JP7403778B2 - 音源方向特定装置 - Google Patents
音源方向特定装置 Download PDFInfo
- Publication number
- JP7403778B2 JP7403778B2 JP2022153296A JP2022153296A JP7403778B2 JP 7403778 B2 JP7403778 B2 JP 7403778B2 JP 2022153296 A JP2022153296 A JP 2022153296A JP 2022153296 A JP2022153296 A JP 2022153296A JP 7403778 B2 JP7403778 B2 JP 7403778B2
- Authority
- JP
- Japan
- Prior art keywords
- sound source
- microphones
- microphone
- sound
- difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010445 mica Substances 0.000 description 79
- 229910052618 mica group Inorganic materials 0.000 description 79
- 101100345605 Rattus norvegicus Mill2 gene Proteins 0.000 description 60
- 238000012545 processing Methods 0.000 description 39
- 238000000034 method Methods 0.000 description 34
- 230000006870 function Effects 0.000 description 19
- 230000008569 process Effects 0.000 description 18
- 238000004364 calculation method Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 14
- 238000013461 design Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 238000005070 sampling Methods 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- UUDAMDVQRQNNHZ-UHFFFAOYSA-N (S)-AMPA Chemical compound CC=1ONC(=O)C=1CC(N)C(O)=O UUDAMDVQRQNNHZ-UHFFFAOYSA-N 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000010255 response to auditory stimulus Effects 0.000 description 3
- 238000012935 Averaging Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 1
- 230000001174 ascending effect Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
Images
Landscapes
- Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
Description
本願の発明の目的はこれに限定されず、本明細書および図面等に開示される構成の部分から奏する効果を得ることを目的とする構成についても分割出願・補正等により権利取得する意思を有する。例えば本明細書において「~できる」と記載した箇所を「~が課題である」と読み替えた課題が本明細書には開示されている。課題はそれぞれ独立したものとして記載しているものであり、この課題を解決するための構成についても単独で分割出願・補正等により権利取得する意思を有する。課題が明細書の記載から黙示的に把握されるものであっても、本出願人は本明細書に記載の構成の一部を補正または分割出願にて特許請求の範囲とする意思を有する。
図1に示すように、間隔Dabを開けて配置されたマイクロフォンMIC(Ach)(以下、MICaと記載する。),MIC(Bch)(以下、MICbと記載する。)および音源を含む平面を想定する。図1では、音源の位置(以下、音源位置と称する)から基準位置へ向かう音源方向を矢印にて示している。また、音源方向を、マイクロフォンMICa,MICbを結ぶ線分の中点を通る、マイクロフォンMICa,MICbを結ぶ線分の垂線(図1では0°と表記する。)と音源方向とのなす角の角度(以下、音源角度と称する。)である角度θにて示すとする。以下の記載において、垂線を0°線と記載する場合がある。
音が平面波であるとみなすと、音源位置からマイクロフォンMICaまでの距離と音源位置からマイクロフォンMICbまでの距離との差である距離差Ddiffは、斜辺がマイクロフォンMICa,MICbを結ぶ線分、1辺が音源方向に直交する直角三角形のもう1辺の長さである。従って、距離差Ddiffは、次の(式1)で示される。音源位置からの距離は、マイクロフォンMICbに対し、マイクロフォンMICaの方が距離差Ddiffだけ長いということになる。
Ddiff=Dab×sinθ・・・(式1)
(式1)を変形すると、角度θは次の(式2)で示される。
θ=arcsin(Ddiff/Dab)・・・(式2)
また、音速Vsを用いて、距離差Ddiffと、マイクロフォンMICaにおける音の到達時間とマイクロフォンMICbにおける音の到達時間との差である到達時間差Tdiffとの関係は、次の(式3)で示される。
Tdiff=Ddiff/Vs・・・(式3)
(式3)を変形すると、距離差Ddiffは次の(式4)で示される。
Ddiff=Vs×Tdiff・・・(式4)
(式2)に(式4)を代入すると、次の(式5)となる。
θ=arcsin(Vs×Tdiff/Dab)・・・(式5)
(式5)において、間隔Dabおよび音速Vsが既知とすれば、到達時間差Tdiffを測定などにより求めることで、角度θを算出することができる。
しかしながら、図2に示すように、マイクロフォンMICa,MICbに対し、同じ到達時間差Tdiffとなる音源方向は、角度θで示される方向と角度θ´で示される方向との2つ存在する。ここで、角度θ´は180°から角度θを減じた角度である。従って、到達時間差Tdiffだけでは、音源角度が角度θと角度θ´との何れであるかを特定することができない。マイクロフォンMICa,MICbを通る線に対し、一方の方向を正面方向、他方の方向を背面方向と称する場合、正面方向に音源があった場合、実際には、正面方向が実像、背面方向が虚像であるが、到達時間差Tdiffだけでは、何れか実像であるか区別がつかない。
つまり、マイクロフォンMICaへの音の到達時間とマイクロフォンMICbへの音の到達時間との差である到達時間差Tcaを(式5)に代入して算出される、角度θおよび180°から角度θを減じた角度θ´のうち、マイクロフォンMICaへの音の到達時間とマイクロフォンMICcへの音の到達時間との差である到達時間差TcaもしくはマイクロフォンMICbへの音の到達時間とマイクロフォンMICcへの音の到達時間との差である到達時間差Tbcに基づいて、何れか一方を音源角度であると特定することができる。以下の説明において、マイクロフォンMICa~MICcの何れの組の到達時間差であるかを区別する場合には到達時間差Tab,Tbc,Tcaと記載し、総称する場合には到達時間差Tdiffと記載する。
尚、ここでは、到達時間差Tdiffは、2つのマイクロフォンにおいて、音が到達するのに要した時間の長い方の時間から、短い方の時間を減じて算出される時間であるものとする。無論、2つのマイクロフォンにおいて、音が到達するのに要した時間の長短によれば、2つのマイクロフォンのどちらが音源に対して遠方にあるかを特定することができる。
とができる。
図3に示すように、マイクロフォンMICa~MICcの位置を頂点とする三角形ABCの垂心を通り、三角形ABCの各辺と平行な3本の線である、平行線PLab,PLbc、PLcaを境界線とする6つの領域を領域1~6と称する。ここでは、三角形ABCの垂心を基準位置とする。音源位置から基準位置へ向かう方向が音源方向であり、図3において矢印にて音源方向の一例を示している。尚、音は平面波であるとみなしているため、音源方向は、マイクロフォンMICa~MICcを含む平面上にて、任意に移動して考えることができる。マイク組MICa⇔MICbの「表」に位置する領域は領域1~3であり、「裏」に位置する領域は領域4~6である。マイク組MICb⇔MICcの「表」に位置する領域は領域3~5であり、「裏」に位置する領域は領域1,2,6である。マイク組MICc⇔MICaの組の「表」に位置する領域は領域1、5,6であり、「裏」に位置する領域は領域2~4である。従って、例えば、音源方向が領域3にあると特定されれば、マイク組MICa⇔MICbの「表」、マイク組MICb⇔MICcの「表」、マイク組MICc⇔MICaの「表」であると、効率的に特定することができる。
例えば、音源位置が垂線PLa上にある場合には、マイク組MICa⇔MICbの到達時間差Tabとマイク組MICa⇔MICcの到達時間差Tcaとは同じになり、マイク組MICb⇔MICcの到達時間差Tbcは0となる。つまり、到達時間差Tab,Tcaが最大で、到達時間差Tbcが最小となる。音源位置が垂線PLb,PLc上にある場合、同様に、到達時間差Tdiffの大きい順は決まる。
また、例えば、音源位置が平行線PLab上にある場合には、到達時間差Tbcと到達時間差Tcaとは同じになり、到達時間差Tabは到達時間差Tbcおよび到達時間差Tcaの2倍となる。つまり、到達時間差Tabが最大となり、到達時間差Tbc,Tcaが最小となる。これは、音源位置からマイクロフォンMICaまでの距離と音源位置からマイクロフォンMICbまでの距離との差である距離差DDabは辺ABの長さであり、音源位置からマイクロフォンMICbまでの距離と音源位置からマイクロフォンMICcまでの距離との差である距離差DDbcは頂点Bから辺ABの中点までの距離であり、音源位置からマイクロフォンMICcまでの距離と音源位置からマイクロフォンMICaまでの距離との差である距離差DDcaは頂点Aから辺ABの中点までの距離であるからである。音源位置が平行線PLbc,PLca上にある場合、同様に、到達時間差Tdiffの大きい順は決まる。以下の説明において、マイクロフォンMICa~MICcの何れの組の距離差であるかを区別する場合には距離差DDab,DDbc,DDcaと記載し、総称する場合には距離差Ddiffと記載する。
次に、音源位置が線上にない場合について、音源位置が領域R2aにあり、音源方向と垂線PLcとのなす角が角度θである場合を例に、図5を用いて説明する。尚、音源位置は領域R2aにあるため、角度θは30°未満である。
する辺BDである直角三角形である。また、直角三角形BCFは、斜辺が辺BCであり、一辺が音源方向と直交する辺FBである直角三角形である。また、直角三角形CAEは、辺CAが斜辺であり、一辺が音源方向と直交する辺AEである直角三角形である。
ここで、角DBAの角度はθ、角FBCの角度は(60°+θ)、角CAEの角度は(60°-θ)となる。距離差DDabは直角三角形ABDの辺ADの長さである。また、距離差DDbcは直角三角形BCFの辺CFの長さである。また、距離差DDcaは直角三角形CAEの辺ECの長さである。
マイクロフォンMICb,MICc間の間隔を間隔Dbc、マイクロフォンMICc,MICa間の間隔を間隔Dcaとすると、距離差DDabはDab×sinθ、距離差DDbcはDbc×sin(60+θ)、距離差DDcaはDca×sin(60-θ)である。ここで、θ<30°であるので、sinθ<sin(60-θ)<sin(60+θ)であり、Dab=Dbc=Dcaであるので、Dab×sinθ<Dca×sin(60-θ)<Dbc×sin(60+θ)である。つまり、DDab<DDca<DDbcとなる。
他の領域についても同様に、距離差Ddiffの大きい順は決まる。また、距離差Ddiffの大きい順とは、到達時間差Tdiffの大きい順と同じであるので、各々の領域における到達時間差Tdiffの大きい順は図6に示すようになる。図6では、各領域において、3つの到達時間差Tdiffを大きい順に記載している。尚、上記したように、音が到達するのに要した時間の長短によれば、2つのマイクロフォンのうち、どちらが音源に対して遠方にあるかを特定することができる。図6では、音源より遠方のマイクロフォンを括弧書きで示している。例えば、領域R1aにおいて、最大の到達時間差Tdiffとなるのは到達時間差Tcaであり、音源位置より遠方のマイクロフォンはマイクロフォンMICcであることを示している。
以上、三角形ABCが正三角形である場合を例に、各領域における距離差Ddiffの大きい順について説明したが、三角形ABCが正三角形ではなく、垂心が三角形ABCで囲まれた領域の内側にある、すべての角が90°以下である三角形である場合にも、同様に各領域における距離差Ddiffの大きい順は自ずと決まる。すべての角が90°以下である三角形とは、例えば、直角三角形、鋭角三角形などである。尚、すべての角が90°以下である三角形に該当しない三角形、鈍角三角形の場合には、距離差Ddiffの大きい順は図6に示す通りにはならない。
Ddiff´=(Dab×sinθ)´=cosθ・・・(式6)
従って、図7に示すように、例えば、音源角度が角度θの場合の距離差Ddiffと、角度(θ+Δθ)の場合の距離差Ddiffとの差は、角度θが90°に近づくほど微小となる。このため、角度θが90°に近づくほど、距離差Ddiffの測定誤差の影響を大きく受けた角度θが算出され易くなり、算出される角度θの精度は悪くなる。尚、図7は、図1と同様の図であり、音源方向をマイクロフォンMICa,MICbを結ぶ線分の中点を通る、マイクロフォンMICa,MICbを結ぶ線分の垂線(図7では0°と表記する。)と音源方向とのなす角の角度である角度θにて示した図である。ここで、角度θが90°に近づくとは、対象のマイク組MICa⇔MICbにおいて、距離差Ddiffおよび到達時間差Tdiffが最大に近づくということである。
以上を鑑み、3つのマイクロフォンのうちの2つのマイクロフォンを1組として各組から算出される3つの到達時間差Tdiffの各々に基づいて合計3つの角度θを算出することはできるが、3つの到達時間差Tdiffのうち最大の到達時間差Tdiffは角度θの算出から除外することで、音源方向を示す角度θの精度を上げることができることを発明者らは見出した。
θの算出に用いるのであれば、音源方向が12の領域(図6参照)の何れにあるかを特定する必要はなく、音源方向が最大の到達時間差Tdiffで特定される6領域の何れにあるかを特定すれば足りる。
最大の到達時間差Tdiffで特定される6領域とは、図8に示す、領域R1a、R1bを含む領域R1、領域R2a、R2bを含む領域R2、領域R3a、R3bを含む領域R3、領域R4a、R4bを含む領域R4、領域R5a、R5bを含む領域R5、領域R6a、R6bを含む領域R6の6領域である。図8に示すように、領域R1~R6の各々における最大の到達時間差Tdiffは、それぞれ、到達時間差Tca,Tbc,Tab,Tca,Tbc,Tabである。
例えば、到達時間差Tdiffが最大となる組のマイクロフォンがマイク組MICa⇔MICbであり、遠方のマイクロフォンがマイクロフォンMICaである場合、音源方向は領域R3にあると特定される。図8における領域R3は、図3における領域3,4を跨ぐ領域である。従って、音源方向が、領域R3であると特定されれば、マイク組MICa⇔MICbにおいては音源方向が表裏の何れかであるかを特定することができないが、マイク組MICb⇔MICcにおいては音源方向が「表」にあり、マイク組MICc⇔MICaにおいては音源方向が「裏」にあると特定することができる。因みに、到達時間差Tdiffが2番目あるいは3番目に大きい組がわかったとしても、この組を除いた残り2組の表裏の特定をすることはできない。
以上を鑑み、発明者らは、3つのマイクロフォンを用いた音源方向の特定において、次の(2)の構成が良いことを見出した。
とのなす角度である音源角度を算出することを特徴とする。このようにすると、音源方向を精度良く特定することができる。
例えば、一方のマイクロフォンに入る波に対して位相差が-1/2πである波が、他方のマイクロフォンに入る場合、実際に他方のマイクロフォンに入る波とは1/4周期遅れた波なのであるが、3/4周期早い波も入る可能性があるため、電気信号に基づき、位相差が-1/2πであるのか+3/2πであるのか特定することはできない。
そこで、マイクロフォン間距離を位相差の算出に使用する周波数の半波長分とすると、一方のマイクロフォンに入る波に対し、他方のマイクロフォンに入る波は、1/2周期進んだ波から1/2周期遅れた波までに限定される。上記した、一方のマイクロフォンに入る波に対して位相差が-1/2πである波が他方のマイクロフォンに入る場合、他方のマイクロフォンに入る波は1/4周期遅れた波であり、位相差は-1/2πであると特定することができるようになる。
具体的な数値を挙げると、例えば、音速を340m/s、マイクロフォン間距離を57mmとすれば、3kHz以下の周波数の波に対し、位相差を特定することができる。また、マイクロフォン間距離を170mmとすれば、1kHz以下の周波数の波に対し、位相差を特定することができる。
発明者らは、音源方向を精度良く特定するのに、音源位置を特定するのに用いる周波数範囲を1kHz以下とすると良く、3kHz以下とすると特に良いことを見出した。上記のように、1kHz以下の周波数範囲とすれば、少なくとも基本周波数および第1フォルマント周波数の2つの周波数成分が含まれ、さらに範囲を広げ、3kHz以下の周波数範囲とすれば、基本周波数、第1フォルマント周波数、および第2フォルマント周波数の3つの周波数成分が含まれるからである。また、3kHzより高い周波数を使用しなくても、音源を精度良く特定することができるからである。
上記のように、1kHz以下の周波数の位相差を算出するには、マイクロフォン間距離を170mmとすれば良く、3kHz以下の周波数の位相差を算出するには、マイクロフォン間距離を57mmとすれば良い。マイクロフォン間距離を57mm以上170mm以下の範囲とすると、位相差を特定できる周波数の上限値が1kHz~3kHzとなる。従って、マイクロフォン間距離を57mm以上170mm以下の範囲とすると、少なくとも基本周波数、第1フォルマント周波数を位相差の算出に使用することができる。また、位相差の算出に使用する周波数の上限を第2フォルマント周波数程度とすることで、低い周波数における位相差の精度を良くすることができる。このように、人声に対し、音源方向を精度良く特定することができる。
以降の少なくとも1つの発明の少なくとも一部の構成を加えた発明とするとよい。また、(1)から(6)に示した発明から任意の構成を抽出し、抽出された構成を組み合わせてもよい。本願の出願人は、これらの構成を含む発明について権利を取得する意思を有する。
このようにすれば、3つのマイクの位置を含む平面に垂直な面であって前記2つのマイクの位置を含む面によって区分される2つの領域のうちのいずれの領域側に音源が存在するかを確定でき、所定の基準方向と音源の方向とのなす角度を求めることができる。
所定の基準方向は例えば3つのマイクの位置を含む平面内の所定の方向とするとよく、音源の方向は3つのマイクの位置を含む平面内の方向(例えば3次元ベクトルの当該平面内の成分)とするとよい。
前記音源方向特定機能で用いる前記別のマイクは1つのマイクとしてもよいが複数のマイクとしてもよい。
このようにすれば、3つのマイクの位置を含む平面に垂直な面であって前記2つのマイクの位置を含む面によって区分される2つの領域のうちのいずれの領域側に音源が存在するかをより確実により精度よく確定できる。例えば正五角形ABCDEの頂点にマイクAからEを各々配置し、マイクAとマイクBとを角度算出機能で用いる前記2つのマイクとし、マイクCとマイクDとを音源方向特定機能で用いる別のマイクとするとよい。
このようにすればマイクを少なくとも1つ追加するだけで3つのマイクの位置を含む平面に垂直な面であって前記2つのマイクの位置を含む面によって区分される2つの領域のうちのいずれの領域側に音源が存在するかをより確実に精度よく確定できる。例えば正三角形XYZの頂点にマイクXからZを各々配置し、マイクXとマイクYとを角度算出機能で用いる前記2つのマイクとし、マイクZを「別の1つのマイク」とし、「前記2つのマイクのうちいずれか1つのマイク」をマイクXとするとよい。
このようにすれば、音源の位置が変化しても、より確実に、より精度よく、3つのマイクの位置を含む平面に垂直な面であって前記2つのマイクの位置を含む面によって区分される2つの領域のうちのいずれの領域側に音源が存在するかを確定でき、所定の基準方向と音源の方向とのなす角度を求めることが可能となる。
特に所定のルールは、前記複数のマイク各々に検出される音に基づくルールとするとよく、前記複数のマイク各々に検出される音の比較結果のルールとするとよい。例えば前記複数のマイク各々に検出される音の位相のずれなど、到達時間の差に基づくルールとするとよい。
このようにすれば、音源の位置がどのような位置になっても、角度算出機能による基準方向と音源の方向とのなす角度の算出精度が大幅に低くなってしまうことを防止できる。
(F)前記所定のルールは、前記複数のマイクのうちから、最も音の到達時間差の大きいマイクのペアである基準ペアの2マイクの少なくともいずれか一方を前記音源方向特定機能で用いる前記別のマイクとするルールとするとよい。
(G)前記音源方向特定機能は、前記複数のマイクを頂点とする多角形の頂点を結ぶ辺をなすマイクのペアのうち、最も音の到達時間差の大きいマイクのペアである基準ペアの2マイク以外がなす前記多角形の各辺に対して当該基準ペアの2マイクのなす辺が前記基準ペアの音の到達時間の前から後に向かう方向に交差する方向が、各辺について当該多角形の内側から外側であるか外側から内側であるかの性質に基づいて、当該各辺のうちの少なくとも1つの辺を形成する前記2つのマイクの位置を含む面によって区分される2つの領域のうちのいずれの領域側に前記音源が存在するかを特定するとよい。
このようにすれば、音源の位置がどのような位置になっても、より確実に2つの領域のうちのいずれの領域側に音源が存在するかを特定することができる。例えば三角形ABCの頂点位置に各々のマイクを設け、マイクBとマイクCの間が最も音の到達時間差の大きいマイクのペアとした場合、辺BCについてはA→Bと向かう辺ABについては三角形ABCの外側から内側へ向かう方向となる幾何学的な性質がある。
このようにすれば、3つのマイクで、音源がいずれの領域にあるかをより確実に特定することができる。
このようにすれば、三組のペアの精度が平等となり、方向による偏りが少ない条件で360°をカバーできる。したがって、装置の全周のいずれの方向から音声が到達したかを検
知する装置において極めて優れた効果を発揮する。
部に音が抜け、マイクロフォンMICa~MICcは、それぞれ、子基板12a~12c(図11)の後ろからも音を拾うことができる。可動部3は可動部筐体31および表示装置32などを備える。表示装置32は、例えばタッチパネル、液晶ディスプレイなどで実現される。可動部筐体31は一部が平面状に切り欠かれた球状である。表示装置32は、可動部筐体31の平面状の部分に取り付けられている。可動部3は、モータ(不図示)を駆動源として、固定部下筐体21の底面23に垂直なZ軸回りに360°回転可能となっている。ロボット1は、音が発せられると、例えば人などの音を発した音源に表示装置32が対面するように可動部3を回転させる。音源方向特定装置10は、可動部3を回転させるための、音源の方向を特定する装置である。
絶対位相=ArcTan[虚数値,実数値]
尚、ここでの絶対位相は、サンプルアンドホールド回路SHa~SHcがサンプリングした実時間データの、サンプルアンドホールド回路SHa~SHcが最初にホールドした開始時間を基準としたものである。また、複素数データの範囲は複素数平面における4象限であるため、算出される絶対位相の範囲は-π~+πとなる。
マイクロフォンMICa,MICbにおいて、0°線に対して、位相差を算出する際に、減じる方のチャンネルであるチャンネルAchのマイクロフォンMICaのない側をプラス、マイクロフォンMICaのある側をマイナスと定義する。つまり、位相差がプラスであればマイクロフォンMICaがマイクロフォンMICbよりも音源に対して遠方にあり、一方、位相差がマイナスであればマイクロフォンMICbがマイクロフォンMICaよりも音源に対して遠方にあることになる。
また、他の組についても同様に、定義する。即ち、マイクロフォンMICb,MICcにおいて、0°線に対して、位相差を算出する際に、減じる方のチャンネルであるチャンネルBchのマイクロフォンMICbのない側をプラス、マイクロフォンMICbのある側をマイナスと定義する。マイクロフォンMICc,MICaにおいて、0°線に対して、位相差を算出する際に、減じる方のチャンネルであるチャンネルCchのマイクロフォンMICcのない側をプラス、マイクロフォンMICcのある側をマイナスと定義する。以下の説明において、音源角度θを方向値と記載する場合がある。
各組で1つの到達時間差Tdiffを算出後、マイコン41は到達時間差Tdiff、音速、(
式4)から、距離差Ddiffを算出する。ここでは、音速を340m/sとして算出するものとする。尚、ここでは、位相差のプラス・マイナスの極性を到達時間差Tdiffおよび距離差Ddiffにも踏襲させるものとする。従って、例えば、マイクロフォンMICa,MICbにおいて、距離差DdiffがプラスであればマイクロフォンMICaが遠方にあり、距離差DdiffがマイナスであればマイクロフォンMICbが遠方にあることを示すこととなる。
例えば、表51の1行目は、距離差Ddiffが最大のペアがチャンネルAch,Cchのペアであり、チャンネルAchのマイクロフォンMICaが音源に対して遠方である場合について示されている。この場合とは、図8における領域R4に音源方向が属する場合であり、音源方向はマイクロフォンMICb,MICcのペアの表、マイクロフォンMICa,MICbのペアの裏に位置するため、表51においても、「Bch-Cchの表」および「Cch-Achの裏」に「○」が記されている。また、この場合、上記したように、チャンネルAch,Cchのペアの距離差DDcaから算出される音源角度の精度は悪い為、マイコン41はチャンネルAch,Cchのペアの表・裏いずれの側も音源角度の算出には採用しない。このため、表51では、「Ach-Cchの表」、「Ach-Cchの裏」の何れにも「-」が記されている。
の音源角度は、それぞれ、180°-θca、120°+θabとなる。
他方式として、指向性マイクフォロンを複数用い、その音量差、もしくは音量比から音源方向を求める方式がある。この他方式では、音源の位置検出の精度は、マイクロフォンの指向性の性能に依存されてしまう。この点、本実施形態では、無指向性マイクロフォンを使用し、指向性の性能に依存されない。また、この他方式では、例えば10個程度の指向性マイクフォロンが必要とされるが、本実施形態では、3個のマイクロフォンで、音源方向を特定することができる。また、この他方式では、周囲環境の影響を受け易い。例えば周りに壁などがあると、音が壁に反射するため、マイクロフォンは間接音を拾ってしまう。このため、複数のマイクロフォンが拾う音の互いのレベル差が小さくなってしまう。この点、本実施形態では、音量ではなく、位相で見ているので、求める音源角度を高い分解能、精度とすることができる。
音源方向特定装置10は、正三角形ABCの頂点に配置された3つのマイクロフォンMICa~MICcと、音源から3つのマイクロフォンの各々までの音の到達時間差Tdiffに基づき、音源の位置を、正三角形ABCを含む平面に垂直な方向に沿って正三角形ABCを含む平面に投影した位置から正三角形ABCを含む平面の正三角形ABCで囲まれた領域の内側にある基準位置へ向かう音源方向を特定するマイコン41とを備える。これにより、音源方向特定装置10は3つのマイクロフォンMICa~MICcで音源方向を特定することができる。また、3つのマイクロフォンMICa~MICcは正三角形ABCの頂点に配置されるため、音源角度θを導出するための演算を簡素にすることができる。
度良く特定することができる。
例えば、上記では、マイクロフォンMICa~MICcは正三角形ABCの頂点の位置に配置されると説明したが、これに限定されない。正三角形ではなく、すべての角が90°以下である三角形であっても良い。
本願発明は上述した実施の形態に記載の構成に限定されない。上述した各実施の形態や変形例の構成要素は任意に選択して組み合わせて構成するとよい。また各実施の形態や変形例の任意の構成要素と,発明を解決するための手段に記載の任意の構成要素または発明を解決するための手段に記載の任意の構成要素を具体化した構成要素とは任意に組み合わせて構成するとよい。これらについても本願の補正または分割出願等において権利取得する意思を有する。
また,意匠出願への変更出願により,全体意匠または部分意匠について権利取得する意思を有する。図面は本装置の全体を実線で描画しているが,全体意匠のみならず当該装置の一部の部分に対して請求する部分意匠も包含した図面である。例えば当該装置の一部の部材を部分意匠とすることはもちろんのこと,部材と関係なく当該装置の一部の部分を部分意匠として包含した図面である。当該装置の一部の部分としては,装置の一部の部材としても良いし,その部材の部分としても良い。全体意匠はもちろんのこと,図面の実線部分のうち任意の部分を破線部分とした部分意匠を,権利化する意思を有する。
10 音源方向特定装置
41 マイコン
MICa,MICb,MICc マイクロフォン
Claims (4)
- 複数のマイクロフォンが集音した音声を記録する機能と、
前記複数のマイクロフォンが集音した音声に基づき音源方向を特定し、特定した音源方向を記録する機能を備え、
前記複数のマイクロフォンは3つのマイクロフォンであり、
3つのマイクロフォンは三角形の頂点に配置され、
音源から前記3つのマイクロフォンの各々までの音の到達時間の差に基づき前記音源方向を特定し、
前記3つのマイクロフォンが収納された筐体の内部は音が抜ける構造であり、前記3つのマイクロフォンは、それぞれ、後ろからも音を拾う構成としたこと
を特徴とするカメラ。 - 前記三角形の頂点に配置された3つのマイクロフォンはいずれも無指向性のマイクロフォンとしたこと
を特徴とする請求項1に記載のカメラ。 - 前記3つのマイクロフォンの各々が出力する3つの電気信号のうちの2つの電気信号を1組として各組から算出される位相差に基づき、前記到達時間の差を算出する機能を備えたこと
を特徴とする請求項1または2に記載のカメラ。 - 前記複数のマイクロフォンが集音した音声に基づき音源方向を特定し、特定した音源方向にカメラを向ける機能を備えること
を特徴とする請求項1から3のいずれかに記載のカメラ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022153296A JP7403778B2 (ja) | 2018-01-16 | 2022-09-27 | 音源方向特定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018004926A JP7154530B2 (ja) | 2018-01-16 | 2018-01-16 | 音源方向特定装置 |
JP2022153296A JP7403778B2 (ja) | 2018-01-16 | 2022-09-27 | 音源方向特定装置 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018004926A Division JP7154530B2 (ja) | 2018-01-16 | 2018-01-16 | 音源方向特定装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022180571A JP2022180571A (ja) | 2022-12-06 |
JP7403778B2 true JP7403778B2 (ja) | 2023-12-25 |
Family
ID=67397824
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018004926A Active JP7154530B2 (ja) | 2018-01-16 | 2018-01-16 | 音源方向特定装置 |
JP2022153296A Active JP7403778B2 (ja) | 2018-01-16 | 2022-09-27 | 音源方向特定装置 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018004926A Active JP7154530B2 (ja) | 2018-01-16 | 2018-01-16 | 音源方向特定装置 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7154530B2 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011232238A (ja) | 2010-04-28 | 2011-11-17 | Nidec Copal Corp | 音源方向推定装置 |
JP2012129873A (ja) | 2010-12-16 | 2012-07-05 | Chubu Electric Power Co Inc | 指定領域からの伝播音の再生方法とその装置 |
KR101526858B1 (ko) | 2014-11-12 | 2015-06-17 | 주식회사 엘리소프트 | 감시 대상을 음원 인식방법으로 추적할 수 있는 방범용 cctv 시스템 및 그 방법 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59105575A (ja) * | 1982-12-08 | 1984-06-18 | Matsushita Electric Ind Co Ltd | 音方向検出方式 |
US5095467A (en) | 1990-09-14 | 1992-03-10 | Alliant Techsystems Inc. | Target tracking system for determining bearing of a target |
JP3572849B2 (ja) * | 1997-02-14 | 2004-10-06 | 富士ゼロックス株式会社 | 音源位置計測装置、及びカメラ撮影制御装置 |
JPH10253743A (ja) * | 1997-03-07 | 1998-09-25 | Oki Tec:Kk | 話者位置推定方法 |
JP2000035474A (ja) | 1998-07-17 | 2000-02-02 | Fujitsu Ltd | 音源位置検出装置 |
US6185152B1 (en) * | 1998-12-23 | 2001-02-06 | Intel Corporation | Spatial sound steering system |
JP2010175431A (ja) | 2009-01-30 | 2010-08-12 | Nippon Telegr & Teleph Corp <Ntt> | 音源方向推定装置とその方法と、プログラム |
JP6491863B2 (ja) | 2014-11-28 | 2019-03-27 | 株式会社熊谷組 | 音源方向推定装置、及び、音源推定用画像作成装置 |
-
2018
- 2018-01-16 JP JP2018004926A patent/JP7154530B2/ja active Active
-
2022
- 2022-09-27 JP JP2022153296A patent/JP7403778B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011232238A (ja) | 2010-04-28 | 2011-11-17 | Nidec Copal Corp | 音源方向推定装置 |
JP2012129873A (ja) | 2010-12-16 | 2012-07-05 | Chubu Electric Power Co Inc | 指定領域からの伝播音の再生方法とその装置 |
KR101526858B1 (ko) | 2014-11-12 | 2015-06-17 | 주식회사 엘리소프트 | 감시 대상을 음원 인식방법으로 추적할 수 있는 방범용 cctv 시스템 및 그 방법 |
Also Published As
Publication number | Publication date |
---|---|
JP2019124570A (ja) | 2019-07-25 |
JP2022180571A (ja) | 2022-12-06 |
JP7154530B2 (ja) | 2022-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ishi et al. | Evaluation of a MUSIC-based real-time sound localization of multiple sound sources in real noisy environments | |
TWI556654B (zh) | 用以推衍方向性資訊之裝置與方法和系統 | |
Sasaki et al. | Multiple sound source mapping for a mobile robot by self-motion triangulation | |
KR20130137020A (ko) | 가청 사운드 및 초음파를 이용한 소스 정위를 위한 시스템들, 방법들, 장치, 및 컴퓨터 판독가능 매체들 | |
Nakadai et al. | Robust tracking of multiple sound sources by spatial integration of room and robot microphone arrays | |
Gala et al. | Realtime active sound source localization for unmanned ground robots using a self-rotational bi-microphone array | |
Nguyen et al. | Multilevel B-splines-based learning approach for sound source localization | |
JP6977448B2 (ja) | 機器制御装置、機器制御プログラム、機器制御方法、対話装置、及びコミュニケーションシステム | |
US8416642B2 (en) | Signal processing apparatus and method for removing reflected wave generated by robot platform | |
Martinson et al. | Auditory evidence grids | |
Thakur et al. | Sound source localization of harmonic sources in entire 3D space using just 5 acoustic signals | |
JP7403778B2 (ja) | 音源方向特定装置 | |
Bechler et al. | Considering the second peak in the GCC function for multi-source TDOA estimation with a microphone array | |
JP2006194700A (ja) | 音源方向推定システム、音源方向推定方法及び音源方向推定プログラム | |
Sewtz et al. | Robust MUSIC-based sound source localization in reverberant and echoic environments | |
Novoa et al. | Weighted delay-and-sum beamforming guided by visual tracking for human-robot interaction | |
KR20090128221A (ko) | 음원 위치 추정 방법 및 그 방법에 따른 시스템 | |
Martinson et al. | Robotic discovery of the auditory scene | |
Liu et al. | Azimuthal source localization using interaural coherence in a robotic dog: modeling and application | |
Su et al. | Acoustic imaging using a 64-node microphone array and beamformer system | |
Cirillo et al. | Sound mapping in reverberant rooms by a robust direct method | |
Sledevič et al. | An evaluation of hardware-software design for sound source localization based on SoC | |
JP2006304124A (ja) | 音源方向確定装置および音源方向確定方法 | |
Brian | Auditory occupancy grids with a mobile robot | |
Su et al. | Real-time sound source localisation for target tracking applications using an asynchronous microphone array |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220929 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20221003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230801 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230929 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231205 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7403778 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |