[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7406297B2 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP7406297B2
JP7406297B2 JP2018036981A JP2018036981A JP7406297B2 JP 7406297 B2 JP7406297 B2 JP 7406297B2 JP 2018036981 A JP2018036981 A JP 2018036981A JP 2018036981 A JP2018036981 A JP 2018036981A JP 7406297 B2 JP7406297 B2 JP 7406297B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat exchanger
heat
header
transfer unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018036981A
Other languages
Japanese (ja)
Other versions
JP2019152362A (en
Inventor
寛之 中野
透 安東
秀之 日下
俊 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2018036981A priority Critical patent/JP7406297B2/en
Priority to PCT/JP2019/006840 priority patent/WO2019167839A1/en
Priority to CN201980016308.6A priority patent/CN111801541A/en
Priority to US16/977,284 priority patent/US20210003350A1/en
Priority to EP19761287.2A priority patent/EP3760957B1/en
Publication of JP2019152362A publication Critical patent/JP2019152362A/en
Application granted granted Critical
Publication of JP7406297B2 publication Critical patent/JP7406297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/26Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0246Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid heat-exchange elements having several adjacent conduits forming a whole, e.g. blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05341Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/22Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

熱交換器に関する。 Regarding heat exchangers.

空気調和装置などに用いられる熱交換器の中には、伝熱フィンプレートが貼りあわされて形成された細径伝熱管ユニットを有するものがある(例えば、特許文献1(特開2006-90636号公報)等)。 Some heat exchangers used in air conditioners etc. have a small diameter heat exchanger tube unit formed by bonding heat transfer fin plates (for example, Patent Document 1 (Japanese Patent Laid-Open No. 2006-90636) Public bulletin), etc.).

低い温度環境で熱交換器を蒸発器として使用した場合、内部の熱流束分布により、一部分に集中的に着霜が生じることがある。そして、着霜が集中した箇所で風路閉塞が生じ、熱交換器の性能が低下することがある。 When a heat exchanger is used as an evaporator in a low-temperature environment, frost formation may occur locally due to the internal heat flux distribution. Air passage blockage may occur at locations where frost is concentrated, and the performance of the heat exchanger may deteriorate.

第1観点の熱交換器は、第1方向に延びる複数の伝熱流路部及び複数の伝熱補助部が前記第1方向に対して傾斜又は直交する第2方向に並んで形成される伝熱ユニットを有し、伝熱ユニットが第1方向及び第2方向のいずれとも異なる第3方向に複数配置されるものである。 In the heat exchanger according to the first aspect, a plurality of heat transfer flow path sections and a plurality of heat transfer auxiliary sections extending in a first direction are formed in line in a second direction that is inclined or orthogonal to the first direction. The heat transfer unit has a plurality of heat transfer units arranged in a third direction different from both the first direction and the second direction.

また、第1観点の熱交換器では、伝熱ユニットが、第2方向に沿って風上領域及び風下領域に区切られる。そして、第1観点の熱交換器は、蒸発器として用いるときに、風上領域に配置された伝熱流路部に冷媒を流入させてから、風下領域に配置された伝熱流路部に冷媒を流出させる。このような構成により、熱交換器全体としての熱交換性能を最適化することができる。 Moreover, in the heat exchanger of the first aspect, the heat transfer unit is divided into a windward region and a leeward region along the second direction. When the heat exchanger of the first aspect is used as an evaporator, the refrigerant is allowed to flow into the heat transfer channel section arranged in the upwind region, and then the refrigerant is introduced into the heat transfer channel section arranged in the leeward region. Let it flow out. With such a configuration, the heat exchange performance of the entire heat exchanger can be optimized.

第2観点の熱交換器は、第1観点の熱交換器であって、風上領域に配置される伝熱流路部の数よりも風下領域に配置される伝熱流路部の数の方が多いものである。このような構成により、着霜を抑えつつ、最適な熱交換を実現できる。 The heat exchanger according to the second aspect is the heat exchanger according to the first aspect, in which the number of heat transfer passage sections arranged in the leeward region is greater than the number of heat transfer passage sections arranged in the windward region. There are many. With such a configuration, optimal heat exchange can be achieved while suppressing frost formation.

第3観点の熱交換器では、第1観点又は第2観点の熱交換器であって、冷媒を減圧させる減圧機構をさらに備えるものである。また、第3観点の熱交換器は、風上領域に配置される伝熱流路部から風下領域に配置される伝熱流路部に減圧機構を経由して冷媒を流入させる。このような構成により、さらに着霜を抑制できる。 The heat exchanger according to the third aspect is the heat exchanger according to the first aspect or the second aspect, and further includes a pressure reduction mechanism that reduces the pressure of the refrigerant. In addition, the heat exchanger according to the third aspect allows the refrigerant to flow from the heat transfer channel section disposed in the windward region to the heat transfer channel section disposed in the leeward region via the pressure reduction mechanism. With such a configuration, frost formation can be further suppressed.

第4観点の熱交換器では、第1観点から第3観点の熱交換器であって、伝熱ユニットに、第1方向に沿って上下から接続し、冷媒の流路の一部を形成する上側ヘッダ及び下側ヘッダをさらに備える。このような構成により、結露水の排出が容易な熱交換器を実現できる。 In the heat exchanger according to the fourth aspect, the heat exchanger according to the first aspect to the third aspect is connected to the heat transfer unit from above and below along the first direction, and forms part of a refrigerant flow path. It further includes an upper header and a lower header. With such a configuration, it is possible to realize a heat exchanger in which condensed water can be easily discharged.

第5観点の熱交換器では、第4観点の熱交換器であって、風上領域及び風下領域が、上側ヘッダ及び/又は下側ヘッダの内部に配置される仕切り部材により形成されるものである。したがって、風上領域及び風下領域を容易に形成できる。 The heat exchanger according to the fifth aspect is the heat exchanger according to the fourth aspect, in which the windward region and the leeward region are formed by a partition member disposed inside the upper header and/or the lower header. be. Therefore, the windward region and the leeward region can be easily formed.

第6観点の熱交換器では、第1観点から第5観点の熱交換器であって、各伝熱ユニットは、少なくとも8以上の伝熱流路部を有し、少なくとも2以上の伝熱流路部が風上領域に配置されるものである。このような構成により、熱交換性能を最適化できる。 In the heat exchanger according to the sixth aspect, in the heat exchanger according to the first to fifth aspects, each heat transfer unit has at least 8 or more heat transfer flow path sections, and at least 2 or more heat transfer flow path sections. is placed in the windward area. Such a configuration allows optimization of heat exchange performance.

第7観点の熱交換器は、第1観点から第6観点の熱交換器であって、第1方向視で、伝熱ユニットの第2方向の端部に断熱材が塗布されている。したがって、その端部における温度の低下を抑えることができる。 The heat exchanger according to the seventh aspect is the heat exchanger according to the first to sixth aspects, in which a heat insulating material is applied to the end of the heat transfer unit in the second direction when viewed in the first direction. Therefore, a decrease in temperature at the end can be suppressed.

第8観点の熱交換器は、第7観点の熱交換器であって、伝熱ユニットには、第1方向視で第2方向の端部に伝熱補助部の一つである第1伝熱補助部が形成されている。また、第1伝熱補助部が閉塞された形状である。これにより、除霜運転時の排水性を高めることができる。 The heat exchanger according to the eighth aspect is the heat exchanger according to the seventh aspect, in which the heat transfer unit has a first transfer unit, which is one of the heat transfer auxiliary parts, at an end in the second direction when viewed in the first direction. A heat auxiliary portion is formed. Moreover, the first heat transfer auxiliary part has a closed shape. Thereby, drainage performance during defrosting operation can be improved.

第9観点の空気調和装置は第1観点から第8観点の熱交換器が搭載されたものである。 The air conditioner according to the ninth aspect is equipped with the heat exchangers according to the first to eighth aspects.

一実施形態に係る熱交換器10の概念を示す模式図である。FIG. 1 is a schematic diagram showing the concept of a heat exchanger 10 according to an embodiment. 同実施形態に係る熱交換器10の構成を示す模式図である。It is a schematic diagram showing the composition of heat exchanger 10 concerning the same embodiment. 同実施形態に係る第1ヘッダ21の断面形状を示す模式図である。FIG. 2 is a schematic diagram showing a cross-sectional shape of a first header 21 according to the same embodiment. 同実施形態に係る第2ヘッダ22の断面形状を示す模式図である。FIG. 2 is a schematic diagram showing a cross-sectional shape of a second header 22 according to the same embodiment. 同実施形態に係る伝熱ユニット30の構成を示す模式図である。It is a schematic diagram showing the composition of heat transfer unit 30 concerning the same embodiment. 同実施形態に係る伝熱ユニット30の構成を説明するための模式図である。FIG. 3 is a schematic diagram for explaining the configuration of a heat transfer unit 30 according to the same embodiment. 同実施形態に係る伝熱ユニット群15の構成を説明するための模式図である。FIG. 2 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to the same embodiment. 同実施形態に係る熱交換器10の断面形状を示す模式図である。It is a schematic diagram showing the cross-sectional shape of the heat exchanger 10 according to the same embodiment. 同実施形態に係る熱交換器10の冷媒流路を説明するための図である。FIG. 3 is a diagram for explaining a refrigerant flow path of the heat exchanger 10 according to the same embodiment. 同実施形態に係る熱交換器10の冷媒流路を説明するための図である。FIG. 3 is a diagram for explaining a refrigerant flow path of the heat exchanger 10 according to the same embodiment. 比較のための熱交換器10Zの構成を示す模式図である。It is a schematic diagram showing the composition of heat exchanger 10Z for comparison. 変形例Aに係る熱交換器10の冷媒流路を説明するための図である。7 is a diagram for explaining a refrigerant flow path of a heat exchanger 10 according to modification A. FIG. 変形例Bに係る熱交換器10Yの冷媒流路を説明するための図である。7 is a diagram for explaining a refrigerant flow path of a heat exchanger 10Y according to modification B. FIG. 変形例Cに係る伝熱ユニット群15の構成を説明するための模式図である。7 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to modification C. FIG. 変形例Cに係る伝熱ユニット群15の構成を説明するための模式図である。7 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to modification C. FIG. 変形例Eに係る伝熱ユニット群15の構成を説明するための模式図である。7 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to modification E. FIG. 変形例Eに係る伝熱ユニット群15の構成を説明するための模式図である(図16の一部拡大図)。16 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to modification E (a partially enlarged view of FIG. 16). FIG. 変形例Fに係る伝熱ユニット群15の構成を説明するための模式図である。7 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to modification F. FIG. 変形例Fに係る伝熱ユニット群15の構成を説明するための模式図である(図18の一部拡大図)。19 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to modification F (a partially enlarged view of FIG. 18). FIG. 変形例Gに係る伝熱ユニット群15を説明するための模式図である。7 is a schematic diagram for explaining a heat transfer unit group 15 according to modification example G. FIG. 変形例Gに係る伝熱ユニット群15を説明するための模式図である。7 is a schematic diagram for explaining a heat transfer unit group 15 according to modification example G. FIG. 変形例Hに係る伝熱ユニット群15の構成を説明するための模式図である。7 is a schematic diagram for explaining the configuration of a heat transfer unit group 15 according to modification example H. FIG.

(1)熱交換器の概要
熱交換器10は、内部を流れる流体と外部を流れる空気との間で熱交換を行なうものである。具体的には、図1に概念を示すように、熱交換器10には、冷媒が流入出するための第1配管41及び第2配管42が取り付けられる。また、熱交換器10の近傍には、熱交換器10に風を送るためのファン6が配置される。ファン6は熱交換器10に向かう空気流を発生させ、その空気流が熱交換器10を通過する際に、熱交換器10と空気との間で熱交換が行なわれる。なお、熱交換器10は、空気から熱を奪う蒸発器としても、空気に熱を放出する凝縮器(放熱器)としても機能し、空気調和装置等に搭載できるものである。
(1) Overview of Heat Exchanger The heat exchanger 10 exchanges heat between a fluid flowing inside and air flowing outside. Specifically, as conceptually shown in FIG. 1, the heat exchanger 10 is equipped with a first pipe 41 and a second pipe 42 through which refrigerant flows in and out. Further, a fan 6 for blowing air to the heat exchanger 10 is arranged near the heat exchanger 10. The fan 6 generates an air flow toward the heat exchanger 10, and as the air flow passes through the heat exchanger 10, heat is exchanged between the heat exchanger 10 and the air. Note that the heat exchanger 10 functions both as an evaporator that removes heat from the air and as a condenser (radiator) that releases heat to the air, and can be installed in an air conditioner or the like.

(2)熱交換器の詳細
(2-1)全体構成
熱交換器10は、図2に示すように、伝熱ユニット群15、第1ヘッダ21及び第2ヘッダ22を有する。
(2) Details of heat exchanger (2-1) Overall configuration As shown in FIG. 2, the heat exchanger 10 includes a heat transfer unit group 15, a first header 21, and a second header 22.

伝熱ユニット群15は、複数の伝熱ユニット30から構成される。また、伝熱ユニット群15は、ファン6により生じる空気流の方向が各伝熱ユニット30の間を通過するように配置される。各部材の配置についての詳細は後述する。 The heat transfer unit group 15 is composed of a plurality of heat transfer units 30. Further, the heat transfer unit group 15 is arranged such that the direction of the airflow generated by the fan 6 passes between each heat transfer unit 30. Details regarding the arrangement of each member will be described later.

(2-2)ヘッダ
第1ヘッダ21は、図3に示すように、中空の部材で構成されており、ガス・液・気液二相の状態の冷媒が内部を流通可能に構成されている。そして、第1ヘッダ21は、伝熱ユニット30の上方で伝熱ユニット30に接続する。また、第1ヘッダ21の下面には、伝熱ユニット30と接続するための接続面21Sが形成される。接続面21Sには、後述する伝熱流路部31の端部31eが挿入される連結孔が形成される。なお、図3は第3方向D3から見たときの第1ヘッダ21の断面形状を示している。第3方向D3の定義については後述する。
(2-2) Header As shown in FIG. 3, the first header 21 is composed of a hollow member, and is configured to allow refrigerant in gas, liquid, and gas-liquid two-phase states to flow therethrough. . The first header 21 is connected to the heat transfer unit 30 above the heat transfer unit 30 . Furthermore, a connection surface 21S for connecting to the heat transfer unit 30 is formed on the lower surface of the first header 21. A connecting hole into which an end portion 31e of a heat transfer channel portion 31 described later is inserted is formed in the connecting surface 21S. Note that FIG. 3 shows the cross-sectional shape of the first header 21 when viewed from the third direction D3. The definition of the third direction D3 will be described later.

第2ヘッダ22は、伝熱ユニット30の下方で、第1配管41及び第2配管42と伝熱ユニット30とに接続し、第1配管41及び第2配管42と伝熱ユニット30との間の冷媒の流入出を可能にするものである。第2ヘッダ22は、第1ヘッダ21と同様に中空の部材で構成されており、ガス・液・気液二相の状態の冷媒が内部を流通可能に構成されている。ただし、第2ヘッダ22では、図4に示すように、第3方向D3に沿って内部を仕切る仕切り部材22pを有している。図4の例では、便宜上、第2ヘッダ22は仕切り部材22pにより、風上第2ヘッダ22U及び風下第2ヘッダ22Lに区切られるものとする。風上第2ヘッダ22U及び風下第2ヘッダ22Lは、それぞれ第2ヘッダ22及び第1ヘッダ21に接続する。なお、仕切り部材22pは第2ヘッダ22と一体的に形成されてもよいし、別個の物体により構成されてもよいものである。また、第2ヘッダ22の上面には、伝熱ユニット30と接続するための接続面22Sが形成される。接続面22Sには、後述する伝熱流路部31の端部31eが挿入される連結孔が形成される。なお、図4は第3方向D3から見たときの第2ヘッダ22の断面形状を示している。第3方向D3の定義については後述する。 The second header 22 is connected to the first pipe 41 and the second pipe 42 and the heat transfer unit 30 below the heat transfer unit 30, and is connected between the first pipe 41 and the second pipe 42 and the heat transfer unit 30. This allows for the inflow and outflow of refrigerant. The second header 22 is made of a hollow member like the first header 21, and is configured to allow refrigerant in two phases of gas, liquid, and gas-liquid to flow therethrough. However, as shown in FIG. 4, the second header 22 has a partition member 22p that partitions the inside along the third direction D3. In the example of FIG. 4, for convenience, it is assumed that the second header 22 is divided into a windward second header 22U and a leeward second header 22L by a partition member 22p. The windward second header 22U and the leeward second header 22L are connected to the second header 22 and the first header 21, respectively. Note that the partition member 22p may be formed integrally with the second header 22, or may be constituted by a separate object. Furthermore, a connection surface 22S for connecting to the heat transfer unit 30 is formed on the upper surface of the second header 22. A connecting hole into which an end portion 31e of a heat transfer channel portion 31 described later is inserted is formed in the connecting surface 22S. Note that FIG. 4 shows the cross-sectional shape of the second header 22 when viewed from the third direction D3. The definition of the third direction D3 will be described later.

(2-3)伝熱ユニット
(2-3-1)
伝熱ユニット30は、図5に示すように、「第1方向D1」に延びる複数の伝熱流路部31及び複数の伝熱補助部32が、第1方向D1に対して傾斜又は直交する「第2方向D2」に並んで形成されるものである。ここでは、伝熱流路部31は略円筒形状であり、伝熱補助部32は略平板形状である。また、伝熱流路部31は、図6に示すように、第2方向D2に所定のピッチPPで並ぶように形成される。そして、このような伝熱ユニット30が、第1方向D1及び第2方向D2のいずれとも異なる「第3方向D3」に複数配置されることで、図7に示すような伝熱ユニット群15が形成される。ここでは、伝熱ユニット群15は、少なくとも3以上の伝熱ユニット30が積層状に配置される。
(2-3) Heat transfer unit (2-3-1)
As shown in FIG. 5, the heat transfer unit 30 includes a plurality of heat transfer channel sections 31 and a plurality of heat transfer auxiliary sections 32 extending in a "first direction D1" that are inclined or orthogonal to the first direction D1. They are formed in parallel in the second direction D2. Here, the heat transfer channel portion 31 has a substantially cylindrical shape, and the heat transfer auxiliary portion 32 has a substantially flat plate shape. Moreover, as shown in FIG. 6, the heat transfer channel portions 31 are formed so as to be lined up at a predetermined pitch PP in the second direction D2. By arranging a plurality of such heat transfer units 30 in a "third direction D3" that is different from both the first direction D1 and the second direction D2, a heat transfer unit group 15 as shown in FIG. It is formed. Here, in the heat transfer unit group 15, at least three or more heat transfer units 30 are arranged in a stacked manner.

なお、説明の便宜上、第1方向D1、第2方向D2、第3方向D3は互いに直交するものとする。ただし、これらの方向D1~D3は完全に直交するものでなくても、互いに傾斜するものであれば、本実施形態に係る熱交換器10を実現することは可能である。 For convenience of explanation, it is assumed that the first direction D1, the second direction D2, and the third direction D3 are orthogonal to each other. However, even if these directions D1 to D3 are not completely orthogonal, as long as they are inclined to each other, it is possible to realize the heat exchanger 10 according to the present embodiment.

伝熱ユニット30は、第1ヘッダ21及び第2ヘッダ22の接続面21S,22Sで、第1ヘッダ21及び第2ヘッダ22に接続する。具体的には、伝熱ユニット30の第1方向D1の端部は、図5に示すように、伝熱流路部31の端部31eが伝熱補助部32の端部32eから突出している。伝熱流路部31の端部31eは、第1ヘッダ21及び第2ヘッダ22の接続面21S,22Sに設けられた連結孔に挿入される。そして、この接続箇所がロウ付け等されることで、伝熱ユニット30が第1ヘッダ21及び第2ヘッダ22の間に固定される(図8参照)。 The heat transfer unit 30 is connected to the first header 21 and the second header 22 at connection surfaces 21S and 22S of the first header 21 and the second header 22. Specifically, at the end of the heat transfer unit 30 in the first direction D1, as shown in FIG. 5, an end 31e of the heat transfer channel section 31 protrudes from an end 32e of the heat transfer auxiliary section 32. The end portion 31e of the heat transfer channel portion 31 is inserted into a connecting hole provided in the connecting surfaces 21S and 22S of the first header 21 and the second header 22. Then, the heat transfer unit 30 is fixed between the first header 21 and the second header 22 by brazing or the like at this connection point (see FIG. 8).

伝熱流路部31は、第1ヘッダ21及び第2ヘッダ22の間の冷媒の移動を可能にするものである。具体的には、伝熱流路部31の内部には略円筒形状の通路が形成されており、この通路内を冷媒が移動する。なお、本実施形態に係る伝熱流路部31は第1方向D1に沿って直線状に形成される。 The heat transfer channel portion 31 allows the refrigerant to move between the first header 21 and the second header 22. Specifically, a substantially cylindrical passage is formed inside the heat transfer channel portion 31, and the refrigerant moves within this passage. Note that the heat transfer channel portion 31 according to the present embodiment is formed linearly along the first direction D1.

伝熱補助部32は、隣接する伝熱流路部31の内部を流れる冷媒と周囲の空気との間の熱交換を促進するものである。ここでは、伝熱補助部32は、伝熱流路部31と同様に第1方向D1に延びるように形成され、隣接する伝熱流路部31に接するように配置される。伝熱補助部32は、伝熱流路部31と一体的に形成されるものでもよいし、別個に形成されるものでもよい。 The heat transfer auxiliary section 32 promotes heat exchange between the refrigerant flowing inside the adjacent heat transfer channel section 31 and the surrounding air. Here, the heat transfer auxiliary section 32 is formed to extend in the first direction D1 similarly to the heat transfer channel section 31, and is arranged so as to be in contact with the adjacent heat transfer channel section 31. The heat transfer auxiliary section 32 may be formed integrally with the heat transfer channel section 31, or may be formed separately.

(2-3-2)
本実施形態に係る伝熱ユニット30には、少なくとも8以上の伝熱流路部31が形成される。そして、少なくとも2以上の伝熱流路部31が風上領域に配置される。
(2-3-2)
At least eight or more heat transfer channel sections 31 are formed in the heat transfer unit 30 according to the present embodiment. At least two or more heat transfer channel sections 31 are arranged in the windward region.

このような構成の一例として図8に示すようなものが挙げられる。ここでは、1つの伝熱ユニット30に、10本の伝熱流路部31が形成されている。また、第2ヘッダ22の内部は、仕切り部材22pにより、風上領域WUに配置される風上第2ヘッダ22Uと風下領域WLに配置される風下第2ヘッダ22Lとに区分けされている。そして、風上第2ヘッダ22Uに3本の伝熱流路部31Uが接続されており、風下第2ヘッダ22Lに7本の伝熱流路部31Lが接続されている。また、伝熱ユニット30の最風上側の端部には伝熱補助部32gが形成されている。なお、図8は熱交換器10を第3方向D3から見たときの断面形状を示す模式図である。 An example of such a configuration is shown in FIG. 8. Here, ten heat transfer channel portions 31 are formed in one heat transfer unit 30. Furthermore, the inside of the second header 22 is divided by a partition member 22p into a windward second header 22U arranged in the windward region WU and a leeward second header 22L arranged in the leeward region WL. Three heat transfer channel sections 31U are connected to the windward second header 22U, and seven heat transfer channel sections 31L are connected to the leeward second header 22L. Further, a heat transfer auxiliary portion 32g is formed at the windward end of the heat transfer unit 30. Note that FIG. 8 is a schematic diagram showing a cross-sectional shape of the heat exchanger 10 when viewed from the third direction D3.

(2-4)冷媒流路
熱交換器10が蒸発器として用いられるときには、ファン6により生じた空気流Wが図9に示すように第2方向D2に沿って流れる。この状態で、熱交換器10に、第2配管42から液相の冷媒Fが流入する。続いて、冷媒Fは、第2配管42から風上第2ヘッダ22Uに流入する。そして、冷媒Fは、図10に示すように、風上第2ヘッダ22Uに接続された伝熱流路部31Uを経由して下方から上方に向けて流れる。次に、冷媒Fは、第1ヘッダ21及び風下第2ヘッダ22Lに接続された伝熱流路部31Lを経由して風下第2ヘッダ22Lに流入する。冷媒Fは、伝熱流路部31U,31Lを流れている間に空気流Wと熱交換を行う。これにより冷媒Fは蒸発して気相に変化する。そして、気相の冷媒Fが第1配管41から流出する。なお、図10では伝熱ユニット30を第3方向D3から見たときの状態を示している。
(2-4) Refrigerant flow path When the heat exchanger 10 is used as an evaporator, the air flow W generated by the fan 6 flows along the second direction D2 as shown in FIG. In this state, liquid-phase refrigerant F flows into the heat exchanger 10 from the second pipe 42 . Subsequently, the refrigerant F flows into the upwind second header 22U from the second pipe 42. As shown in FIG. 10, the refrigerant F flows from below to above via the heat transfer passage section 31U connected to the windward second header 22U. Next, the refrigerant F flows into the second leeward header 22L via the heat transfer passage section 31L connected to the first header 21 and the second leeward header 22L. The refrigerant F exchanges heat with the air flow W while flowing through the heat transfer flow path portions 31U and 31L. As a result, the refrigerant F evaporates and changes into a gas phase. Then, the gas phase refrigerant F flows out from the first pipe 41. Note that FIG. 10 shows the state when the heat transfer unit 30 is viewed from the third direction D3.

熱交換器10が凝縮器として用いられるときには、蒸発器のときとは逆向きに冷媒Fが流れる。すなわち、第1配管41から気相の冷媒Fが流入し、第2配管42から液相の冷媒Fが流出する。 When the heat exchanger 10 is used as a condenser, the refrigerant F flows in the opposite direction to that when it is used as an evaporator. That is, the gas phase refrigerant F flows in from the first pipe 41, and the liquid phase refrigerant F flows out from the second pipe 42.

(3)熱交換器10の製造方法
伝熱ユニット30は、例えばアルミニウムまたはアルミニウム合金などの金属材料から製造される。具体的には、まず、図5の断面形状に相当する型を用いて金属材料の押出成形が行なわれ、伝熱流路部31及び伝熱補助部32が一体的に形成される。続いて、伝熱補助部32の一部を切除して切欠部33が設けられる。切欠部33は、例えば、伝熱補助部32の複数箇所を打ち抜きによって切除して形成される。
(3) Method for manufacturing heat exchanger 10 Heat transfer unit 30 is manufactured from a metal material such as aluminum or aluminum alloy, for example. Specifically, first, a metal material is extruded using a mold having a cross-sectional shape as shown in FIG. 5, and the heat transfer channel portion 31 and the heat transfer auxiliary portion 32 are integrally formed. Subsequently, a portion of the heat transfer auxiliary portion 32 is cut out to provide a cutout portion 33. The cutout portion 33 is formed by, for example, cutting out a plurality of locations of the heat transfer auxiliary portion 32 by punching.

第1ヘッダ21及び第2ヘッダ22は、金属材料を管状に加工することによって製造される。第1ヘッダ21及び第2ヘッダ22には、伝熱流路部31の端部31eを挿入するための連結孔が設けられる。連結孔は、例えばドリルによって形成される円形の貫通孔である。 The first header 21 and the second header 22 are manufactured by processing a metal material into a tubular shape. The first header 21 and the second header 22 are provided with a connecting hole into which the end 31e of the heat transfer channel portion 31 is inserted. The connecting hole is a circular through hole formed by, for example, a drill.

熱交換器10の組み立ては、第1ヘッダ21及び第2ヘッダ22の連結孔に、伝熱ユニット30の伝熱流路部31の端部31eが挿入される。これにより、伝熱補助部32の端部32eが第1ヘッダ21及び第2ヘッダ22の接続面21S,22Sに接触する状態になる。この接触箇所において、伝熱ユニット30と第1ヘッダ21及び第2ヘッダ22がロウ付け等されて固定される。 To assemble the heat exchanger 10, the end portion 31e of the heat transfer channel portion 31 of the heat transfer unit 30 is inserted into the connection hole of the first header 21 and the second header 22. Thereby, the end portion 32e of the heat transfer auxiliary portion 32 comes into contact with the connection surfaces 21S and 22S of the first header 21 and the second header 22. At this contact location, the heat transfer unit 30, the first header 21, and the second header 22 are fixed by brazing or the like.

(4)特徴
(4-1)
以上説明したように、本実施形態に係る熱交換器10は、第1方向D1に延びる複数の伝熱流路部31及び複数の伝熱補助部32が第1方向D1に対して傾斜又は直交する第2方向D2に並んで形成される伝熱ユニット30を有する。ここで、伝熱ユニット30は、第1方向D1及び第2方向D2のいずれとも異なる第3方向D3に複数配置され、伝熱ユニット群15を形成する。
(4) Features (4-1)
As explained above, in the heat exchanger 10 according to the present embodiment, the plurality of heat transfer flow path sections 31 and the plurality of heat transfer auxiliary sections 32 extending in the first direction D1 are inclined or perpendicular to the first direction D1. It has heat transfer units 30 formed in line in the second direction D2. Here, a plurality of heat transfer units 30 are arranged in a third direction D3 that is different from both the first direction D1 and the second direction D2, and form a heat transfer unit group 15.

また、本実施形態に係る熱交換器10では、伝熱ユニット30が、第2方向D2に沿って風上領域WU及び風下領域WLに区切られる。そして、熱交換器10は、蒸発器として用いられるときに、風上領域WUに配置された伝熱流路部31Uに冷媒Fを流入させてから、風下領域WLに配置された伝熱流路部31Lに冷媒Fを流出させる。 Furthermore, in the heat exchanger 10 according to the present embodiment, the heat transfer unit 30 is divided into a windward region WU and a leeward region WL along the second direction D2. When the heat exchanger 10 is used as an evaporator, the refrigerant F flows into the heat transfer channel section 31U disposed in the windward region WU, and then the heat transfer channel section 31L disposed in the leeward region WL. Let refrigerant F flow out.

要するに、本実施形態に係る熱交換器10では、空気流Wが生じる第2方向D2に少なくとも1回は冷媒流路が折り返される。これにより、熱交換性能の優れた熱交換器を提供できる。 In short, in the heat exchanger 10 according to the present embodiment, the refrigerant flow path is turned back at least once in the second direction D2 in which the air flow W occurs. Thereby, a heat exchanger with excellent heat exchange performance can be provided.

補足すると、例えば図11に示すように、伝熱ユニット30Zに、第1方向D1に沿って下方から上方に1回だけ冷媒Fを流す形態の熱交換器10Zでは、低い温度(例えば摂氏7度以下)の環境下で蒸発器として使用した場合、風上側の伝熱流路部における伝熱量が大きいため、伝熱ユニット30Zの間に着霜が生じることがある。さらに、着霜に起因して風路閉塞が生じることがある。なお、図11に示す第1ヘッダ21Z及び第2ヘッダ22Zの内部には仕切り部材等は設けられていない。 Supplementally, as shown in FIG. 11, for example, in a heat exchanger 10Z in which the refrigerant F is caused to flow once from below to above along the first direction D1 through the heat transfer unit 30Z, the temperature is low (for example, 7 degrees Celsius). When used as an evaporator in the environment described below), frost may form between the heat transfer units 30Z because the amount of heat transferred in the windward side heat transfer channel portion is large. Furthermore, air passage blockage may occur due to frost formation. Note that no partition member or the like is provided inside the first header 21Z and the second header 22Z shown in FIG.

これに対し、本実施形態に係る熱交換器10の構成では、第2配管42から流入する冷媒Fの流路の数を風上伝熱流路部31Uの数に制限することで、冷媒の圧力損失が生じる。そして、この圧力損失に起因して、風上伝熱流路部31Uにおける冷媒温度が高くなる。そのため、熱交換器10を蒸発器として用いたときに、風上伝熱流路部31Uでの熱交換量が抑制される。これにより、伝熱ユニット群15内での位置に応じた熱流束の変動を抑えることができる。結果として、熱交換器10を低い温度環境(例えば摂氏7度以下)で蒸発器として用いたときに、局所的に着霜が生じることを回避することができ、熱交換性能の優れた熱交換器を提供することができる。 In contrast, in the configuration of the heat exchanger 10 according to the present embodiment, the number of channels for the refrigerant F flowing in from the second pipe 42 is limited to the number of the upwind heat transfer channel sections 31U, so that the refrigerant pressure There will be a loss. Then, due to this pressure loss, the refrigerant temperature in the windward heat transfer channel section 31U increases. Therefore, when the heat exchanger 10 is used as an evaporator, the amount of heat exchanged in the upwind heat transfer channel section 31U is suppressed. Thereby, fluctuations in heat flux depending on the position within the heat transfer unit group 15 can be suppressed. As a result, when the heat exchanger 10 is used as an evaporator in a low-temperature environment (for example, 7 degrees Celsius or lower), local frost formation can be avoided, resulting in a heat exchanger with excellent heat exchange performance. equipment can be provided.

また、図11に示すような形態の熱交換器10Zでは、最風上側の伝熱補助部の前縁効果により、風上側の伝熱流路部の熱交換量が、風下側の伝熱流路部の熱交換量に比較して多くなる。そのため、第2配管42から流入する冷媒Fを、複数の伝熱流路部に流した場合、風上側の伝熱流路部において冷媒Fが蒸発しきってしまうことがある。結果として、熱交換器10Zにおいて十分な熱交換が行なわれない事態が生じ得る。 Furthermore, in the heat exchanger 10Z having the configuration shown in FIG. 11, due to the leading edge effect of the heat transfer assisting section on the windward side, the amount of heat exchanged in the heat transfer channel section on the windward side is greater than that in the heat transfer channel section on the leeward side. The amount of heat exchanged is large compared to the amount of heat exchanged. Therefore, when the refrigerant F flowing in from the second pipe 42 is caused to flow through a plurality of heat transfer flow path sections, the refrigerant F may completely evaporate in the heat transfer flow path section on the windward side. As a result, a situation may arise in which sufficient heat exchange is not performed in the heat exchanger 10Z.

これに対し、本実施形態に係る熱交換器10の構成では、第2配管42から流入する冷媒Fの全てを一旦、風上側の伝熱流路部31Uに流すので、風上側の伝熱流路部31Uで冷媒が蒸発しきってしまう事態を回避できる。結果として、熱交換器10の熱交換性能を最適化できる。 On the other hand, in the configuration of the heat exchanger 10 according to the present embodiment, all of the refrigerant F flowing from the second pipe 42 is once flowed to the windward side heat transfer passage section 31U, so that the windward side heat transfer passage section It is possible to avoid a situation where the refrigerant completely evaporates with 31U. As a result, the heat exchange performance of the heat exchanger 10 can be optimized.

(4-2)
また、本実施形態に係る熱交換器10は、風上領域WUに配置される伝熱流路部31Uの数よりも風下領域WLに配置される伝熱流路部31Lの数の方が多いものである。また、各伝熱ユニット30が、少なくとも8以上の伝熱流路部31を有し、少なくとも2以上の伝熱流路部31Uが風上領域WUに配置されるものである。このような構成により、熱交換器10を低い温度環境(例えば摂氏7度以下)で蒸発器として用いたときに、着霜の発生を抑えつつ、最適な熱交換を実現できる。
(4-2)
Further, in the heat exchanger 10 according to the present embodiment, the number of heat transfer passage sections 31L arranged in the leeward region WL is greater than the number of heat transfer channel sections 31U arranged in the windward region WU. be. Furthermore, each heat transfer unit 30 has at least eight or more heat transfer flow path sections 31, and at least two or more heat transfer flow path sections 31U are arranged in the windward region WU. With such a configuration, when the heat exchanger 10 is used as an evaporator in a low temperature environment (for example, 7 degrees Celsius or less), optimal heat exchange can be achieved while suppressing frost formation.

(4-3)
また、本実施形態に係る熱交換器10は、第1方向D1に沿って上下から伝熱ユニット30に接続し、冷媒流路の一部を形成する第1ヘッダ21(上側ヘッダ)及び第2ヘッダ22(下側ヘッダ)をさらに備える。このような構成により、伝熱ユニット30の長手方向を鉛直方向に向けることができ、付着した水(結露水等)を容易に排出できる。また、組立性・加工性を高めることもできる。
(4-3)
The heat exchanger 10 according to the present embodiment also includes a first header 21 (upper header) and a second header that are connected to the heat transfer unit 30 from above and below along the first direction D1 and form a part of the refrigerant flow path. It further includes a header 22 (lower header). With such a configuration, the longitudinal direction of the heat transfer unit 30 can be oriented vertically, and attached water (such as dew water) can be easily discharged. Furthermore, ease of assembly and workability can be improved.

ただし、本実施形態に係る熱交換器10は、第1ヘッダ21及び第2ヘッダ22を上下方向に代えて左右方向に設ける構成を排除するものではない。 However, the heat exchanger 10 according to the present embodiment does not exclude a configuration in which the first header 21 and the second header 22 are provided in the horizontal direction instead of in the vertical direction.

(4-4)
また、本実施形態に係る熱交換器10は、風上領域WU及び風下領域WLが、第2ヘッダ22(下側ヘッダ)の内部に配置される仕切り部材22pにより形成される。よって、伝熱ユニット30に特殊な加工等をせずに、風上領域WU及び風下領域WLを容易に形成することができる。
(4-4)
Further, in the heat exchanger 10 according to the present embodiment, the windward region WU and the leeward region WL are formed by a partition member 22p arranged inside the second header 22 (lower header). Therefore, the windward region WU and the leeward region WL can be easily formed without performing any special processing on the heat transfer unit 30.

なお、本実施形態に係る熱交換器10は、冷媒の流通経路に応じて、第2ヘッダ22に代えて第1ヘッダ21の内部に仕切り部材を設けてもよい。若しくは、冷媒の流通経路に応じて、第1ヘッダ21及び第2ヘッダ22のいずれにも仕切り部材を設けてもよい。 Note that in the heat exchanger 10 according to the present embodiment, a partition member may be provided inside the first header 21 instead of the second header 22 depending on the flow path of the refrigerant. Alternatively, a partition member may be provided in both the first header 21 and the second header 22 depending on the flow path of the refrigerant.

(4-5)
また、本実施形態に係る熱交換器10は、各伝熱ユニット30を、金属材料の押出成形によって単一の部材から形成することができる。また、打ち抜きにより複数の切欠部33を一度に形成することができる。したがって、組立性・加工性の高い熱交換器10を提供できる。
(4-5)
Further, in the heat exchanger 10 according to the present embodiment, each heat transfer unit 30 can be formed from a single member by extrusion molding of a metal material. Furthermore, a plurality of cutouts 33 can be formed at once by punching. Therefore, it is possible to provide the heat exchanger 10 with high assemblability and workability.

(5)変形例
(5-1)変形例A
本実施形態に係る熱交換器10は、冷媒を減圧させる減圧機構をさらに備えるものでもよい。具体的には、熱交換器10は、図12に概念を示すように、風上領域WUの冷媒流路(伝熱流路部31U)と風下領域WLの冷媒流路(伝熱流路部31L)との間に電動弁などにより構成される減圧機構25を備えるものでもよい。減圧機構25により冷媒Fを膨張させることで、風上領域の冷媒温度を最適化することができる。結果として、熱交換器10を低い温度環境(例えば摂氏7度以下)で蒸発器として用いたときに、着霜の発生をさらに抑制することができる。
(5) Modification (5-1) Modification A
The heat exchanger 10 according to this embodiment may further include a pressure reduction mechanism that reduces the pressure of the refrigerant. Specifically, as conceptually shown in FIG. 12, the heat exchanger 10 has a refrigerant flow path (heat transfer flow path section 31U) in an upwind region WU and a refrigerant flow path (heat transfer flow path section 31L) in a leeward region WL. A pressure reducing mechanism 25 constituted by an electric valve or the like may be provided between the two. By expanding the refrigerant F using the decompression mechanism 25, the refrigerant temperature in the windward region can be optimized. As a result, when the heat exchanger 10 is used as an evaporator in a low temperature environment (for example, 7 degrees Celsius or lower), the occurrence of frost can be further suppressed.

(5-2)変形例B
本実施形態に係る熱交換器10は、上記構成に限られるものではない。すなわち、本実施形態に係る熱交換器10は、空気流Wが生じる第2方向D2に少なくとも1回は冷媒流路が折り返されものであれば、任意の形態を採用することができる。例えば、図13に示すような冷媒流路を有する構成の熱交換器10Yであってもよい。なお、図13は熱交換器10Yの内部に形成される冷媒流路を説明するための模式図である。
(5-2) Modification B
The heat exchanger 10 according to this embodiment is not limited to the above configuration. That is, the heat exchanger 10 according to the present embodiment can adopt any form as long as the refrigerant flow path is turned back at least once in the second direction D2 in which the air flow W is generated. For example, a heat exchanger 10Y having a configuration having a refrigerant flow path as shown in FIG. 13 may be used. Note that FIG. 13 is a schematic diagram for explaining the refrigerant flow path formed inside the heat exchanger 10Y.

図13に示す例では、風上第2ヘッダ22Uの中央部付近で、風上第2ヘッダ22Uの内部に第2方向D2に沿って仕切り部材22psが設けられている。これにより、風上第2ヘッダ22Uが、風上上流第2ヘッダ22UAと風上下流第2ヘッダ22UBとの2つの領域に分けられる。また、図13に示す例では、第1ヘッダ21の内部にも仕切り部材21p等が設けられており、第1ヘッダ21が、第2方向D2に沿って風上第1ヘッダ21Uと風下第1ヘッダ21Lとに分けられている。そして、このような構成の熱交換器10Yでは、第2配管42から風上上流第2ヘッダ22UAに流入した冷媒Fが、風上上流領域の伝熱流路部を通って、風上第1ヘッダ21Uに流入する。続いて、冷媒Fは、風上第1ヘッダ21Uを経由して風上下流領域の伝熱流路部に流入する。そして、風上下流第2ヘッダ22UBに流入した冷媒が、図示しない連絡配管等を介して、風下第2ヘッダ22Lに流入する。風下第2ヘッダ22Lに流入した冷媒Fは、風下第1ヘッダ21Lを経由して第1配管41に流出される。なお、熱交換器10Yでは、第1配管41が風下第1ヘッダ21Lに接続されている。 In the example shown in FIG. 13, a partition member 22ps is provided inside the windward second header 22U along the second direction D2 near the center of the windward second header 22U. Thereby, the windward second header 22U is divided into two regions: the windward upstream second header 22UA and the windward downstream second header 22UB. Further, in the example shown in FIG. 13, a partition member 21p etc. are provided inside the first header 21, and the first header 21 is connected to the windward first header 21U and the leeward first header along the second direction D2. It is divided into a header 21L. In the heat exchanger 10Y having such a configuration, the refrigerant F that has flowed from the second pipe 42 into the second windward header 22UA passes through the heat transfer channel section in the windward upstream region, and then flows into the windward first header 22UA. It flows into 21U. Subsequently, the refrigerant F flows into the heat transfer channel section in the windward downstream region via the windward first header 21U. Then, the refrigerant that has flowed into the windward downstream second header 22UB flows into the leeward second header 22L via a connecting pipe (not shown) or the like. The refrigerant F that has flowed into the second leeward header 22L is discharged into the first pipe 41 via the first leeward header 21L. In addition, in the heat exchanger 10Y, the first pipe 41 is connected to the leeward first header 21L.

このような形態の熱交換器10Yであっても、空気流Wが生じる第2方向D2に少なくとも1回は冷媒流路が折り返されているので、既述したのと同様の効果が実現される。 Even in the heat exchanger 10Y having such a configuration, the refrigerant flow path is turned back at least once in the second direction D2 in which the airflow W occurs, so the same effect as described above can be achieved. .

(5-3)変形例C
また、本実施形態に係る熱交換器10は、第1方向D1からみたときに、伝熱ユニット30の第2方向D2の風上側の端部(ここでは伝熱補助部32g)に断熱材Iが塗布されるものであってもよい(図14,15参照)。これにより、当該端部における温度の低下を抑えることができる。結果として、熱交換器10を低い温度環境(例えば摂氏7度以下)で蒸発器として用いたときに、着霜を抑制でき、風路閉塞を回避又は遅らせることができる。
(5-3) Modification C
In addition, the heat exchanger 10 according to the present embodiment has a heat insulating material I at the windward end of the heat transfer unit 30 in the second direction D2 (here, the heat transfer auxiliary part 32g) when viewed from the first direction D1. may be applied (see FIGS. 14 and 15). Thereby, a decrease in temperature at the end can be suppressed. As a result, when the heat exchanger 10 is used as an evaporator in a low temperature environment (for example, 7 degrees Celsius or lower), frost formation can be suppressed, and air passage blockage can be avoided or delayed.

なお、図14,15に示す例では、伝熱ユニット30の上記端部が伝熱補助部32gである。さらに、この最風上側の伝熱補助部32g(第1伝熱補助部)は閉塞された形状である。ここで、「閉塞された形状」とは、穴や切込み等がなくフラットな形状のことをいう。これにより、除霜運転時の排水性をさらに高めることができる。 In addition, in the example shown in FIGS. 14 and 15, the above-mentioned end portion of the heat transfer unit 30 is the heat transfer auxiliary portion 32g. Furthermore, this windwardmost heat transfer auxiliary part 32g (first heat transfer auxiliary part) has a closed shape. Here, the "closed shape" refers to a flat shape without holes, cuts, etc. Thereby, drainage performance during defrosting operation can be further improved.

補足すると、伝熱補助部32gに穴や切り込み等が形成されていると、その穴や切り込み等に、霜が解けて生じた水が保水されることがある。そして、その場合には、保水した箇所が次の着霜の起点となることがある。これに対し、変形例Cに係る熱交換器10では、伝熱補助部32gが穴や切込み等がない形状であるので、除霜運転後に生じる着霜を抑制できる。 As a supplementary note, if holes, notches, etc. are formed in the heat transfer auxiliary portion 32g, water generated by melting frost may be retained in the holes, notches, etc. In that case, the area where water is retained may become the starting point for the next frost formation. On the other hand, in the heat exchanger 10 according to modification C, the heat transfer auxiliary portion 32g has a shape without holes, cuts, etc., so that frost formation that occurs after the defrosting operation can be suppressed.

(5-4)変形例D
また、本実施形態に係る伝熱流路部31は、上述したものに限られず、他の形態であってもよい。例えば、伝熱流路部31を第1方向D1からみたときの断面形状が、半円形状、楕円形状、扁平形状、翼型の上半分形状、及び/又は翼型の下半分形状のいずれか一つ又は任意の組み合わせであってもよい。要するに、熱交換器10は、熱交換性能を最適化する形状を採用することができる。
(5-4) Modification D
Further, the heat transfer channel portion 31 according to the present embodiment is not limited to the one described above, and may have other forms. For example, the cross-sectional shape of the heat transfer channel portion 31 when viewed from the first direction D1 is one of a semicircular shape, an elliptical shape, a flattened shape, an upper half shape of an airfoil, and/or a lower half shape of an airfoil. or any combination thereof. In short, the heat exchanger 10 can adopt a shape that optimizes heat exchange performance.

(5-5)変形例E
また、本実施形態に係る伝熱ユニット群15は、図16,17に示すような形態のものでもよい。なお、図17は図16の一部拡大図である(図16の点線部に相当)。
(5-5) Modification E
Moreover, the heat transfer unit group 15 according to this embodiment may have a form as shown in FIGS. 16 and 17. Note that FIG. 17 is a partially enlarged view of FIG. 16 (corresponding to the dotted line portion in FIG. 16).

図16,17に示す例では、伝熱ユニット30(30a,30b,30cを含む)は、第2方向D2における第1位置L1(L1a,L1b,L1cを含む)で膨出して伝熱流路部31を形成する第1膨出部31p(31pa,31pb,31pcを含む)と、第1膨出部31pが形成される向きとは反対向きで第1位置L1に形成される第1平面部31q(31qa,31qb,31qcを含む)とを有する。なお、変形例Eでは、「第1位置」は伝熱ユニット毎に定義されており、伝熱ユニット30aの第1位置L1aと、伝熱ユニット30b,30cの第1位置L1b,L1cとは異なる位置を意味する。 In the example shown in FIGS. 16 and 17, the heat transfer unit 30 (including 30a, 30b, and 30c) swells at the first position L1 (including L1a, L1b, and L1c) in the second direction D2, and the heat transfer channel portion The first bulging portion 31p (including 31pa, 31pb, and 31pc) forming the first bulging portion 31 and the first flat portion 31q formed at the first position L1 in the opposite direction to the direction in which the first bulging portion 31p is formed. (including 31qa, 31qb, and 31qc). In addition, in modification E, the "first position" is defined for each heat transfer unit, and the first position L1a of the heat transfer unit 30a is different from the first positions L1b and L1c of the heat transfer units 30b and 30c. means location.

また、少なくとも一の伝熱ユニット30aが、一方の側で隣接する伝熱ユニット30bとは、第1膨出部31paが形成される面と、隣接する伝熱ユニット30bの第1膨出部31pbが形成される面とが対向する向きに配置される。また、その伝熱ユニット30aは、他方の側で隣接する他の伝熱ユニット30cとは、第1平面部31qaが形成される面と、他の伝熱ユニット30cの第1平面部31qcが形成される面とが対向する向きに配置される。 In addition, at least one heat transfer unit 30a is adjacent to the heat transfer unit 30b on one side, and the surface on which the first bulge 31pa is formed and the first bulge 31pb of the adjacent heat transfer unit 30b. The surface on which the surface is formed faces the opposite direction. Further, the heat transfer unit 30a is different from the adjacent other heat transfer unit 30c on the other side by the surface where the first plane portion 31qa is formed and the surface where the first plane portion 31qc of the other heat transfer unit 30c is formed. It is arranged in such a way that the surface facing the

このような構成により、熱交換器10が蒸発器として用いられた場合、第1平面部31qa,31qc同士等が対向する風路において、空気流が素通りするので、着霜の発生量を抑制することができる。これにより、使用環境によっては熱交換性能を高めることができる。 With such a configuration, when the heat exchanger 10 is used as an evaporator, the air flow passes through the air passage where the first plane parts 31qa, 31qc, etc. face each other, so the amount of frost formation is suppressed. be able to. Thereby, heat exchange performance can be improved depending on the usage environment.

なお、第1膨出部31pa,31pb同士が対向する風路では、空気流の縮流が発生し、その風路に着霜が集中的に発生し易くなる。しかし、そのような着霜が生じた場合であったとしても、使用環境によっては、図7に示すような略同一の膨出部が伝熱ユニットの両面に形成される熱交換器に比して、熱交換器全体における熱交換性能を高めることができる。 Note that in the air passage where the first bulging portions 31pa and 31pb face each other, contraction of the air flow occurs, and frost formation tends to occur intensively in the air passage. However, even if such frosting occurs, depending on the usage environment, the heat exchanger may be different from the heat exchanger in which almost identical bulges are formed on both sides of the heat transfer unit as shown in Figure 7. Therefore, the heat exchange performance of the entire heat exchanger can be improved.

また、変形例Eに係る熱交換器10は、図17に示すように、第1方向D1からみたときに、隣接する伝熱ユニット30a,30bにおける第1位置L1a,L1bが重複しないように配置されている。換言すると、隣接する伝熱ユニット30a,30b間の風路で、第1膨出部31pa,30pbが千鳥状に配置されている。そのため、図7に示すように膨出部同士が近接する構成に比して、隣接する伝熱ユニット31a,31b間の風路の流路断面積を増加させることができる。したがって、熱交換器10を低い温度環境(例えば摂氏7度以下)で蒸発器として用いたときに、着霜による風路閉塞をさらに抑制することができる。 Moreover, as shown in FIG. 17, the heat exchanger 10 according to the modification E is arranged so that the first positions L1a and L1b of the adjacent heat transfer units 30a and 30b do not overlap when viewed from the first direction D1. has been done. In other words, the first bulging portions 31pa and 30pb are arranged in a staggered manner in the air passage between the adjacent heat transfer units 30a and 30b. Therefore, compared to the configuration in which the bulging portions are close to each other as shown in FIG. 7, the cross-sectional area of the air passage between the adjacent heat transfer units 31a and 31b can be increased. Therefore, when the heat exchanger 10 is used as an evaporator in a low temperature environment (for example, 7 degrees Celsius or lower), air passage blockage due to frost formation can be further suppressed.

さらに、伝熱ユニット30は、第1平面部31qに代えて、第1膨出部31pより小さく膨出する第2膨出部を有するものでもよい。この場合でも、上記と同様の議論が成立する。 Furthermore, the heat transfer unit 30 may have a second bulge portion that bulges out smaller than the first bulge portion 31p instead of the first plane portion 31q. In this case, the same argument as above holds true.

(5-6)変形例F
また、本実施形態に係る伝熱ユニット群15は、図18,19に示すような形態のものでもよい。なお、図19は図18の一部拡大図である(図18の点線部に相当)。
(5-6) Modification example F
Moreover, the heat transfer unit group 15 according to this embodiment may have a form as shown in FIGS. 18 and 19. Note that FIG. 19 is a partially enlarged view of FIG. 18 (corresponding to the dotted line portion in FIG. 18).

図18,19に示す例では、伝熱ユニット30(30a,30b,30cを含む)は、第2方向D2における第1位置L1(L1a,L1b,L1cを含む)で膨出して伝熱流路部31を形成する第1膨出部31p(31pa,31pb,31pcを含む)と、第1膨出部31pが形成される向きとは反対向きで第1位置L1に形成される第1平面部31q(31qa,31qb,31qc)と、第1膨出部31pが形成される向きとは反対向きで、第2方向D2における第2位置L2(L2a,L2b,L2cを含む)で膨出して伝熱流路部31を形成する第3膨出部31r(31ra,31rb,31rcを含む)と、第3膨出部31rが形成される向きとは反対向きで第2位置L2に形成される第2平面部31s(31sa,31sb,31scを含む)とを有する。ここでは、第1膨出部31pと第3膨出部31rとは同一形状である。また、第1膨出部31pと第3膨出部31rとは第2方向D2で隣接する。 In the example shown in FIGS. 18 and 19, the heat transfer unit 30 (including 30a, 30b, and 30c) bulges out at the first position L1 (including L1a, L1b, and L1c) in the second direction D2, and the heat transfer channel portion The first bulging portion 31p (including 31pa, 31pb, and 31pc) forming the first bulging portion 31 and the first flat portion 31q formed at the first position L1 in the opposite direction to the direction in which the first bulging portion 31p is formed. (31qa, 31qb, 31qc), which is opposite to the direction in which the first bulging portion 31p is formed, bulges at the second position L2 (including L2a, L2b, and L2c) in the second direction D2 and causes a heat transfer flow. A third bulging portion 31r (including 31ra, 31rb, and 31rc) forming the path portion 31 and a second plane formed at the second position L2 in the opposite direction to the direction in which the third bulging portion 31r is formed. 31s (including 31sa, 31sb, and 31sc). Here, the first bulging portion 31p and the third bulging portion 31r have the same shape. Further, the first bulging portion 31p and the third bulging portion 31r are adjacent to each other in the second direction D2.

また、少なくとも一の伝熱ユニット30aが、一方の側で隣接する伝熱ユニット30bとは、第1膨出部31paが形成される面と、隣接する伝熱ユニット30bの第1平面部31qbが形成される面とが対向する向きに配置される。また、その伝熱ユニット30aは、他方の側で隣接する他の伝熱ユニット30cとは、第3膨出部31raが形成される面と、他の隣接する伝熱ユニット30cの第2平面部30scが形成される面とが対向する向きに配置される。 Moreover, at least one heat transfer unit 30a is adjacent to the heat transfer unit 30b on one side, and the surface on which the first bulging portion 31pa is formed and the first plane portion 31qb of the adjacent heat transfer unit 30b are The formed surfaces are arranged in opposing directions. Moreover, the heat transfer unit 30a is different from the other adjacent heat transfer unit 30c on the other side by the surface on which the third bulging portion 31ra is formed and the second plane portion of the other adjacent heat transfer unit 30c. The surface on which the 30sc is formed is arranged in a direction facing the surface.

また、隣接する伝熱ユニット30a,30b(又は30a,30c)における第1位置L1a,L1b(又はL1a,L1c)同士が第1方向D1から見たときに重複するように配置される。また、第2位置同士L2a,L2b(又はL2a,L2c)も第1方向D1から見たときに重複するように配置される。補足すると、「第1位置L1」「第2位置L2」は伝熱ユニット毎に定義されるものであるが、ここでは、各伝熱ユニット30a,30b,30cにおいて同じ位置になるようにしている。 Moreover, the first positions L1a, L1b (or L1a, L1c) of the adjacent heat transfer units 30a, 30b (or 30a, 30c) are arranged so as to overlap when viewed from the first direction D1. Further, the second positions L2a and L2b (or L2a and L2c) are also arranged so as to overlap when viewed from the first direction D1. As a supplement, the "first position L1" and "second position L2" are defined for each heat transfer unit, but here they are set to the same position in each heat transfer unit 30a, 30b, 30c. .

要するに、変形例Fに係る熱交換器10は、隣接する伝熱ユニット30a,30bの間で第1膨出部31pa,31pb同士等が対向せずに、反対向きに形成される。そのため、第1膨出部31pa,31pb同士等が対向する構成に比して、縮流の発生を抑えることができる。結果して、通風抵抗の増大を抑制することができ、最適な熱交換性能を実現することが可能となる。また、上記構成の熱交換器10であれば、(例えば摂氏7度以下)蒸発器として用いたときに、図7に示すような略同一の膨出部が伝熱ユニットの両面に形成される熱交換器に比して局所的な着霜を抑制することができる。 In short, in the heat exchanger 10 according to the modification F, the first bulging parts 31pa, 31pb, etc. are formed in opposite directions between the adjacent heat transfer units 30a, 30b without facing each other. Therefore, compared to a configuration in which the first bulging portions 31pa, 31pb, etc. face each other, the occurrence of contractile flow can be suppressed. As a result, an increase in ventilation resistance can be suppressed, and optimal heat exchange performance can be achieved. Further, with the heat exchanger 10 having the above configuration, when used as an evaporator (for example, at temperatures below 7 degrees Celsius), substantially the same bulges as shown in FIG. 7 are formed on both sides of the heat transfer unit. Local frost formation can be suppressed compared to a heat exchanger.

なお、伝熱ユニット30は、第1平面部31qに代えて第1膨出部31pより小さく膨出する第2膨出部を有し、第2平面部31sに代えて第3膨出部31rより小さく膨出する第4膨出部を有するものでもよい。この場合でも、上記と同様の議論が成立する。 In addition, the heat transfer unit 30 has a second bulging part that bulges out smaller than the first bulging part 31p instead of the first flat part 31q, and a third bulging part 31r instead of the second flat part 31s. It may have a fourth bulge that bulges smaller. In this case, the same argument as above holds true.

(5-7)変形例G
また、本実施形態に係る熱交換器10は、図20に示すように、第1方向D1からみたときに、伝熱ユニット30における第2方向D2の端部に、他の伝熱補助部32よりも長い伝熱補助部32g(第1伝熱補助部)が形成されるものでもよい。このような熱交換器10では、最風上側の伝熱流路部31gと隣接する伝熱補助部32gとの間の距離が長いので、最風上側の伝熱流路部31gから伝熱補助部32gへの伝熱量を下げることができる。これにより、伝熱ユニット30表面上の熱流束分布を均一化することができる。結果として、熱交換器10を低い温度環境(例えば摂氏7度以下)で蒸発器として用いたときに、風路の入口部に着霜が局所的に発生するのを抑制又は回避することができる。
(5-7) Modification example G
Moreover, as shown in FIG. 20, the heat exchanger 10 according to the present embodiment has another heat transfer auxiliary part 32 at the end of the heat transfer unit 30 in the second direction D2 when viewed from the first direction D1. A longer heat transfer assisting portion 32g (first heat transfer assisting portion) may be formed. In such a heat exchanger 10, since the distance between the windwardmost heat transfer channel section 31g and the adjacent heat transfer auxiliary section 32g is long, the heat transfer channel section 32g is connected from the windwardmost heat transfer channel section 31g to the heat transfer auxiliary section 32g. The amount of heat transferred to can be reduced. Thereby, the heat flux distribution on the surface of the heat transfer unit 30 can be made uniform. As a result, when the heat exchanger 10 is used as an evaporator in a low temperature environment (for example, 7 degrees Celsius or less), local formation of frost at the entrance of the air path can be suppressed or avoided. .

さらに、本実施形態に係る熱交換器10は、図21に示すように、隣接する伝熱ユニット30において、伝熱補助部32gの第2方向D2における長さを異なるようにして、端部を千鳥状に配置するものでもよい。このような熱交換器では、風路の入口部に断面積の広い部分が形成される。したがって、熱交換器10を低い温度環境(例えば摂氏7度以下)で蒸発器として用いたときに、風路の入口部における着霜を抑制又は回避することができる。 Furthermore, as shown in FIG. 21, in the heat exchanger 10 according to the present embodiment, the lengths of the heat transfer auxiliary parts 32g in the second direction D2 are made different in the adjacent heat transfer units 30, so that the end portions are They may be arranged in a staggered manner. In such a heat exchanger, a portion with a large cross-sectional area is formed at the entrance of the air passage. Therefore, when the heat exchanger 10 is used as an evaporator in a low temperature environment (for example, 7 degrees Celsius or lower), frost formation at the entrance of the air path can be suppressed or avoided.

(5-8)変形例H
また、本実施形態に係る熱交換器10は、図22に示すように、第1方向D1からみたときに、伝熱ユニット30が直線状だけでなく波形状に加工されるものでもよい。伝熱ユニット30が直線状の場合は風路抵抗を抑えることができる。一方、伝熱ユニット30が波形状の場合は空気流と冷媒との熱交換量を増やすことができる。要するに、使用環境に応じて、熱交換性能が最適な熱交換器を提供できる。
(5-8) Modification H
Further, in the heat exchanger 10 according to the present embodiment, as shown in FIG. 22, the heat transfer unit 30 may be processed not only into a linear shape but also into a wave shape when viewed from the first direction D1. When the heat transfer unit 30 is linear, air path resistance can be suppressed. On the other hand, when the heat transfer unit 30 has a corrugated shape, the amount of heat exchanged between the air flow and the refrigerant can be increased. In short, it is possible to provide a heat exchanger with optimal heat exchange performance depending on the usage environment.

(5-9)変形例I
本実施形態に係る熱交換器10は、伝熱管とフィンとが一方向に並ぶベッセル型熱交換器(細径多管式熱交換器)への適用が可能であるが、これに限られるものではない。例えば、マイクロチャネル型熱交換器(扁平多穴管式熱交換器)への適用も可能である。
(5-9) Modification I
The heat exchanger 10 according to the present embodiment can be applied to a vessel type heat exchanger (small diameter multi-tube heat exchanger) in which heat exchanger tubes and fins are arranged in one direction, but is not limited to this. isn't it. For example, application to a microchannel heat exchanger (flat multi-hole tube heat exchanger) is also possible.

<他の実施形態>
以上、実施形態を説明したが、特許請求の範囲の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。
<Other embodiments>
Although the embodiments have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the claims.

すなわち、本開示は、上記各実施形態そのままに限定されるものではない。本開示は、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できるものである。また、本開示は、上記各実施形態に開示されている複数の構成要素の適宜な組み合わせにより種々の開示を形成できるものである。例えば、実施形態に示される全構成要素から幾つかの構成要素は削除してもよいものである。さらに、異なる実施形態に構成要素を適宜組み合わせてもよいものである。 That is, the present disclosure is not limited to the above embodiments as they are. In the implementation stage, the present disclosure can be embodied by modifying the constituent elements without departing from the gist thereof. Moreover, various disclosures can be made in the present disclosure by appropriately combining the plurality of constituent elements disclosed in each of the above embodiments. For example, some components may be deleted from all the components shown in the embodiments. Furthermore, components may be appropriately combined in different embodiments.

10 熱交換器
21 第1ヘッダ(上側ヘッダ)
21p 仕切り部材
22 第2ヘッダ(下側ヘッダ)
22p 仕切り部材
22ps 仕切り部材
25 減圧機構
30 伝熱ユニット
30a 伝熱ユニット(一の伝熱ユニット)
30b 伝熱ユニット(一方の側で隣接する伝熱ユニット)
30c 伝熱ユニット(他方の側で隣接する伝熱ユニット)
31 伝熱流路部
31p 第1膨出部
31q 第1平面部
31r 第3膨出部
31s 第2平面部
31L 風下伝熱流路部
31U 風上伝熱流路部
32 伝熱補助部
32g 第2方向端部の伝熱補助部(第1伝熱補助部)
D1 第1方向
D2 第2方向
D3 第3方向
I 断熱材
L1 第1位置
L2 第2位置
WL 風下領域
WU 風上領域
10 Heat exchanger 21 First header (upper header)
21p Partition member 22 Second header (lower header)
22p Partition member 22ps Partition member 25 Pressure reduction mechanism 30 Heat transfer unit 30a Heat transfer unit (first heat transfer unit)
30b heat transfer unit (adjacent heat transfer unit on one side)
30c heat transfer unit (adjacent heat transfer unit on the other side)
31 Heat transfer channel section 31p First bulge section 31q First plane section 31r Third bulge section 31s Second plane section 31L Downwind heat transfer channel section 31U Windward heat transfer channel section 32 Heat transfer auxiliary section 32g Second direction end Heat transfer auxiliary part (first heat transfer auxiliary part)
D1 First direction D2 Second direction D3 Third direction I Insulating material L1 First position L2 Second position WL Downwind area WU Windward area

特開2006-90636号公報Japanese Patent Application Publication No. 2006-90636

Claims (8)

第1方向(D1)に延びる複数の伝熱流路部(31)及び複数の伝熱補助部(32)が前記第1方向に対して直交する第2方向(D2)に並んで形成される伝熱ユニット(30)と、
前記伝熱ユニットに、前記第1方向に沿って上下から接続し、前記冷媒の流路の一部を形成する上側ヘッダ(21)及び下側ヘッダ(22)と、
を備え、
前記伝熱ユニットが前記第1方向及び前記第2方向のいずれとも異なる第3方向(D3)に複数配置される熱交換器(10)であって、
複数の前記伝熱ユニットの各々は、単一の金属部材からなり、
前記複数の伝熱流路部は、前記複数の伝熱補助部から突出した端部(31e)を有し、前記端部は前記上側ヘッダ又は前記下側ヘッダの内部に挿入されており、前記伝熱補助部は前記上側ヘッダ又は前記下側ヘッダの内部に挿入されておらず、
前記伝熱ユニットは、前記第2方向に沿って風上領域(WU)及び風下領域(WL)に区切られるものであり、
蒸発器として用いるときに、前記風上領域に配置された伝熱流路部(31U)に冷媒を流入させてから、前記風下領域に配置された伝熱流路部(31L)に前記冷媒を流出させ、
各々の伝熱ユニット(30)に属する前記複数の伝熱流路部(31)は、前記風上領域(WU)に配置される風上伝熱流路部(31U)、及び、前記風下領域(WL)に配置される風下伝熱流路部(31L)、を含む、
熱交換器。
A plurality of heat transfer flow path sections (31) and a plurality of heat transfer auxiliary sections (32) extending in a first direction (D1) are formed in line in a second direction (D2) orthogonal to the first direction. a heat transfer unit (30) ;
an upper header (21) and a lower header (22) connected to the heat transfer unit from above and below along the first direction and forming part of the refrigerant flow path;
Equipped with
A heat exchanger (10) in which a plurality of the heat transfer units are arranged in a third direction (D3) different from both the first direction and the second direction,
Each of the plurality of heat transfer units is made of a single metal member,
The plurality of heat transfer flow path portions each have an end portion (31e) protruding from the plurality of heat transfer auxiliary portions, and the end portion is inserted into the upper header or the lower header, and the end portion (31e) is inserted into the upper header or the lower header. The heat auxiliary part is not inserted inside the upper header or the lower header,
The heat transfer unit is divided into a windward region (WU) and a leeward region (WL) along the second direction,
When used as an evaporator, the refrigerant is caused to flow into the heat transfer channel section (31U) arranged in the upwind region, and then the refrigerant is caused to flow out into the heat transfer channel section (31L) arranged in the leeward region. ,
The plurality of heat transfer flow path sections (31) belonging to each heat transfer unit (30) include a windward heat transfer flow path section (31U) disposed in the windward region (WU) and a windward heat transfer flow path section (31U) disposed in the windward region (WU), ) a leeward heat transfer flow path section (31L) disposed in
Heat exchanger.
前記風上領域に配置される伝熱流路部の数よりも前記風下領域に配置される伝熱流路部の数の方が多い、
請求項1に記載の熱交換器。
The number of heat transfer flow path sections arranged in the leeward region is greater than the number of heat transfer flow path sections arranged in the windward region,
The heat exchanger according to claim 1.
前記冷媒を減圧させる減圧機構(25)をさらに備え、
前記風上領域に配置される伝熱流路部から前記風下領域に配置される伝熱流路部に前記減圧機構を経由して冷媒を流入させる、
請求項1または2に記載の熱交換器。
further comprising a pressure reduction mechanism (25) that reduces the pressure of the refrigerant,
causing a refrigerant to flow from a heat transfer channel section disposed in the windward region to a heat transfer channel section disposed in the leeward region via the pressure reduction mechanism;
The heat exchanger according to claim 1 or 2.
前記風上領域及び前記風下領域は、前記上側ヘッダ及び/又は前記下側ヘッダの内部に配置される仕切り部材(21p,22p)により形成される、
請求項1から3のいずれか1項に記載の熱交換器。
The windward region and the leeward region are formed by partition members (21p, 22p) arranged inside the upper header and/or the lower header,
A heat exchanger according to any one of claims 1 to 3 .
各伝熱ユニットは、少なくとも8以上の伝熱流路部を有し、少なくとも2以上の伝熱流路部が前記風上領域に配置される、
請求項1からのいずれか1項に記載の熱交換器。
Each heat transfer unit has at least eight or more heat transfer flow path sections, and at least two or more heat transfer flow path sections are arranged in the windward region.
A heat exchanger according to any one of claims 1 to 4 .
前記第1方向視で、前記伝熱ユニットの前記第2方向の端部に断熱材(I)が塗布されている、
請求項1からのいずれか1項に記載の熱交換器。
When viewed in the first direction, a heat insulating material (I) is applied to an end of the heat transfer unit in the second direction;
A heat exchanger according to any one of claims 1 to 5 .
前記伝熱ユニットには、前記第1方向視で前記第2方向の端部に前記伝熱補助部の一つである第1伝熱補助部(32g)が形成されており、
前記第1伝熱補助部は閉塞された形状である、
請求項に記載の熱交換器。
A first heat transfer auxiliary part (32g), which is one of the heat transfer auxiliary parts, is formed in the heat transfer unit at an end in the second direction when viewed in the first direction,
the first heat transfer auxiliary part has a closed shape;
The heat exchanger according to claim 6 .
請求項1からのいずれか1項に記載の熱交換器が搭載された空気調和装置。
An air conditioner equipped with the heat exchanger according to any one of claims 1 to 7 .
JP2018036981A 2018-03-01 2018-03-01 Heat exchanger Active JP7406297B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018036981A JP7406297B2 (en) 2018-03-01 2018-03-01 Heat exchanger
PCT/JP2019/006840 WO2019167839A1 (en) 2018-03-01 2019-02-22 Heat exchanger
CN201980016308.6A CN111801541A (en) 2018-03-01 2019-02-22 Heat exchanger
US16/977,284 US20210003350A1 (en) 2018-03-01 2019-02-22 Heat exchanger
EP19761287.2A EP3760957B1 (en) 2018-03-01 2019-02-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018036981A JP7406297B2 (en) 2018-03-01 2018-03-01 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2019152362A JP2019152362A (en) 2019-09-12
JP7406297B2 true JP7406297B2 (en) 2023-12-27

Family

ID=67808845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018036981A Active JP7406297B2 (en) 2018-03-01 2018-03-01 Heat exchanger

Country Status (5)

Country Link
US (1) US20210003350A1 (en)
EP (1) EP3760957B1 (en)
JP (1) JP7406297B2 (en)
CN (1) CN111801541A (en)
WO (1) WO2019167839A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240377141A1 (en) * 2023-05-10 2024-11-14 Raytheon Technologies Corporation Extruded connected microtube and heat exchanger

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139995A (en) 2011-12-05 2013-07-18 Denso Corp Heat pump cycle
JP2014137177A (en) 2013-01-16 2014-07-28 Daikin Ind Ltd Heat exchanger and refrigerator
JP2016161147A (en) 2015-02-26 2016-09-05 株式会社デンソー Refrigerant heat exchanger

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59153493U (en) * 1983-03-31 1984-10-15 三菱重工業株式会社 Heat exchanger
JPH06117790A (en) * 1992-10-06 1994-04-28 Sanden Corp Heat exchanger
JPH07305986A (en) * 1994-05-16 1995-11-21 Sanden Corp Multitubular type heat exchanger
JPH09159386A (en) * 1995-12-13 1997-06-20 Sanden Corp Multiple pipe heat exchanger
JPH10300275A (en) * 1997-04-25 1998-11-13 Daikin Ind Ltd Air-conditioning outdoor machine
JP2001091101A (en) * 1999-09-20 2001-04-06 Fujitsu General Ltd Heat exchanger for air conditioner
JP2006090636A (en) 2004-09-24 2006-04-06 Daikin Ind Ltd Small-diameter heat exchanger tube unit for small-diameter multitubular heat exchanger
JP2006322698A (en) * 2005-04-22 2006-11-30 Denso Corp Heat exchanger
JP2010117091A (en) * 2008-11-13 2010-05-27 Denso Corp Heat exchanger
JP5513093B2 (en) * 2009-12-11 2014-06-04 東芝キヤリア株式会社 Heat exchanger, refrigeration cycle equipment
JP2014137172A (en) * 2013-01-16 2014-07-28 Daikin Ind Ltd Heat exchanger and refrigerator
JPWO2016013100A1 (en) * 2014-07-25 2017-04-27 三菱電機株式会社 HEAT EXCHANGER AND AIR CONDITIONING REFRIGERATOR HAVING THE HEAT EXCHANGER
CN205505498U (en) * 2015-09-15 2016-08-24 北京旭日双圆制冷设备有限公司 Energy -efficient multichannel temperature interchanger
ES2844591T3 (en) * 2016-06-24 2021-07-22 Mitsubishi Electric Corp Refrigeration cycle device and outdoor heat exchanger used in it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013139995A (en) 2011-12-05 2013-07-18 Denso Corp Heat pump cycle
JP2014137177A (en) 2013-01-16 2014-07-28 Daikin Ind Ltd Heat exchanger and refrigerator
JP2016161147A (en) 2015-02-26 2016-09-05 株式会社デンソー Refrigerant heat exchanger

Also Published As

Publication number Publication date
CN111801541A (en) 2020-10-20
JP2019152362A (en) 2019-09-12
EP3760957A1 (en) 2021-01-06
EP3760957A4 (en) 2021-04-21
WO2019167839A1 (en) 2019-09-06
US20210003350A1 (en) 2021-01-07
EP3760957B1 (en) 2022-11-30

Similar Documents

Publication Publication Date Title
WO2013161802A1 (en) Heat exchanger and air conditioner
JP2006322698A (en) Heat exchanger
WO2017183180A1 (en) Heat exchanger
AU2012256999A1 (en) Heat exchanger
CN111788447B (en) Heat exchanger
WO2015045105A1 (en) Heat exchanger and air conditioner using same
JP5014372B2 (en) Finned tube heat exchanger and air-conditioning refrigeration system
WO2019111849A1 (en) Heat exchanger
JP7406297B2 (en) Heat exchanger
JP2006084078A (en) Thin heat transfer tube unit of thin multitubular heat exchanger
WO2017158795A1 (en) Heat exchanger and air conditioner
JP5591285B2 (en) Heat exchanger and air conditioner
JP2009145010A (en) Fin-less heat exchanger for air conditioner
JP5404571B2 (en) Heat exchanger and equipment
US11573056B2 (en) Heat exchanger, heat exchanger unit, and refrigeration cycle apparatus
JP2007183076A (en) Heat exchanger
JP2010139115A (en) Heat exchanger and heat exchanger unit
JP7100242B2 (en) Heat exchanger
JP7164801B2 (en) Heat exchanger
JP2008082619A (en) Heat exchanger
JP5815128B2 (en) Heat exchanger and air conditioner
JP2010255918A (en) Air heat exchanger
JP7006376B2 (en) Heat exchanger
WO2021024958A1 (en) Heat exchanger
JP2016169901A (en) Fin tube heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220607

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220906

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221213

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230131

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7406297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150