以下であることを特徴とする木質繊維ボード。
A wood fiber board formed from fibers made from defibrated wood chips made from coniferous trees,
The fiber includes a single fiber and a fiber aggregate in a state before being defibrated into the single fiber,
The wood fiber board contains a fiber aggregate that does not pass through a sieve with an opening of 150 μm in a range of 40% to 52% by mass based on the defibrated fibers,
When the color difference calculated from L * , a * , and b * specified in JIS Z 8781-4 is ΔE, the color difference ΔE between the color of the wood fiber board and the color of the coniferous wood used as the raw material is 5. 1 or less.
前記木質繊維ボードの表面には、前記木質繊維ボードの表面のLよりも高いLを有した化粧材が設けられていることを特徴とする請求項に記載の木質繊維ボード。 The wood fiber board according to claim 1 , wherein a decorative material having L * higher than L * of the surface of the wood fiber board is provided on the surface of the wood fiber board.
JP2019239401A 2019-12-27 2019-12-27 wood fiber board Active JP7417419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019239401A JP7417419B2 (en) 2019-12-27 2019-12-27 wood fiber board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019239401A JP7417419B2 (en) 2019-12-27 2019-12-27 wood fiber board

Publications (2)

Publication Number Publication Date
JP2021107135A JP2021107135A (en) 2021-07-29
JP7417419B2 true JP7417419B2 (en) 2024-01-18

Family

ID=76967529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019239401A Active JP7417419B2 (en) 2019-12-27 2019-12-27 wood fiber board

Country Status (1)

Country Link
JP (1) JP7417419B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240290896A1 (en) 2021-06-28 2024-08-29 Idemitsu Kosan Co., Ltd. Photoelectric conversion element and method for manufacturing photoelectric conversion element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052321A (en) 1998-08-12 2000-02-22 Yamaha Corp Manufacture of wood panel
JP2001001318A (en) 1999-06-24 2001-01-09 Yoji Kikata Method for manufacturing lignocellulose molding from lignocellulose material
JP2012214011A (en) 2011-03-31 2012-11-08 Eidai Co Ltd Method for manufacturing woody board
US20160002414A1 (en) 2013-02-26 2016-01-07 Medite Europe Limited Process for manufacturing products from acetylated wood fibre
WO2016163080A1 (en) 2015-04-06 2016-10-13 パナソニックIpマネジメント株式会社 Process for producing fiberboard
JP2017515707A (en) 2014-05-15 2017-06-15 オムヤ インターナショナル アーゲー Fibreboard products containing calcium carbonate-containing materials
JP2017177087A (en) 2016-03-31 2017-10-05 地方独立行政法人山口県産業技術センター Method for manufacturing fibrillated material of natural fibrous material and method for manufacturing composite cotton-like fibrillated material of fibrillated material and cotton-like fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264117A (en) * 1997-03-27 1998-10-06 Nippon Paper Ind Co Ltd Fiberboard
JPH10244516A (en) * 1998-04-20 1998-09-14 Tomiyasu Honda Composite board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052321A (en) 1998-08-12 2000-02-22 Yamaha Corp Manufacture of wood panel
JP2001001318A (en) 1999-06-24 2001-01-09 Yoji Kikata Method for manufacturing lignocellulose molding from lignocellulose material
JP2012214011A (en) 2011-03-31 2012-11-08 Eidai Co Ltd Method for manufacturing woody board
US20160002414A1 (en) 2013-02-26 2016-01-07 Medite Europe Limited Process for manufacturing products from acetylated wood fibre
JP2017515707A (en) 2014-05-15 2017-06-15 オムヤ インターナショナル アーゲー Fibreboard products containing calcium carbonate-containing materials
WO2016163080A1 (en) 2015-04-06 2016-10-13 パナソニックIpマネジメント株式会社 Process for producing fiberboard
JP2017177087A (en) 2016-03-31 2017-10-05 地方独立行政法人山口県産業技術センター Method for manufacturing fibrillated material of natural fibrous material and method for manufacturing composite cotton-like fibrillated material of fibrillated material and cotton-like fiber

Also Published As

Publication number Publication date
JP2021107135A (en) 2021-07-29

Similar Documents

Publication Publication Date Title
US3927235A (en) Reconstituted board products from plant-fiber residues
US3021244A (en) Process for producing high density hardboard
US3668286A (en) Fiberboard produced from wood particles having a 5 to 25 percent moisture content prior to steaming and mechanical reduction in the formation process
US20150152651A1 (en) Method for producing panels and panel produced according to the method
EP4041825B1 (en) Process for the manufacture of a lignocellulosic fibre-based composite material and composite material obtained by such process
JP7417419B2 (en) wood fiber board
Ihnát et al. Waste agglomerated wood materials as a secondary raw material for chipboards and fibreboards. Part II: Preparation and characterization of wood fibres in terms of their reuse
US2817617A (en) Process of manufacturing board-like articles
US5558933A (en) Sheeting material and method of manufacturing the same
US5028286A (en) Method of making dimensionally stable composite board and composite board produced by such method
US3438853A (en) Process of curing hardboard containing wood fibers and portland cement
US3367820A (en) Reinforced moldable wood fiber mat and method of making the same
DE19738953C1 (en) Method and device for the production of molded articles from comminuted material
US2581652A (en) Method of manufacturing sheet wood
US4238438A (en) Hardboard with smooth, dense surface and method
EP0873829B1 (en) Process for preparing cellulosic composites
KR101243489B1 (en) Structure of composite core for wood flooring
JP7100614B2 (en) Wood fiber board and its manufacturing method
US3130114A (en) Process of manufacturing fibreboards and pressings from lignocellulose material
JP5855219B2 (en) Manufacturing method of wood fiberboard
EP2611585B1 (en) A method for manufacturing a door panel
DE102008050428A1 (en) Medium-density fiberboard manufacturing method, involves performing disintegration of fiber plates in presence of accelerator provided for alkaline hardening phenol formaldehyde resin and as potassium carbonate and/or sodium carbonate
WO1992012836A1 (en) Building substrate and method of manufacturing same
RU2166521C2 (en) Method of manufacturing wood particle boards
US3050782A (en) Method of making consolidated lignocellulose boards

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240105

R150 Certificate of patent or registration of utility model

Ref document number: 7417419

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150