JP7403743B2 - エンジンの燃焼状態予測方法 - Google Patents
エンジンの燃焼状態予測方法 Download PDFInfo
- Publication number
- JP7403743B2 JP7403743B2 JP2020113904A JP2020113904A JP7403743B2 JP 7403743 B2 JP7403743 B2 JP 7403743B2 JP 2020113904 A JP2020113904 A JP 2020113904A JP 2020113904 A JP2020113904 A JP 2020113904A JP 7403743 B2 JP7403743 B2 JP 7403743B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- combustion
- engine
- cylinder
- calculation step
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 title claims description 254
- 238000000034 method Methods 0.000 title claims description 33
- 238000004364 calculation method Methods 0.000 claims description 35
- 230000008859 change Effects 0.000 claims description 22
- 230000010354 integration Effects 0.000 claims description 8
- 239000010410 layer Substances 0.000 description 49
- 230000001052 transient effect Effects 0.000 description 28
- 238000012545 processing Methods 0.000 description 27
- 230000020169 heat generation Effects 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 11
- 238000007906 compression Methods 0.000 description 10
- 230000006835 compression Effects 0.000 description 9
- 239000000446 fuel Substances 0.000 description 9
- 239000000498 cooling water Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000003111 delayed effect Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000001364 causal effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005315 distribution function Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 238000012105 stratification Analysis Methods 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0261—Controlling the valve overlap
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0203—Variable control of intake and exhaust valves
- F02D13/0207—Variable control of intake and exhaust valves changing valve lift or valve lift and timing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/025—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures
- F02D35/026—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining temperatures inside the cylinder, e.g. combustion temperatures using an estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D35/00—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
- F02D35/02—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
- F02D35/028—Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the combustion timing or phasing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/0025—Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
- F02D41/0047—Controlling exhaust gas recirculation [EGR]
- F02D41/006—Controlling exhaust gas recirculation [EGR] using internal EGR
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/004—Cylinder liners
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F1/00—Cylinders; Cylinder heads
- F02F1/24—Cylinder heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02P—IGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
- F02P5/00—Advancing or retarding ignition; Control therefor
- F02P5/04—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
- F02P5/145—Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
- F02P5/15—Digital data processing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D13/00—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
- F02D13/02—Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
- F02D13/0273—Multiple actuations of a valve within an engine cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1412—Introducing closed-loop corrections characterised by the control or regulation method using a predictive controller
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1401—Introducing closed-loop corrections characterised by the control or regulation method
- F02D2041/1433—Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
- F02D2041/1437—Simulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/021—Engine temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3035—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Description
また、本発明では、筒内を分割した既燃部、未燃部及び壁面層部における状態変化に基づき、最低温部としての壁面層部の温度を演算する。このような本発明によれば、過渡運転時におけるエンジンの燃焼状態、具体的には燃焼開始時期及び燃焼終了時期を精度良く予測することができる。特に、本発明によれば、筒内における壁面層部での冷却損失などを適切に考慮に入れることで、過渡運転時での燃焼終了時期を精度良く予測することができる。
このように構成された本発明によれば、既燃部、未燃部及び壁面層部における燃焼進行による圧力変化に応じた体積変化に基づき、最低温部としての壁面層部の温度を精度良く演算することができる。
このように構成された本発明によれば、最低温部の温度をLivengood-Wu積分することで、燃焼終了時期を的確に演算することができる。
エンジンの燃焼前においては筒内の中心部が最高温部になることが多いことから、上記の本発明では、筒内の中心部の温度を最高温部の温度として求めることができる。
このように構成された本発明によれば、燃焼前の筒内温度と筒内圧力の変化とに基づき最高温部の温度を演算し、この最高温部をLivengood-Wu積分することで、燃焼開始時期を的確に演算することができる。
このように構成された本発明によれば、少なくとも内部EGRガス量に起因する着火遅れを演算し、この着火遅れを加味することで、燃焼開始時期及び燃焼終了時期をより精度良く演算することができる。
まず、図1を参照して、本発明の実施形態によるエンジンの燃焼状態予測方法の実行主体の一例であるコンピュータ装置について説明する。図1に示すように、コンピュータ装置10は、利用者などにより情報が入力される入力装置1と、種々の情報を処理する処理装置3と、情報を出力する出力装置5と、を有する。
次に、本発明の実施形態における基本概念について説明する。従来から、予混合圧縮着火(HCCI:Homogeneous-Charge Compression Ignition)燃焼は、高希釈による高熱効率化が車両走行中のCO2排出抑制に貢献するポテンシャルを有することが知られている。しかしながら、NOx排出の観点から、HCCI燃焼の適用範囲は部分負荷に限定され、高負荷では量論混合比で火花点火(SI:Spark Ignition)燃焼が行われている。HCCI燃焼とSI燃焼では、同負荷であってもエンジン筒内の作動ガス量が大きく異なる。また、HCCI燃焼の燃焼速度は、状態量やガス組成に強く影響される。一方、車両の走行中は、エンジン回転数および負荷が時々刻々と変化する。変化する運転環境の中で、HCCI燃焼の利点を最大限に発揮するには、即時に適した燃焼形態を判断し、作動ガスを制御するデバイス操作が求められる。よって、燃焼及びデバイス特性を加味した制御開発が重要である。
次に、本願発明者らがモデル構築の前に行った、影響因子抽出のための実験及び解析について説明する。
本願発明者らは、試験用単気筒エンジンを用いて、燃焼の基礎特性を調査した。使用したエンジン諸元を表1に示す。圧縮比は17.0であり、吸気弁及び排気弁は、油圧駆動動弁系により任意のバルブプロフィールを設定できるようになっている。過渡影響として壁温部の変化に着目するため、エンジンのシリンダヘッド及びシリンダライナにおける多数の位置(シリンダヘッドには14箇所、シリンダライナには6箇所)に熱電対が挿入されて、壁面から1mmの部分の温度が計測された。
次に、本願発明者らは、定常運転と過渡運転の相違を抽出するため、単気筒エンジンで模擬負荷過渡運転を実施した。回転数が2000rpmに固定され、IMEP100kPaの定常運転中に、燃料噴射量がIMEP400kPaの量に増量された。図5は、この模擬過渡運転において使用されたバルブプロフィールを示す。グラフG11、G13に示すバルブプロフィールは、IMEP100kPa、400kPaの定常セッティングである。燃料噴射量が増量される最初のサイクルのみ、グラフG12に示すバルブプロフィールが使用された。IMEP100kPaの方がIMEP400kPaよりも排気エネルギーが低く、IMEP400kPaの定常運転における内部EGR量では、筒内温度不足により失火する。そこで、グラフG12に示すバルブプロフィールをIMEP100kPaとIMEP400kPaとの間に挟むことで、内部EGR量を一時的に増量し、HCCI燃焼の継続が図られた。なお、冷却水温度は90℃で一定である。
上述したように、エンジン実験においては、エンジン回転数が変化しても、燃焼期間はほとんど変化しなかった。そこで、本願発明者らは、所定のマルチゾーンエンジンモデルを用いて挙動の再現を試みた。ボア中心軸の同心円状に体積均等となるように筒内の領域が100分割され、壁面熱損失割合が各領域に与えられた。3D-CFD計算から熱流束分布を事前に求めることで、壁面熱損失割合が各領域に割り当てられた。マルチゾーンエンジンモデルではWoschni式による熱伝達率、筒内平均ガス温度と壁温との差から求められる総熱損失量を各領域に与えられた割合が適用され考慮される。反応モデルとして、S5R(三好 明ほか:ガソリンサロゲート詳細反応機構の構築、自動車技術会論文、Vol.48, No.5, pp.1021-1026 (2017)参照)が使用された。
本願発明者らは、上記のようにして得られた知見に基づき、HCCI燃焼のモデルを構築した。
本実施形態に係るモデルでは、筒内の最高温部及び最低温部における圧縮過程から膨張過程における状態量変化を求めて、それぞれにLivengood-Wu積分(Livengood, J.C., and Wu, P.C.: “Correlation of AutoignitionPhenomenon in Internal Combustion Engines and Rapid Compression Machines”, Proceedings of Fifth International Symposium on Combustion, p.347, Reinhold, (1955)参照)を適用することで、燃焼開始時期及び燃焼終了時期を規定するコンセプトとした。なお、これら燃焼開始時期と燃焼終了時期との間の期間が燃焼期間となる。
本実施形態に係るモデルでは、燃焼開始時期及び燃焼終了時期の予測にLivengood-Wu積分を用いる。本実施形態では、過渡を含めた幅広い運転範囲で内部EGR量を変えながらモデルを運用することを想定し、影響因子を加味して、着火遅れτingを式(2)より求める。この着火遅れτingのLivengood-Wu積分値Iは、式(3)より表される。
次に、図11を参照して、エンジンの筒内を分割した3つの領域、具体的には既燃部、未燃部及び壁面層部について説明する。図11に示すように、燃焼開始前は、筒内には未燃部UB及び壁面層部LYの2つの領域しか存在しないが、燃焼開始と同時に既燃部BNが発生し、その結果、筒内には既燃部BN、未燃部UB及び壁面層部LYの3つの領域が存在することとなる。
次に、図13は、上述したモデルに基づいた、本実施形態に係るエンジンの燃焼状態予測方法を示すフローチャートである。このフローチャートは、コンピュータ装置10の処理装置3によって実行される。より詳しくは、処理装置3内のマイクロプロセッサ3aによって、メモリ3bに記憶されたプログラムに基づき、所定の周期で繰り返し実行される。
次に、上記した本実施形態に係るエンジンの燃焼状態予測方法による作用及び効果について説明する。具体的には、本実施形態に係るモデルを用いて、定常運転及び過渡運転のシミュレーションを実施した結果を説明する。
図14は、エンジン回転数が2000rpm及び4000rpmであるときに、初期温度を変化させて予測したMFB10に対する燃焼期間の関係を示す。図14より、燃焼開始時期(着火時期)が遅れるにつれて燃焼期間が長くなり、特に燃焼開始時期が-2deg,ATDCより遅角側では、燃焼開始時期に対する燃焼期間の変化量(傾き)が大きくなることがわかる。また、図14の結果では、エンジン回転数が変わっても同等の値が得られているので、本実施形態によれば、図7に示したマルチゾーンエンジンモデルによる計算結果と同様な挙動を再現することができる。
図15は、吸気弁閉弁時の筒内温度を固定し、燃焼室壁温をパラメータとしたときに予測されたMFB10、MFB50、MFB90それぞれの燃焼時期を示す。図15より、壁温変化に対するMFB10の変化は軽微であるが、壁温変化に対するMFB90の変化が顕著であることがわかる。これより、壁温の低下により壁面熱損失が増大し、壁面層部LYの温度が低下することにより、この部分の燃焼時期が遅くなったことで、上記の挙動が表現されたのである。したがって、本実施形態によれば、低壁温時の燃焼が予測できることから、暖機運転中のHCCI運転の可否判定をモデル上で行うことが可能になる。
次に、負荷過渡操作の再現計算を実施した結果について説明する。ガス交換過程を含む所定のエンジンモデルを使用した。吸気弁閉弁時の筒内ガス組成、温度、圧力および燃焼室壁温を本モデルの入力とし、これにより予測された燃焼開始時期及び燃焼終了時期をモデルに適用した。図16は、本実施形態による過渡条件の予測結果として、MFB10と、MFB90と、シリンダヘッド及びシリンダライナの壁温とを示す。また、図16には、Arrhenius型によるMFB90を比較例として示している。図16より、本実施形態によれば、比較例と比較して、図6に示したMFB90の変化を精度良く再現できていることがわかる。すなわち、本実施形態によれば、熱発生に関して、MFB10よりもMFB90の方が負荷変化直後に大きく変化し、収束するまでに時間を要することが適切に再現されている。また、MFB90が収束するまでの時間がシリンダライナの温度が安定する時期とほぼ合致することも適切に再現されている。
以上説明したように、本実施形態に係るエンジンの燃焼状態予測方法によれば、筒内において最高温部となる筒内の中心部(断熱コア部)の温度に基づき燃焼開始時期を演算し、また、筒内において最低温部となる壁面層部LYの温度に基づき燃焼終了時期を演算する。この場合、筒内を分割した既燃部BN、未燃部UB及び壁面層部LYにおける状態変化に基づき、壁面層部LYの温度を演算する。このような本実施形態によれば、過渡運転時におけるエンジンの燃焼状態、具体的には燃焼開始時期及び燃焼終了時期を精度良く予測することができる。特に、本発明によれば、筒内における壁面層部LYでの冷却損失などを適切に考慮に入れることで、過渡運転時での燃焼終了時期を精度良く予測することができる。
上記では、HCCI燃焼を例に挙げて、本実施形態に係るエンジンの燃焼状態予測方法を説明したが、このエンジンの燃焼状態予測方法は、HCCI燃焼だけでなく、火花点火制御圧縮着火(SPCCI:Spark Controlled Compression Ignition)燃焼などにも適用可能である。
3 処理装置
3a マイクロプロセッサ
3b メモリ
5 出力装置
10 コンピュータ装置
BN 既燃部
LY 壁面層部
UB 未燃部
Claims (6)
- エンジンの燃焼状態予測方法であって、
エンジンの運転条件を設定する運転条件設定ステップと、
前記運転条件に基づき、前記エンジンの燃焼前に筒内において温度が最も高い領域である最高温部の温度を演算する最高温部温度演算ステップと、
前記最高温部の温度に基づき、前記エンジンの燃焼開始時期を演算する燃焼開始時期演算ステップと、
前記運転条件及び前記燃焼開始時期に基づき、前記エンジンの筒内において温度が最も低い領域である最低温部の温度を演算する最低温部温度演算ステップと、
前記最低温部の温度に基づき、前記エンジンの燃焼終了時期を演算する燃焼終了時期演算ステップと、
を有し、
前記最低温部温度演算ステップは、前記エンジンの筒内を分割した、燃焼が発生した領域である既燃部と、燃焼が未だ発生していない領域である未燃部と、筒内において壁面の近傍に位置する領域である壁面層部と、における状態変化に基づき、前記壁面層部の温度を演算し、この壁面層部の温度を前記最低温部の温度として適用する、ことを特徴とするエンジンの燃焼状態予測方法。 - 前記最低温部温度演算ステップは、前記既燃部、前記未燃部及び前記壁面層部における筒内での燃焼進行による圧力変化に応じた体積変化に基づき、前記壁面層部の温度を前記最低温部の温度として演算する、請求項1に記載のエンジンの燃焼状態予測方法。
- 前記燃焼終了時期演算ステップは、前記最低温部の温度をLivengood-Wu積分することで、前記燃焼終了時期を演算する、請求項1又は2に記載のエンジンの燃焼状態予測方法。
- 前記最高温部温度演算ステップは、前記エンジンの筒内の中心部の温度を、前記最高温部の温度として演算する、請求項1乃至3のいずれか一項に記載のエンジンの燃焼状態予測方法。
- 前記最高温部温度演算ステップは、前記運転条件に含まれる燃焼前の筒内温度と、前記エンジンの筒内圧力の変化とに基づき、前記最高温部の温度を演算し、
前記燃焼開始時期演算ステップは、前記最高温部の温度をLivengood-Wu積分することで、前記燃焼開始時期を演算する、請求項1乃至4のいずれか一項に記載のエンジンの燃焼状態予測方法。 - 前記エンジンの筒内に再導入される排気ガスの量に基づき、筒内での着火遅れを演算する着火遅れ演算ステップを更に有し、
前記燃焼開始時期演算ステップ及び前記燃焼終了時期演算ステップは、前記着火遅れを加味して、前記燃焼開始時期及び前記燃焼終了時期をそれぞれ演算する、
請求項1乃至5のいずれか一項に記載のエンジンの燃焼状態予測方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020113904A JP7403743B2 (ja) | 2020-07-01 | 2020-07-01 | エンジンの燃焼状態予測方法 |
US17/345,863 US20220003183A1 (en) | 2020-07-01 | 2021-06-11 | Method for predicting combustion state of engine |
EP21180545.2A EP3951153B1 (en) | 2020-07-01 | 2021-06-21 | Method for predicting combustion state of engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020113904A JP7403743B2 (ja) | 2020-07-01 | 2020-07-01 | エンジンの燃焼状態予測方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022012228A JP2022012228A (ja) | 2022-01-17 |
JP7403743B2 true JP7403743B2 (ja) | 2023-12-25 |
Family
ID=76553493
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020113904A Active JP7403743B2 (ja) | 2020-07-01 | 2020-07-01 | エンジンの燃焼状態予測方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20220003183A1 (ja) |
EP (1) | EP3951153B1 (ja) |
JP (1) | JP7403743B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7405062B2 (ja) * | 2020-11-13 | 2023-12-26 | マツダ株式会社 | エンジンシステム |
CN115422686B (zh) * | 2022-10-10 | 2023-10-24 | 北京理工大学 | 一种基于燃烧室精准局部隔热的发动机性能改善方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007032531A (ja) | 2005-07-29 | 2007-02-08 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2008031916A (ja) | 2006-07-28 | 2008-02-14 | Toyota Motor Corp | 内燃機関の自着火予測装置 |
JP2012021432A (ja) | 2010-07-13 | 2012-02-02 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2012087738A (ja) | 2010-10-21 | 2012-05-10 | Isuzu Motors Ltd | 着火遅れ時間評価装置 |
JP2018096220A (ja) | 2016-12-09 | 2018-06-21 | スズキ株式会社 | 内燃機関の制御装置 |
JP2018200026A (ja) | 2017-05-26 | 2018-12-20 | 国立大学法人 東京大学 | 圧縮自己着火式エンジンの制御装置 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1571331B1 (en) * | 2004-02-20 | 2010-06-16 | Nissan Motor Co., Ltd. | Ignition timing control system for an internal combustion engine |
JP4075818B2 (ja) * | 2004-02-20 | 2008-04-16 | 日産自動車株式会社 | 内燃機関の点火時期制御装置 |
JP2008075633A (ja) * | 2006-09-25 | 2008-04-03 | Toyota Motor Corp | 内燃機関の燃焼制御装置 |
DE112009004712B4 (de) * | 2009-04-28 | 2017-12-14 | Toyota Jidosha Kabushiki Kaisha | Fremdgezündeter verbrennungsmotor |
JP4858582B2 (ja) * | 2009-07-16 | 2012-01-18 | マツダ株式会社 | 火花点火式エンジンの制御方法および火花点火式エンジン |
JP5420013B2 (ja) * | 2012-04-20 | 2014-02-19 | 三菱電機株式会社 | 内燃機関の制御装置およびその制御方法 |
JP5674903B1 (ja) * | 2013-11-15 | 2015-02-25 | 三菱電機株式会社 | 内燃機関の筒内圧推定装置 |
DE112015000208B4 (de) * | 2014-02-03 | 2019-07-11 | Mazda Motor Corporation | Steuervorrichtung für Benzinmotor mit Direkteinspritzung |
JP6332320B2 (ja) * | 2016-04-11 | 2018-05-30 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6751000B2 (ja) * | 2016-10-17 | 2020-09-02 | 日立オートモティブシステムズ株式会社 | 内燃機関制御装置および方法 |
JP6536541B2 (ja) * | 2016-11-16 | 2019-07-03 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP7225593B2 (ja) * | 2018-07-26 | 2023-02-21 | マツダ株式会社 | 圧縮着火式エンジンの制御装置 |
-
2020
- 2020-07-01 JP JP2020113904A patent/JP7403743B2/ja active Active
-
2021
- 2021-06-11 US US17/345,863 patent/US20220003183A1/en not_active Abandoned
- 2021-06-21 EP EP21180545.2A patent/EP3951153B1/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007032531A (ja) | 2005-07-29 | 2007-02-08 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2008031916A (ja) | 2006-07-28 | 2008-02-14 | Toyota Motor Corp | 内燃機関の自着火予測装置 |
JP2012021432A (ja) | 2010-07-13 | 2012-02-02 | Toyota Motor Corp | 内燃機関の制御装置 |
JP2012087738A (ja) | 2010-10-21 | 2012-05-10 | Isuzu Motors Ltd | 着火遅れ時間評価装置 |
JP2018096220A (ja) | 2016-12-09 | 2018-06-21 | スズキ株式会社 | 内燃機関の制御装置 |
JP2018200026A (ja) | 2017-05-26 | 2018-12-20 | 国立大学法人 東京大学 | 圧縮自己着火式エンジンの制御装置 |
Also Published As
Publication number | Publication date |
---|---|
US20220003183A1 (en) | 2022-01-06 |
EP3951153B1 (en) | 2024-05-01 |
JP2022012228A (ja) | 2022-01-17 |
EP3951153A1 (en) | 2022-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7076360B1 (en) | Auto-ignition timing control and calibration method | |
Maroteaux et al. | Diesel engine combustion modeling for hardware in the loop applications: Effects of ignition delay time model | |
JP4814347B2 (ja) | 内燃機関の制御方法、コンピュータプログラムおよび制御回路 | |
KR102479401B1 (ko) | 모델에 근거한 기계 장치의 최적화 방법 및 장치 | |
Yıldız et al. | Zero-dimensional single zone engine modeling of an SI engine fuelled with methane and methane-hydrogen blend using single and double Wiebe Function: A comparative study | |
Wick et al. | In-cycle control for stabilization of homogeneous charge compression ignition combustion using direct water injection | |
US10012204B2 (en) | Engine operation control | |
JP7403743B2 (ja) | エンジンの燃焼状態予測方法 | |
Hellström et al. | Cyclic variability and dynamical instabilities in autoignition engines with high residuals | |
Larimore et al. | Experiments and analysis of high cyclic variability at the operational limits of spark-assisted HCCI combustion | |
Caton | A multiple-zone cycle simulation for spark-ignition engines: thermodynamic details | |
Chang et al. | Analysis of load and speed transitions in an HCCI engine using 1-D cycle simulation and thermal networks | |
Eriksson et al. | Computing optimal heat release rates in combustion engines | |
US9708991B2 (en) | Real-time residual mass estimation with adaptive scaling | |
Kakaee et al. | Sensitivity and effect of ignition timing on the performance of a spark ignition engine: an experimental and modeling study | |
Shahbakhti et al. | Control oriented modeling of combustion phasing for an HCCI engine | |
US20150347648A1 (en) | Method for Simulation of an Internal Combustion Engine | |
Shah et al. | An experimental study of uncertainty considerations associated with predicting auto-ignition timing using the Livengood-Wu integral method | |
CN105927407B (zh) | 燃烧状态推定方法 | |
JP2007332934A (ja) | 火花点火式内燃機関の最適点火時期設定方法及び火花点火式内燃機関の最適点火時期設定装置 | |
Benedetto et al. | Efficient combustion parameter prediction and performance optimization for a diesel engine with a low throughput combustion model | |
Forte et al. | Combined experimental and numerical analysis of knock in spark ignition engines | |
Kuboyama et al. | A study of control strategy for combution mode switching between hcci and si with the blowdown supercharging system | |
Langwiesner et al. | Wall Heat Transfer in a Multi-Link Extended Expansion SI-Engine | |
Saeed | A novel regenerative multiple zones model for modelling the premixed charge stirred chemical reactor based combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231113 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231126 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7403743 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |