JP7402619B2 - 固体電解質の製造方法 - Google Patents
固体電解質の製造方法 Download PDFInfo
- Publication number
- JP7402619B2 JP7402619B2 JP2019102553A JP2019102553A JP7402619B2 JP 7402619 B2 JP7402619 B2 JP 7402619B2 JP 2019102553 A JP2019102553 A JP 2019102553A JP 2019102553 A JP2019102553 A JP 2019102553A JP 7402619 B2 JP7402619 B2 JP 7402619B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- solid electrolyte
- precursor
- raw material
- solid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007784 solid electrolyte Substances 0.000 title claims description 82
- 238000004519 manufacturing process Methods 0.000 title claims description 20
- 239000002904 solvent Substances 0.000 claims description 80
- 239000002994 raw material Substances 0.000 claims description 36
- 239000002243 precursor Substances 0.000 claims description 29
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical group CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910052732 germanium Inorganic materials 0.000 claims description 13
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical group [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 13
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 9
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 229910052744 lithium Inorganic materials 0.000 claims description 9
- 229910052698 phosphorus Inorganic materials 0.000 claims description 9
- 239000011574 phosphorus Substances 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 229910052800 carbon group element Inorganic materials 0.000 claims description 5
- 239000003960 organic solvent Substances 0.000 claims description 5
- 230000001376 precipitating effect Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 23
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 20
- 239000000843 powder Substances 0.000 description 20
- 239000008188 pellet Substances 0.000 description 17
- 239000000203 mixture Substances 0.000 description 16
- 239000007791 liquid phase Substances 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 10
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 10
- 229910018091 Li 2 S Inorganic materials 0.000 description 9
- 238000000634 powder X-ray diffraction Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 8
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 8
- 239000013078 crystal Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 7
- 230000004913 activation Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 229910005839 GeS 2 Inorganic materials 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 4
- 238000002441 X-ray diffraction Methods 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 238000003825 pressing Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 238000010532 solid phase synthesis reaction Methods 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910020346 SiS 2 Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B25/00—Phosphorus; Compounds thereof
- C01B25/14—Sulfur, selenium, or tellurium compounds of phosphorus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/10—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Description
この従来の液相法は、固体電解質の原料全てをまとめて一つの溶媒に溶解して反応させ、そこから固体電解質の結晶を析出させるものである。
この従来の液相法は、原料の中に前記溶媒に溶けにくい成分が含まれている場合には目的の固体電解質を製造することが難しいという問題がある。
しかしながら、固相法では成分をボールミルなどで均等に混ぜるために、製造容器の容量に制限があるので、一度に製造できる固体電解質の量が少ないという問題がある。
ゲルマニウムは、リチウム、リン及び硫黄等の他の元素が溶解しやすい溶媒には溶解しにくい。そのため、従来の液相法では原料にゲルマニウムを含有する固体電解質を製造することができなかった。一方、本願発明によれば、第1の溶媒または第2の溶媒としてゲルマニウムを溶解しやすい溶媒を使用することができる。その結果、従来の液相法では製造できなかったリチウム、リン、硫黄及びゲルマニウムを含有する固体電解質を液相法で効率よく製造することができる。
そのため、これまで液相法では製造することが難しいと思われていた組成の固体電解質を低コストで大量に製造することができる。
本実施形態に係る固体電解質の製造工程について図1を用いて説明する。
このようにして得られた固体電解質は、ペレット形状のまま全固体二次電池の固体電解質層として使用しても良いし、砕いて粉末状にしてから全固体二次電池の正極層、負極層、固体電解質層の成分として使用しても良い。
例えば、前記実施形態では、リチウム、リン、硫黄等とは溶解しやすい溶媒の種類が異なる元素Mを原料の一部として第1の溶媒に溶解させていたが、元素Mを原料の残部として第2の溶媒に溶解させても良い。
前記第1の溶媒と、前記第2の溶媒は、前述したものに限られず、溶解させる元素に合わせて様々な種類のものを使用することができる。
また、原料の残部は、原料の残り全部でなくても良い。より具体的には、目的の組成に応じて第1、第2の溶媒を使用するだけでなく、例えば、第3、第4の溶媒を使用して第3、第4の前駆体を得るようにしても良いし、さらに多段階の液相法としても良い。
その他、本発明の趣旨に反しない範囲で種々の変形が可能である。
<固体電解質の製造>
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、GeS2(純度99.9%、和光純薬)を用いて2Li2S・GeS2組成になるように粉末1.5gを調合した。容積50mlのビーカーに入れた第1の溶媒であるエタノール40mlに、調合した前記粉末を添加して溶解させ、一晩撹拌した。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でエタノールを留去し、第1の前駆体を得た。次に、得られた第1の前駆体に対して、最終的な組成がLi10GeP2S12となるように、Li2S(純度99.9%、三津和)およびP2S5(純度99%、Aldrich)を添加した後、第2の溶媒であるテトラヒドロフラン(THF)40mlをさらに添加して、Ar雰囲気下で攪拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でテトラヒドロフランを完全に除去し第2の前駆体を得た。得られた第2の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理の条件は550℃4時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
得られた固体電解質について、イオン伝導度を測定した。
イオン伝導度の測定は、上記手法により得られたペレット状の固体電解質の両面にインジウム箔を圧着させて行った。また、測定温度を17℃から140℃の温度範囲に変えながらイオン伝導度測定を行い、アレーニウス式を用いて活性化エネルギーを求めた。さらに、得られた粉末は粉末X線回折装置を用い、結晶材料評価を行った。
実施例1で作成した固体電解質のX線回折パターンを図2に示す。このX線回折パターンを標準物質である標準物質であるLi10GeP2S12ICSD#248307のX線回折パターンと比較したところ、目的のLi10GeP2S12結晶が形成されていることが確認された。より具体的には、Cu Kα線を用いたX線回折測定において2θ=12.3±0.5°、14.3±0.5°、17.3±0.5°、20.1±0.5°、20.4±0.5°、23.9±0.5°、26.8±0.5°、29.4±0.5°、36.6±0.5°、37.6±0.5°、40.9±0.5°、41.4±0.5°、42.2±0.5°、47.3±0.5°、51.6±0.5°、52.6±0.5°の位置にピークを有する結晶型のLi10GeP2S12固体電解質を得ることができた。また、実施例1で得られた固体電解質のイオン伝導度は25℃において4.5×10-4S/cm、活性化エネルギーは27kJ/molであった。
ペレットの熱処理条件を550℃14時間とした以外は、実施例1と同様の手法を用いて固体電解質を作製した。最終的に得られた固体電解質のX線粉末回折パターンを図2に示す。図1の結果から、目的のLi10GeP2S12結晶が形成されていることを確認した。また、測定されたイオン伝導度は25℃において3.1×10-3S/cm、活性化エネルギーは26kJ/molであった。
ペレットの熱処理条件を550℃24時間とした以外は、実施例1と同様の手法を用いて固体電解質を作製した。最終的に得られた固体電解質のX線粉末回折パターンを図2に示す。図2の結果から、目的のLi10GeP2S12結晶が形成されていることを確認した。また、測定された伝導度は25℃において4.5×10-3S/cm、活性化エネルギーは26kJ/molであった。
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、GeS2(純度99.9%、和光純薬)を用いて2Li2S・GeS2組成になるように粉末1.5gを調合した。容積50mlのビーカーに入れた第1の溶媒であるN-メチルホルムアミド(NMF)40mlに、調合した前記粉末を添加して溶解させ、一晩攪拌した。反応終了後、ロータリーエバポレーターを用いて減圧下250℃でN-メチルホルムアミドを留去し、第1の前駆体を得た。次に、得られた第1の前駆体に対して、最終的な組成がLi10GeP2S12になるように、Li2S(純度99.9%、三津和)およびP2S5(純度99%、Aldrich)を添加したのち、第2の溶媒であるテトラヒドロフラン(THF)40mlをさらに添加して、Ar雰囲気下で攪拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧か80℃でテトラヒドロフランを完全に除去し第2の前駆体を得た。さらに、得られた第2の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理の条件は550℃4時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、SiS2(純度99.9%、和光純薬)、SnS2(純度99.9%、和光純薬)を用いて2.7Li2S・1.08SiS2・0.27SnS2組成になるように粉末0.5gを調合した。容積40mlのビーカーに入れた第1の溶媒であるエタノール40mlに、調合した前記粉末を添加して溶解させ、一晩攪拌した。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でエタノールを留去し、第1の前駆体を得た。次に、得られた第1の前駆体に対して、最終的な組成がLi10.35Sn0.27Si1.08P1.65S12になるように、Li2S(純度99.9%、三津和)およびP2S5(純度99%、Aldrich)を添加した後、第2の溶媒であるテトラヒドロフラン(THF)40mlをさらに添加して、Ar雰囲気下で攪拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でテトラヒドロフランを完全に除去し第2の前駆体を得た。得られた第2の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理条件は550℃24時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
内部をアルゴン(Ar)で置換したグローブボックス内で、Li2S(純度99.9%、三津和)、GeS2(純度99.9%、和光純薬)、P2S5(純度99%、Aldrich)を用いてLi10GeP2S12組成になるように粉末1.5gを調合した。容積40mlのビーカーに入れた第1の溶媒であるエタノール40mlに、調合した前記粉末を添加して溶解させ、一晩撹拌を行った。反応終了後、ロータリーエバポレーターを用いて減圧下80℃でエタノールを除去し第1の前駆体を得た。得られた第1の前駆体150mgを380MPaでプレスすることでペレット作製を行い、このペレットを石英ガラス管で真空封入し、熱処理を行った。この熱処理の条件は550℃3時間とした。熱処理した前記ペレットを室温まで冷却することによって固体電解質を得た。
一方で、第1の溶媒及び第2の溶媒を使用して、原料を2回に分けて溶解、反応させた実施例1~5においては、目的のLi10GeP2S12固体電解質を作製することができることがわかった。しかも実施例1~5で作成された固体電解質は、いずれも十分に高いイオン伝導度を備えていることが分かった。
Claims (6)
- 原料の一部を第1の溶媒に溶解させてから第1の前駆体を析出させる工程と、
該前駆体と前記原料の残部とを第2の溶媒に溶解させてから第2の前駆体を析出させる工程とを含み、
前記第1の溶媒及び前記第2の溶媒のうちの一方としてアクセプター数が10以上の有機溶媒を用い、前記第1の溶媒及び前記第2の溶媒のうちの他方としてドナー数が15以下の有機溶媒を用いる、固体電解質製造方法。 - 前記第1の溶媒と前記第2の溶媒とが互いに異なるものである請求項1記載の固体電解質製造方法。
- 前記原料が、リチウム、リン、硫黄及び14族元素を含有する請求項1又は2記載の固体電解質製造方法。
- 前記14族元素が、ゲルマニウムである請求項3に記載の固体電解質製造方法。
- 前記原料がゲルマニウムを含有し、前記第1の溶媒又は前記第2の溶媒がエタノールである請求項1乃至4のいずれか一項に記載の固体電解質製造方法。
- 前記原料の一部がゲルマニウムを含有し、前記第1の溶媒がエタノールである請求項1乃至5記載のいずれかに記載の固体電解質製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019102553A JP7402619B2 (ja) | 2019-05-31 | 2019-05-31 | 固体電解質の製造方法 |
KR1020200039420A KR20200137966A (ko) | 2019-05-31 | 2020-03-31 | 고체전해질의 제조방법 및 이로부터 제조된 고체전해질을 포함한 전고체전지 |
US16/886,897 US11799126B2 (en) | 2019-05-31 | 2020-05-29 | Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019102553A JP7402619B2 (ja) | 2019-05-31 | 2019-05-31 | 固体電解質の製造方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020196640A JP2020196640A (ja) | 2020-12-10 |
JP7402619B2 true JP7402619B2 (ja) | 2023-12-21 |
Family
ID=73648774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019102553A Active JP7402619B2 (ja) | 2019-05-31 | 2019-05-31 | 固体電解質の製造方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7402619B2 (ja) |
KR (1) | KR20200137966A (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022154428A1 (ko) | 2021-01-15 | 2022-07-21 | 한국전기연구원 | 고체전해질의 제조방법, 이로부터 제조되는 고체전해질 및 이를 포함하는 전고체전지 |
KR102542111B1 (ko) | 2021-01-15 | 2023-06-12 | 한국전기연구원 | 고체전해질의 제조방법, 이로부터 제조되는 고체전해질 및 이를 포함하는 전고체전지 |
WO2023132280A1 (ja) * | 2022-01-05 | 2023-07-13 | 出光興産株式会社 | 硫化物固体電解質の製造方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173939A1 (ja) | 2017-03-22 | 2018-09-27 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
WO2019044517A1 (ja) | 2017-09-01 | 2019-03-07 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3433173B2 (ja) | 2000-10-02 | 2003-08-04 | 大阪府 | 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池 |
-
2019
- 2019-05-31 JP JP2019102553A patent/JP7402619B2/ja active Active
-
2020
- 2020-03-31 KR KR1020200039420A patent/KR20200137966A/ko active Search and Examination
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018173939A1 (ja) | 2017-03-22 | 2018-09-27 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
WO2019044517A1 (ja) | 2017-09-01 | 2019-03-07 | 三菱瓦斯化学株式会社 | Lgps系固体電解質の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020196640A (ja) | 2020-12-10 |
KR20200137966A (ko) | 2020-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jung et al. | Superionic halogen-rich Li-argyrodites using in situ nanocrystal nucleation and rapid crystal growth | |
JP4813767B2 (ja) | リチウムイオン伝導性硫化物系結晶化ガラス及びその製造方法 | |
Voskanyan et al. | Entropy stabilization of TiO2–Nb2O5 Wadsley–Roth shear phases and their prospects for lithium-ion battery anode materials | |
JP7402619B2 (ja) | 固体電解質の製造方法 | |
CN101821199B (zh) | 锂-硫银锗矿 | |
JP7308147B2 (ja) | Lgps系固体電解質の製造方法 | |
JP3433173B2 (ja) | 硫化物系結晶化ガラス、固体型電解質及び全固体二次電池 | |
JP5673760B1 (ja) | 硫化物固体電解質の製造方法 | |
US10280109B2 (en) | Sulfide glass and crystalline solid electrolyte production method, crystalline solid electrolyte, sulfide glass and solid-state battery | |
JP5617794B2 (ja) | 硫化物固体電解質材料の製造方法、および、硫化物固体電解質材料 | |
JP2022502341A (ja) | 大気安定性の高い無機硫化物固体電解質、及びその製造方法並びにその応用 | |
JP2016024874A (ja) | リチウムイオン電池用硫化物系固体電解質 | |
JP2015232965A (ja) | 硫化物固体電解質、および硫化物固体電解質の製造方法 | |
CN110431703B (zh) | Lgps系固体电解质的制造方法 | |
JP7400492B2 (ja) | 硫化物系固体電解質の製造方法 | |
JP2015072773A (ja) | 硫化物固体電解質、および硫化物固体電解質の製造方法 | |
JP2014508707A (ja) | リチウムイオン伝導性ガラスセラミック及び前記ガラスセラミックの使用 | |
JP6118521B2 (ja) | 硫化物系固体電解質を含む電極層、硫化物系固体電解質を含む電解質層及びそれらを用いた全固体電池 | |
KR20180033838A (ko) | 전극 활물질-고체 전해질 복합체, 이의 제조 방법, 이를 포함하는 전고체 전지 | |
JP2024500358A (ja) | 固体電解質の合成方法、固体電解質組成物、及び電気化学セル | |
KR20210044722A (ko) | 전극의 중간 생성물, 이를 이용한 전극, 이를 이용한 전극 펠렛, 및 그들의 제조 방법 | |
KR20180072116A (ko) | 고체 전해질, 이의 제조방법, 및 이를 포함하는 전고체 전지 | |
CN114614081B (zh) | 一类固态电解质材料及应用 | |
CN112864461B (zh) | 硫化物固体电解质材料的制造方法 | |
US11799126B2 (en) | Method of preparing solid electrolyte and all-solid battery including solid electrolyte prepared by the method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20200603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200603 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220419 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230620 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231211 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7402619 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |