[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7407121B2 - Carbon hard masks and related methods for patterning applications - Google Patents

Carbon hard masks and related methods for patterning applications Download PDF

Info

Publication number
JP7407121B2
JP7407121B2 JP2020554282A JP2020554282A JP7407121B2 JP 7407121 B2 JP7407121 B2 JP 7407121B2 JP 2020554282 A JP2020554282 A JP 2020554282A JP 2020554282 A JP2020554282 A JP 2020554282A JP 7407121 B2 JP7407121 B2 JP 7407121B2
Authority
JP
Japan
Prior art keywords
substrate
processing
power
gas
substrate support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020554282A
Other languages
Japanese (ja)
Other versions
JP2021520639A (en
JPWO2019199681A5 (en
Inventor
エスワラナンド ベンカタサブラマニアン,
ヤン ヤン,
プラミット マンナ,
カーティク ラーマスワーミ,
武仁 越澤
アブヒジット バス マリック,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2021520639A publication Critical patent/JP2021520639A/en
Publication of JPWO2019199681A5 publication Critical patent/JPWO2019199681A5/ja
Application granted granted Critical
Publication of JP7407121B2 publication Critical patent/JP7407121B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02115Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material being carbon, e.g. alpha-C, diamond or hydrogen doped carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02312Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour
    • H01L21/02315Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Drying Of Semiconductors (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

[0001] 本明細書で説明される実施形態は、広くは、半導体デバイス製造の分野に関し、特に、電子デバイス製造プロセスで使用されるアモルファスカーボン層、及びアモルファスカーボン層を堆積させる方法に関する。 [0001] Embodiments described herein generally relate to the field of semiconductor device manufacturing, and more particularly, to amorphous carbon layers used in electronic device manufacturing processes and methods of depositing amorphous carbon layers.

[0002] アモルファスカーボンから形成されるカーボンハードマスクは、基板表面やその材料表面層内に高アスペクト比の開口部(例えば、高さ対幅の比が、2:1以上)を形成する際のエッチングマスクとして半導体デバイス製造に用いられる。概して、目詰まり、孔形状の歪み、パターンの変形、最大限界寸法の膨張、ラインの屈曲、及び輪郭の反りを含む、高アスペクト比の開口部を形成することに関連する処理上の課題は、従来通りに堆積したカーボンハードマスクの望ましくない材料特性の結果である。例えば、より低い材料密度及びより低い材料剛性(すなわち、ヤング率)のうちの1つ又は組み合わせを有するカーボンハードマスクは、より高い密度又はより高い剛性を有するハードマスク材料と比較したときに、高アスペクト比の開口部の増大した変形を引き起こすことが知られている。同様に、ハードマスク材料とその下に配置されたエッチングされる基板材料との間のより低いエッチング選択性と、より高い膜応力(圧縮又は引張)を有するハードマスク材料と、の両方は、下にある基板材料に対するより高いエッチング選択性及びより低い膜応力を有するハードマスク材料を使用するプロセスと比較したときに、増大したスリットパターンの変形及びラインの屈曲を引き起こすことが知られている。更に、限界寸法(CD)が収縮し、高アスペクト比の開口部の高さが増大するにつれて、高アスペクト比の開口部を形成するために使用される、従来通りに堆積したカーボンハードマスクの厚さも増大する。残念ながら、より低い透明度を有するハードマスクは、低い光学Kと増大した厚さのうちの一方又は両方により、後続のフォトリソグラフィ・プロセスにおいて、位置合わせの問題を引き起こす可能性がある。下にある基板材料に対してより高いエッチング選択性を有するハードマスク材料は、より低いエッチング選択性を有するハードマスクと比較して、厚さの低減を可能にし、したがって望ましい。更に、ハードマスク材料と下にある基板材料との間のより低いエッチング選択性を有するプロセスは、しばしば、相対的により厚いハードマスクに依存し、これは、望ましくないことに、処理時間及び堆積させる費用を増大させ、基板処理能力の低下及びデバイス費用の増大につながる。 [0002] A carbon hard mask formed from amorphous carbon is used when forming a high aspect ratio opening (for example, a height to width ratio of 2:1 or more) on the surface of a substrate or in the surface layer of the material. Used as an etching mask in semiconductor device manufacturing. In general, the processing challenges associated with forming high aspect ratio openings include clogging, hole shape distortion, pattern deformation, maximum critical dimension expansion, line bending, and profile bowing. This is a result of undesirable material properties of conventionally deposited carbon hard masks. For example, a carbon hardmask with one or a combination of a lower material density and a lower material stiffness (i.e., Young's modulus) will have a higher It is known to cause increased deformation of the aspect ratio opening. Similarly, both the lower etch selectivity between the hardmask material and the underlying substrate material to be etched, and the hardmask material having higher film stress (compressive or tensile), is known to cause increased slit pattern distortion and line bending when compared to processes using hardmask materials with higher etch selectivity to substrate materials and lower film stress. Furthermore, as the critical dimension (CD) shrinks and the height of the high aspect ratio aperture increases, the thickness of the conventionally deposited carbon hardmask used to form the high aspect ratio aperture increases. It also increases. Unfortunately, hardmasks with lower transparency can cause alignment problems in subsequent photolithography processes due to lower optical K and/or increased thickness. Hardmask materials that have higher etch selectivity to the underlying substrate material enable thickness reductions and are therefore desirable compared to hardmasks that have lower etch selectivity. Additionally, processes with lower etch selectivity between the hardmask material and the underlying substrate material often rely on relatively thicker hardmasks, which undesirably reduce processing time and deposition This increases costs, leading to reduced substrate throughput and increased device costs.

[0003] したがって、改善されたアモルファスカーボンハードマスク及び改善されたアモルファスカーボンハードマスクを形成する方法が、当該技術分野で必要とされている。 [0003] Accordingly, there is a need in the art for improved amorphous carbon hardmasks and improved methods of forming amorphous carbon hardmasks.

[0004] 本開示の実施形態は、概して、プラズマ化学気相堆積(PECVD)プロセス及びそれから形成されるハードマスクを用いて、基板上に以前に形成された層の上を含め、基板上にアモルファスカーボン層を堆積させる方法を説明する。 [0004] Embodiments of the present disclosure generally employ a plasma enhanced chemical vapor deposition (PECVD) process and a hard mask formed therefrom to deposit an amorphous layer on a substrate, including over previously formed layers on the substrate. A method for depositing a carbon layer will be explained.

[0005] 一実施形態では、基板を処理する方法が、基板を基板支持体上に配置することであって、基板支持体が処理チャンバの処理空間内に配置されている、基板を基板支持体上に配置すること、炭化水素ガス及び希釈ガスを含む処理ガスを処理空間の中に流入させること、処理空間を約100mTorr未満の処理圧力に維持すること、第1の電力を処理チャンバの1以上の電源電極のうちの1つに印加することによって、処理ガスの堆積プラズマを点火及び維持すること、基板支持体を摂氏約350度未満の処理温度に維持すること、基板の表面を堆積プラズマに曝露すること、並びにアモルファスカーボン層を基板の表面上に堆積させることを含む。 [0005] In one embodiment, a method of processing a substrate includes placing the substrate on a substrate support, the substrate support being disposed within a processing space of a processing chamber. flowing a process gas including a hydrocarbon gas and a diluent gas into the process space; maintaining the process space at a process pressure of less than about 100 mTorr; and applying the first electrical power to one or more of the process chambers. igniting and maintaining a deposition plasma of a process gas by applying a power source to one of the electrodes of the substrate, maintaining the substrate support at a process temperature of less than about 350 degrees Celsius, and applying a power supply to the surface of the substrate in the deposition plasma. exposing and depositing an amorphous carbon layer on the surface of the substrate.

[0006] 別の一実施形態では、基板を処理する方法が、基板を基板支持体上に配置することであって、基板支持体が処理チャンバの処理空間内に配置されている、基板を基板支持体上に配置すること、炭化水素ガス及び希釈ガスを含む処理ガスを処理空間の中に流入させること、処理空間を約20mTorr未満の処理圧力に維持すること、第1の交流電力を基板支持体の1以上の電源電極のうちの1つに印加することによって、処理ガスの堆積プラズマを点火及び維持することであって、第1の交流電力が、基板支持体の基板受け入れ表面の平方センチメートル当たり約0.7ワットと約15ワットの間である、処理ガスの堆積プラズマを点火及び維持すること、基板支持体を摂氏約100度未満の処理温度に維持すること、基板の表面を堆積プラズマに曝露すること、並びにアモルファスカーボン層を基板の表面上に堆積させることを含む。 [0006] In another embodiment, a method of processing a substrate includes placing the substrate on a substrate support, the substrate support being disposed within a processing space of a processing chamber. disposing the first alternating current power on the substrate support, flowing a process gas including a hydrocarbon gas and a diluent gas into the process space, maintaining the process space at a process pressure of less than about 20 mTorr; igniting and maintaining a deposition plasma of a process gas by applying a first alternating current power to one of the one or more power electrodes of the substrate support, the first alternating current power being applied to one of the one or more power electrodes of the substrate support; igniting and maintaining a deposition plasma of a processing gas of between about 0.7 watts and about 15 watts; maintaining the substrate support at a processing temperature of less than about 100 degrees Celsius; and subjecting a surface of the substrate to the deposition plasma. exposing and depositing an amorphous carbon layer on the surface of the substrate.

[0007] 別の一実施形態では、カーボンハードマスクが、基板の表面上に配置されたアモルファスカーボン層を含み、アモルファスカーボン層が、約1.8g/cm3を超える密度、約50GPaを超えるヤング率、約500MPa未満の膜応力、及び約633nmの波長で約0.15未満の吸収係数(光学K)を有する。 [0007] In another embodiment, the carbon hard mask includes an amorphous carbon layer disposed on a surface of the substrate, wherein the amorphous carbon layer is a young amorphous carbon layer having a density of greater than about 1.8 g/cm 3 and a density of greater than about 50 GPa. index, a film stress of less than about 500 MPa, and an absorption coefficient (optical K) of less than about 0.15 at a wavelength of about 633 nm.

[0008] 上述した本開示の特徴を詳細に理解できるように、上記に要約した本開示を、一部が添付の図面に例示されている実施形態を参照しながら、より具体的に説明する。しかし、本開示は他の等しく有効な実施形態も許容し得ることから、添付の図面はこの開示の典型的な実施形態のみを例示しており、したがって、範囲を限定すると見なすべきではないことに留意されたい。 [0008] In order that the features of the disclosure described above may be understood in detail, the disclosure summarized above will now be described more specifically with reference to embodiments, some of which are illustrated in the accompanying drawings. It should be understood, however, that the accompanying drawings illustrate only typical embodiments of this disclosure and therefore should not be considered limiting, as this disclosure may also tolerate other equally valid embodiments. Please note.

[0009] 一実施形態による、本明細書で説明される方法を実施するために使用される例示的な処理チャンバの概略断面図である。[0009] FIG. 1 is a schematic cross-sectional view of an exemplary processing chamber used to perform the methods described herein, according to one embodiment. [0010] 一実施形態による、アモルファスカーボン層を堆積させる方法のフロー図である。[0010] FIG. 2 is a flow diagram of a method of depositing an amorphous carbon layer, according to one embodiment. [0011] 一実施形態による、図2で説明された方法に従って堆積したアモルファスカーボン層から形成されたカーボンハードマスクを示す。[0011] FIG. 3 illustrates a carbon hard mask formed from an amorphous carbon layer deposited according to the method described in FIG. 2, according to one embodiment.

[0012] 本開示の実施形態は、概して、プラズマ化学気相堆積(PECVD)プロセスを用いて、基板上に以前に形成された層の上を含め、基板上にアモルファスカーボン層を堆積させるための方法を説明する。特に、本明細書で説明される方法は、アモルファスカーボン層を堆積させる従来の方法で典型的に使用されるよりも低い処理圧力、例えば約100mTorr未満、より低い処理温度、例えば摂氏約350度未満、及びより高い電力、例えば約1000Wを超えるものを提供する。本明細書の幾つかの実施形態では、堆積プラズマを点火及び維持するために使用される電力が、その上に基板が配置された基板支持体内に配置された又はそれに接続された1以上の電源電極に供給される。より低い処理圧力、より低い処理温度、より高い電力、及び基板準位プラズマ(substrate level plasma:基板支持体の電源電極との容量結合を介して生成されるプラズマ)のそれぞれ又は組み合わせは、堆積中の基板表面でのイオンエネルギーを増大させ、従来の堆積方法と比較したときに、sp3含有量(ダイヤモンド状炭素)のsp2含有量(グラファイト状炭素)に対する望ましくはより高い比率を有するアモルファスカーボン層をもたらす。結果として得られるより高いsp3含有量のために、本明細書で説明される方法は、従来通りに堆積したアモルファスカーボン層と比較したときに、改善された密度、剛性、透明性、エッチング選択性、及び膜応力を有するアモルファスカーボン層を提供する。 [0012] Embodiments of the present disclosure generally provide methods for depositing an amorphous carbon layer on a substrate, including over previously formed layers on the substrate, using a plasma enhanced chemical vapor deposition (PECVD) process. Explain how. In particular, the methods described herein utilize lower processing pressures, e.g., less than about 100 mTorr, lower processing temperatures, e.g., less than about 350 degrees Celsius, than are typically used in conventional methods of depositing amorphous carbon layers. , and higher power, such as greater than about 1000W. In some embodiments herein, the electrical power used to ignite and maintain the deposition plasma is provided by one or more power sources disposed within or connected to the substrate support on which the substrate is disposed. supplied to the electrodes. Each or a combination of lower process pressure, lower process temperature, higher power, and substrate level plasma (plasma generated through capacitive coupling with a power electrode of the substrate support) may be used during deposition. increases the ion energy at the substrate surface and produces an amorphous carbon layer with a desirably higher ratio of sp3 content (diamond-like carbon) to sp2 content (graphitic carbon) when compared to conventional deposition methods. bring. Because of the resulting higher sp3 content, the method described herein provides improved density, stiffness, transparency, and etch selectivity when compared to conventionally deposited amorphous carbon layers. , and an amorphous carbon layer having film stress.

[0013] 図1は、一実施形態による、本明細書で説明される方法を実施するために使用される例示的な処理チャンバの概略断面図である。本明細書で説明される方法を実施するために使用され得る、他の例示的な堆積チャンバには、カリフォルニア州サンタクララのApplied Materials, Inc.から入手可能である、Radion(登録商標)、Producer(登録商標)、及びSYM3(登録商標)処理チャンバ、並びに他の製造業者からの適切な堆積チャンバが含まれる。 [0013] FIG. 1 is a schematic cross-sectional view of an exemplary processing chamber used to perform the methods described herein, according to one embodiment. Other exemplary deposition chambers that may be used to carry out the methods described herein include Radion®, Producer, available from Applied Materials, Inc., Santa Clara, Calif. and SYM3® processing chambers, as well as suitable deposition chambers from other manufacturers.

[0014] 処理チャンバ100は、チャンバ蓋アセンブリ101、1以上の側壁102、及びチャンバベース104を含む。チャンバ蓋アセンブリ101は、チャンバ蓋106、チャンバ蓋106内に配置されたシャワーヘッド107、及びチャンバ蓋106と1以上の側壁102との間に配置された電気絶縁リング108を含む。シャワーヘッド107、1以上の側壁102、及びチャンバベース104は、共に、処理空間105を画定する。チャンバ蓋106を貫通して配置されたガス入口109は、ガス源110に流体結合されている。シャワーヘッド107は、それを貫通して配置された複数の開口部111を有し、ガス源110から処理空間105の中に処理ガスを均一に分配するために使用される。ここで、チャンバ蓋アセンブリ101、及びしたがってシャワーヘッド107は、アースグラウンド(earthen ground)に電気的に接続されている。他の実施形態では、チャンバ蓋アセンブリ101、及びしたがってその中に配置されたシャワーヘッド107が、1以上のバイアス電圧をそれらに供給する、連続波(CW)RF電源、パルスRF電源、DC電源、パルスDC電源、又はそれらの組み合わせなどの、電源(図示せず)に電気的に接続されている。他の実施形態では、処理チャンバ100が、シャワーヘッド107を含まず、処理ガスは、チャンバ蓋106又は1以上の側壁102を貫通して配置された1以上のガス入口を通して処理空間105に供給される。 [0014] Processing chamber 100 includes a chamber lid assembly 101, one or more sidewalls 102, and a chamber base 104. Chamber lid assembly 101 includes a chamber lid 106, a showerhead 107 disposed within chamber lid 106, and an electrically insulating ring 108 disposed between chamber lid 106 and one or more sidewalls 102. Showerhead 107 , one or more sidewalls 102 , and chamber base 104 together define a processing space 105 . A gas inlet 109 disposed through chamber lid 106 is fluidly coupled to a gas source 110. Showerhead 107 has a plurality of openings 111 disposed therethrough and is used to uniformly distribute process gas from gas source 110 into process space 105 . Here, chamber lid assembly 101, and thus showerhead 107, is electrically connected to earthen ground. In other embodiments, the chamber lid assembly 101, and thus the showerhead 107 disposed therein, provides one or more bias voltages therein, such as a continuous wave (CW) RF power source, a pulsed RF power source, a DC power source, Electrically connected to a power source (not shown), such as a pulsed DC power source, or a combination thereof. In other embodiments, processing chamber 100 does not include a showerhead 107 and processing gases are supplied to processing space 105 through one or more gas inlets disposed through chamber lid 106 or one or more sidewalls 102. Ru.

[0015] ここで、処理空間105は、減圧(絶対真空の意味ではないとき)出口114を介して、1以上の専用減圧(絶対真空の意味ではないとき)ポンプなどの真空源に流体結合され、これは、処理空間105を大気圧未満の状態に維持し、処理ガス及び他のガスをそこから排気する。処理空間105内に配置された基板支持体115は、チャンバベース104の下方の領域内でベローズ(図示せず)によって囲まれるような、チャンバベース104を貫通して密封的に延在する可動支持体シャフト116上に配置される。ここで、処理チャンバ100は、基板処理中にドア又はバルブ(図示せず)で密封されている、1以上の側壁102のうちの1つの開口部118を介して、基板支持体115との間で基板117の移送を容易にするように構成されている。 [0015] Here, the processing space 105 is fluidly coupled to a vacuum source, such as one or more dedicated vacuum (when not in the sense of an absolute vacuum) pump, via a vacuum (when not in the sense of an absolute vacuum) outlet 114. , which maintains the processing space 105 at subatmospheric pressure and evacuates process gases and other gases therefrom. A substrate support 115 disposed within the processing space 105 is a movable support extending sealingly through the chamber base 104 such that it is surrounded by a bellows (not shown) in the region below the chamber base 104. located on the body shaft 116. Here, the processing chamber 100 is connected to the substrate support 115 through an opening 118 in one of the one or more sidewalls 102, which is sealed with a door or valve (not shown) during substrate processing. The substrate 117 is configured to facilitate transportation of the substrate 117.

[0016] 典型的には、基板支持体115上に配置された基板117が、抵抗加熱要素119のようなヒータと、基板支持体115内に配置された1以上の冷却チャネル120と、の一方又は両方を用いて、所望の処理温度に維持される。1以上の冷却チャネル120は、比較的高い電気抵抗を有するように改質された水源又は冷却剤源などの冷媒源(図示せず)に流体結合される。 [0016] Typically, a substrate 117 disposed on a substrate support 115 includes one of a heater, such as a resistive heating element 119, and one or more cooling channels 120 disposed within the substrate support 115. or both are used to maintain the desired processing temperature. One or more cooling channels 120 are fluidly coupled to a coolant source (not shown), such as a water source or a coolant source that has been modified to have a relatively high electrical resistance.

[0017] 幾つかの実施形態では、基板支持体115の誘電材料内に埋め込まれた、又はそれに接続された1以上の電源電極(図示せず)が、整合回路122を介して、第1の電源121A及び第2の電源121Bなどの1以上のRF(高周波)又は他の交流周波数電源に接続される。ここで、堆積プラズマ123は、処理空間105内の処理ガスを、第1の電源121Aからそれに供給される交流電力で、1以上の電源電極のうちの1つと容量結合することによって、処理空間内で点火及び維持される。幾つかの実施形態では、堆積プラズマ123が、第2の電源121Bからそれに供給される交流電力で、1以上の電源電極のうちの1つと容量結合することによって更に維持される。ここで、第1の電源121A及び第2の電源121Bは、それぞれ、約350kHzと約100MHzの間の周波数を有する交流電力を供給し、その場合、第1の電源121Aからの電力の周波数は、第2の電源121Bからの周波数とは異なっている。 [0017] In some embodiments, one or more power supply electrodes (not shown) embedded within or connected to the dielectric material of the substrate support 115 connect the first It is connected to one or more RF (radio frequency) or other alternating current frequency power sources, such as a power source 121A and a second power source 121B. Here, the deposition plasma 123 is generated within the processing space by capacitively coupling the processing gas within the processing space 105 with one of the one or more power supply electrodes using AC power supplied thereto from the first power supply 121A. ignited and maintained. In some embodiments, the deposition plasma 123 is further maintained by capacitively coupling to one of the one or more power supply electrodes with alternating current power supplied thereto from the second power supply 121B. Here, the first power source 121A and the second power source 121B each supply AC power having a frequency between about 350 kHz and about 100 MHz, in which case, the frequency of the power from the first power source 121A is: The frequency is different from the frequency from the second power source 121B.

[0018] 図2は、一実施形態による、アモルファスカーボン層を基板の表面上に堆積させる方法のフロー図である。工程201では、方法200が、基板を基板支持体上に配置することを含む。ここで、基板支持体は、図1で説明された処理チャンバ100などの処理チャンバの処理空間内に配置されている。工程202では、方法200が、処理ガスを処理空間の中に流入させることを含む。典型的には、処理ガスが、炭化水素ガスなどの炭素源ガス、例えば、CH4、C2H2、C3H8、C4H10、C2H4、C3H6、C4H8、及びC5H10、又はそれらの組み合わせ、並びに希釈ガス、例えば、Ar、He、Ne、Kr、若しくはXe、又はそれらの組み合わせなどの不活性ガスを含む。幾つかの実施形態では、希釈ガスが、N2、H2、又はそれらの組み合わせを含む。幾つかの実施形態では、炭化水素ガスの希釈ガスに対する流量の比(以下、比)は、約1:10と約10:1の間、例えば約1:5と約5:1の間である。例えば、一実施形態では、C2H2対Heの比が、約1:3と約3:1の間である。幾つかの実施形態では、希釈ガスが、H2を含み、H2と炭素源ガスの間の比が、約0.5:1と約1:10の間、例えば約1:1と約1:5の間である。工程203では、方法200が、約0.1mTorrと約100mTorrの間、例えば約0.1mTorrと約50mTorrの間、約0.1mTorrと約30mTorrの間、約0.1mTorrと約20mTorrの間、約0.1mTorrと約15mTorrの間、例えば約0.1mTorrと約10mTorrの間、又は約100mTorr未満、約50mTorr未満、約20mTorr未満、約15mTorr未満、例えば約10mTorr未満の処理圧力に処理空間を維持することを含む。 [0018] FIG. 2 is a flow diagram of a method of depositing an amorphous carbon layer on a surface of a substrate, according to one embodiment. At step 201, method 200 includes placing a substrate on a substrate support. Here, the substrate support is disposed within a processing volume of a processing chamber, such as processing chamber 100 illustrated in FIG. At step 202, method 200 includes flowing a process gas into a process space. Typically, the process gas is a carbon source gas such as a hydrocarbon gas, e.g. CH4 , C2H2 , C3H8 , C4H10 , C2H4 , C3H6 , C4 H 8 and C 5 H 10 , or a combination thereof, and a diluent gas, such as an inert gas such as Ar, He, Ne, Kr, or Xe, or a combination thereof. In some embodiments, the diluent gas includes N2 , H2 , or a combination thereof. In some embodiments, the hydrocarbon gas to diluent gas flow ratio (ratio) is between about 1:10 and about 10:1, such as between about 1:5 and about 5:1. . For example, in one embodiment, the ratio of C 2 H 2 to He is between about 1:3 and about 3:1. In some embodiments, the diluent gas comprises H 2 and the ratio between H 2 and the carbon source gas is between about 0.5:1 and about 1:10, such as between about 1:1 and about 1. :5. In step 203, the method 200 performs a method of generating an electric current between about 0.1 mTorr and about 100 mTorr, such as between about 0.1 mTorr and about 50 mTorr, between about 0.1 mTorr and about 30 mTorr, between about 0.1 mTorr and about 20 mTorr, about Maintaining the processing space at a processing pressure between 0.1 mTorr and about 15 mTorr, such as between about 0.1 mTorr and about 10 mTorr, or less than about 100 mTorr, less than about 50 mTorr, less than about 20 mTorr, less than about 15 mTorr, such as less than about 10 mTorr. Including.

[0019] 工程203では、方法200が、第1の電力を処理チャンバの1以上の電源電極のうちの1つに印加することによって、処理ガスの堆積プラズマを点火及び維持することを含む。本明細書では、1以上の電源電極が、1以上の上部電極(例えば、処理チャンバのチャンバ蓋又はチャンバ蓋内に配置されたシャワーヘッド)、1以上の側部電極(例えば、処理チャンバの1以上の側壁)のうちの1つ、又は基板支持体の部分(例えば、基板支持体の誘電材料内に埋め込まれた若しくはそれに接続された1以上の電極)である。典型的には、第1の電力が、300mmの直径の基板を処理するようにサイズ決定された処理チャンバ用に、約500Wと約8kWの間、例えば約1000Wと約5kWの間である。異なるサイズの基板を処理するようにサイズ決定された処理チャンバに対して、適切なスケーリングが使用されてよい。 [0019] At step 203, method 200 includes igniting and maintaining a deposition plasma of a processing gas by applying a first power to one of one or more power electrodes of the processing chamber. Herein, the one or more power electrodes include one or more top electrodes (e.g., a chamber lid of a processing chamber or a showerhead disposed within a chamber lid), one or more side electrodes (e.g., a or a portion of the substrate support (eg, one or more electrodes embedded within or connected to the dielectric material of the substrate support). Typically, the first power is between about 500 W and about 8 kW, such as between about 1000 W and about 5 kW, for a processing chamber sized to process a 300 mm diameter substrate. Appropriate scaling may be used for processing chambers sized to process substrates of different sizes.

[0020] 幾つかの実施形態では、1以上の電源電極が、基板支持体の誘電材料内に埋め込まれるか又はそれに接続されたうちの1つ又は組み合わせである。幾つかの実施形態では、第1の電力が、300mmの直径の基板を支持するようにサイズ決定された基板受け入れ表面を有する基板支持体に対して、基板支持体の基板受け入れ表面の平方センチメートル当たり約0.7Wと約11.3Wの間(ここでは、W/cm2)、例えば約1.4W/cm2と約7.1W/cm2の間、又は約500Wと約5kWの間、例えば約1000Wと約5kWの間のRF又は他の交流周波数電力である。 [0020] In some embodiments, one or more power electrodes are one or a combination of embedded within or connected to the dielectric material of the substrate support. In some embodiments, for a substrate support having a substrate receiving surface sized to support a 300 mm diameter substrate, the first power is about Between 0.7 W and about 11.3 W (here W/cm 2 ), such as between about 1.4 W/cm 2 and about 7.1 W/cm 2 , or between about 500 W and about 5 kW, such as about RF or other AC frequency power between 1000W and about 5kW.

[0021] 幾つかの実施形態では、方法200が、第2の電力を1以上の電源電極のうちの1つに印加することを更に含む。その場合、第2の電力は、300mmの直径の基板を支持するようにサイズ決定された基板受け入れ表面を有する基板支持体に対して、約0.14W/cm2と約7.1W/cm2の間、例えば約0.14W/cm2と約3.5W/cm2の間、又は約100Wと約5kWの間、例えば約100Wと約2.5kWの間のRF又は他の交流周波数電力である。ここで、第2の電力の周波数は、第1の電力の周波数とは異なっている。典型的には、第1の電力と第2の電力のうちの一方又は両方の周波数が、約350kHzと約100MHzの間、例えば、約350kHz、約2MHz、約13.56MHz、約27MHz、約40MHz、約60MHz、及び約100MHzである。幾つかの実施形態では、第1の電力及び第2の電力が、互いに電気的に絶縁された異なる電源電極に印加される。それは、例えば、基板支持体の誘電材料内に埋め込まれ、誘電材料によって互いに絶縁された二重電源電極である。幾つかの実施形態では、第1の電力及び第2の電力が、従来のインピーダンス整合回路を使用して同じ電源電極に印加される。 [0021] In some embodiments, method 200 further includes applying a second power to one of the one or more power electrodes. In that case, the second power is about 0.14 W/cm 2 and about 7.1 W/cm 2 for a substrate support having a substrate receiving surface sized to support a 300 mm diameter substrate. at an RF or other AC frequency power of between about 0.14 W/cm 2 and about 3.5 W/cm 2 or between about 100 W and about 5 kW, such as between about 100 W and about 2.5 kW. be. Here, the frequency of the second power is different from the frequency of the first power. Typically, the frequency of one or both of the first power and the second power is between about 350 kHz and about 100 MHz, such as about 350 kHz, about 2 MHz, about 13.56 MHz, about 27 MHz, about 40 MHz. , about 60MHz, and about 100MHz. In some embodiments, the first power and the second power are applied to different power supply electrodes that are electrically isolated from each other. It is, for example, a double power electrode embedded in the dielectric material of the substrate support and insulated from each other by the dielectric material. In some embodiments, the first power and the second power are applied to the same power supply electrode using a conventional impedance matching circuit.

[0022] 工程204では、方法200が、基板支持体、及びしたがってその上に配置された基板を、摂氏約-50度と摂氏約350度の間、例えば、摂氏約-50と摂氏約150度の間、摂氏約-50度と摂氏約100度の間、若しくは摂氏約-50度と摂氏約50度の間、例えば摂氏約-25度と摂氏約25度の間の温度、又は摂氏約350度未満、例えば、摂氏約200度未満、摂氏約150度未満、若しくは摂氏約100度未満、例えば摂氏約50度未満の温度に維持することを含む。 [0022] At step 204, the method 200 includes heating the substrate support, and thus the substrate disposed thereon, to a temperature between about -50 degrees Celsius and about 350 degrees Celsius, such as between about -50 degrees Celsius and about 150 degrees Celsius. between about -50 degrees Celsius and about 100 degrees Celsius, or between about -50 degrees Celsius and about 50 degrees Celsius, such as between about -25 degrees Celsius and about 25 degrees Celsius, or about 350 degrees Celsius. eg, less than about 200 degrees Celsius, less than about 150 degrees Celsius, or less than about 100 degrees Celsius, such as less than about 50 degrees Celsius.

[0023] 工程205及び206では、方法200が、それぞれ、基板の表面を堆積プラズマに曝露すること、及びアモルファスカーボン層を基板の表面上に堆積させることを含む。 [0023] In steps 205 and 206, method 200 includes exposing a surface of the substrate to a deposition plasma and depositing an amorphous carbon layer on the surface of the substrate, respectively.

[0024] 図3は、一実施形態による、図2で説明された方法に従って堆積したカーボンハードマスクを示している。図3では、カーボンハードマスク303(ここでは、パターニングされたカーボンハードマスク)が、基板300のパターニングされるべき表面上に配置され、その中に形成された複数の開口部304を有するアモルファスカーボン層302を含む。典型的には、基板300又はその1以上の材料層が、結晶シリコン、酸化ケイ素、酸窒化ケイ素、窒化ケイ素、歪みシリコン、シリコンゲルマニウム、タングステン、窒化チタン、ドープされた又はドープされていないポリシリコン、炭素がドープされた酸化ケイ素、窒化ケイ素、ドープされたシリコン、ゲルマニウム、ヒ化ガリウム、ガラス、サファイア、及び低誘電率(low k)誘電材料、のうちの1つ又は組み合わせから形成される。 [0024] FIG. 3 illustrates a carbon hard mask deposited according to the method described in FIG. 2, according to one embodiment. In FIG. 3, a carbon hard mask 303 (here, a patterned carbon hard mask) is disposed on the surface to be patterned of a substrate 300 and is an amorphous carbon layer having a plurality of openings 304 formed therein. 302 included. Typically, substrate 300 or one or more material layers thereof is crystalline silicon, silicon oxide, silicon oxynitride, silicon nitride, strained silicon, silicon germanium, tungsten, titanium nitride, doped or undoped polysilicon. , carbon-doped silicon oxide, silicon nitride, doped silicon, germanium, gallium arsenide, glass, sapphire, and low k dielectric materials.

[0025] ここで、アモルファスカーボン層は、約1kÅと約40kÅの間、例えば約10kÅと約40kÅの間、例えば約10kÅと約30kÅの間の厚さ、約1.8g/cm3を超える密度、約50GPaを超えるヤング率、及び約633nmの波長で約0.15未満の吸収係数(光学K)を有する。幾つかの実施形態では、アモルファスカーボン層が、約500MPa未満の引張又は圧縮膜応力を有する。幾つかの実施形態では、アモルファスカーボン層が、約500MPa未満の引張膜応力を有する。幾つかの実施形態では、複数の開口部304のそれぞれが、約2:1を超える、例えば、約3:1を超える、約4:1を超える、約5:1を超える、約6:1を超える、約7:1を超える、約8:1を超える、約9:1を超える、例えば約10:1を超えるアスペクト比(高さ対幅)を有する。 [0025] Here, the amorphous carbon layer has a thickness of between about 1 kÅ and about 40 kÅ, such as between about 10 kÅ and about 40 kÅ, such as between about 10 kÅ and about 30 kÅ, and a density of more than about 1.8 g/cm 3 , a Young's modulus of greater than about 50 GPa, and an absorption coefficient (optical K) of less than about 0.15 at a wavelength of about 633 nm. In some embodiments, the amorphous carbon layer has a tensile or compressive membrane stress of less than about 500 MPa. In some embodiments, the amorphous carbon layer has a tensile membrane stress of less than about 500 MPa. In some embodiments, each of the plurality of apertures 304 is greater than about 2:1, such as greater than about 3:1, greater than about 4:1, greater than about 5:1, about 6:1. , greater than about 7:1, greater than about 8:1, greater than about 9:1, such as greater than about 10:1.

[0026] 本明細書で説明される方法は、従来通りに堆積したアモルファスカーボン層と比較したときに、改善された密度、剛性、透明性、エッチング選択性、及び応力を有する、アモルファスカーボン層、及びそれから形成されるカーボンハードマスクを提供する。更に、本明細書で説明される方法は、現行のカーボンハードマスク・プロセス統合スキームと一貫したものであることが望ましい。それは、既存のデバイス製造ラインへの方法の導入が、上流又は下流の処理方法又はそれに関連する装備における実質的な変更を必要としないことを意味する。 [0026] The methods described herein provide an amorphous carbon layer that has improved density, stiffness, transparency, etch selectivity, and stress when compared to conventionally deposited amorphous carbon layers. and a carbon hard mask formed therefrom. Additionally, it is desirable that the methods described herein be consistent with current carbon hardmask process integration schemes. That means that the introduction of the method into existing device manufacturing lines does not require substantial changes in upstream or downstream processing methods or the equipment associated therewith.

[0027] 上記は、本開示の実施形態に向けられているが、本開示の他の及び更なる実施形態が、本開示の基本的な範囲から逸脱することなく考案されてよく、本開示の範囲は、以下の特許請求の範囲によって規定される。 [0027] Although the above is directed to embodiments of the present disclosure, other and further embodiments of the present disclosure may be devised without departing from the essential scope of the present disclosure, and The scope is defined by the claims below.

Claims (28)

基板を処理する方法であって、
基板を、処理チャンバの処理空間内に配置された基板支持体上に配置すること、
炭化水素ガス及び希釈ガスを含む処理ガスを前記処理空間の中に流入させること、
前記処理空間を100mTorr未満の処理圧力に維持すること、
第1の電力を前記処理チャンバの1以上の電源電極のうちの1つに印加することによって、前記処理ガスの堆積プラズマを点火及び維持すること、
前記基板支持体を摂氏350度未満の処理温度に維持すること、
前記基板の表面を前記堆積プラズマに曝露すること、並びに
アモルファスカーボン層を前記基板の前記表面上に堆積させることを含み、
堆積した前記アモルファスカーボン層が、1.8g/cm 3 を超える密度を有する、方法。
A method of processing a substrate, the method comprising:
placing a substrate on a substrate support disposed within a processing volume of a processing chamber;
flowing a processing gas including a hydrocarbon gas and a diluent gas into the processing space;
maintaining the processing space at a processing pressure of less than 100 mTorr;
igniting and maintaining a deposition plasma of the processing gas by applying a first electrical power to one of the one or more power electrodes of the processing chamber;
maintaining the substrate support at a processing temperature of less than 350 degrees Celsius;
exposing a surface of the substrate to the deposition plasma; and depositing an amorphous carbon layer on the surface of the substrate ;
A method , wherein the deposited amorphous carbon layer has a density greater than 1.8 g/cm 3 .
堆積した前記アモルファスカーボン層が、500MPa未満の膜応力を有する、請求項1に記載の方法。2. The method of claim 1, wherein the deposited amorphous carbon layer has a film stress of less than 500 MPa. 前記膜応力が引張又は圧縮膜応力である、請求項2に記載の方法。3. The method of claim 2, wherein the membrane stress is a tensile or compressive membrane stress. 基板を処理する方法であって、A method of processing a substrate, the method comprising:
基板を、処理チャンバの処理空間内に配置された基板支持体上に配置すること、placing a substrate on a substrate support disposed within a processing volume of a processing chamber;
炭化水素ガス及び希釈ガスを含む処理ガスを前記処理空間の中に流入させること、flowing a processing gas including a hydrocarbon gas and a diluent gas into the processing space;
前記処理空間を100mTorr未満の処理圧力に維持すること、maintaining the processing space at a processing pressure of less than 100 mTorr;
第1の電力を前記処理チャンバの1以上の電源電極のうちの1つに印加することによって、前記処理ガスの堆積プラズマを点火及び維持すること、igniting and maintaining a deposition plasma of the processing gas by applying a first electrical power to one of the one or more power electrodes of the processing chamber;
前記基板支持体を摂氏350度未満の処理温度に維持すること、maintaining the substrate support at a processing temperature of less than 350 degrees Celsius;
前記基板の表面を前記堆積プラズマに曝露すること、並びにexposing a surface of the substrate to the deposition plasma; and
アモルファスカーボン層を前記基板の前記表面上に堆積させることを含み、depositing an amorphous carbon layer on the surface of the substrate;
堆積した前記アモルファスカーボン層が、500MPa未満の膜応力を有する、方法。A method, wherein the deposited amorphous carbon layer has a film stress of less than 500 MPa.
前記膜応力が引張又は圧縮膜応力である、請求項4に記載の方法。5. The method of claim 4, wherein the membrane stress is a tensile or compressive membrane stress. 堆積した前記アモルファスカーボン層が、50GPaを超えるヤング率を有する、請求項1から5のいずれか一項に記載の方法。 6. A method according to any one of claims 1 to 5 , wherein the deposited amorphous carbon layer has a Young's modulus of more than 50 GPa. 堆積した前記アモルファスカーボン層が、633nmの波長で0.15未満の吸収係数(光学K)を有する、請求項1から6のいずれか一項に記載の方法。 The deposited amorphous carbon layer has a wavelength of 0.5 nm at a wavelength of 633 nm. 7. A method according to any one of claims 1 to 6 , having an absorption coefficient (optical K) of less than 15. 前記炭化水素ガスが、CH4、C2H2、C3H8、C4H10、C2H4、C3H6、C4H8、C5H10、又はそれらの組み合わせのうちの1つを含む、請求項1から7のいずれか一項に記載の方法。 The hydrocarbon gas is CH4 , C2H2 , C3H8 , C4H10 , C2H4 , C3H6 , C4H8 , C5H10 , or a combination thereof . 8. A method according to any one of claims 1 to 7, comprising one of : 前記炭化水素ガス対前記希釈ガスの比が、1:10と10:1の間である、請求項1から8のいずれか一項に記載の方法。 9. A method according to any preceding claim , wherein the ratio of hydrocarbon gas to diluent gas is between 1:10 and 10 :1. 前記希釈ガスが、HThe diluent gas is H 22 を含み、前記処理ガス内の前記Hand the H in the processing gas 22 対前記炭化水素ガスの比が、0.5:1と1:10の間である、請求項1から8のいずれか一項に記載の方法。9. A method according to any one of claims 1 to 8, wherein the ratio of to said hydrocarbon gas is between 0.5:1 and 1:10. 前記処理温度が、摂氏100度未満である、請求項1から10のいずれか一項に記載の方法。 11. A method according to any one of claims 1 to 10 , wherein the treatment temperature is less than 100 degrees Celsius. 前記処理圧力が、20mTorr未満である、請求項1から11のいずれか一項に記載の方法。 12. A method according to any one of claims 1 to 11 , wherein the processing pressure is less than 20 mTorr. 前記1以上の電源電極のそれぞれが前記基板支持体の一部である、請求項1から12のいずれか一項に記載の方法。 13. A method according to any preceding claim, wherein each of the one or more power electrodes is part of the substrate support. 前記第1の電力が、前記基板支持体の基板受け入れ表面の平方センチメートル当たり0.7Wと11.3Wの間の交流電力であり、前記第1の電力が、350kHzと100MHzの間の周波数を有する、請求項1から13のいずれか一項に記載の方法。 The first electrical power is 0.05 m/cm2 of the substrate receiving surface of the substrate support. 14. A method according to any one of claims 1 to 13 , wherein the first power is an alternating current power of between 7 W and 11.3 W , and the first power has a frequency between 350 kHz and 100 MHz. 第2の電力を前記1以上の電源電極のうちの1つに印加することを更に含み、前記第2の電力が、前記基板支持体の前記基板受け入れ表面の平方センチメートル当たり0.14Wと7.1Wの間の交流電力であり、前記第2の電力が、350kHzと100MHzの間の周波数を有し、前記第1の電力の前記周波数が、前記第2の電力の前記周波数とは異なっている、請求項14に記載の方法。 further comprising applying a second electrical power to one of the one or more power electrodes, the second electrical power being 0.000 volts per square centimeter of the substrate receiving surface of the substrate support. an alternating current power between 14 W and 7.1 W, the second power having a frequency between 350 kHz and 100 MHz, and the frequency of the first power being equal to the frequency of the second power. 15. The method of claim 14 , wherein the frequencies are different. 基板を処理する方法であって、A method of processing a substrate, the method comprising:
基板を、処理チャンバの処理空間内に配置された基板支持体上に配置すること、placing a substrate on a substrate support disposed within a processing volume of a processing chamber;
炭化水素ガス及び希釈ガスを含む処理ガスであって、前記炭化水素ガスがCHA processing gas containing a hydrocarbon gas and a diluent gas, wherein the hydrocarbon gas is CH 4Four 、C,C 22 HH 22 、C,C 33 HH 88 、C,C 4Four HH 10Ten 、C,C 22 HH 4Four 、C,C 33 HH 66 、C,C 4Four HH 88 、C,C 5Five HH 10Ten 又はそれらの組み合わせのうちの1つを含む処理ガスを、前記処理空間の中に流入させること、or a combination thereof into the processing space;
前記処理空間を20mTorr未満の処理圧力に維持すること、maintaining the processing space at a processing pressure of less than 20 mTorr;
第1の電力を前記処理チャンバの1以上の電源電極のうちの1つに印加することによって、前記処理ガスの堆積プラズマを点火及び維持することであって、前記1以上の電源電極のそれぞれが前記基板支持体の一部であり、前記第1の電力が、前記基板支持体の基板受け入れ表面の平方センチメートル当たり0.7Wと11.3Wの間の交流電力であり、前記第1の電力が、350kHzと100MHzの間の周波数を有する、前記処理ガスの堆積プラズマを点火及び維持すること、igniting and maintaining a deposition plasma of the processing gas by applying a first electrical power to one of the one or more power electrodes of the processing chamber, each of the one or more power electrodes part of the substrate support, the first power being between 0.7 and 11.3 W of alternating current power per square centimeter of the substrate receiving surface of the substrate support; igniting and maintaining a deposition plasma of said process gas having a frequency between 350 kHz and 100 MHz;
第2の電力を前記1以上の電源電極のうちの1つに印加することであって、前記第2の電力が、前記基板支持体の前記基板受け入れ表面の平方センチメートル当たり0.14Wと7.1Wの間の交流電力であり、前記第2の電力が、350kHzと100MHzの間の周波数を有し、前記第1の電力の前記周波数が、前記第2の電力の前記周波数とは異なっている、第2の電力を印加すること、applying a second power to one of the one or more power electrodes, the second power being between 0.14 W and 7.1 W per square centimeter of the substrate receiving surface of the substrate support; and the second power has a frequency between 350 kHz and 100 MHz, and the frequency of the first power is different from the frequency of the second power. applying a second power;
前記基板支持体を摂氏100度未満の処理温度に維持すること、maintaining the substrate support at a processing temperature of less than 100 degrees Celsius;
前記基板の表面を前記堆積プラズマに曝露すること、並びにexposing a surface of the substrate to the deposition plasma; and
アモルファスカーボン層を前記基板の前記表面上に堆積させることを含む、方法。A method comprising depositing an amorphous carbon layer on the surface of the substrate.
基板を処理する方法であって、
基板を、処理チャンバの処理空間内に配置された基板支持体上に配置すること、
炭化水素ガス及び希釈ガスを含む処理ガスを前記処理空間の中に流入させることと、
前記処理空間を20mTorr未満の処理圧力に維持すること、
第1の交流電力を前記基板支持体の1以上の電源電極のうちの1つに印加することによって、前記処理ガスの堆積プラズマを点火及び維持することであって、前記第1の交流電力が、前記基板支持体の基板受け入れ表面の平方センチメートル当たり0.7ワットと15ワットの間である、前記処理ガスの堆積プラズマを点火及び維持すること、
前記基板支持体を摂氏100度未満の処理温度に維持すること、
前記基板の表面を前記堆積プラズマに曝露すること、並びに
アモルファスカーボン層を前記基板の前記表面上に堆積させることを含み、
前記希釈ガスが、H 2 を含み、前記処理ガス内の前記H 2 対前記炭化水素ガスの比が、0.5:1と1:10の間である、方法。
A method of processing a substrate, the method comprising:
placing a substrate on a substrate support disposed within a processing volume of a processing chamber;
flowing a processing gas including a hydrocarbon gas and a diluent gas into the processing space;
maintaining the processing space at a processing pressure of less than 20 mTorr;
igniting and maintaining the process gas deposition plasma by applying a first alternating current power to one of the one or more power electrodes of the substrate support, wherein the first alternating current power is , 0.000000000000000000000000000 per square centimeter of substrate receiving surface of said substrate support. igniting and maintaining a deposition plasma of the process gas between 7 and 15 Watts;
maintaining the substrate support at a processing temperature of less than 100 degrees Celsius;
exposing a surface of the substrate to the deposition plasma; and depositing an amorphous carbon layer on the surface of the substrate ;
The method , wherein the diluent gas comprises H 2 and the ratio of the H 2 to the hydrocarbon gas in the process gas is between 0.5:1 and 1:10 .
第2の交流電力を前記基板支持体の前記1以上の電源電極のうちの1つに印加することを更に含み、前記第2の交流電力が、前記基板支持体の前記基板受け入れ表面の平方センチメートル当たり0.14Wと7.1Wの間であり、前記第1の交流電力と前記第2の交流電力が、それぞれ、350kHzと100MHzの間の周波数を有し、前記第1の交流電力の前記周波数が、前記第2の交流電力の前記周波数とは異なっている、請求項17に記載の方法。 further comprising applying a second alternating current power to one of the one or more power electrodes of the substrate support, wherein the second alternating current power is applied per square centimeter of the substrate receiving surface of the substrate support. Or 0 . 14W and 7 . 1 W, the first AC power and the second AC power each have a frequency between 350 kHz and 100 MHz, and the frequency of the first AC power is equal to the frequency of the second AC power. 18. The method of claim 17 , wherein the frequency of alternating current power is different. 基板を処理する方法であって、A method of processing a substrate, the method comprising:
基板を、処理チャンバの処理空間内に配置された基板支持体上に配置すること、placing a substrate on a substrate support disposed within a processing volume of a processing chamber;
炭化水素ガス及び希釈ガスを含む処理ガスを前記処理空間の中に流入させることと、flowing a processing gas including a hydrocarbon gas and a diluent gas into the processing space;
前記処理空間を20mTorr未満の処理圧力に維持すること、maintaining the processing space at a processing pressure of less than 20 mTorr;
第1の交流電力を前記基板支持体の1以上の電源電極のうちの1つに印加することによって、前記処理ガスの堆積プラズマを点火及び維持することであって、前記第1の交流電力が、前記基板支持体の基板受け入れ表面の平方センチメートル当たり0.7ワットと15ワットの間である、前記処理ガスの堆積プラズマを点火及び維持すること、igniting and maintaining the process gas deposition plasma by applying a first alternating current power to one of the one or more power electrodes of the substrate support, wherein the first alternating current power is igniting and maintaining a deposition plasma of the process gas of between 0.7 and 15 watts per square centimeter of substrate receiving surface of the substrate support;
第2の交流電力を前記基板支持体の前記1以上の電源電極のうちの1つに印加することであって、前記第2の交流電力が、前記基板支持体の前記基板受け入れ表面の平方センチメートル当たり0.14ワットと7.1ワットの間であり、前記第1の交流電力と前記第2の交流電力が、それぞれ、350kHzと100MHzの間の周波数を有し、前記第1の交流電力の前記周波数が、前記第2の交流電力の前記周波数とは異なっている、第2の交流電力を印加すること、applying a second alternating current power to one of the one or more power electrodes of the substrate support, wherein the second alternating current power is applied per square centimeter of the substrate receiving surface of the substrate support; between 0.14 watts and 7.1 watts, the first alternating current power and the second alternating current power having frequencies between 350 kHz and 100 MHz, respectively; applying second alternating current power having a frequency different from the frequency of the second alternating current power;
前記基板支持体を摂氏100度未満の処理温度に維持すること、maintaining the substrate support at a processing temperature of less than 100 degrees Celsius;
前記基板の表面を前記堆積プラズマに曝露すること、並びにexposing a surface of the substrate to the deposition plasma; and
アモルファスカーボン層を前記基板の前記表面上に堆積させることを含む、方法。A method comprising depositing an amorphous carbon layer on the surface of the substrate.
前記炭化水素ガスが、CH 4 、C 2 H 2 、C 3 H 8 、C 4 H 10 、C 2 H 4 、C 3 H 6 、C 4 H 8 、C 5 H 10 又はそれらの組み合わせのうちの1つを含む、請求項17から19のいずれか一項に記載の方法。 The hydrocarbon gas is CH4 , C2H2 , C3H8 , C4H10 , C2H4 , C3H6 , C4H8 , C5H10 , or a combination thereof . _ _ _ _ _ _ 20. A method according to any one of claims 17 to 19, comprising one of : 堆積した前記アモルファスカーボン層が、500MPa未満の膜応力を有する、請求項16から20のいずれか一項に記載の方法。21. A method according to any one of claims 16 to 20, wherein the deposited amorphous carbon layer has a film stress of less than 500 MPa. 前記膜応力が引張又は圧縮膜応力である、請求項21に記載の方法。22. The method of claim 21, wherein the membrane stress is a tensile or compressive membrane stress. 前記処理温度が、摂氏-50度以上の零下温度である、請求項1から22のいずれか一項に記載の方法。23. The method according to any one of claims 1 to 22, wherein the treatment temperature is a subzero temperature of -50 degrees Celsius or higher. 堆積した前記アモルファスカーボン層が、当該層を貫通するように形成された複数の開口部を有し、前記複数の開口部のそれぞれが、2:1を超える高さ対幅の比を有する、請求項1から23のいずれか一項に記載の方法。5. The deposited amorphous carbon layer has a plurality of apertures formed through the layer, each of the plurality of apertures having a height to width ratio of greater than 2:1. The method according to any one of paragraphs 1 to 23. 基板の表面上に配置されアモルファスカーボン層を備え、前記アモルファスカーボン層が、1.8g/cm3を超える密度、50GPaを超えるヤング率、500MPa未満の膜応力、及び633nmの波長で0.15未満の吸収係数(光学K)を有する、カーボンハードマスク。 an amorphous carbon layer disposed on a surface of a substrate, the amorphous carbon layer comprising : 1 . Density greater than 8 g/cm 3 , Young's modulus greater than 50 GPa, film stress less than 500 MPa, and 0.5 g/cm 3 at a wavelength of 633 nm. A carbon hard mask having an absorption coefficient (optical K) of less than 15. 前記膜応力が引張又は圧縮膜応力である、請求項25に記載のカーボンハードマスク。26. The carbon hard mask of claim 25, wherein the film stress is a tensile or compressive film stress. 前記アモルファスカーボン層が、当該層を貫通するように形成された複数の開口部を有し、前記複数の開口部のそれぞれが、2:1を超える高さ対幅の比を有する、請求項25又は26に記載のカーボンハードマスク。 25. The amorphous carbon layer has a plurality of apertures formed through the layer, each of the plurality of apertures having a height to width ratio of greater than 2 :1. or the carbon hard mask described in 26 . 前記複数の開口部のそれぞれが、10:1を超える高さ対幅の比を有する、請求項27に記載のカーボンハードマスク。28. The carbon hard mask of claim 27, wherein each of the plurality of openings has a height to width ratio greater than 10:1.
JP2020554282A 2018-04-09 2019-04-08 Carbon hard masks and related methods for patterning applications Active JP7407121B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862655049P 2018-04-09 2018-04-09
US62/655,049 2018-04-09
PCT/US2019/026354 WO2019199681A1 (en) 2018-04-09 2019-04-08 Carbon hard masks for patterning applications and methods related thereto

Publications (3)

Publication Number Publication Date
JP2021520639A JP2021520639A (en) 2021-08-19
JPWO2019199681A5 JPWO2019199681A5 (en) 2022-04-18
JP7407121B2 true JP7407121B2 (en) 2023-12-28

Family

ID=68162992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020554282A Active JP7407121B2 (en) 2018-04-09 2019-04-08 Carbon hard masks and related methods for patterning applications

Country Status (7)

Country Link
US (2) US11469097B2 (en)
JP (1) JP7407121B2 (en)
KR (1) KR102687561B1 (en)
CN (1) CN111954921B (en)
SG (1) SG11202009406RA (en)
TW (2) TWI780320B (en)
WO (1) WO2019199681A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11469097B2 (en) 2018-04-09 2022-10-11 Applied Materials, Inc. Carbon hard masks for patterning applications and methods related thereto
JP2021523558A (en) * 2018-05-03 2021-09-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High quality C film pulsed plasma (DC / RF) deposition for patterning
US11842897B2 (en) 2018-10-26 2023-12-12 Applied Materials, Inc. High density carbon films for patterning applications
US20220178026A1 (en) * 2020-12-03 2022-06-09 Applied Materials, Inc. Carbon cvd deposition methods to mitigate stress induced defects
US20230022359A1 (en) * 2021-07-22 2023-01-26 Applied Materials, Inc. Methods, apparatus, and systems for maintaining film modulus within a predetermined modulus range

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505402A (en) 2005-08-08 2009-02-05 アプライド マテリアルズ インコーポレイテッド Semiconductor substrate process using carbon-containing hard mask deposited at low temperature
JP2010021282A (en) 2008-07-09 2010-01-28 Dan Takuma:Kk Case for semiconductor
WO2011146212A2 (en) 2010-05-20 2011-11-24 Applied Materials, Inc. Ultra high selectivity ashable hard mask film
JP2012233259A (en) 2012-06-25 2012-11-29 Tokyo Electron Ltd Method for depositing amorphous carbon film, method for producing semiconductor device using the same, and computer-readable storage medium
JP2017504209A (en) 2014-01-10 2017-02-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Carbon film stress relaxation
WO2018034811A1 (en) 2016-08-19 2018-02-22 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition
WO2018032684A1 (en) 2016-08-16 2018-02-22 北京北方微电子基地设备工艺研究中心有限责任公司 Chuck, reaction chamber and semiconductor processing equipment

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0221531A3 (en) 1985-11-06 1992-02-19 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha High heat conductive insulated substrate and method of manufacturing the same
JPH05508266A (en) 1991-04-03 1993-11-18 イーストマン・コダック・カンパニー Highly durable mask for dry etching GaAs
US5352493A (en) 1991-05-03 1994-10-04 Veniamin Dorfman Method for forming diamond-like nanocomposite or doped-diamond-like nanocomposite films
US5470661A (en) * 1993-01-07 1995-11-28 International Business Machines Corporation Diamond-like carbon films from a hydrocarbon helium plasma
JPH07268622A (en) 1994-03-01 1995-10-17 Applied Sci & Technol Inc Microwave plasma sticking source
TW422892B (en) 1997-03-27 2001-02-21 Applied Materials Inc Technique for improving chucking reproducibility
US6013980A (en) 1997-05-09 2000-01-11 Advanced Refractory Technologies, Inc. Electrically tunable low secondary electron emission diamond-like coatings and process for depositing coatings
JP2868120B2 (en) 1997-06-11 1999-03-10 川崎重工業株式会社 Electron beam excited plasma generator
DE59813331D1 (en) 1997-06-16 2006-03-30 Bosch Gmbh Robert METHOD AND DEVICE FOR VACUUM TEMPING OF A SUBSTRATE
MY132894A (en) 1997-08-25 2007-10-31 Ibm Layered resist system using tunable amorphous carbon film as a bottom layer and methods of fabrication thereof
US6320295B1 (en) 1998-11-18 2001-11-20 Mcgill Robert Andrew Diamond or diamond like carbon coated chemical sensors and a method of making same
US6592771B1 (en) 1999-04-08 2003-07-15 Sony Corporation Vapor-phase processing method and apparatus therefor
KR100549033B1 (en) 1999-05-19 2006-02-02 미쯔비시 쇼지 플라스틱 가부시키가이샤 Dlc film, dlc-coated plastic container, and method and apparatus for manufacturing dlc-coated plastic container
US6573030B1 (en) * 2000-02-17 2003-06-03 Applied Materials, Inc. Method for depositing an amorphous carbon layer
US6863835B1 (en) 2000-04-25 2005-03-08 James D. Carducci Magnetic barrier for plasma in chamber exhaust
US6936551B2 (en) 2002-05-08 2005-08-30 Applied Materials Inc. Methods and apparatus for E-beam treatment used to fabricate integrated circuit devices
US7247221B2 (en) 2002-05-17 2007-07-24 Applied Films Corporation System and apparatus for control of sputter deposition process
US6830939B2 (en) 2002-08-28 2004-12-14 Verity Instruments, Inc. System and method for determining endpoint in etch processes using partial least squares discriminant analysis in the time domain of optical emission spectra
US6900002B1 (en) 2002-11-19 2005-05-31 Advanced Micro Devices, Inc. Antireflective bi-layer hardmask including a densified amorphous carbon layer
CN100594253C (en) 2003-02-26 2010-03-17 住友电气工业株式会社 Amorphous carbon film
KR100988085B1 (en) 2003-06-24 2010-10-18 삼성전자주식회사 High density plasma processing apparatus
US7129180B2 (en) * 2003-09-12 2006-10-31 Micron Technology, Inc. Masking structure having multiple layers including an amorphous carbon layer
US7824498B2 (en) 2004-02-24 2010-11-02 Applied Materials, Inc. Coating for reducing contamination of substrates during processing
US7556718B2 (en) 2004-06-22 2009-07-07 Tokyo Electron Limited Highly ionized PVD with moving magnetic field envelope for uniform coverage of feature structure and wafer
JP2006049817A (en) 2004-07-07 2006-02-16 Showa Denko Kk Plasma treatment method and plasma etching method
WO2006052370A2 (en) 2004-11-03 2006-05-18 Applied Materials, Inc. Diamond like carbon films
US8808856B2 (en) 2005-01-05 2014-08-19 Pureron Japan Co., Ltd. Apparatus and method for producing carbon film using plasma CVD and carbon film
US7247582B2 (en) 2005-05-23 2007-07-24 Applied Materials, Inc. Deposition of tensile and compressive stressed materials
KR100715530B1 (en) * 2005-11-11 2007-05-07 주식회사 테스 Method of manufacturing an amorphous carbon film and method of manufacturing semiconductor device using the same
EP1954429B1 (en) 2005-12-02 2015-05-27 United Technologies Corporation Metal-free diamond-like-carbon coatings
US7264688B1 (en) 2006-04-24 2007-09-04 Applied Materials, Inc. Plasma reactor apparatus with independent capacitive and toroidal plasma sources
US7867578B2 (en) * 2006-06-28 2011-01-11 Applied Materials, Inc. Method for depositing an amorphous carbon film with improved density and step coverage
KR100812504B1 (en) 2006-09-05 2008-03-11 성균관대학교산학협력단 Deposition method of conductive and high hardness carbon thin film and the application as the electrodes for thin-film electroluminescent device
US8500963B2 (en) 2006-10-26 2013-08-06 Applied Materials, Inc. Sputtering of thermally resistive materials including metal chalcogenides
US20080188090A1 (en) 2007-02-02 2008-08-07 Applied Materials, Inc. Internal balanced coil for inductively coupled high density plasma processing chamber
US7959735B2 (en) 2007-02-08 2011-06-14 Applied Materials, Inc. Susceptor with insulative inserts
KR100941070B1 (en) 2007-05-10 2010-02-09 세메스 주식회사 Apparatus treating a substrate using plasma
KR100777043B1 (en) * 2007-05-22 2007-11-16 주식회사 테스 Method of forming an amorphous carbon film and method of manufacturing semiconductor device using the same
US8105660B2 (en) 2007-06-28 2012-01-31 Andrew W Tudhope Method for producing diamond-like carbon coatings using PECVD and diamondoid precursors on internal surfaces of a hollow component
US20090029067A1 (en) 2007-06-28 2009-01-29 Sciamanna Steven F Method for producing amorphous carbon coatings on external surfaces using diamondoid precursors
JP4476313B2 (en) * 2007-07-25 2010-06-09 東京エレクトロン株式会社 Film forming method, film forming apparatus, and storage medium
US8101444B2 (en) 2007-08-17 2012-01-24 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US20090087796A1 (en) * 2007-09-27 2009-04-02 Air Products And Chemicals, Inc. Cyclopentene As A Precursor For Carbon-Based Films
JP2009167512A (en) 2008-01-21 2009-07-30 Kobe Steel Ltd Diamond-like carbon film for sliding component and method for manufacturing the same
US8133819B2 (en) 2008-02-21 2012-03-13 Applied Materials, Inc. Plasma etching carbonaceous layers with sulfur-based etchants
JP4704453B2 (en) 2008-07-16 2011-06-15 株式会社プラズマイオンアシスト Diamond-like carbon manufacturing apparatus, manufacturing method, and industrial product
CN102187432B (en) 2008-10-14 2013-07-31 应用材料公司 Method for depositing conformal amorphous carbon film by plasma-enhanced chemical vapor deposition (pecvd)
US7967913B2 (en) 2008-10-22 2011-06-28 Applied Materials, Inc. Remote plasma clean process with cycled high and low pressure clean steps
JP4755262B2 (en) 2009-01-28 2011-08-24 株式会社神戸製鋼所 Method for producing diamond-like carbon film
US8900471B2 (en) 2009-02-27 2014-12-02 Applied Materials, Inc. In situ plasma clean for removal of residue from pedestal surface without breaking vacuum
US7842622B1 (en) 2009-05-15 2010-11-30 Asm Japan K.K. Method of forming highly conformal amorphous carbon layer
US8697197B2 (en) 2009-07-08 2014-04-15 Plasmasi, Inc. Methods for plasma processing
CN102640301A (en) 2009-12-07 2012-08-15 应用材料公司 Method of cleaning and forming a negatively charged passivation layer over a doped region
KR20110115291A (en) 2010-04-15 2011-10-21 경북대학교 산학협력단 Dlc coating apparatus
US20120237693A1 (en) 2011-03-17 2012-09-20 Applied Materials, Inc. In-situ clean process for metal deposition chambers
KR20120121340A (en) * 2011-04-26 2012-11-05 삼성전자주식회사 Methods of manufacturing a carbon type hard mask layer using induced coupled plasma and methods of forming patterns using the same
US20120276743A1 (en) 2011-04-26 2012-11-01 Jai-Hyung Won Methods of forming a carbon type hard mask layer using induced coupled plasma and methods of forming patterns using the same
JP2012233529A (en) 2011-04-28 2012-11-29 F C C:Kk Power transmission device
JP2013021382A (en) 2011-07-07 2013-01-31 Toshiba Corp Coaxial cable
US20130034666A1 (en) 2011-08-01 2013-02-07 Applied Materials, Inc. Inductive plasma sources for wafer processing and chamber cleaning
EP2587518B1 (en) 2011-10-31 2018-12-19 IHI Hauzer Techno Coating B.V. Apparatus and Method for depositing Hydrogen-free ta C Layers on Workpieces and Workpiece
JP5935116B2 (en) 2011-12-16 2016-06-15 東京エレクトロン株式会社 Plasma processing equipment
CN104025264B (en) 2011-12-23 2017-09-12 应用材料公司 The method and apparatus that substrate surface is cleaned with atomic hydrogen
US8679987B2 (en) 2012-05-10 2014-03-25 Applied Materials, Inc. Deposition of an amorphous carbon layer with high film density and high etch selectivity
CN103594495A (en) 2012-08-16 2014-02-19 中国科学院微电子研究所 Semiconductor device and method for manufacturing the same
US9362133B2 (en) 2012-12-14 2016-06-07 Lam Research Corporation Method for forming a mask by etching conformal film on patterned ashable hardmask
US9304396B2 (en) 2013-02-25 2016-04-05 Lam Research Corporation PECVD films for EUV lithography
WO2014149175A1 (en) 2013-03-15 2014-09-25 Applied Materials, Inc. An amorphous carbon deposition process using dual rf bias frequency applications
US20140273461A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Carbon film hardmask stress reduction by hydrogen ion implantation
US20140355912A1 (en) 2013-05-29 2014-12-04 Garett F. Fortune Odor resistant bag and film
US9269587B2 (en) 2013-09-06 2016-02-23 Applied Materials, Inc. Methods for etching materials using synchronized RF pulses
KR102311036B1 (en) 2014-01-08 2021-10-07 어플라이드 머티어리얼스, 인코포레이티드 Development of high etch selective hardmask material by ion implantation into amorphous carbon films
US9984915B2 (en) 2014-05-30 2018-05-29 Infineon Technologies Ag Semiconductor wafer and method for processing a semiconductor wafer
US20160042961A1 (en) 2014-08-06 2016-02-11 Applied Materials, Inc. Electron beam plasma source with rotating cathode, backside helium cooling and liquid cooled pedestal for uniform plasma generation
US9695503B2 (en) 2014-08-22 2017-07-04 Applied Materials, Inc. High power impulse magnetron sputtering process to achieve a high density high SP3 containing layer
US9390910B2 (en) 2014-10-03 2016-07-12 Applied Materials, Inc. Gas flow profile modulated control of overlay in plasma CVD films
US10475626B2 (en) 2015-03-17 2019-11-12 Applied Materials, Inc. Ion-ion plasma atomic layer etch process and reactor
US9646818B2 (en) 2015-03-23 2017-05-09 Applied Materials, Inc. Method of forming planar carbon layer by applying plasma power to a combination of hydrocarbon precursor and hydrogen-containing precursor
US10153139B2 (en) 2015-06-17 2018-12-11 Applied Materials, Inc. Multiple electrode substrate support assembly and phase control system
US20170040140A1 (en) 2015-08-06 2017-02-09 Seagate Technology Llc Magnet array for plasma-enhanced chemical vapor deposition
US10879041B2 (en) 2015-09-04 2020-12-29 Applied Materials, Inc. Method and apparatus of achieving high input impedance without using ferrite materials for RF filter applications in plasma chambers
US10418243B2 (en) 2015-10-09 2019-09-17 Applied Materials, Inc. Ultra-high modulus and etch selectivity boron-carbon hardmask films
US9695593B2 (en) 2015-11-10 2017-07-04 Detec Systems Llc Leak detection in roof membranes
US10020218B2 (en) 2015-11-17 2018-07-10 Applied Materials, Inc. Substrate support assembly with deposited surface features
KR102378021B1 (en) 2016-05-06 2022-03-23 에이에스엠 아이피 홀딩 비.브이. Formation of SiOC thin films
KR20170127724A (en) 2016-05-12 2017-11-22 삼성전자주식회사 Plasma processing apparatus
US9852889B1 (en) 2016-06-22 2017-12-26 Lam Research Corporation Systems and methods for controlling directionality of ions in an edge region by using an electrode within a coupling ring
US10249495B2 (en) 2016-06-28 2019-04-02 Applied Materials, Inc. Diamond like carbon layer formed by an electron beam plasma process
US10544505B2 (en) 2017-03-24 2020-01-28 Applied Materials, Inc. Deposition or treatment of diamond-like carbon in a plasma reactor
US10745282B2 (en) 2017-06-08 2020-08-18 Applied Materials, Inc. Diamond-like carbon film
JP7235683B2 (en) 2017-06-08 2023-03-08 アプライド マテリアルズ インコーポレイテッド Dense low temperature carbon films for hardmasks and other patterning applications
US11043375B2 (en) 2017-08-16 2021-06-22 Applied Materials, Inc. Plasma deposition of carbon hardmask
US11469097B2 (en) * 2018-04-09 2022-10-11 Applied Materials, Inc. Carbon hard masks for patterning applications and methods related thereto
JP2021523558A (en) 2018-05-03 2021-09-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated High quality C film pulsed plasma (DC / RF) deposition for patterning
WO2020096885A1 (en) 2018-11-05 2020-05-14 Applied Materials, Inc. Magnetic housing systems

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009505402A (en) 2005-08-08 2009-02-05 アプライド マテリアルズ インコーポレイテッド Semiconductor substrate process using carbon-containing hard mask deposited at low temperature
JP2010021282A (en) 2008-07-09 2010-01-28 Dan Takuma:Kk Case for semiconductor
WO2011146212A2 (en) 2010-05-20 2011-11-24 Applied Materials, Inc. Ultra high selectivity ashable hard mask film
JP2012233259A (en) 2012-06-25 2012-11-29 Tokyo Electron Ltd Method for depositing amorphous carbon film, method for producing semiconductor device using the same, and computer-readable storage medium
JP2017504209A (en) 2014-01-10 2017-02-02 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Carbon film stress relaxation
WO2018032684A1 (en) 2016-08-16 2018-02-22 北京北方微电子基地设备工艺研究中心有限责任公司 Chuck, reaction chamber and semiconductor processing equipment
WO2018034811A1 (en) 2016-08-19 2018-02-22 Applied Materials, Inc. High density, low stress amorphous carbon film, and process and equipment for its deposition

Also Published As

Publication number Publication date
KR102687561B1 (en) 2024-07-22
US11469097B2 (en) 2022-10-11
CN111954921B (en) 2024-05-31
JP2021520639A (en) 2021-08-19
US11784042B2 (en) 2023-10-10
CN111954921A (en) 2020-11-17
SG11202009406RA (en) 2020-10-29
US20230021761A1 (en) 2023-01-26
KR20200130490A (en) 2020-11-18
WO2019199681A1 (en) 2019-10-17
TW201944490A (en) 2019-11-16
TWI780320B (en) 2022-10-11
TW202318505A (en) 2023-05-01
US20210043449A1 (en) 2021-02-11

Similar Documents

Publication Publication Date Title
JP7407121B2 (en) Carbon hard masks and related methods for patterning applications
JP2023156333A (en) Pulsed plasma (dc/rf) deposition of high quality c film for patterning
US11721545B2 (en) Method of using dual frequency RF power in a process chamber
TW202025212A (en) Low temperature high-quality dielectric films
TW202004910A (en) Methods and systems for patterning of low aspect ratio stacks
TWI827705B (en) High density carbon films for patterning applications
US20220319841A1 (en) Deposition of low-stress carbon-containing layers
US11810792B2 (en) Etching method and substrate processing apparatus
WO2023233673A1 (en) Etching method and plasma processing apparatus
US20230343598A1 (en) Method For Improving Etch Rate And Critical Dimension Uniformity When Etching High Aspect Ratio Features Within A Hard Mask Layer
US20240282585A1 (en) Treatments to improve etched silicon-and-germanium-containing material surface roughness
TW202209476A (en) Method for dry etching silicon carbide films for resist underlayer applications
JP2022048094A (en) Etching processing method and substrate processing device
JP2024526827A (en) Method, apparatus and system for maintaining membrane modulus within a predetermined modulus range - Patents.com
KR20200121238A (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220407

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R150 Certificate of patent or registration of utility model

Ref document number: 7407121

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150