JP7403673B2 - モデルトレーニング方法、歩行者再識別方法、装置および電子機器 - Google Patents
モデルトレーニング方法、歩行者再識別方法、装置および電子機器 Download PDFInfo
- Publication number
- JP7403673B2 JP7403673B2 JP2022547887A JP2022547887A JP7403673B2 JP 7403673 B2 JP7403673 B2 JP 7403673B2 JP 2022547887 A JP2022547887 A JP 2022547887A JP 2022547887 A JP2022547887 A JP 2022547887A JP 7403673 B2 JP7403673 B2 JP 7403673B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- pedestrian
- features
- pedestrian image
- encoder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 74
- 238000012549 training Methods 0.000 title claims description 59
- 230000006870 function Effects 0.000 claims description 70
- 238000004590 computer program Methods 0.000 claims description 10
- 238000011524 similarity measure Methods 0.000 claims description 10
- 238000000605 extraction Methods 0.000 claims description 7
- 230000004927 fusion Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 claims description 5
- 238000012790 confirmation Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 13
- 238000004891 communication Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000004422 calculation algorithm Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 238000013473 artificial intelligence Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000003064 k means clustering Methods 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 101000822695 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C1 Proteins 0.000 description 1
- 101000655262 Clostridium perfringens (strain 13 / Type A) Small, acid-soluble spore protein C2 Proteins 0.000 description 1
- 101000655256 Paraclostridium bifermentans Small, acid-soluble spore protein alpha Proteins 0.000 description 1
- 101000655264 Paraclostridium bifermentans Small, acid-soluble spore protein beta Proteins 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/761—Proximity, similarity or dissimilarity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T9/00—Image coding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/762—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using clustering, e.g. of similar faces in social networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/103—Static body considered as a whole, e.g. static pedestrian or occupant recognition
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Databases & Information Systems (AREA)
- Computing Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Life Sciences & Earth Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Biology (AREA)
- General Engineering & Computer Science (AREA)
- Image Analysis (AREA)
Description
本開示の一態様によれば、
第1エンコーダを利用してサンプルデータセットにおける第1歩行者画像と第2歩行者画像を特徴抽出し、第1歩行者画像の画像特徴と第2歩行者画像の画像特徴を得ることと、
第1歩行者画像の画像特徴と第2歩行者画像の画像特徴を融合し、融合特徴を得ることと、
第1デコーダを利用して融合特徴を特徴復号し、第3歩行者画像を得ることと、
第3歩行者画像を第1歩行者画像の負のサンプル画像として確定し、第1歩行者画像および負のサンプル画像を用いて第1プリセットモデルを収束までトレーニングし、歩行者再識別モデルを得ることとを含むモデルトレーニング方法を提供する。
歩行者再識別モデルを利用して目標画像および候補歩行者画像をそれぞれ特徴抽出し、目標画像の歩行者特徴および候補歩行者画像の歩行者特徴を得て、ここでは、歩行者再識別モデルは本開示の任意の実施例によって提供されるモデルトレーニング方法によって得られるものであることと、
目標画像の歩行者特徴と候補歩行者画像の歩行者特徴に基づいて、目標画像と候補歩行者画像との類似度を確定することと、
類似度が予め設定された条件に合致する場合、候補歩行者画像を目標画像の関連画像として確定することとを含む歩行者再識別方法を提供する。
第1エンコーダを利用してサンプルデータセットにおける第1歩行者画像および第2歩行者画像を特徴抽出し、第1歩行者画像の画像特徴および第2歩行者画像の画像特徴を取得するために用いられる第1符号化モジュールと、
第1歩行者画像の画像特徴と第2歩行者画像の画像特徴を融合し、融合特徴を得るために用いられる融合モジュールと、
第1デコーダを利用して融合特徴を特徴復号し、第3歩行者画像を取得するために用いられる第1復号モジュールと、
第3歩行者画像を第1歩行者画像の負のサンプル画像と確定し、かつ第1歩行者画像および前記負のサンプル画像を利用して第1プリセットモデルを収束までトレーニングし、歩行者再識別モデルを得るために用いられる第1トレーニングモジュールとを含むモデルトレーニング装置を提供する。
歩行者再識別モデルを利用して目標画像および候補歩行者画像をそれぞれ特徴抽出し、目標画像の歩行者特徴および候補歩行者画像の歩行者特徴を得るために用いられ、歩行者再識別モデルは本開示の任意の実施例によって提供されたモデルトレーニング方法によって得られるものである第2抽出モジュールと、
目標画像の歩行者特徴および候補歩行者画像の歩行者特徴に基づいて、目標画像と候補歩行者画像との類似度を確定するために用いられる第3類似度モジュールと、
類似度が予め設定された条件に合致する場合に、候補歩行者画像を目標画像の関連画像として確定するために用いられる第2確定モジュールとを含む歩行者再識別装置を提供する。
少なくとも1つのプロセッサ、および
該少なくとも1つのプロセッサに通信接続されたメモリを含み、
該メモリには、少なくとも1つのプロセッサによって実行可能な命令が記憶され、該命令は、該少なくとも1つのプロセッサが本開示のいずれか1つの実施例における方法を実行できるように、該少なくとも1つのプロセッサによって実行される電子機器を提供する。
第1エンコーダを利用してサンプルデータセットにおける第1歩行者画像と第2歩行者画像を特徴抽出し、第1歩行者画像の画像特徴と第2歩行者画像の画像特徴を得るステップS11と、
第1歩行者画像の画像特徴と第2歩行者画像の画像特徴を融合し、融合特徴を得るステップS12と、
第1デコーダを利用して融合特徴を特徴復号し、第3歩行者画像を得るステップS13と、
第3歩行者画像を第1歩行者画像の負のサンプル画像として確定し、第1歩行者画像および負のサンプル画像を用いて第1プリセットモデルを収束までトレーニングし、歩行者再識別モデルを得るステップS14と、を含む。
第1歩行者画像と負のサンプル画像に基づいて、第1類似度を確定することと、
サンプル画像セットの第1歩行者画像以外の少なくとも一つの歩行者画像に基づいて、少なくとも一つの歩行者画像にそれぞれ対応する少なくとも一つの第2類似度を確定することと、
第1類似度、少なくとも1つの第2類似度、および敵対的損失関数に基づいて第1エンコーダおよび第1デコーダを更新することとをさらに含むことができる。
第2エンコーダを利用してサンプルデータセットにおけるi番目の歩行者画像を特徴抽出し、i番目の歩行者画像の画像特徴を得て、iは1以上の正の整数であることと、
第2デコーダを利用してi番目の歩行者画像の画像特徴を特徴復号し、生成画像を得ることと、
i番目の歩行者画像と生成画像との類似度および再構成損失関数に基づいて、第2エンコーダおよび第2デコーダを更新することと、
第2エンコーダおよび第2デコーダが収束条件に合致する場合、第2エンコーダを第1エンコーダとして確定して、第2デコーダを第1デコーダとして確定することとを含む。
i番目の歩行者画像と生成画像との類似度および再構成損失関数に基づいて、再構成損失関数の関数値を計算することと、
真実度判別器を利用して生成画像の真実度を確定することと、
再構成損失関数の関数値および生成画像の真実度に基づいて、第2エンコーダおよび第2デコーダを更新することとを含む。
第2プリセットモデルを利用してサンプルデータセットにおける各歩行者画像を特徴抽出し、各歩行者画像の歩行者特徴を得ることと、
歩行者特徴に基づいてサンプルデータセットにおける各歩行者画像をクラスタリングし、少なくとも2つのクラスタラベルにそれぞれ対応する少なくとも2つのクラスタを得て、少なくとも2つのクラスタの各クラスタはいずれも少なくとも1つの歩行者画像を含むことと、
サンプルデータセットにおける各歩行者画像および各歩行者画像に対応するクラスタラベルに基づいて、第2プリセットモデルを、収束までトレーニングし、第1プリセットモデルを得ることとを含む。
なお、本開示の実施例における各エンコーダおよび第1プリセットモデル、第2プリセットモデル、歩行者再識別モデルは、いずれも特徴抽出のために利用することができ、各エンコーダまたはモデルは、同じ方法または異なる方法によって異なる次元の特徴を抽出することができる。例えば、エンコーダは、画像のピクチャ効果に関連する色などの特徴を重点的に抽出し、第1プリセットモデル、第2プリセットモデル、歩行者再識別モデルは歩行者の高さなどの歩行者に関連する特徴を重点的に抽出することができる。
第1歩行者画像および第2歩行者画像として異なるクラスタの画像を使用することによって、融合特徴を用いて再構成された第3歩行者画像が第1歩行者画像と異なることを確保することができ、これによって歩行者再識別モデルが正確に区別するという能力を有することを確保することができる。
特徴抽出ステップ201:初期化されたモデルを使用してラベルなしサンプルデータセット200における各歩行者画像を特徴抽出する。ここで、初期化されたモデルを第2プリセットモデルと表記し、ラベル付き複数の歩行者画像を利用してトレーニングして初期化されたモデルを得ることができる。
図3は、第2段階の概略図である。第2段階は、画像生成モデルをトレーニングするために使用され、画像生成モデルはエンコーダおよびデコーダを含む。第2段階の目的は、画像生成モデルに、抽象特徴から自然画像を再構成する能力を持たせることである。第2段階は以下のステップを含む:
特徴符号化ステップ300:画像生成モデルにおける第2エンコーダを用いて、ラベルなしサンプルデータセット200における各画像を特徴抽出し、対応する画像特徴301を得る。
真実度判別ステップ303:真実度判別器を利用して、生成画像の真実度を確定する。該ステップは、画像生成モデルから出力される生成画像ができるだけリアルになるように制約するために使用される。
サンプリングステップ400:ラベルなしサンプルデータセット200における各画像を、基準画像、すなわち第1歩行者画像として順次サンプリングする。続いて、第1歩行者画像と同じクラスタに属していない画像を、第2歩行者画像としてサンプリングする。
融合特徴ステップ402:ステップ401で得られた画像を重み付け融合し、融合特徴を得る。
真実度判別ステップ404:真実度判別器を利用して、第3歩行者画像406の真実度を確定する。
歩行者再識別モデルを利用して目標画像および候補歩行者画像をそれぞれ特徴抽出し、目標画像の歩行者特徴および候補歩行者画像の歩行者特徴を得て、ここでは、歩行者再識別モデルは本開示の任意の実施例によって提供されるモデルトレーニング方法によって得られるものであるステップS51と、
目標画像の歩行者特徴と候補歩行者画像の歩行者特徴に基づいて、目標画像と候補歩行者画像との類似度を確定するステップS52と、
類似度が予め設定された条件に合致する場合、候補歩行者画像を目標画像の関連画像として確定するステップS53とを含む。
本開示の実施例が提供するモデルトレーニング方法は区別が困難なサンプルに基づいてトレーニングして歩行者再識別モデルを得るので、歩行者再識別モデルを利用して各画像の歩行者特徴を正確に抽出し、各画像の歩行者特徴に基づいて類似度計算を行い、計算された類似度を利用して候補歩行者画像から目標画像の関連画像を正確に確定することができる。
第1エンコーダを利用してサンプルデータセットにおける第1歩行者画像および第2歩行者画像を特徴抽出し、第1歩行者画像の画像特徴および第2歩行者画像の画像特徴を取得するために用いられる第1符号化モジュール610と、
第1歩行者画像の画像特徴と第2歩行者画像の画像特徴を融合し、融合特徴を得るために用いられる融合モジュール620と、
第1デコーダを利用して融合特徴を特徴復号し、第3歩行者画像を取得するために用いられる第1復号モジュール630と、
第3歩行者画像を第1歩行者画像の負のサンプル画像と確定し、かつ第1歩行者画像および負のサンプル画像を利用して第1プリセットモデルを収束までトレーニングし、歩行者再識別モデルを得るために用いられる第1トレーニングモジュール640とを含む。
第1歩行者画像と負のサンプル画像に基づいて、第1類似度を確定するために用いられる第1類似度モジュール710と、
サンプル画像セットの第1歩行者画像以外の少なくとも一つの歩行者画像に基づいて、少なくとも一つの歩行者画像にそれぞれ対応する少なくとも一つの第2類似度を確定するために用いられる第2類似度モジュール720と、
第1類似度、少なくとも1つの第2類似度、および敵対的損失関数に基づいて第1エンコーダおよび第1デコーダを更新するために用いられる第1更新モジュール730とをさらに含む。
第2エンコーダを利用してサンプルデータセットにおける1以上の正の整数であるi番目の歩行者画像を特徴抽出し、i番目の歩行者画像の画像特徴を得る第2符号化モジュール750と、
第2デコーダを利用してi番目の歩行者画像の画像特徴を特徴復号し、生成画像を得るために用いられる第2復号モジュール760と、
i番目の歩行者画像と生成画像との類似度および再構成損失関数に基づいて、第2エンコーダおよび第2デコーダを更新するために用いられる第2更新モジュール770と、
第2エンコーダおよび第2デコーダが収束条件に合致する場合、第2エンコーダを第1エンコーダとして確定して、第2デコーダを第1デコーダとして確定するために用いられる第1確定モジュール780とをさらに含む。
i番目の歩行者画像と生成画像との類似度および再構成損失関数に基づいて、再構成損失関数の関数値を計算するために用いられる計算ユニット771と、
真実度判別器を利用して、生成画像の真実度を確定するために用いられる確定ユニット772と、
再構成損失関数の関数値および生成画像の真実度に基づいて、第2エンコーダおよび第2デコーダを更新するために用いられる更新ユニット773とを含む。
第2プリセットモデルを利用してサンプルデータセットにおける各歩行者画像を特徴抽出し、各歩行者画像の歩行者特徴を得るために用いられる第1抽出モジュール810と、
歩行者特徴に基づいてサンプルデータセットにおける各歩行者画像をクラスタリングし、少なくとも2つのクラスタラベルにそれぞれ対応する少なくとも2つのクラスタを得て、ここでは、少なくとも2つのクラスタの各クラスタはいずれも少なくとも1つの歩行者画像を含むクラスタリングモジュール820と、
サンプルデータセットにおける各歩行者画像および各歩行者画像に対応するクラスタラベルに基づいて、第2プリセットモデルを、収束までトレーニングし、第1プリセットモデルを得るために用いられる第2トレーニングモジュール830とをさらに含む。
本開示の実施例はさらに歩行者再識別装置を提供し、図9に示すように、該装置は、
歩行者再識別モデルを利用して目標画像および候補歩行者画像をそれぞれ特徴抽出し、目標画像の歩行者特徴および候補歩行者画像の歩行者特徴を得るために用いられ、歩行者再識別モデルは上記のモデルトレーニング方法によって得られる第2抽出モジュール910と、
目標画像の歩行者特徴および候補歩行者画像の歩行者特徴に基づいて、目標画像と候補歩行者画像との類似度を確定するために用いられる第3類似度モジュール920と、
類似度が予め設定された条件に合致する場合に、候補歩行者画像を目標画像の関連画像として確定するために用いられる第2確定モジュール930とを含む。
図10は本開示の実施例を実施するための例示的な電子機器1000を示すブロック図である。電子機器は、様々な形態のデジタルコンピュータ、例えば、ラップトップ型コンピュータ、デスクトップ型コンピュータ、ステージ、個人用デジタル補助装置、サーバ、ブレードサーバ、大型コンピュータ、その他の適切なコンピュータを示す。電子機器は更に、様々な形態の移動装置、例えば、個人デジタル処理、携帯電話、スマートフォン、着用可能な装置とその他の類似する計算装置を示してよい。本明細書に示される部品、これらの接続関係およびこれらの機能は例示的なものに過ぎず、本明細書に説明したおよび/又は請求した本開示の実現を制限しない。
Claims (15)
- モデルトレーニング方法であって、
第1エンコーダを利用してサンプルデータセットにおける第1歩行者画像と第2歩行者画像を特徴抽出し、前記第1歩行者画像の画像特徴と前記第2歩行者画像の画像特徴を得ることと、
前記第1歩行者画像の画像特徴と前記第2歩行者画像の画像特徴を融合し、融合特徴を得ることと、
第1デコーダを利用して前記融合特徴を特徴復号し、第3歩行者画像を得ることと、
前記第3歩行者画像を前記第1歩行者画像の負のサンプル画像として確定し、前記第1歩行者画像および前記負のサンプル画像を用いて第1プリセットモデルを収束までトレーニングし、歩行者再識別モデルを得ることと
を含み、
前記第1エンコーダおよび前記第1デコーダを取得する方法が、
第2エンコーダを利用して前記サンプルデータセットにおけるi番目の歩行者画像を特徴抽出し、前記i番目の歩行者画像の画像特徴を得て、iは1以上の正の整数であることと、
第2デコーダを利用して前記i番目の歩行者画像の画像特徴を特徴復号し、生成画像を得ることと、
前記i番目の歩行者画像と前記生成画像との類似度および再構成損失関数に基づいて、前記第2エンコーダおよび前記第2デコーダを更新することと、
前記第2エンコーダおよび前記第2デコーダが収束条件に合致する場合、前記第2エンコーダを前記第1エンコーダとして確定して、前記第2デコーダを前記第1デコーダとして確定することとを含む、モデルトレーニング方法。 - 前記第1歩行者画像と前記負のサンプル画像に基づいて、第1類似度を確定することと、
前記サンプル画像セットの前記第1歩行者画像以外の少なくとも一つの歩行者画像に基づいて、前記少なくとも一つの歩行者画像にそれぞれ対応する少なくとも一つの第2類似度を確定することと、
前記第1類似度、前記少なくとも1つの第2類似度、および敵対的損失関数に基づいて、前記第1エンコーダおよび前記第1デコーダを更新することとをさらに含む請求項1に記載の方法。 - 前記の前記i番目の歩行者画像と前記生成画像との類似度および再構成損失関数に基づいて、前記第2エンコーダおよび前記第2デコーダを更新することは、
前記i番目の歩行者画像と前記生成画像との類似度および前記再構成損失関数に基づいて、前記再構成損失関数の関数値を計算することと、
真実度判別器を利用して、前記生成画像の真実度を確定することと、
前記再構成損失関数の関数値および前記生成画像の真実度に基づいて、前記第2エンコーダおよび前記第2デコーダを更新することとを含む請求項1に記載の方法。 - 前記第1プリセットモデルを取得する方法は、
第2プリセットモデルを利用してサンプルデータセットにおける各歩行者画像を特徴抽出し、前記各歩行者画像の歩行者特徴を得ることと、
前記歩行者特徴に基づいて前記サンプルデータセットにおける各歩行者画像をクラスタリングし、少なくとも2つのクラスタラベルにそれぞれ対応する少なくとも2つのクラスタを得て、前記少なくとも2つのクラスタの各クラスタはいずれも少なくとも1つの歩行者画像を含むことと、
前記サンプルデータセットにおける各歩行者画像および前記各歩行者画像に対応するクラスタラベルに基づいて、前記第2プリセットモデルを、収束までトレーニングし、前記第1プリセットモデルを得ることとを含む請求項1~3のいずれか一項に記載の方法。 - 前記第1歩行者画像および前記第2歩行者画像は、前記少なくとも2つのクラスタのうちの異なるクラスタにおける歩行者画像である請求項4に記載の方法。
- 歩行者再識別方法であって、
歩行者再識別モデルを利用して目標画像および候補歩行者画像をそれぞれ特徴抽出し、前記目標画像の歩行者特徴および前記候補歩行者画像の歩行者特徴を得て、前記歩行者再識別モデルは請求項1~5のいずれか一項に記載のモデルトレーニング方法によって得られることと、
前記目標画像の歩行者特徴と前記候補歩行者画像の歩行者特徴に基づいて、前記目標画像と前記候補歩行者画像との類似度を確定することと、
前記類似度が予め設定された条件に合致する場合、前記候補歩行者画像を前記目標画像の関連画像として確定することとを含む歩行者再識別方法。 - モデルトレーニング装置であって、
第2エンコーダを利用してサンプルデータセットにおける1以上の正の整数であるi番目の歩行者画像を特徴抽出し、前記i番目の歩行者画像の画像特徴を得る第2符号化モジュールと、
第2デコーダを利用して前記i番目の歩行者画像の画像特徴を特徴復号し、生成画像を得るために用いられる第2復号モジュールと、
前記i番目の歩行者画像と前記生成画像との類似度および再構成損失関数に基づいて、前記第2エンコーダおよび前記第2デコーダを更新するために用いられる第2更新モジュールと、
前記第2エンコーダおよび前記第2デコーダが収束条件に合致する場合、前記第2エンコーダを第1エンコーダとして確定して、前記第2デコーダを第1デコーダとして確定するために用いられる第1確定モジュールと、
前記第1エンコーダを利用して前記サンプルデータセットにおける第1歩行者画像および第2歩行者画像を特徴抽出し、前記第1歩行者画像の画像特徴および前記第2歩行者画像の画像特徴を取得するために用いられる第1符号化モジュールと、
前記第1歩行者画像の画像特徴と前記第2歩行者画像の画像特徴を融合し、融合特徴を得るために用いられる融合モジュールと、
前記第1デコーダを利用して前記融合特徴を特徴復号し、第3歩行者画像を取得するために用いられる第1復号モジュールと、
前記第3歩行者画像を前記第1歩行者画像の負のサンプル画像と確定し、かつ前記第1歩行者画像および前記負のサンプル画像を利用して第1プリセットモデルを収束までトレーニングし、歩行者再識別モデルを得るために用いられる第1トレーニングモジュールと
を含むモデルトレーニング装置。 - 前記第1歩行者画像と前記負のサンプル画像に基づいて、第1類似度を確定するために用いられる第1類似度モジュールと、
前記サンプル画像セットの前記第1歩行者画像以外の少なくとも一つの歩行者画像に基づいて、前記少なくとも一つの歩行者画像にそれぞれ対応する少なくとも一つの第2類似度を確定するために用いられる第2類似度モジュールと、
前記第1類似度、前記少なくとも1つの第2類似度、および敵対的損失関数に基づいて前記第1エンコーダおよび前記第1デコーダを更新するために用いられる第1更新モジュールとをさらに含む請求項7に記載の装置。 - 前記第2更新モジュールは、
前記i番目の歩行者画像と前記生成画像との類似度および前記再構成損失関数に基づいて、前記再構成損失関数の関数値を計算するために用いられる計算ユニットと、
真実度判別器を利用して、前記生成画像の真実度を確定するために用いられる確定ユニットと、
前記再構成損失関数の関数値および前記生成画像の真実度に基づいて、前記第2エンコーダおよび前記第2デコーダを更新するために用いられる更新ユニットとを含む請求項7に記載の装置。 - 第2プリセットモデルを利用してサンプルデータセットにおける各歩行者画像を特徴抽出し、前記各歩行者画像の歩行者特徴を得るために用いられる第1抽出モジュールと、
前記歩行者特徴に基づいて前記サンプルデータセットにおける各歩行者画像をクラスタリングし、少なくとも2つのクラスタラベルにそれぞれ対応する少なくとも2つのクラスタを得るために用いられ、前記少なくとも2つのクラスタの各クラスタはいずれも少なくとも1つの歩行者画像を含むクラスタリングモジュールと、
前記サンプルデータセットにおける各歩行者画像および前記各歩行者画像に対応するクラスタラベルに基づいて、前記第2プリセットモデルを、収束までトレーニングし、前記第1プリセットモデルを得るために用いられる第2トレーニングモジュールとをさらに含む請求項7~9のいずれか一項に記載の装置。 - 前記第1歩行者画像および前記第2歩行者画像は、前記少なくとも2つのクラスタのうちの異なるクラスタにおける歩行者画像である請求項10に記載の装置。
- 歩行者再識別装置であって、
歩行者再識別モデルを利用して目標画像および候補歩行者画像をそれぞれ特徴抽出し、前記目標画像の歩行者特徴および前記候補歩行者画像の歩行者特徴を得るために用いられ、前記歩行者再識別モデルは請求項1~5のいずれか一項に記載のモデルトレーニング方法によって得られる第2抽出モジュールと、
前記目標画像の歩行者特徴および前記候補歩行者画像の歩行者特徴に基づいて、前記目標画像と前記候補歩行者画像との類似度を確定するために用いられる第3類似度モジュールと、
前記類似度が予め設定された条件に合致する場合に、前記候補歩行者画像を前記目標画像の関連画像として確定するために用いられる第2確定モジュールとを含む歩行者再識別装置。 - 電子機器であって、
少なくとも1つのプロセッサ、および
前記少なくとも1つのプロセッサに通信接続されたメモリを含み、
前記メモリには、前記少なくとも1つのプロセッサによって実行可能な命令が記憶されており、前記命令は、前記少なくとも1つのプロセッサにより実行され、当該少なくとも1つのプロセッサに請求項1~6のいずれか一項に記載の方法を実行させる、電子機器。 - コンピュータに請求項1~6のいずれか一項に記載の方法を実行させるためのコンピュータ命令を記憶した非一時的コンピュータ可読記憶媒体。
- プロセッサによって実行されると、請求項1~6のいずれか一項に記載の方法を実現するコンピュータプログラム。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110372249.5 | 2021-04-07 | ||
CN202110372249.5A CN112861825B (zh) | 2021-04-07 | 2021-04-07 | 模型训练方法、行人再识别方法、装置和电子设备 |
PCT/CN2022/075112 WO2022213717A1 (zh) | 2021-04-07 | 2022-01-29 | 模型训练方法、行人再识别方法、装置和电子设备 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023523502A JP2023523502A (ja) | 2023-06-06 |
JP7403673B2 true JP7403673B2 (ja) | 2023-12-22 |
Family
ID=83103561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022547887A Active JP7403673B2 (ja) | 2021-04-07 | 2022-01-29 | モデルトレーニング方法、歩行者再識別方法、装置および電子機器 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240221346A1 (ja) |
JP (1) | JP7403673B2 (ja) |
KR (1) | KR20220116331A (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117635973B (zh) * | 2023-12-06 | 2024-05-10 | 南京信息工程大学 | 一种基于多层动态集中和局部金字塔聚合的换衣行人重识别方法 |
CN118692114B (zh) * | 2024-08-23 | 2024-10-29 | 南京信息工程大学 | 一种基于Transformer和融合聚类的对比学习无监督行人重识别方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109934177A (zh) | 2019-03-15 | 2019-06-25 | 艾特城信息科技有限公司 | 行人再识别方法、系统及计算机可读存储介质 |
CN111259720A (zh) | 2019-10-30 | 2020-06-09 | 北京中科研究院 | 基于自监督代理特征学习的无监督行人重识别方法 |
WO2020155713A1 (zh) | 2019-01-29 | 2020-08-06 | 北京市商汤科技开发有限公司 | 图像处理方法及装置、网络训练方法及装置 |
CN111553267A (zh) | 2020-04-27 | 2020-08-18 | 腾讯科技(深圳)有限公司 | 图像处理方法、图像处理模型训练方法及设备 |
WO2020215644A1 (zh) | 2019-04-22 | 2020-10-29 | 深圳市商汤科技有限公司 | 视频图像处理方法及装置 |
WO2020237937A1 (zh) | 2019-05-24 | 2020-12-03 | 深圳市商汤科技有限公司 | 一种图像处理方法及装置、电子设备和存储介质 |
CN112131970A (zh) | 2020-09-07 | 2020-12-25 | 浙江师范大学 | 一种基于多通道时空网络和联合优化损失的身份识别方法 |
CN112560604A (zh) | 2020-12-04 | 2021-03-26 | 中南大学 | 一种基于局部特征关系融合的行人重识别方法 |
WO2021056770A1 (zh) | 2019-09-27 | 2021-04-01 | 深圳市商汤科技有限公司 | 图像重建方法及装置、电子设备和存储介质 |
-
2022
- 2022-01-29 JP JP2022547887A patent/JP7403673B2/ja active Active
- 2022-01-29 KR KR1020227026823A patent/KR20220116331A/ko not_active Application Discontinuation
- 2022-01-29 US US17/800,880 patent/US20240221346A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020155713A1 (zh) | 2019-01-29 | 2020-08-06 | 北京市商汤科技开发有限公司 | 图像处理方法及装置、网络训练方法及装置 |
CN109934177A (zh) | 2019-03-15 | 2019-06-25 | 艾特城信息科技有限公司 | 行人再识别方法、系统及计算机可读存储介质 |
WO2020215644A1 (zh) | 2019-04-22 | 2020-10-29 | 深圳市商汤科技有限公司 | 视频图像处理方法及装置 |
WO2020237937A1 (zh) | 2019-05-24 | 2020-12-03 | 深圳市商汤科技有限公司 | 一种图像处理方法及装置、电子设备和存储介质 |
WO2021056770A1 (zh) | 2019-09-27 | 2021-04-01 | 深圳市商汤科技有限公司 | 图像重建方法及装置、电子设备和存储介质 |
CN111259720A (zh) | 2019-10-30 | 2020-06-09 | 北京中科研究院 | 基于自监督代理特征学习的无监督行人重识别方法 |
CN111553267A (zh) | 2020-04-27 | 2020-08-18 | 腾讯科技(深圳)有限公司 | 图像处理方法、图像处理模型训练方法及设备 |
CN112131970A (zh) | 2020-09-07 | 2020-12-25 | 浙江师范大学 | 一种基于多通道时空网络和联合优化损失的身份识别方法 |
CN112560604A (zh) | 2020-12-04 | 2021-03-26 | 中南大学 | 一种基于局部特征关系融合的行人重识别方法 |
Also Published As
Publication number | Publication date |
---|---|
US20240221346A1 (en) | 2024-07-04 |
KR20220116331A (ko) | 2022-08-22 |
JP2023523502A (ja) | 2023-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN113222916B (zh) | 采用目标检测模型检测图像的方法、装置、设备和介质 | |
JP2023541532A (ja) | テキスト検出モデルのトレーニング方法及び装置、テキスト検出方法及び装置、電子機器、記憶媒体並びにコンピュータプログラム | |
WO2022213717A1 (zh) | 模型训练方法、行人再识别方法、装置和电子设备 | |
JP7331975B2 (ja) | クロスモーダル検索モデルのトレーニング方法、装置、機器、および記憶媒体 | |
JP2023541119A (ja) | 文字認識モデルのトレーニング方法、文字認識方法、装置、電子機器、記憶媒体およびコンピュータプログラム | |
JP7346788B2 (ja) | 音声認識モデルのトレーニング方法、装置、機器、および記憶媒体 | |
KR20220125672A (ko) | 비디오 분류 방법, 장치, 기기 및 기록 매체 | |
CN114942984B (zh) | 视觉场景文本融合模型的预训练和图文检索方法及装置 | |
JP7403673B2 (ja) | モデルトレーニング方法、歩行者再識別方法、装置および電子機器 | |
CN113177449B (zh) | 人脸识别的方法、装置、计算机设备及存储介质 | |
CN112528658B (zh) | 层次化分类方法、装置、电子设备和存储介质 | |
US11036996B2 (en) | Method and apparatus for determining (raw) video materials for news | |
CN114820871B (zh) | 字体生成方法、模型的训练方法、装置、设备和介质 | |
WO2023273173A1 (zh) | 目标分割的方法、装置及电子设备 | |
CN113627536B (zh) | 模型训练、视频分类方法,装置,设备以及存储介质 | |
CN112749300A (zh) | 用于视频分类的方法、装置、设备、存储介质和程序产品 | |
US20230215203A1 (en) | Character recognition model training method and apparatus, character recognition method and apparatus, device and storage medium | |
US20230114673A1 (en) | Method for recognizing token, electronic device and storage medium | |
JP2023133274A (ja) | Roi検出モデルのトレーニング方法、検出方法、装置、機器および媒体 | |
CN114863182A (zh) | 图像分类方法、图像分类模型的训练方法及装置 | |
CN113239799B (zh) | 训练方法、识别方法、装置、电子设备和可读存储介质 | |
CN113360683A (zh) | 训练跨模态检索模型的方法以及跨模态检索方法和装置 | |
CN113177483A (zh) | 视频目标分割方法、装置、设备以及存储介质 | |
CN116402914B (zh) | 用于确定风格化图像生成模型的方法、装置及产品 | |
CN112765377A (zh) | 媒体流中的时段定位 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220805 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230802 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231102 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231212 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7403673 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |