[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7400384B2 - Thermoelectric conversion materials and thermoelectric conversion elements - Google Patents

Thermoelectric conversion materials and thermoelectric conversion elements Download PDF

Info

Publication number
JP7400384B2
JP7400384B2 JP2019209278A JP2019209278A JP7400384B2 JP 7400384 B2 JP7400384 B2 JP 7400384B2 JP 2019209278 A JP2019209278 A JP 2019209278A JP 2019209278 A JP2019209278 A JP 2019209278A JP 7400384 B2 JP7400384 B2 JP 7400384B2
Authority
JP
Japan
Prior art keywords
group
thermoelectric conversion
manufactured
substituted
unsubstituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019209278A
Other languages
Japanese (ja)
Other versions
JP2021082719A (en
Inventor
貫 岩田
啓輔 倉内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Artience Co Ltd
Original Assignee
Toyo Ink SC Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Ink SC Holdings Co Ltd filed Critical Toyo Ink SC Holdings Co Ltd
Priority to JP2019209278A priority Critical patent/JP7400384B2/en
Publication of JP2021082719A publication Critical patent/JP2021082719A/en
Application granted granted Critical
Publication of JP7400384B2 publication Critical patent/JP7400384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明の実施形態は、熱電変換材料及び該材料を用いた熱電変換素子に関する。 Embodiments of the present invention relate to a thermoelectric conversion material and a thermoelectric conversion element using the material.

熱エネルギーと電気エネルギーを相互に変換できる熱電変換材料は、熱電発電素子やペルチェ素子のような熱電変換素子に用いられている。熱電変換素子は、熱を電力に変換する素子であり、半導体や金属の組合せによって構成される。代表的な熱電変換素子としては、p型半導体単独、n型半導体単独、又はp型半導体とn型半導体との組合せ、に分類される。熱電変換素子では、半導体の両端に温度差が生じるように熱を加えると起電力が生じるゼーベック効果を利用する。より大きな電位差を得るために、熱電変換素子では、一般的に、材料としてp型半導体とn型半導体とを組合せて使用する。 Thermoelectric conversion materials that can mutually convert thermal energy and electrical energy are used in thermoelectric conversion elements such as thermoelectric generation elements and Peltier elements. A thermoelectric conversion element is an element that converts heat into electric power, and is constructed from a combination of semiconductors and metals. Typical thermoelectric conversion elements are classified into p-type semiconductor alone, n-type semiconductor alone, or a combination of p-type semiconductor and n-type semiconductor. Thermoelectric conversion elements utilize the Seebeck effect, which generates an electromotive force when heat is applied to create a temperature difference between both ends of a semiconductor. In order to obtain a larger potential difference, thermoelectric conversion elements generally use a combination of p-type semiconductor and n-type semiconductor as materials.

また、熱電変換素子は、多数の素子を板状、又は円筒状に組合せてなる熱電モジュールとして使用される。熱エネルギーを直接電力に変換することが出来、例えば、体温で作動する腕時計、地上用発電及び人工衛星用発電における電源として利用できる。熱電変換素子の性能は、熱電変換材料の性能、及びモジュールの耐久性等に依存する。 Further, the thermoelectric conversion element is used as a thermoelectric module formed by combining a large number of elements into a plate shape or a cylindrical shape. Thermal energy can be directly converted into electricity, and can be used, for example, as a power source for wristwatches powered by body temperature, terrestrial power generation, and satellite power generation. The performance of the thermoelectric conversion element depends on the performance of the thermoelectric conversion material, the durability of the module, and the like.

非特許文献1に記載されているとおり、熱電変換材料の性能を表す指標として、無次元熱電性能指数(ZT)が用いられる。また、熱電変換材料の性能を表す指標として、パワーファクターPF(=S2・σ)を用いる場合もある。
上記無次元熱電性能指数「ZT」は、下式(1)により表される。
ZT=(S2・σ・T)/κ 式(1)
ここで、Sはゼーベック係数(V/K)、σは導電率(S・m)、Tは絶対温度(K)、及びκは熱伝導率(W/(m・K))である。熱伝導率κは下式(2)で表される。
κ=α・ρ・C 式(2)
ここで、αは熱拡散率(m2/s)、ρは密度(kg/m3)、及びCは比熱容量(J/(kg・K))である。
つまり、熱電変換の性能(以下、熱電特性とも称す)を向上させるには、ゼーベック係数又は導電率を向上させ、その一方で熱伝導率を低下させることが重要である。
As described in Non-Patent Document 1, a dimensionless thermoelectric figure of merit (ZT) is used as an index representing the performance of thermoelectric conversion materials. Moreover, a power factor PF (=S 2 ·σ) may be used as an index representing the performance of a thermoelectric conversion material.
The dimensionless thermoelectric figure of merit "ZT" is expressed by the following formula (1).
ZT=(S 2・σ・T)/κ Formula (1)
Here, S is the Seebeck coefficient (V/K), σ is the electrical conductivity (S·m), T is the absolute temperature (K), and κ is the thermal conductivity (W/(m·K)). The thermal conductivity κ is expressed by the following formula (2).
κ=α・ρ・C Formula (2)
Here, α is the thermal diffusivity (m 2 /s), ρ is the density (kg/m 3 ), and C is the specific heat capacity (J/(kg·K)).
That is, in order to improve thermoelectric conversion performance (hereinafter also referred to as thermoelectric characteristics), it is important to improve the Seebeck coefficient or electrical conductivity, while decreasing the thermal conductivity.

代表的な熱電変換材料として、例えば、常温から500Kまではビスマス・テルル系(Bi-Te系)、常温から800Kまでは鉛・テルル系(Pb-Te系)、及び常温から1000Kまではシリコン・ゲルマニウム系(Si-Ge系)などの無機材料が使用されている。 Typical thermoelectric conversion materials include, for example, bismuth/tellurium (Bi-Te) from room temperature to 500K, lead/tellurium (Pb-Te) from room temperature to 800K, and silicon/tellurium (Pb-Te) from room temperature to 1000K. Inorganic materials such as germanium (Si--Ge) are used.

しかし、これらの無機材料を含む熱電変換材料は、しばしば希少元素を含み高コストであるか、又は有害物質を含む場合がある。また、無機材料は加工性に乏しいため、製造工程が複雑となる。そのため、無機材料を含む熱電変換材料については、製造エネルギー及び製造コストが高くなり、汎用化が困難である。さらに、無機材料は剛直であるため、平面ではない形状にも設置可能な、フルキシブル性を有する熱電変換素子を形成することは困難である。 However, thermoelectric conversion materials including these inorganic materials often contain rare elements and are expensive, or may contain harmful substances. Furthermore, since inorganic materials have poor workability, the manufacturing process becomes complicated. Therefore, thermoelectric conversion materials containing inorganic materials require high manufacturing energy and manufacturing costs, making it difficult to generalize them. Furthermore, since inorganic materials are rigid, it is difficult to form flexible thermoelectric conversion elements that can be installed in non-planar shapes.

これに対し、従来の無機材料に代えて、有機材料を用いた熱電変換素子に関する検討が進められている。有機材料は、優れた成形性を有し、かつ無機材料よりも優れた可撓性を有するため、それ自身が分解しない温度範囲での汎用性が高い。また、印刷技術等を容易に活用できるため、製造エネルギーや製造コストの面でも無機材料より有利である。 In response, studies are underway on thermoelectric conversion elements using organic materials instead of conventional inorganic materials. Organic materials have excellent moldability and greater flexibility than inorganic materials, so they are highly versatile within a temperature range in which they do not decompose themselves. Furthermore, since printing technology and the like can be easily utilized, it is more advantageous than inorganic materials in terms of manufacturing energy and manufacturing costs.

例えば、特許文献1には、有機色素骨格を有する高分子分散剤とカーボンナノチューブ(CNT)とを含有する熱電変換材料及びそれを用いた熱電変換素子が開示されている。また、特許文献2には、キャリア輸送特性を有する多環芳香族環とアルキル基を含む置換基とが結合した導電性化合物を含む熱電変換材料及びそれを用いた熱電変換素子が開示されている。しかしながら、特許文献1の発明では、熱電変換素子として十分な性能が得られてはいなかった。また、特許文献2の発明では、導電率が10-8~10-7S/cmと低く、熱電変換素子として実用的な値を得ることはできていない。 For example, Patent Document 1 discloses a thermoelectric conversion material containing a polymer dispersant having an organic dye skeleton and carbon nanotubes (CNT), and a thermoelectric conversion element using the same. Further, Patent Document 2 discloses a thermoelectric conversion material containing a conductive compound in which a polycyclic aromatic ring having carrier transport properties and a substituent containing an alkyl group are bonded, and a thermoelectric conversion element using the same. . However, in the invention of Patent Document 1, sufficient performance as a thermoelectric conversion element was not obtained. Further, in the invention of Patent Document 2, the electrical conductivity is as low as 10 -8 to 10 -7 S/cm, and it has not been possible to obtain a practical value as a thermoelectric conversion element.

国際公開第2015/050113号International Publication No. 2015/050113 国際公開第2015/129877号International Publication No. 2015/129877

梶川武信著、「熱電変換技術ハンドブック(初版)」、エヌ・ティー・エス出版、19頁。Takenobu Kajikawa, “Thermoelectric Conversion Technology Handbook (First Edition)”, NTS Publishing, 19 pages.

本発明が解決しようとする課題は、優れたゼーベック係数と導電性とを両立できる熱電変換材料及びそれを用いた熱電変換素子を提供することである。 The problem to be solved by the present invention is to provide a thermoelectric conversion material that can achieve both excellent Seebeck coefficient and conductivity, and a thermoelectric conversion element using the same.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、本発明に至った。すなわち、本発明は、一般式(1)で表される化合物(A)と、炭素材料、金属材料及び導電性高分子からなる群から選ばれる少なくとも1種の導電材料(B)とを含有してなる熱電変換材料に関する。 The present inventors have conducted extensive research to solve the above problems, and as a result, have arrived at the present invention. That is, the present invention contains a compound (A) represented by general formula (1) and at least one conductive material (B) selected from the group consisting of carbon materials, metal materials, and conductive polymers. Regarding thermoelectric conversion materials.

[一般式(1)中、R1~R8は、それぞれ独立に、水素原子、水酸基、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、ナトリウムスルホナト基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、又は、置換もしくは未置換のアミノ基を表す。R1~R8は、隣接する基同士が結合して環を形成しても良い。ただし、R1~R8の内、少なくとも一つは、水素原子以外の基である。] [In general formula (1), R 1 to R 8 are each independently a hydrogen atom, a hydroxyl group, a halogen atom, a cyano group, a nitro group, a carboxyl group, a sodium sulfonate group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, or , represents a substituted or unsubstituted amino group. Adjacent groups of R 1 to R 8 may be bonded to each other to form a ring. However, at least one of R 1 to R 8 is a group other than a hydrogen atom. ]

また、本発明は、上記化合物(A)の含有率が、上記導電材料(B)の全量に対して400質量%以下である、上記熱電変換材料に関する。 The present invention also relates to the thermoelectric conversion material, wherein the content of the compound (A) is 400% by mass or less based on the total amount of the conductive material (B).

また、本発明は、上記導電材料(B)が、カーボンナノチューブ、ケッチェンブラック、グラフェンナノプレート及びグラフェンからなる群から選ばれる少なくとも1種を含む上記熱電変換材料に関する。 The present invention also relates to the thermoelectric conversion material, in which the conductive material (B) contains at least one member selected from the group consisting of carbon nanotubes, Ketjen black, graphene nanoplates, and graphene.

また、本発明は、上記導電材料(B)が、カーボンナノチューブを含む上記熱電変換材料に関する。 Further, the present invention relates to the thermoelectric conversion material in which the conductive material (B) includes carbon nanotubes.

また、本発明は、上記熱電変換材料を含んでなる熱電変換膜と、電極とを有し、上記熱電変換膜と、上記電極とが電気的に接続されている熱電変換素子に関する。 Further, the present invention relates to a thermoelectric conversion element having a thermoelectric conversion film containing the above-mentioned thermoelectric conversion material and an electrode, the thermoelectric conversion film and the above-mentioned electrode being electrically connected.

本発明により、ゼーベック係数と導電性との両立を達成する熱電変換材料を提供することができる。また、当該材料を用いて、優れた熱電性能を発揮する熱電変換素子を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion material that achieves both Seebeck coefficient and electrical conductivity. Furthermore, using the material, it is possible to provide a thermoelectric conversion element that exhibits excellent thermoelectric performance.

本発明の実施形態である熱電変換素子の一例の構造を示す模式図である。1 is a schematic diagram showing the structure of an example of a thermoelectric conversion element according to an embodiment of the present invention. 本発明の実施形態である熱電変換素子の起電力の測定方法を説明する模式図である。FIG. 2 is a schematic diagram illustrating a method for measuring electromotive force of a thermoelectric conversion element according to an embodiment of the present invention.

<熱電変換材料>
本発明の熱電変換材料は、化合物(A)と導電材料(B)とを含有することが特徴であり、高いゼーベック係数と導電性とを両立し、優れた熱電性能を発揮することができる。これは、化合物(A)から導電材料(B)へ効率的に正孔または電子(キャリア)が移動し、その正孔または電子(キャリア)が導電材料中を移動することで、高いゼーベック係数と導電率が得られるものと推察される。
以下、本発明の実施形態について詳細に説明する。
<Thermoelectric conversion materials>
The thermoelectric conversion material of the present invention is characterized by containing a compound (A) and a conductive material (B), and is capable of achieving both a high Seebeck coefficient and conductivity, and exhibiting excellent thermoelectric performance. This is because holes or electrons (carriers) move efficiently from the compound (A) to the conductive material (B), and the holes or electrons (carriers) move within the conductive material, resulting in a high Seebeck coefficient. It is presumed that electrical conductivity can be obtained.
Embodiments of the present invention will be described in detail below.

<化合物(A)> <Compound (A)>

<化合物(A)>
熱電変換のメカニズムは以下のように考えられる。熱励起をした化合物(A)内に、正孔又は電子(キャリア)が生じ、その正孔又は電子(キャリア)が導電材料(B)へと移動し、導電材料(B)内での電位差が生じ、電流が流れる。つまり、化合物(A)及び導電材料(B)間のキャリア移動が効率的になるほど、導電材料(B)内での電位差が大きくなり、ゼーベック係数が向上する。キャリア移動を効率的にする具体的な方法は明確にはわかっていないが、化合物(A)と導電材料(B)間の親和性からくる距離の近さ、化合物(A)と導電材料(B)間のエネルギー準位の関係、化合物(A)の励起状態の長さ(励起寿命)などが影響していると考えられる。
<Compound (A)>
The mechanism of thermoelectric conversion is thought to be as follows. Holes or electrons (carriers) are generated in the thermally excited compound (A), and the holes or electrons (carriers) move to the conductive material (B), increasing the potential difference within the conductive material (B). occurs and current flows. In other words, the more efficient the carrier movement between the compound (A) and the conductive material (B), the greater the potential difference within the conductive material (B), and the higher the Seebeck coefficient. Although the specific method for making carrier transfer efficient is not clearly understood, it is important to consider the closeness of the distance between the compound (A) and the conductive material (B) due to the affinity between the compound (A) and the conductive material (B). ), the length of the excited state (excitation lifetime) of compound (A), etc. are considered to have an influence.

上記条件を要因などにより、化合物(A)及び導電材料(B)間のキャリア移動が効率的になるような化合物(A)は、一般式(1)で表される。まず、一般式(1)の置換基R1~R8について説明する。 Depending on factors such as the above conditions, a compound (A) that allows efficient carrier transfer between the compound (A) and the conductive material (B) is represented by the general formula (1). First, substituents R 1 to R 8 of general formula (1) will be explained.

ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、又はヨウ素原子が挙げられる。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

置換もしくは未置換のアルキル基としては、例えば、メチル基、エチル基、プロピル基、ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基といった炭素数1~30の未置換のアルキル基、
2-フェニルイソプロピル基、トリクロロメチル基、トリフルオロメチル基、ベンジル基、α-フェノキシベンジル基、α,α-ジメチルベンジル基、α,α-メチルフェニルベンジル基、α,α-ビス(トリフルオロメチル)ベンジル基、トリフェニルメチル基、α-ベンジルオキシベンジル基等の炭素数1~30の置換アルキル基等が挙げられる。
Examples of substituted or unsubstituted alkyl groups include carbon atoms such as methyl, ethyl, propyl, butyl, sec-butyl, tert-butyl, pentyl, hexyl, heptyl, octyl, and stearyl groups. an unsubstituted alkyl group of numbers 1 to 30,
2-phenylisopropyl group, trichloromethyl group, trifluoromethyl group, benzyl group, α-phenoxybenzyl group, α,α-dimethylbenzyl group, α,α-methylphenylbenzyl group, α,α-bis(trifluoromethyl ) Substituted alkyl groups having 1 to 30 carbon atoms such as a benzyl group, a triphenylmethyl group, and an α-benzyloxybenzyl group.

置換もしくは未置換のアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、tert-ブトキシ基、オクチルオキシ基、tert-オクチルオキシ基といった炭素数1~20の未置換のアルコキシ基、
3,3,3-トリフルオロエトキシ基、ベンジルオキシ基といった炭素数1~20の置換アルコキシ基が挙げられる。
Examples of substituted or unsubstituted alkoxy groups include unsubstituted alkoxy groups having 1 to 20 carbon atoms such as methoxy group, ethoxy group, propoxy group, butoxy group, tert-butoxy group, octyloxy group, and tert-octyloxy group. ,
Examples include substituted alkoxy groups having 1 to 20 carbon atoms such as 3,3,3-trifluoroethoxy group and benzyloxy group.

置換もしくは未置換のアリールオキシ基としては、例えば、フェノキシ基、4-tert-ブチルフェノキシ基、1-ナフチルオキシ基、2-ナフチルオキシ基、9-アンスリルオキシ基といった炭素数6~20の未置換のアリールオキシ基、4-ニトロフェノキシ基、3-フルオロフェノキシ基、ペンタフルオロフェノキシ基、3-トリフルオロメチルフェノキシ基等の炭素数6~20の置換アリールオキシ基が挙げられる。 Examples of substituted or unsubstituted aryloxy groups include unsubstituted aryloxy groups having 6 to 20 carbon atoms, such as phenoxy group, 4-tert-butylphenoxy group, 1-naphthyloxy group, 2-naphthyloxy group, and 9-anthryloxy group. Examples include substituted aryloxy groups having 6 to 20 carbon atoms, such as a substituted aryloxy group, 4-nitrophenoxy group, 3-fluorophenoxy group, pentafluorophenoxy group, and 3-trifluoromethylphenoxy group.

置換もしくは未置換のアルキルチオ基としては、例えば、メチルチオ基、エチルチオ基、tert-ブチルチオ基、ヘキシルチオ基、オクチルチオ基といった炭素数1~20の未置換のアルキルチオ基、べンジルチオ基、トリフルオロメチルチオ基といった炭素数1~20の置換アルキルチオ基等が挙げられる。 Examples of substituted or unsubstituted alkylthio groups include unsubstituted alkylthio groups having 1 to 20 carbon atoms such as methylthio group, ethylthio group, tert-butylthio group, hexylthio group, and octylthio group, benzylthio group, and trifluoromethylthio group. Examples include substituted alkylthio groups having 1 to 20 carbon atoms.

置換もしくは未置換のアリールチオ基としては、例えば、フェニルチオ基、2-メチルフェニルチオ基、4-tert-ブチルフェニルチオ基といった炭素数6~20の未置換のアリールチオ基、3-フルオロフェニルチオ基、ペンタフルオロフェニルチオ基、3-トリフルオロメチルフェニルチオ基等の炭素数6~20の置換アリールチオ基が挙げられる。 Examples of substituted or unsubstituted arylthio groups include unsubstituted arylthio groups having 6 to 20 carbon atoms such as phenylthio group, 2-methylphenylthio group, and 4-tert-butylphenylthio group, 3-fluorophenylthio group, Examples include substituted arylthio groups having 6 to 20 carbon atoms such as pentafluorophenylthio group and 3-trifluoromethylphenylthio group.

置換もしくは未置換のアリール基としては、例えば、フェニル基、o-トリル基、m-トリル基、p-トリル基、2,4-キシリル基、p-クメニル基、メシチル基、1-ナフチル基、2-ナフチル基、1-アンスリル基、9-フェナントリル基、1-アセナフチル基、2-アズレニル基、1-ピレニル基、2-トリフェニレル基等の炭素数6~30の未置換のアリール基、p-シアノフェニル基、p-ジフェニルアミノフェニル基、p-スチリルフェニル基、4-[(2-トリル)エテニル]フェニル基、4-[(2,2-ジトリル)エテニル]フェニル基等の炭素数6~30の置換アリール基が挙げられる。 Examples of substituted or unsubstituted aryl groups include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,4-xylyl group, p-cumenyl group, mesityl group, 1-naphthyl group, Unsubstituted aryl groups having 6 to 30 carbon atoms such as 2-naphthyl group, 1-anthryl group, 9-phenanthryl group, 1-acenaphthyl group, 2-azlenyl group, 1-pyrenyl group, 2-triphenyl group, p- Cyanophenyl group, p-diphenylaminophenyl group, p-styrylphenyl group, 4-[(2-tolyl)ethenyl]phenyl group, 4-[(2,2-ditolyl)ethenyl]phenyl group, etc. with 6 or more carbon atoms Thirty substituted aryl groups are mentioned.

置換もしくは未置換の複素環基としては、例えば、2-フリル基、3-フリル基、2-チエニル基、3-チエニル基、1-ピローリル基、2-ピローリル基、3-ピローリル基、2-ピリジル基、3-ピリジル基、4-ピリジル基、2-ピラジル基、2-オキサゾリル基、3-イソオキサゾリル基、2-チアゾリル基、3-イソチアゾリル基、2-イミダゾリル基、3-ピラゾリル基、2-キノリル基、3-キノリル基、4-キノリル基、5-キノリル基、6-キノリル基、7-キノリル基、8-キノリル基、1-イソキノリル基、2-キノキサリニル基、2-ベンゾフリル基、2-ベンゾチエニル基、N-インドリル基、N-カルバゾリル基、N-アクリジニル基といった炭素数3~20の未置換の芳香族複素環基、2-(5-フェニル)フリル基、2-(5-フェニル)チエニル基、2-(3-シアノ)ピリジル基といった炭素数3~20の置換芳香族複素環基が挙げられる。 Examples of the substituted or unsubstituted heterocyclic group include 2-furyl group, 3-furyl group, 2-thienyl group, 3-thienyl group, 1-pyrrolyl group, 2-pyrrolyl group, 3-pyrrolyl group, 2-furyl group, Pyridyl group, 3-pyridyl group, 4-pyridyl group, 2-pyrazyl group, 2-oxazolyl group, 3-isoxazolyl group, 2-thiazolyl group, 3-isothiazolyl group, 2-imidazolyl group, 3-pyrazolyl group, 2- Quinolyl group, 3-quinolyl group, 4-quinolyl group, 5-quinolyl group, 6-quinolyl group, 7-quinolyl group, 8-quinolyl group, 1-isoquinolyl group, 2-quinoxalinyl group, 2-benzofuryl group, 2- Unsubstituted aromatic heterocyclic groups having 3 to 20 carbon atoms such as benzothienyl group, N-indolyl group, N-carbazolyl group, N-acridinyl group, 2-(5-phenyl)furyl group, 2-(5-phenyl group) ) Substituted aromatic heterocyclic groups having 3 to 20 carbon atoms such as thienyl group and 2-(3-cyano)pyridyl group are mentioned.

置換もしくは未置換のアミノ基としては、例えば、アミノ基の他、N-メチルアミノ基、N-エチルアミノ基、N,N-ジエチルアミノ基、N,N-ジイソプロピルアミノ基、N,N-ジブチルアミノ基、N-ベンジルアミノ基、N,N-ジベンジルアミノ基、N-フェニルアミノ基、N-フェニル-N-メチルアミノ基、N,N-ジフェニルアミノ基、N,N-ビス(m-トリル)アミノ基、N,N-ビス(p-トリル)アミノ基、N,N-ビス(p-ビフェニリル)アミノ基、ビス[4-(4-メチル)ビフェニリル]アミノ基、N-p-ビフェニリル-N-フェニルアミノ基、N-1-ナフチル-N-フェニルアミノ基、N-2-ナフチル-N-フェニルアミノ基、N-フェナントリル-N-フェニルアミノ基、N,N-ビス(m-フルオロフェニル)アミノ基、N,N-ビス(3-(9-フェニル)カルバゾール)アミノ基、N,N-ビス(p-シアノフェニル)アミノ基、ビス[4-(1,1’-ジメチルベンジル)フェニル]アミノ基等の炭素数1~30の置換アミノ基が挙げられる。 Examples of substituted or unsubstituted amino groups include amino groups, N-methylamino groups, N-ethylamino groups, N,N-diethylamino groups, N,N-diisopropylamino groups, and N,N-dibutylamino groups. group, N-benzylamino group, N,N-dibenzylamino group, N-phenylamino group, N-phenyl-N-methylamino group, N,N-diphenylamino group, N,N-bis(m-tolyl ) amino group, N,N-bis(p-tolyl)amino group, N,N-bis(p-biphenylyl)amino group, bis[4-(4-methyl)biphenylyl]amino group, Np-biphenylyl- N-phenylamino group, N-1-naphthyl-N-phenylamino group, N-2-naphthyl-N-phenylamino group, N-phenanthryl-N-phenylamino group, N,N-bis(m-fluorophenyl ) amino group, N,N-bis(3-(9-phenyl)carbazole)amino group, N,N-bis(p-cyanophenyl)amino group, bis[4-(1,1'-dimethylbenzyl)phenyl ] Examples include substituted amino groups having 1 to 30 carbon atoms such as amino groups.

一般式(1)のR1~R8は、隣接する基同士が結合して環を形成しても良い。
具体的な一般式(1)で表される化合物(A)の具体例を、表1~9に挙げる。表中において、「C37」とはプロピル基を表す。
Adjacent groups of R 1 to R 8 in general formula (1) may be bonded to each other to form a ring.
Specific examples of the compound (A) represented by the general formula (1) are listed in Tables 1 to 9. In the table, "C 3 H 7 " represents a propyl group.

化合物(A)は、1種類のみ用いても、2種類以上を同時に使用しても良い。 Only one type of compound (A) may be used, or two or more types may be used simultaneously.

化合物(A)の三重項励起状態の寿命としては、1μs以上が好ましく、より好ましくは100μs以上であり、より好ましくは1ms以上であり、更に好ましくは100ms以上である。 The lifetime of the triplet excited state of compound (A) is preferably 1 μs or more, more preferably 100 μs or more, more preferably 1 ms or more, and even more preferably 100 ms or more.

一重項励起状態から三重項励起状態への項間移動の速度の指標である項間交差速度定数としては、106-1以上が好ましく、より好ましくは107-1以上であり、より好ましくは108-1以上であり、より好ましくは109-1以上であり、更に好ましくは1010-1以上1011-1以下である。 The intersystem cross rate constant, which is an index of the rate of intersystem transfer from the singlet excited state to the triplet excited state, is preferably 10 6 s -1 or more, more preferably 10 7 s -1 or more, and more It is preferably 10 8 s -1 or more, more preferably 10 9 s -1 or more, and even more preferably 10 10 s -1 or more and 10 11 s -1 or less.

一重項励起状態から三重項励起状態への項間移動の効率の指標である量子収率としては、0.5以上が好ましく、より好ましくは0.6以上であり、さらに好ましくは0.7以上であり、特に好ましくは0.8以上であり、更に特に好ましくは0.9以上である。尚、量子収率の上限値は1である。 The quantum yield, which is an index of the efficiency of intersystem transfer from the singlet excited state to the triplet excited state, is preferably 0.5 or more, more preferably 0.6 or more, and even more preferably 0.7 or more. It is particularly preferably 0.8 or more, and even more preferably 0.9 or more. Note that the upper limit of the quantum yield is 1.

また、上記メカニズムにおけるキャリア移動の効率は、化合物(A)と導電材料(B)との間の距離が近い方が好ましい。したがって、両者の親和性が優れている方が好ましい。例えば、導電材料(B)としてCNT等のπ平面があるものに対しては、化合物(A)としては、芳香環、複素環又は、酸性官能基を有する化合物が好ましい。 Further, for the efficiency of carrier movement in the above mechanism, it is preferable that the distance between the compound (A) and the conductive material (B) is short. Therefore, it is preferable that the two have excellent affinity. For example, when the conductive material (B) has a π plane such as CNT, the compound (A) is preferably a compound having an aromatic ring, a heterocycle, or an acidic functional group.

また、導電材料(B)に対する表面吸着及び均一化を促進し、さらに分子割合を増加させるために、化合物(A)の分子量は、小さいほうが好ましい。分子量は、好ましくは2,000以下であり、より好ましくは1,000以下である。 Further, in order to promote surface adsorption and uniformity to the conductive material (B) and further increase the molecular proportion, the molecular weight of the compound (A) is preferably small. The molecular weight is preferably 2,000 or less, more preferably 1,000 or less.

<導電材料(B)>
導電材料(B)は、導電性向上に寄与するものである。導電材料(B)の含有量を増やすことで導電性を向上させることができる。
導電材料(B)は、導電性を有する材料(炭素材料、金属材料、導電性高分子等)であれば、特に制限されず、例えば、炭素材料としては、黒鉛、カーボンナノチューブ、カーボンブラック、グラフェン(グラフェンナノプレートを含む)等が挙げられ、金属材料としては、金、銀、銅、ニッケル、クロム、パラジウム、ロジウム、ルテニウム、インジウム、ケイ素、アルミニウム、タングステン、モリブデン、ゲルマニウム、ガリウム及び白金等の金属粉、並びに ZnSe、CdS、InP、GaN、SiC、SiGeこれらの合金、並びにこれらの複合粉が挙げられる。また、核体と、前記核体物質とは異なる物質で被覆した微粒子、具体的には、例えば、銅を核体とし、その表面を銀で被覆した銀コート銅粉等が挙げられる。また、例えば酸化銀、酸化インジウム、酸化スズ、酸化亜鉛、酸化ルテニウム、ITO(スズドープ酸化インジウム)、AZO(アルミドープ酸化亜鉛)、及びGZO(ガリウムドープ酸化亜鉛)等の金属酸化物の粉末、並びにこれらの金属酸化物で表面被覆した粉末等が挙げられ、導電性高分子としては、PEDOT/PSS(ポリ(3,4-エチレンジオキシチオフェン)とポリスチレンスルホン酸から成る複合物)、ポリアニリン、ポリアセチレン、ポリピロール、ポリチオフェン、ポリパラフェニレン等が挙げられる。
使用する導電材料の種類は1種でもよいし、2種以上を組み合わせて使用してもよい。
<Conductive material (B)>
The conductive material (B) contributes to improving conductivity. Conductivity can be improved by increasing the content of the conductive material (B).
The conductive material (B) is not particularly limited as long as it has conductivity (carbon material, metal material, conductive polymer, etc.). For example, carbon materials include graphite, carbon nanotubes, carbon black, and graphene. (including graphene nanoplates), etc. Metal materials include gold, silver, copper, nickel, chromium, palladium, rhodium, ruthenium, indium, silicon, aluminum, tungsten, molybdenum, germanium, gallium, platinum, etc. Examples include metal powder, ZnSe, CdS, InP, GaN, SiC, SiGe, alloys thereof, and composite powders thereof. Further, fine particles having a nucleus and a substance different from the nucleus substance coated therein, specifically, for example, silver-coated copper powder having a copper nucleus and coating the surface with silver may be mentioned. In addition, powders of metal oxides such as silver oxide, indium oxide, tin oxide, zinc oxide, ruthenium oxide, ITO (tin-doped indium oxide), AZO (aluminum-doped zinc oxide), and GZO (gallium-doped zinc oxide), Examples include powders whose surfaces are coated with these metal oxides, and examples of conductive polymers include PEDOT/PSS (composite of poly(3,4-ethylenedioxythiophene) and polystyrene sulfonic acid), polyaniline, and polyacetylene. , polypyrrole, polythiophene, polyparaphenylene, and the like.
One type of conductive material may be used, or two or more types may be used in combination.

導電性材料(B)の形状は、特に限定されず、不定形、凝集状、鱗片状、微結晶状、球状、フレーク状、ワイヤー状等を適宜用いることができる。 The shape of the conductive material (B) is not particularly limited, and amorphous shapes, aggregate shapes, scale shapes, microcrystal shapes, spherical shapes, flake shapes, wire shapes, etc. can be used as appropriate.

ゼーベック係数と導電率との両立の観点で、カーボンナノチューブ、カーボンブラック、グラフェン(グラフェンナノプレートを含む)からなる群から選ばれる少なくとも1種が好ましく、より好ましくはカーボンナノチューブであり、特に好ましくは単層カーボンナノチューブである。 From the viewpoint of achieving both Seebeck coefficient and electrical conductivity, at least one selected from the group consisting of carbon nanotubes, carbon black, and graphene (including graphene nanoplates) is preferable, carbon nanotubes are more preferable, and carbon nanotubes are particularly preferable. It is a layered carbon nanotube.

炭素材料としては、例えば、薄片状黒鉛として、日本黒鉛工業社製のCMX、UP-5、UP-10、UP-20、UP-35N、CSSP、CSPE、CSP、CP、CB-150、CB-100、ACP、ACP-1000、ACB-50、ACB-100、ACB-150、SP-10、SP-20、J-SP、SP-270、HOP、GR-60、LEP、F#1、F#2、F#3、中越黒鉛工業所社製のBF-3AK、FBF、BF-15AK、CBR、CPB-6S、CPB-3、96L、96L-3、K-3、SC-120、SC-60、HLP、CP-150、SB-1、伊藤黒鉛工業社製のEC1500、EC1000、EC500、EC300、EC100、EC50、西村黒鉛社製の10099M、PB-99等が挙げられる。球状天然黒鉛としては、日本黒鉛工業社製のCGC-20、CGC-50、CGB-20、CGB-50が挙げられる。土状黒鉛としては、日本黒鉛工業社製の青P、AP、AOP、P#1、中越黒鉛社製のAPR、K-5、AP-2000、AP-6、300F、150Fが挙げられる。人造黒鉛としては、日本黒鉛工業社製のPAG-60、PAG-80、PAG-120、PAG-5、HAG-10W、HAG-150、中越黒鉛社製のG-4AK、G-6S、G-3G-150、G-30、G-80、G-50、SMF、EMF、SFF、SFF-80B、SS-100、BSP-15AK、BSP-100AK、WF-15C、SECカーボン社製のSGP-100、SGP-50、SGP-25、SGP-15、SGP-5、SGP-1、SGO-100、SGO-50、SGO-25、SGO-15、SGO-5、SGO-1、SGX-100、SGX-50、SGX-25、SGX-15、SGX-5、SGX-1が挙げられる。 Examples of carbon materials include flaky graphite such as CMX, UP-5, UP-10, UP-20, UP-35N, CSSP, CSPE, CSP, CP, CB-150, and CB- manufactured by Nippon Graphite Industries. 100, ACP, ACP-1000, ACB-50, ACB-100, ACB-150, SP-10, SP-20, J-SP, SP-270, HOP, GR-60, LEP, F#1, F# 2, F#3, BF-3AK, FBF, BF-15AK, CBR, CPB-6S, CPB-3, 96L, 96L-3, K-3, SC-120, SC-60 manufactured by Chuetsu Graphite Industries Co., Ltd. , HLP, CP-150, SB-1, EC1500, EC1000, EC500, EC300, EC100, EC50 manufactured by Ito Graphite Industries, 10099M, PB-99 manufactured by Nishimura Graphite Co., Ltd., and the like. Examples of the spherical natural graphite include CGC-20, CGC-50, CGB-20, and CGB-50 manufactured by Nippon Graphite Industries. Examples of the earthy graphite include Blue P, AP, AOP, and P#1 manufactured by Nippon Graphite Industries Co., Ltd., and APR, K-5, AP-2000, AP-6, 300F, and 150F manufactured by Chuetsu Graphite Co., Ltd. Examples of artificial graphite include PAG-60, PAG-80, PAG-120, PAG-5, HAG-10W, HAG-150 manufactured by Nippon Graphite Industries, and G-4AK, G-6S, G- manufactured by Chuetsu Graphite Co., Ltd. 3G-150, G-30, G-80, G-50, SMF, EMF, SFF, SFF-80B, SS-100, BSP-15AK, BSP-100AK, WF-15C, SGP-100 manufactured by SEC Carbon , SGP-50, SGP-25, SGP-15, SGP-5, SGP-1, SGO-100, SGO-50, SGO-25, SGO-15, SGO-5, SGO-1, SGX-100, SGX -50, SGX-25, SGX-15, SGX-5, and SGX-1.

市販の導電性炭素繊維やカーボンナノチューブとしては、昭和電工社製のVGCF等の気相法炭素繊維、名城ナノカーボン社製のEC1.5,EC1.5-P、ОCSiAl社製のTUBALL、ゼオンナノテクノロジー社製のZEONANO等の単層カーボンナノチューブ、CNano社製のFloTube9000、FloTube7000、FloTube2000、Nanocyl社製のNC7000、Knano社製の100T、200P等が挙げられる。 Commercially available conductive carbon fibers and carbon nanotubes include vapor grown carbon fibers such as VGCF manufactured by Showa Denko, EC1.5 and EC1.5-P manufactured by Meijo Nano Carbon, TUBALL manufactured by OCSiAl, and Zeon Nano. Examples include single-walled carbon nanotubes such as ZEONANO manufactured by Technology Corporation, FloTube9000, FloTube7000, and FloTube2000 manufactured by CNano, NC7000 manufactured by Nanocyl, and 100T and 200P manufactured by Knano.

市販のカーボンブラックとしては、例えば、東海カーボン社製のトーカブラック#4300、#4400、#4500、#5500、デグサ社製のプリンテックスL、コロンビヤン社製のRaven7000、5750、5250、5000ULTRAIII、5000ULTRA、Conductex SC ULTRA、Conductex 975 ULTRA、PUERBLACK100、115、205、三菱化学社製の#2350、#2400B、#2600B、#3050B、#3030B、#3230B、#3350B、#3400B、#5400B、キャボット社製のMONARCH1400、1300、900、VulcanXC-72R、BlackPearls2000、TIMCAL社製のEnsaco250G、Ensaco260G、Ensaco350G、SuperP-Li等のファーネスブラック)、ライオン社製のEC-300J、EC-600JD等のケッチェンブラック、電気化学工業社製のデンカブラック、デンカブラックHS-100、FX-35等のアセチレンブラックが挙げられる。これらは特に限定されることはない。 Commercially available carbon blacks include, for example, Toka Black #4300, #4400, #4500, #5500 manufactured by Tokai Carbon, Printex L manufactured by Degussa, Raven 7000, 5750, 5250, 5000ULTRAIII, 5000ULTRA manufactured by Columbian, Conductex SC ULTRA, Conductex 975 ULTRA, PUERBLACK100, 115, 205, Mitsubishi Chemical #2350, #2400B, #2600B, #3050B, #3030B, #3230B, #3350B, #3400B, #5 400B, made by Cabot MONARCH1400, 1300, 900, Vulcan Ketjen black such as 600JD, electrochemical Examples include acetylene black such as Denka Black, Denka Black HS-100, and FX-35 manufactured by Kogyo Co., Ltd. These are not particularly limited.

また、前記化合物(A)は、熱電変換材料中でゼーベック係数の向上に寄与する。化合物(A)の含有量を増やすことでゼーベック係数を向上させることができるが、化合物(A)の含有量を増やすと絶縁性が増して導電性が低下するため、ゼーベック係数と導電率との両立の観点から、前記化合物(A)の含有率は、前記炭素材料(B)の全量に対して、上限値が、400質量%以下が好ましく、200質量%以下より好ましく、120質量%以下が更に好ましく、100質量%以下が特に好ましい。また、下限値は、5質量%以上が好ましく、20質量%以上がより好ましい。 Further, the compound (A) contributes to improving the Seebeck coefficient in the thermoelectric conversion material. The Seebeck coefficient can be improved by increasing the content of compound (A), but since increasing the content of compound (A) increases the insulation property and decreases the conductivity, the relationship between the Seebeck coefficient and the conductivity is From the viewpoint of coexistence, the upper limit of the content of the compound (A) is preferably 400% by mass or less, more preferably 200% by mass or less, and 120% by mass or less based on the total amount of the carbon material (B). It is more preferable, and particularly preferably 100% by mass or less. Moreover, the lower limit is preferably 5% by mass or more, more preferably 20% by mass or more.

本発明の熱電変換材料は、熱電特性を維持する上で、ラジカルを発生する化合物を含有しないことが好ましく、前記化合物(A)と前記導電材料(B)のみからなることがより好ましいが、塗工、膜形成の観点から、必要に応じて、その他成分を含んでよい。 In order to maintain thermoelectric properties, the thermoelectric conversion material of the present invention preferably does not contain a compound that generates radicals, and more preferably consists only of the compound (A) and the conductive material (B). From the viewpoint of processing and film formation, other components may be included as necessary.

(溶剤)
溶剤は、前記化合物(A)と導電材料(B)の混合する際の媒体として使用され、インキ化による塗工性向上が可能とする。使用できる溶剤としては、導電材料(B)と化合物(A)とを溶解又は良分散できれば特に限定されず、有機溶剤や水を挙げることができ、2種以上を組み合わせて用いてもよい。
有機溶剤としては、例えば、メタノール、エタノール、プロパノール、ブタノール、エチレングリコールメチルエーテル、ジエチレングリコールメチルエーテル、ターピネオール、ジヒドロターピネオール、2,4-ジエチル-1,5-ペンタンジオール、1、3-ブチレングリコール、イソボルニルシクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ジエチレングリコール、トリエチレングリコール、グリセリン、ポリエチレングリコール、ポリプロピレングリコール、トリフルオロエタノール、m-クレゾール、及びチオジグリコール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類、テトラヒドロフラン、ジオキサン、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル等のエーテル類、ヘキサン、ヘプタン、オクタン等の炭化水素類、ベンゼン、トルエン、キシレン、クメン等の芳香族類、酢酸エチル、酢酸ブチル等のエステル類、N-メチルピロリドン等から、必要に応じて適宜選択することができる。
化合物(A)と導電材料(B)を分散する溶剤としては、N-メチルピロリドンが特に好ましい。
(solvent)
The solvent is used as a medium when mixing the compound (A) and the conductive material (B), and makes it possible to improve coating properties by forming an ink. The solvent that can be used is not particularly limited as long as it can dissolve or disperse the conductive material (B) and the compound (A) well, and examples include organic solvents and water, and two or more types may be used in combination.
Examples of organic solvents include methanol, ethanol, propanol, butanol, ethylene glycol methyl ether, diethylene glycol methyl ether, terpineol, dihydroterpineol, 2,4-diethyl-1,5-pentanediol, 1,3-butylene glycol, iso Bornylcyclohexanol, ethylene glycol, 1,3-propanediol, 1,4-butanediol, diethylene glycol, triethylene glycol, glycerin, polyethylene glycol, polypropylene glycol, trifluoroethanol, m-cresol, and thiodiglycol, etc. Alcohols, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclohexanone, ethers such as tetrahydrofuran, dioxane, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, hydrocarbons such as hexane, heptane, octane, benzene, toluene, xylene, cumene It can be appropriately selected from aromatics such as ethyl acetate, esters such as ethyl acetate, butyl acetate, N-methylpyrrolidone, etc., as required.
N-methylpyrrolidone is particularly preferred as the solvent for dispersing the compound (A) and the conductive material (B).

(助剤)
使用可能な助剤は、特に限定されず、例えば、ラクタム類、アルコール類、アミノアルコール類、カルボン酸類、酸無水物類、及びイオン性液体が挙げられる。具体例は以下のとおりである。
ラクタム類:、ピロリドン、カプロラクタム、N-メチルカプロラクタム、及びN-オクチルピロリドン等。
アルコール類:ショ糖、グルコース、フルクトース、ラクトース、ソルビトール、マンニトール、キシリトール等。
アミノアルコール類:ジエタノールアミン、及びトリエタノールアミン等。
カルボン酸類:2-フランカルボン酸、3-フランカルボン酸、ジクロロ酢酸、及びトリフルオロ酢酸等。
酸無水物類:無水酢酸、無水プロピオン酸、無水アクリル酸、無水メタクリル酸、無水安息香酸、無水コハク酸、無水マレイン酸、無水イタコン酸、無水グルタル酸、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸(別名:シクロヘキサン-1,2-ジカルボン酸無水物)、無水トリメリット酸、ヘキサヒドロ無水トリメリット酸、無水ピロメリット酸、無水ハイミック酸、ビフェニルテトラカルボン酸無水物、1,2,3,4-ブタンテトラカルボン酸無水物、ナフタレンテトラカルボン酸無水物、及び9,9-フルオレニリデンビス無水フタル酸等。スチレン-無水マレイン酸コポリマー、エチレン-無水マレイン酸コポリマー、イソブチレン-無水マレイン酸コポリマー、アルキルビニルエーテル-無水マレイン酸コポリマー等の、無水マレイン酸と他のビニルモノマーとを共重合したコポリマー等。
(Auxiliary agent)
Usable auxiliaries are not particularly limited, and include, for example, lactams, alcohols, amino alcohols, carboxylic acids, acid anhydrides, and ionic liquids. Specific examples are as follows.
Lactams: pyrrolidone, caprolactam, N-methylcaprolactam, N-octylpyrrolidone, etc.
Alcohols: sucrose, glucose, fructose, lactose, sorbitol, mannitol, xylitol, etc.
Amino alcohols: diethanolamine, triethanolamine, etc.
Carboxylic acids: 2-furancarboxylic acid, 3-furancarboxylic acid, dichloroacetic acid, trifluoroacetic acid, etc.
Acid anhydrides: acetic anhydride, propionic anhydride, acrylic anhydride, methacrylic anhydride, benzoic anhydride, succinic anhydride, maleic anhydride, itaconic anhydride, glutaric anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydro Phthalic anhydride (also known as cyclohexane-1,2-dicarboxylic anhydride), trimellitic anhydride, hexahydro trimellitic anhydride, pyromellitic anhydride, himic anhydride, biphenyltetracarboxylic anhydride, 1,2,3 , 4-butanetetracarboxylic anhydride, naphthalenetetracarboxylic anhydride, and 9,9-fluorenylidene bisphthalic anhydride. Copolymers made by copolymerizing maleic anhydride with other vinyl monomers, such as styrene-maleic anhydride copolymers, ethylene-maleic anhydride copolymers, isobutylene-maleic anhydride copolymers, and alkyl vinyl ether-maleic anhydride copolymers.

導電性及び熱電特性の観点から、助剤として、ラクタム類及びアルコール類の少なくとも一方を使用することが好ましい。助剤の含有量は、熱電変換材料の全質量を基準として、0.1~30質量%の範囲が好ましく、1~10質量%の範囲がより好ましく、1~5質量%の範囲がさらに好ましい。助剤の含有量を0.1質量%以上にすることで、導電性及び熱電特性の向上効果を容易に得ることができる。また、助剤の含有量を50質量%以下にした場合、膜物性の低下を抑制することができる。 From the viewpoint of electrical conductivity and thermoelectric properties, it is preferable to use at least one of lactams and alcohols as the auxiliary agent. The content of the auxiliary agent is preferably in the range of 0.1 to 30% by mass, more preferably in the range of 1 to 10% by mass, and even more preferably in the range of 1 to 5% by mass, based on the total mass of the thermoelectric conversion material. . By setting the content of the auxiliary agent to 0.1% by mass or more, the effect of improving conductivity and thermoelectric properties can be easily obtained. Moreover, when the content of the auxiliary agent is 50% by mass or less, deterioration of the film physical properties can be suppressed.

(樹脂)
本発明の熱電変換材料は、成膜性や膜強度の調整等を目的として、導電性及び熱電特性に影響しない範囲で、樹脂を含んでもよい。
樹脂は、熱電変換材料の各成分に相溶又は混合分散するものであればよい。熱硬化性樹脂及び熱可塑性樹脂のいずれを用いても良い。使用可能な樹脂の具体例として、ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、フッ素樹脂、ビニル樹脂、エポキシ樹脂、キシレン樹脂、アラミド樹脂、ポリウレタン樹脂、ポリウレア樹脂、メラミン樹脂、フェノール樹脂、ポリエーテル樹脂、アクリル樹脂、アクリルアミド樹脂、及びこれらの共重合樹脂等が挙げられる。特に限定するものではないが、一実施形態において、ポリウレタン樹脂、ポリエーテル樹脂、アクリル樹脂、及びアクリルアミド樹脂からなる群から選択される少なくとも1種を使用することが好ましい。
(resin)
The thermoelectric conversion material of the present invention may contain a resin for the purpose of adjusting film formability and film strength, etc., to the extent that it does not affect conductivity and thermoelectric properties.
The resin may be any resin as long as it is compatible with or mixed and dispersed in each component of the thermoelectric conversion material. Either thermosetting resin or thermoplastic resin may be used. Specific examples of usable resins include polyester resin, polyimide resin, polyamide resin, fluororesin, vinyl resin, epoxy resin, xylene resin, aramid resin, polyurethane resin, polyurea resin, melamine resin, phenol resin, polyether resin, and acrylic. Examples include resins, acrylamide resins, and copolymer resins thereof. Although not particularly limited, in one embodiment, it is preferable to use at least one selected from the group consisting of polyurethane resins, polyether resins, acrylic resins, and acrylamide resins.

導電性の観点から、樹脂の含有量は、前記化合物(A)と導電材料(B)との全質量を基準として、0~90質量%の範囲が好ましく、0~50質量%の範囲がより好ましく、0~20質量%の範囲がさらに好ましい。 From the viewpoint of conductivity, the content of the resin is preferably in the range of 0 to 90% by mass, more preferably in the range of 0 to 50% by mass, based on the total mass of the compound (A) and the conductive material (B). Preferably, the range is from 0 to 20% by mass, more preferably.

(無機熱電変換材料)
本発明の熱電変換材料は、熱電変換性能を高めるために、必要に応じて、無機熱電変換材料を含んでもよい。 無機熱電材料の一例として、Bi-(Te、Se)系、Si-Ge系、Mg-Si系、Pb-Te系、GeTe-AgSbTe系、(Co、Ir、Ru)-Sb系、(Ca、Sr、Bi)Co25系等を挙げることができる。より具体的には、Bi2Te3、PbTe、AgSbTe2、GeTe、Sb2Te3、NaCo24、CaCoO3、SrTiO3、ZnO、SiGe、Mg2Si、FeSi2、Ba8Si46、MnSi1.73、ZnSb、Zn4Sb3、GeFe3CoSb12、及びLaFe3CoSb12からなる群から選択される少なくとも1種を使用することができる。このとき、上記無機熱電変換材料に不純物を加えて極性(p型、n型)や導電率を制御して利用してもよい。無機熱電変換材料を使用する場合、その使用量は、成膜性や膜強度に影響しない範囲で調整する。
(Inorganic thermoelectric conversion material)
The thermoelectric conversion material of the present invention may contain an inorganic thermoelectric conversion material as necessary in order to improve thermoelectric conversion performance. Examples of inorganic thermoelectric materials include Bi-(Te, Se) based, Si-Ge based, Mg-Si based, Pb-Te based, GeTe-AgSbTe based, (Co, Ir, Ru)-Sb based, (Ca, Examples include Sr, Bi)Co 2 O 5 systems, and the like. More specifically, Bi2Te3 , PbTe , AgSbTe2 , GeTe, Sb2Te3 , NaCo2O4 , CaCoO3 , SrTiO3 , ZnO, SiGe, Mg2Si , FeSi2 , Ba8Si46 , At least one selected from the group consisting of MnSi 1.73 , ZnSb, Zn 4 Sb 3 , GeFe 3 CoSb 12 , and LaFe 3 CoSb 12 can be used. At this time, impurities may be added to the inorganic thermoelectric conversion material to control the polarity (p-type, n-type) and conductivity. When using an inorganic thermoelectric conversion material, the amount used is adjusted within a range that does not affect film formability or film strength.

熱電変換用分散液の製造方法は、本発明の条件を満たす熱電変換用分散液が得られれば
特に限定されず、適宜選択することができる。例えば、熱電変換材料と分散媒と必要に応じてその他成分とを混合した後、分散機や超音波を用いて分散することで得られる。
The method for producing a thermoelectric conversion dispersion liquid is not particularly limited as long as a thermoelectric conversion dispersion liquid that satisfies the conditions of the present invention is obtained, and can be appropriately selected. For example, it can be obtained by mixing a thermoelectric conversion material, a dispersion medium, and other components as necessary, and then dispersing the mixture using a disperser or ultrasonic waves.

分散機としては特に制限はなく、例えば、ニーダー、アトライター、ボールミル、ガラスビーズやジルコニアビーズ等を使用したサンドミル、スキャンデックス、アイガーミル、ペイントコンディショナー、ペイントシェイカー等のメディア分散機、コロイドミル等を使用することができる。 There are no particular restrictions on the dispersion machine; for example, kneaders, attritors, ball mills, sand mills using glass beads or zirconia beads, media dispersion machines such as Scandex, Eiger mills, paint conditioners, paint shakers, colloid mills, etc. can be used. can do.

<熱電変換素子>
本発明の熱電変換素子は、上記熱電変換材料を用いて形成された熱電変換膜と、電極とを有し、上記熱電変換膜及び上記電極は互いに電気的に接続されているものである。熱電変換膜は、導電性及び熱電特性に加えて、耐熱性及び可撓性の点でも優れる。そのため、高品質な熱電変換素子を容易に作製することができる。
<Thermoelectric conversion element>
The thermoelectric conversion element of the present invention includes a thermoelectric conversion film formed using the thermoelectric conversion material and an electrode, and the thermoelectric conversion film and the electrode are electrically connected to each other. Thermoelectric conversion films have excellent heat resistance and flexibility in addition to conductivity and thermoelectric properties. Therefore, a high quality thermoelectric conversion element can be easily manufactured.

熱電変換膜は、基材上に熱電変換材料を塗布して得られる膜であってもよい。熱電変換材料は優れた成形性を有するため、塗布法によって良好な膜を得ることが容易である。熱電変換膜の形成には、主に湿式製膜法が用いられる。具体的には、スピンコート法、スプレー法、ローラーコート法、グラビアコート法、ダイコート法、コンマコート法、ロールコート法、カーテンコート法、バーコート法、インクジェット法、ディスペンサー法、シルクスクリーン印刷、フレキソ印刷等の各種手段を用いた方法が挙げられる。塗布する厚み、及び材料の粘度等に応じて、上記方法から適宜選択することができる。 The thermoelectric conversion film may be a film obtained by applying a thermoelectric conversion material onto a base material. Since the thermoelectric conversion material has excellent moldability, it is easy to obtain a good film by a coating method. A wet film forming method is mainly used to form a thermoelectric conversion film. Specifically, spin coat method, spray method, roller coat method, gravure coat method, die coat method, comma coat method, roll coat method, curtain coat method, bar coat method, inkjet method, dispenser method, silk screen printing, flexographic method. Examples include methods using various means such as printing. The method can be appropriately selected from the above methods depending on the thickness to be applied, the viscosity of the material, etc.

熱電変換膜の膜厚は、特に限定されるものではないが、後述するように、熱電変換膜の厚さ方向又は面方向に温度差を生じ、かつ伝達できるように、一定以上の厚みを有するように形成されることが好ましい。熱電特性の点から、熱電変換膜の膜厚は、0.1~200μmの範囲が好ましく、1~100μmの範囲が好ましく、1~50μmの範囲がさらに好ましい。 The thickness of the thermoelectric conversion film is not particularly limited, but as described later, it has a thickness of at least a certain level so that a temperature difference can be generated and transmitted in the thickness direction or surface direction of the thermoelectric conversion film. It is preferable that it be formed as follows. From the viewpoint of thermoelectric properties, the thickness of the thermoelectric conversion film is preferably in the range of 0.1 to 200 μm, preferably in the range of 1 to 100 μm, and more preferably in the range of 1 to 50 μm.

基材としては、特に制限はないが、不織布、紙、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート、ポリエーテルサルフォン、ポリプロピレン、ポリイミド、ボリカーボネート、及びセルローストリアセテートなどの材料からなるプラスチックフィルム、又はガラス等を用いることができる。 The base material is not particularly limited, but includes plastic films made of materials such as nonwoven fabric, paper, polyethylene, polyethylene terephthalate (PET), polyethylene naphthalate, polyether sulfone, polypropylene, polyimide, polycarbonate, and cellulose triacetate. Alternatively, glass or the like can be used.

基材と熱電変換膜との密着性を向上させる目的で、基材表面に様々な処理を行うことができる。具体的には、熱電変換材料の塗布に先立ち、UVオゾン処理、コロナ処理、プラズマ処理、又は易接着処理を行ってもよい。 Various treatments can be performed on the surface of the base material for the purpose of improving the adhesion between the base material and the thermoelectric conversion film. Specifically, prior to applying the thermoelectric conversion material, UV ozone treatment, corona treatment, plasma treatment, or adhesion promoting treatment may be performed.

本発明の実施形態である熱電変換素子は、上記熱電変換材料を用いて構成されることを除き、当技術分野で周知の技術を適用して構成することができる。熱電変換素子のより具体的な構成、及びその製造方法について説明する。 The thermoelectric conversion element according to the embodiment of the present invention can be constructed by applying techniques well known in the art, except that it is constructed using the thermoelectric conversion material described above. A more specific configuration of the thermoelectric conversion element and its manufacturing method will be explained.

熱電変換素子は、熱電変換膜と電極とが電気的に接続している。ここで、「電気的に接続する」とは、互いに接合しているか、又はワイヤー等の他の構成部材を介して通電できる状態であることを意味する。 In the thermoelectric conversion element, a thermoelectric conversion film and an electrode are electrically connected. Here, "electrically connected" means that they are connected to each other or that they are in a state where electricity can be passed through other constituent members such as wires.

電極の材料は、金属、合金、及び半導体から選択することができる。一実施形態において、導電率が高く、熱電変換膜の接触抵抗が低いことが好ましいことから、金属及び合金が好ましい。具体例として、電極は、金、銀、銅、及びアルミニウムからなる群から選択される少なくとも1種を含むことが好ましい。電極は、銀を含むことがさらに好ましい。 The material of the electrode can be selected from metals, alloys, and semiconductors. In one embodiment, metals and alloys are preferable because it is preferable that the conductivity is high and the contact resistance of the thermoelectric conversion film is low. As a specific example, the electrode preferably contains at least one member selected from the group consisting of gold, silver, copper, and aluminum. More preferably, the electrode contains silver.

電極は、真空蒸着法、電極材料箔や電極材料膜を有するフィルムの熱圧着、電極材料の微粒子を分散したペーストの塗布等の方法によって形成することができる。プロセスが簡便な観点で、電極材料箔や電極材料膜を有するフィルムの熱圧着、電極材料を分散したペーストの塗布による方法が好ましい。 The electrode can be formed by a method such as a vacuum evaporation method, thermocompression bonding of an electrode material foil or a film having an electrode material film, or application of a paste in which fine particles of the electrode material are dispersed. From the viewpoint of a simple process, a method using thermocompression bonding of an electrode material foil or a film having an electrode material film, or a method using a paste in which the electrode material is dispersed is preferable.

熱電変換素子の構造の典型例としては、熱電変換膜と一対の電極との位置関係から、(1)本発明による熱電変換膜の両端に電極が形成されている構造、(2)本発明の熱電変換膜が2つの電極で挟持されている構造に大別される。
例えば、上記(1)の構造を有する熱電変換素子は、基材上に熱電変換膜を形成した後に、その両端にそれぞれ銀ペーストを塗布して第1及び第2の電極を形成することによって得ることができる。このように熱電変換膜の両端に電極が形成された熱電変換素子は、2つの電極間の距離を広くすることが容易である。そのため、2つの電極間で大きな温度差を発生させて、効率良く熱電変換を行うことが容易である。
Typical examples of the structure of a thermoelectric conversion element include (1) a structure in which electrodes are formed at both ends of the thermoelectric conversion film according to the present invention; It is roughly divided into a structure in which a thermoelectric conversion film is sandwiched between two electrodes.
For example, a thermoelectric conversion element having the structure (1) above can be obtained by forming a thermoelectric conversion film on a base material and then applying silver paste to both ends of the film to form first and second electrodes. be able to. In the thermoelectric conversion element in which electrodes are formed at both ends of the thermoelectric conversion film in this way, it is easy to increase the distance between the two electrodes. Therefore, it is easy to generate a large temperature difference between the two electrodes and perform thermoelectric conversion efficiently.

上記(2)の構造を有する熱電変換素子は、例えば、基材上に銀ペーストを塗布して第1の電極を形成し、その上に本発明の熱電変換膜を形成し、さらにその上に銀ペーストを塗工して第2の電極を形成することによって得ることができる。このように2つの電極で本発明の熱電変換膜を挟持する熱電変換素子では、二つの電極間の距離を広くすることは難しい。そのため、2つの電極間に大きな温度差を発生させることは難しいが、熱電変換膜の膜厚を大きくすることによって、温度差を大きくすることが可能である。また、このような構造を有する熱電変換素子は、基材に対して垂直な方向の温度差を利用できることから、発熱体に貼り付ける形態での利用が可能である。そのため、熱源の広い面積の活用が容易となる点で好ましい。 The thermoelectric conversion element having the structure (2) above can be produced, for example, by applying silver paste onto a base material to form a first electrode, forming the thermoelectric conversion film of the present invention on top of that, and then forming a first electrode on top of the first electrode. It can be obtained by coating a silver paste to form the second electrode. In the thermoelectric conversion element in which the thermoelectric conversion film of the present invention is sandwiched between two electrodes as described above, it is difficult to increase the distance between the two electrodes. Therefore, it is difficult to generate a large temperature difference between the two electrodes, but it is possible to increase the temperature difference by increasing the thickness of the thermoelectric conversion film. Further, since the thermoelectric conversion element having such a structure can utilize the temperature difference in the direction perpendicular to the base material, it can be used in a form where it is attached to a heating element. Therefore, it is preferable in that a large area of the heat source can be easily utilized.

熱電変換素子は、直列に接続することで高い電圧を発生させることが可能であり、並列に接続することで大きな電流を発生させることが可能である。また、熱電変換素子は、2つ以上の熱電変換素子を接続したものであってもよい。本発明によれば、熱電変換素子が優れた可撓性を有するため、平面ではない形状を有する熱源に対しても追随して良好に設置することが可能である。 Thermoelectric conversion elements can generate a high voltage by connecting them in series, and can generate a large current by connecting them in parallel. Moreover, the thermoelectric conversion element may be one in which two or more thermoelectric conversion elements are connected. According to the present invention, since the thermoelectric conversion element has excellent flexibility, it is possible to follow and suitably install a heat source having a non-planar shape.

一実施形態において、本発明の熱電変換素子を他の熱電材料から成る熱電変換素子と組み合わせることも有効である。例えば、無機熱電材料として、Bi-(Te、Se)系、Si-Ge系、Mg-Si系、Pb-Te系、GeTe-AgSbTe系、(Co、Ir、Ru)-Sb系、(Ca、Sr、Bi)Co25系等を挙げることができ、具体的には、Bi2Te3、PbTe、AgSbTe2、GeTe、Sb2Te3、NaCo24、CaCoO3、SrTiO3、ZnO、SiGe、Mg2Si、FeSi2、Ba8Si46、MnSi1.73、ZnSb、Zn4Sb3、GeFe3CoSb12、及びLaFe3CoSb12などからなる群から選択される少なくとも1種を使用することができる。このとき、上記無機熱電材料に、不純物を加えて、極性(p型、n型)や導電率を制御して利用しても良い。その他、有機熱電材料として、ポリチオフェン、ポリアニリン、ポリアセチレン、フラーレン、及びそれらの誘導体からなる群から選択される少なく1種を使用することができる。これら材料から構成される他の熱電変化素子を組合せる場合、素子のフレキシブル性を損なわない範囲内で、他の熱電変換素子を作製することが好ましい。 In one embodiment, it is also effective to combine the thermoelectric conversion element of the present invention with a thermoelectric conversion element made of another thermoelectric material. For example, as inorganic thermoelectric materials, Bi-(Te, Se) based, Si-Ge based, Mg-Si based, Pb-Te based, GeTe-AgSbTe based, (Co, Ir, Ru)-Sb based, (Ca, Sr, Bi)Co 2 O 5 type, etc. can be mentioned, and specifically, Bi 2 Te 3 , PbTe, AgSbTe 2 , GeTe, Sb 2 Te 3 , NaCo 2 O 4 , CaCoO 3 , SrTiO 3 , ZnO , SiGe, Mg 2 Si, FeSi 2 , Ba 8 Si 46 , MnSi 1.73 , ZnSb, Zn 4 Sb 3 , GeFe 3 CoSb 12 , LaFe 3 CoSb 12 and the like. I can do it. At this time, impurities may be added to the inorganic thermoelectric material to control its polarity (p-type, n-type) and conductivity. In addition, at least one selected from the group consisting of polythiophene, polyaniline, polyacetylene, fullerene, and derivatives thereof can be used as the organic thermoelectric material. When combining other thermoelectric conversion elements made of these materials, it is preferable to manufacture the other thermoelectric conversion elements within a range that does not impair the flexibility of the element.

以下、実験例により、本発明をより具体的に説明する。なお、例中、「部」とあるのは「質量部」を、「%」とあるのは「質量%」をそれぞれ意味するものとする。また、NMPは、N-メチルピロリドンを示す。 Hereinafter, the present invention will be explained in more detail with reference to experimental examples. In addition, in the examples, "part" means "part by mass" and "%" means "% by mass", respectively. Further, NMP represents N-methylpyrrolidone.

<質量平均分子量(Mw)の測定方法>
Mwの測定は、東ソー株式会社製GPC(ゲルパーミエーションクロマトグラフィー)「HPC-8020」を用いた。本発明における測定は、カラムに「LF-604」(昭和電工株式会社製:迅速分析用GPCカラム:6mmID×150mmサイズ)を直列に2本接続して用い、展開溶媒(溶離液)THF(テトラヒドロフラン)、流量0.6ml/分、カラム温度40℃の条件で行いた。質量平均分子量(Mw)の決定は、標準物質としてポリスチレンを用いた換算で行った。
<Method for measuring mass average molecular weight (Mw)>
Mw was measured using GPC (gel permeation chromatography) "HPC-8020" manufactured by Tosoh Corporation. The measurement in the present invention uses two "LF-604" columns (manufactured by Showa Denko K.K.: GPC column for rapid analysis: 6 mm ID x 150 mm size) connected in series, and the developing solvent (eluent) is THF (tetrahydrofuran). ), a flow rate of 0.6 ml/min, and a column temperature of 40°C. The mass average molecular weight (Mw) was determined using polystyrene as a standard substance.

<側鎖に有機色素を導入したポリマーの合成>
(合成例1:色素導入ポリマー1)
国際公開第2015/050113号の段落[0074]及び[0075]を参考にして、質量平均分子量(Mw)が約21,000の、下記構造で表される側鎖にペリレン骨格導入したアクリルポリマーである色素導入ポリマー1を得た。
<Synthesis of polymers with organic dyes introduced into the side chains>
(Synthesis example 1: dye-introduced polymer 1)
With reference to paragraphs [0074] and [0075] of International Publication No. 2015/050113, it is an acrylic polymer with a mass average molecular weight (Mw) of about 21,000 and a perylene skeleton introduced into the side chain represented by the structure below. A dye-introduced polymer 1 was obtained.

<樹脂成分の合成>
(合成例2:樹脂1)
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、テレフタル酸とアジピン酸と3-メチル-1,5-ペンタンジオールとから得られるポリエステルポリオール((株)クラレ製「クラレポリオールP-2011」、Mn=2,011)455.5部、ジメチロールブタン酸16.5部、イソホロンジイソシアネート105.2部、トルエン140部を仕込み、窒素雰囲気下90℃3時間反応させ、これにトルエン360部を加えてイソシアネート基を有するウレタンプレポリマー溶液を得た。次に、イソホロンジアミン19.9部、ジ-n-ブチルアミン0.63部、2-プロパノール294.5部、トルエン335.5部を混合したものに、得られたイソシアネート基を有するウレタンプレポリマー溶液969.5部を添加し、50℃で3時間続いて70℃2時間反応後、100℃の真空乾燥を行い、質量平均分子量(Mw)=61,000の、ウレタンウレア樹脂である樹脂1を得た。
<Synthesis of resin components>
(Synthesis example 2: resin 1)
A polyester polyol obtained from terephthalic acid, adipic acid, and 3-methyl-1,5-pentanediol (manufactured by Kuraray Co., Ltd.) was placed in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen introduction tube. "Kuraray Polyol P-2011", 455.5 parts of Mn=2,011), 16.5 parts of dimethylolbutanoic acid, 105.2 parts of isophorone diisocyanate, and 140 parts of toluene were charged and reacted at 90°C for 3 hours under nitrogen atmosphere. , 360 parts of toluene was added to this to obtain a urethane prepolymer solution having isocyanate groups. Next, 19.9 parts of isophoronediamine, 0.63 parts of di-n-butylamine, 294.5 parts of 2-propanol, and 335.5 parts of toluene were mixed with the obtained urethane prepolymer solution having isocyanate groups. After adding 969.5 parts and reacting at 50°C for 3 hours and 70°C for 2 hours, vacuum drying was performed at 100°C to obtain Resin 1, which is a urethane urea resin with a mass average molecular weight (Mw) of 61,000. Obtained.

(合成例3:樹脂2)
撹拌機、水分定量受器を付けた還流冷却管、窒素導入管、温度計を備えた4口フラスコに、炭素数36の多塩基酸化合物としてプリポール1009(クローダジャパン株式会社製、酸価194mgKOH/g)を70.78部、フェノール性水酸基を有する多塩基酸化合物として5-ヒドロキシイソフタル酸(スガイ化学社製、以下「5-HIPA」ともいう)を5.24部、炭素数36のポリアミン化合物としてプリアミン1074(クローダジャパン株式会社製、酸価210KOHmg/g)を82.84部、トルエンを4.74部仕込み、撹拌しながら、温度を220℃まで昇温し、水を留去しながら脱水反応を続けた。1時間ごとにサンプリングを行い質量平均分子量が50000になったことを確認し、冷却後、Mw50432を有するフェノール性水酸基含有ポリアミド樹脂である樹脂2を得た。
(Synthesis example 3: resin 2)
Pripol 1009 (manufactured by Croda Japan Co., Ltd., acid value 194 mg KOH/ g), 5.24 parts of 5-hydroxyisophthalic acid (manufactured by Sugai Chemical Co., Ltd., hereinafter also referred to as "5-HIPA") as a polybasic acid compound having a phenolic hydroxyl group, and a polyamine compound having 36 carbon atoms. 82.84 parts of Priamine 1074 (manufactured by Croda Japan Co., Ltd., acid value 210 KOHmg/g) and 4.74 parts of toluene were added, and while stirring, the temperature was raised to 220°C and dehydrated while distilling off water. continued to react. Sampling was performed every hour to confirm that the mass average molecular weight was 50,000, and after cooling, Resin 2, which is a phenolic hydroxyl group-containing polyamide resin having Mw of 50,432, was obtained.

<化合物(A)の合成> <Synthesis of compound (A)>

(合成例4:A13)
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、フェナントロリン(東京化成工業社製)5部、67%硝酸(東京化成工業社製)100部を仕込み、窒素雰囲気下100℃3時間反応させた。冷却後、水3000部へ注ぎ、析出した個体を濾過により収集後、カラムクロマトグラフィーで精製し、A13を0.5部得た。
(Synthesis example 4: A13)
5 parts of phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.) and 100 parts of 67% nitric acid (manufactured by Tokyo Chemical Industry Co., Ltd.) were placed in a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen introduction tube, and a nitrogen atmosphere was placed. The mixture was reacted at 100° C. for 3 hours. After cooling, the mixture was poured into 3000 parts of water, and the precipitated solids were collected by filtration and purified by column chromatography to obtain 0.5 parts of A13.

(合成例5:A35)
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、4,7-ジヒドロキシ-1,10-フェナントロリン(東京化成工業社製)1部、ブロモベンゼン(東京化成工業社製)2部、水酸化カリウム(東京化成工業社製)2部、エタノール200部を仕込み、窒素雰囲気下50℃12時間反応させた。冷却後、エバポレータで乾固し、カラムクロマトグラフィーで精製し、A35を0.59部得た。
(Synthesis example 5: A35)
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen inlet tube, add 1 part of 4,7-dihydroxy-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and bromobenzene (Tokyo Kasei Kogyo Co., Ltd.). (manufactured by Tokyo Chemical Industry Co., Ltd.), 2 parts of potassium hydroxide (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and 200 parts of ethanol, and reacted at 50° C. for 12 hours under a nitrogen atmosphere. After cooling, the mixture was dried using an evaporator and purified using column chromatography to obtain 0.59 parts of A35.

(合成例6:A34)
4,7-ジヒドロキシ-1,10-フェナントロリン及びブロモベンゼンを9-ジヒドロキシ-1,10-フェナントロリン及び2-ブロモ-2-メチルプロパンに変更した以外は、合成例5と同様の方法で、A34を得た。
(Synthesis example 6: A34)
A34 was produced in the same manner as in Synthesis Example 5, except that 4,7-dihydroxy-1,10-phenanthroline and bromobenzene were changed to 9-dihydroxy-1,10-phenanthroline and 2-bromo-2-methylpropane. Obtained.

(合成例7:A38)
ブロモベンゼンを2-ブロモエチルエチルエーテルに変更した以外は、合成例5と同様の方法で、A38を得た。
(Synthesis example 7: A38)
A38 was obtained in the same manner as Synthesis Example 5 except that bromobenzene was changed to 2-bromoethyl ethyl ether.

(合成例8:A41)
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、4,7-ジブロモ-1,10-フェナントロリン(東京化成工業社製)5部、メルカプトエタン(東京化成工業社製)4部、水酸化ナトリウム(東京化成工業社製)1部、DMF100部を仕込み、窒素雰囲気下80℃3時間反応させた。冷却後、水洗し、濾過により固体を得た。カラムクロマトグラフィーで精製し、A41を3.7部得た。
(Synthesis example 8: A41)
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen introduction tube, 5 parts of 4,7-dibromo-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and mercaptoethane (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added. (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 1 part of sodium hydroxide (manufactured by Tokyo Kasei Kogyo Co., Ltd.), and 100 parts of DMF were added, and the mixture was reacted at 80° C. for 3 hours under a nitrogen atmosphere. After cooling, a solid was obtained by washing with water and filtration. It was purified by column chromatography to obtain 3.7 parts of A41.

(合成例9:A42)
4,7-ジブロモ-1,10-フェナントロリン及びメルカプトエタンを3,6-ジブロモ-1,10-フェナントロリン及び4-メルカプトピリジンに変更した以外は、合成例8と同様の方法で、A42を得た。
(Synthesis example 9: A42)
A42 was obtained in the same manner as Synthesis Example 8, except that 4,7-dibromo-1,10-phenanthroline and mercaptoethane were changed to 3,6-dibromo-1,10-phenanthroline and 4-mercaptopyridine. .

(合成例10:A114)
4,7-ジブロモ-1,10-フェナントロリン及びメルカプトエタンを3-ブロモ-1,10-フェナントロリン及びメルカプトベンゼンに変更した以外は、合成例8と同様の方法で、A114を得た。
(Synthesis example 10: A114)
A114 was obtained in the same manner as Synthesis Example 8 except that 4,7-dibromo-1,10-phenanthroline and mercaptoethane were changed to 3-bromo-1,10-phenanthroline and mercaptobenzene.

(合成例11:A115)
4,7-ジブロモ-1,10-フェナントロリン及びメルカプトエタンを3-ブロモ-1,10-フェナントロリン及び4-フルオロベンゼンチオールに変更した以外は、合成例8と同様の方法で、A115を得た。
(Synthesis Example 11: A115)
A115 was obtained in the same manner as Synthesis Example 8, except that 4,7-dibromo-1,10-phenanthroline and mercaptoethane were changed to 3-bromo-1,10-phenanthroline and 4-fluorobenzenethiol.

(合成例12:A53)
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、3,8-ジブロモ-1,10-フェナントロリン(東京化成工業社製)2部、フェニルボロン酸(東京化成工業社製)2部、テトラキス(トリフェニルホスフィン)パラジウム(0)(東京化成工業社製)0.25部、炭酸カリウム(東京化成工業社製)3部、水30部、エタノール5部、トルエン100部を仕込み、窒素雰囲気下100℃3時間反応させた。冷却後、エバポレータで乾固し、カラムクロマトグラフィーで精製し、A53を0.29部得た。
(Synthesis example 12: A53)
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen inlet tube, 2 parts of 3,8-dibromo-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and phenylboronic acid (Tokyo Kasei Kogyo Co., Ltd.) were added. (manufactured by Tokyo Chemical Industry Co., Ltd.) 2 parts, tetrakis(triphenylphosphine) palladium (0) (manufactured by Tokyo Chemical Industry Co., Ltd.) 0.25 parts, potassium carbonate (manufactured by Tokyo Chemical Industry Co., Ltd.) 3 parts, water 30 parts, ethanol 5 parts, toluene 100 parts 1 part was charged and reacted at 100°C for 3 hours under nitrogen atmosphere. After cooling, the mixture was dried using an evaporator and purified using column chromatography to obtain 0.29 parts of A53.

(合成例13:A54)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を3-ブロモ-1,10-フェナントロリン及び1-ナフタレンボロン酸に変更した以外は、合成例12と同様の方法で、A54を得た。
(Synthesis example 13: A54)
A54 was obtained in the same manner as Synthesis Example 12, except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 3-bromo-1,10-phenanthroline and 1-naphthaleneboronic acid. .

(合成例14:A56)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を3,8-ジブロモ-1,10-フェナントロリン及び4-(トリフルオロメチル)フェニルボロン酸に変更した以外は、合成例12と同様の方法で、A56を得た。
(Synthesis example 14: A56)
Same as Synthesis Example 12 except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 3,8-dibromo-1,10-phenanthroline and 4-(trifluoromethyl)phenylboronic acid. A56 was obtained by the method.

(合成例15:A60)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を4,7-ジブロモ-1,10-フェナントロリン及び3-ピリジルボロン酸に変更した以外は、合成例12と同様の方法で、A60を得た。
(Synthesis example 15: A60)
A60 was produced in the same manner as Synthesis Example 12, except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 4,7-dibromo-1,10-phenanthroline and 3-pyridylboronic acid. Obtained.

(合成例16:A62)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を3-ブロモ-1,10-フェナントロリン及び3-ピリジルボロン酸に変更した以外は、合成例12と同様の方法で、A62を得た。
(Synthesis example 16: A62)
A62 was obtained in the same manner as Synthesis Example 12, except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 3-bromo-1,10-phenanthroline and 3-pyridylboronic acid. .

(合成例17:A65)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を4,7-ジブロモ-1,10-フェナントロリン及び2-フリルボロン酸に変更した以外は、合成例12と同様の方法で、A65を得た。
(Synthesis example 17: A65)
A65 was obtained in the same manner as Synthesis Example 12, except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 4,7-dibromo-1,10-phenanthroline and 2-furylboronic acid. Ta.

(合成例18:A68)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を3,8-ジブロモ-1,10-フェナントロリン及び2-チオフェンボロン酸に変更した以外は、合成例12と同様の方法で、A68を得た。
(Synthesis example 18: A68)
A68 was produced in the same manner as Synthesis Example 12, except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 3,8-dibromo-1,10-phenanthroline and 2-thiopheneboronic acid. Obtained.

(合成例19:A71)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を3,8-ジブロモ-1,10-フェナントロリン及び2-チオフェンボロン酸に変更した以外は、合成例12と同様の方法で、A71を得た。
(Synthesis example 19: A71)
A71 was produced in the same manner as Synthesis Example 12, except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 3,8-dibromo-1,10-phenanthroline and 2-thiopheneboronic acid. Obtained.

(合成例20:A74)
3,8-ジブロモ-1,10-フェナントロリン及びフェニルボロン酸を4,7-ジブロモ-1,10-フェナントロリン及び9-エチルカルバゾール-3-ボロン酸に変更した以外は、合成例12と同様の方法で、A74を得た。
(Synthesis example 20: A74)
Same method as Synthesis Example 12 except that 3,8-dibromo-1,10-phenanthroline and phenylboronic acid were changed to 4,7-dibromo-1,10-phenanthroline and 9-ethylcarbazole-3-boronic acid. So I got A74.

(合成例21:A110)
3,8-ジブロモ-1,10-フェナントロリンを3,5,6,8-テトラブロモ-1,10-フェナントロリンに、フェニルボロン酸を4-ビフェニルボロン酸、9-アントラセンボロン酸、2-フリルボロン酸及びベンゾ[b]チオフェン-2-ボロン酸の混合物に変更した以外は、合成例12と同様の方法で、A110を得た。
(Synthesis Example 21: A110)
3,8-dibromo-1,10-phenanthroline to 3,5,6,8-tetrabromo-1,10-phenanthroline, phenylboronic acid to 4-biphenylboronic acid, 9-anthraceneboronic acid, 2-furylboronic acid and A110 was obtained in the same manner as in Synthesis Example 12, except that the mixture was changed to a mixture of benzo[b]thiophene-2-boronic acid.

(合成例22:A75)
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、マグネシウム(東京化成工業社製)0.5部、THF20部を仕込み、窒素雰囲気下25℃で撹拌させた。滴下装置にヨウ素(東京化成工業社製)0.1部、3-ブロモ-1,10-フェナントロリン2.5部、THF100mlを入れて、滴下をし、6h撹拌した。その後、3-ブロモ-1,10-フェナントロリン2.5部、[1,2-ビス(ジフェニルホスフィノ)エタン]ジクロロニッケル(II)(シグマアルドリッチ社製)0.3部を加え、60℃で12h反応させた。冷却後、エバポレータで乾固し、カラムクロマトグラフィーで精製し、A75を0.98部得た。
(Synthesis example 22: A75)
A reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen introduction tube was charged with 0.5 parts of magnesium (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and 20 parts of THF, and stirred at 25° C. under a nitrogen atmosphere. 0.1 part of iodine (manufactured by Tokyo Kasei Kogyo Co., Ltd.), 2.5 parts of 3-bromo-1,10-phenanthroline, and 100 ml of THF were placed in a dropping device, and the mixture was added dropwise and stirred for 6 hours. Then, 2.5 parts of 3-bromo-1,10-phenanthroline and 0.3 parts of [1,2-bis(diphenylphosphino)ethane]dichloronickel(II) (manufactured by Sigma-Aldrich) were added, and the mixture was heated at 60°C. The reaction was allowed to proceed for 12 hours. After cooling, the mixture was dried using an evaporator and purified using column chromatography to obtain 0.98 parts of A75.

(合成例23:A82)
攪拌機、温度計、還流冷却器、滴下装置、窒素導入管を備えた反応容器に、3-ブロモ-1,10-フェナントロリン(東京化成工業社製)3部、ジプロピルアミン(東京化成工業社製)1.57部、酢酸パラジウム(II)(東京化成工業社製)0.13部、トリ-tert-ブチルホスフィン(東京化成工業社製)0.18部、tert-ブトキシナトリウム(東京化成工業社製)1.73部、トルエン50部を仕込み、窒素雰囲気下70℃5時間反応させた。冷却後、水とメタノールで洗浄し、濾過により固体を得た。カラムクロマトグラフィーで精製し、A82を1.39部得た。
(Synthesis example 23: A82)
In a reaction vessel equipped with a stirrer, a thermometer, a reflux condenser, a dropping device, and a nitrogen introduction tube, 3 parts of 3-bromo-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.) and dipropylamine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added. ) 1.57 parts, palladium(II) acetate (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.13 parts, tri-tert-butylphosphine (manufactured by Tokyo Kasei Kogyo Co., Ltd.) 0.18 parts, tert-butoxy sodium (manufactured by Tokyo Kasei Kogyo Co., Ltd.) ) and 50 parts of toluene were charged, and the mixture was reacted at 70°C for 5 hours under a nitrogen atmosphere. After cooling, it was washed with water and methanol, and a solid was obtained by filtration. It was purified by column chromatography to obtain 1.39 parts of A82.

(合成例24:A89)
3-ブロモ-1,10-フェナントロリン及びジプロピルアミンを,7-ジブロモ-1,10-フェナントロリン及びp,p‘-ジトリルアミンに変更した以外は、合成例12と同様の方法で、A89を得た。
(Synthesis example 24: A89)
A89 was obtained in the same manner as Synthesis Example 12, except that 3-bromo-1,10-phenanthroline and dipropylamine were changed to 7-dibromo-1,10-phenanthroline and p,p'-ditolylamine. .

(合成例25:A109)
3-ブロモ-1,10-フェナントロリン及びジプロピルアミンを,2,3,4,5,6,7,8,9-オクタブロモ-1,10-フェナントロリン及びピぺリジン、ピロール及びジメチルアミンの混合物に変更した以外は、合成例12と同様の方法で、A109を得た。
(Synthesis example 25: A109)
3-Bromo-1,10-phenanthroline and dipropylamine to a mixture of 2,3,4,5,6,7,8,9-octabromo-1,10-phenanthroline and piperidine, pyrrole and dimethylamine. A109 was obtained in the same manner as in Synthesis Example 12 except for the following changes.

<熱電変換材料の製造>
[実施例1]
(分散液1)
1,10-phenanthroline(東京化成工業社製)0.4部、GNP(XGSciences社製グラフェンナノプレートレット「xGNP-M-5」)0.4部、NMP79.2部をそれぞれ秤量して混合した。更にジルコニアビーズ(φ1.25mm)を140部加え、スキャンデックスで4時間振とう後、ろ過してジルコニアビーズを取り除き、熱電変換材料の分散液1を得た。
<Manufacture of thermoelectric conversion materials>
[Example 1]
(Dispersion liquid 1)
0.4 parts of 1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.), 0.4 parts of GNP (graphene nanoplatelets "xGNP-M-5" manufactured by XGS Sciences), and 79.2 parts of NMP were weighed and mixed. . Furthermore, 140 parts of zirconia beads (φ1.25 mm) were added, and after shaking with Scandex for 4 hours, the zirconia beads were removed by filtration to obtain a dispersion liquid 1 of thermoelectric conversion material.

[実施例2~72、比較例1]
(分散液2~72、101)
材料の種類及び配合量を表10に示す内容にそれぞれ変更した以外は、分散液1の製造方法と同様にして、熱電変換材料の分散液2~72、101をそれぞれ得た。
[Examples 2 to 72, Comparative Example 1]
(Dispersions 2-72, 101)
Dispersions 2 to 72 and 101 of thermoelectric conversion materials were obtained in the same manner as in the manufacturing method of Dispersion 1, except that the types and amounts of the materials were changed as shown in Table 10.

上記合成例で説明した以外に使用した表10に挙げた材料を以下に示す。
化合物(A)
A1:2,9-ジメチル-5-ピクリルアミノ-1,10-フェナントロリン(東京化成工業社製)
A3:4,7-ジブロモ-1,10-フェナントロリン(東京化成工業社製)
A4:3-ブロモ-1,10-フェナントロリン(東京化成工業社製)
A5:2-ブロモ-1,10-フェナントロリン(東京化成工業社製)
A6:2-クロロ-1,10-フェナントロリン(東京化成工業社製)
A7:5-クロロ-1,10-フェナントロリン(東京化成工業社製)
A8:4,7-ジクロロ-1,10-フェナントロリン(東京化成工業社製)
A9:2,9-ジクロロ-1,10-フェナントロリン(東京化成工業社製)
A10:3,5,6,8-テトラブロモ-1,10-フェナントロリン(東京化成工業社製)
A11:4,7-ジヒドロキシ-1,10-フェナントロリン(東京化成工業社製)
A17:1,10-フェナントロリン-2-カルボン酸(富士フイルム和光純薬株式会社製)
A20:5-メチル-1,10-フェナントロリン ハイドレート(東京化成工業社製)
A21:4,7-ジメチル-1,10-フェナントロリン ハイドレート(東京化成工業社製)
A22:2,9-ジメチル-1,10-フェナントロリン ハイドレート(東京化成工業社製)
A23:5,6-ジメチル-1,10-フェナントロリン ハイドレート(東京化成工業社製)
A24:2-メチル-1,10-フェナントロリン ハイドレート(東京化成工業社製)
A26:3,4,7,8-テトラメチル-1,10-フェナントロリン ハイドレート(東京化成工業社製)
A27:2,9-ジブチル-1,10-フェナントロリン(東京化成工業社製)
A46:2,9-ジフェニル-1,10-フェナントロリン(東京化成工業社製)
A48:バソフェナントロリン(東京化成工業社製)
A49:バソクプロイン(東京化成工業社製)
A51:バソフェナントロリンジスルホン酸二ナトリウム水和物(東京化成工業社製)
A78:5-アミノ-1,10-フェナントロリン(東京化成工業社製)
A103:バソクプロインジスルホン酸二ナトリウム(東京化成工業社製)
A104:2,9-ジブチル-5-ピクリルアミノ-1,10-フェナントロリン(東京化成工業社製)
A105:(1S)-3-(1,10-フェナントロリン-2-イル)-2‘-フェニル-[1,1’-ビナフタレン]-2-オール(東京化成工業社製)
A106:ジピリド[3,2-a:2‘,3’-c]フェナジン(東京化成工業社製)
A112:2-シアノ-1,10-フェナントロリン(ATK CHEMICAL社製)
A113:3-ベンジル-1,10-フェナントロリン
The materials listed in Table 10 used in addition to those described in the above synthesis examples are shown below.
Compound (A)
A1: 2,9-dimethyl-5-picrylamino-1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.)
A3: 4,7-dibromo-1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.)
A4: 3-bromo-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A5: 2-bromo-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A6: 2-chloro-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A7: 5-chloro-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A8: 4,7-dichloro-1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.)
A9: 2,9-dichloro-1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.)
A10: 3,5,6,8-tetrabromo-1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.)
A11: 4,7-dihydroxy-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A17: 1,10-phenanthroline-2-carboxylic acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
A20: 5-methyl-1,10-phenanthroline hydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A21: 4,7-dimethyl-1,10-phenanthroline hydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A22: 2,9-dimethyl-1,10-phenanthroline hydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A23: 5,6-dimethyl-1,10-phenanthroline hydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A24: 2-methyl-1,10-phenanthroline hydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A26: 3,4,7,8-tetramethyl-1,10-phenanthroline hydrate (manufactured by Tokyo Chemical Industry Co., Ltd.)
A27: 2,9-dibutyl-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A46: 2,9-diphenyl-1,10-phenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A48: Bathophenanthroline (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A49: Bathocuproine (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A51: Bathophenanthroline disulfonic acid disodium hydrate (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A78: 5-amino-1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.)
A103: Bathocuproin disulfonate disodium (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A104: 2,9-dibutyl-5-picrylamino-1,10-phenanthroline (manufactured by Tokyo Chemical Industry Co., Ltd.)
A105: (1S)-3-(1,10-phenanthrolin-2-yl)-2'-phenyl-[1,1'-binaphthalene]-2-ol (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A106: Dipyrido[3,2-a:2',3'-c]phenazine (manufactured by Tokyo Kasei Kogyo Co., Ltd.)
A112: 2-cyano-1,10-phenanthroline (manufactured by ATK CHEMICAL)
A113: 3-benzyl-1,10-phenanthroline

導電材料(B)
GNP(XGSciences社製グラフェンナノプレートレット「xGNP-M-5」)
CB(ライオン社製 ケッチェンブラック「EC-300J」)
黒鉛(中越黒鉛社製 膨張黒鉛SMF)
MWCNT(KUMHO PETROCHEMICAL社製多層カーボンナノチューブ「Knanos100P」)
SWCNT(OCSiAl社製 単層カーボンナノチューブ「TUBALL」)
PEDOT/PSS Heraeus社製 「Clevios PH1000」
Ag粉 DOWA社製 「FA-D-5」
Cu粉 DOWA社製 「2.5μm-TypeA」
Conductive material (B)
GNP (graphene nanoplatelet “xGNP-M-5” manufactured by XGS Sciences)
CB (Lion Ketjen Black "EC-300J")
Graphite (expanded graphite SMF manufactured by Chuetsu Graphite Co., Ltd.)
MWCNT (Multi-walled carbon nanotube “Knanos100P” manufactured by KUMHO PETROCHEMICAL)
SWCNT (Single-walled carbon nanotube "TUBALL" manufactured by OCSiAl)
PEDOT/PSS “Clevios PH1000” manufactured by Heraeus
Ag powder “FA-D-5” manufactured by DOWA
Cu powder manufactured by DOWA “2.5μm-Type A”

樹脂
樹脂3 ポリメチルメタクリレート樹脂(楠本化成株式会社製 NeoCryl B-728)
Resin Resin 3 Polymethyl methacrylate resin (NeoCryl B-728 manufactured by Kusumoto Kasei Co., Ltd.)

<熱電変換材料の評価>
得られた分散液1~72、及び101を、シート状基材である厚さ75μmのPETフィルム上にアプリケータを用いて塗布した後、120℃で30分間加熱乾燥して、PET基材上に、膜厚5μmの熱電変換膜を有する積層体を得た。分散液を基材に塗工した際の塗工適性を以下に示す方法に従って評価した。また、得られた熱電変換膜(以下、塗膜ともいう)を有する積層体について、以下の方法に従って導電性(導電率)及びゼーベック係数を評価した。結果を表10に示す。
<Evaluation of thermoelectric conversion materials>
The obtained dispersions 1 to 72 and 101 were coated onto a 75 μm thick PET film, which is a sheet-like base material, using an applicator, and then heated and dried at 120°C for 30 minutes to coat the PET film on the PET base material. A laminate having a thermoelectric conversion film with a thickness of 5 μm was obtained. The coating suitability of the dispersion when applied to a substrate was evaluated according to the method shown below. Furthermore, the conductivity (electrical conductivity) and Seebeck coefficient of the obtained laminate having the thermoelectric conversion film (hereinafter also referred to as coating film) were evaluated according to the following method. The results are shown in Table 10.

(導電率(抵抗率))
得られた積層体を2.5cm×5cmの大きさに切り取り、JIS-K7194に準じて、ロレスタGX MCP-T700(三菱化学アナリテック社製)を用いて4探針法で導電率を測定した。比較例1の導電率を1としたときの相対値を表10に示す。
(Electrical conductivity (resistivity))
The obtained laminate was cut into a size of 2.5 cm x 5 cm, and the conductivity was measured using a four-probe method using Loresta GX MCP-T700 (manufactured by Mitsubishi Chemical Analytech) in accordance with JIS-K7194. . Table 10 shows relative values when the conductivity of Comparative Example 1 is set to 1.

(ゼーベック係数)
得られた積層体を3mm×10mmの大きさに切り取り、アドバンス理工株式会社製のZEM-3LWを用いて、80℃におけるゼーベック係数(μV/K)を測定した。比較例1のゼーベック係数の絶対値を1としたとき、各実施例におけるゼーベック係数の絶対値との相対値を表10に示す。
(Seebeck coefficient)
The obtained laminate was cut into a size of 3 mm x 10 mm, and the Seebeck coefficient (μV/K) at 80° C. was measured using ZEM-3LW manufactured by Advance Riko Co., Ltd. When the absolute value of the Seebeck coefficient in Comparative Example 1 is set to 1, Table 10 shows the relative values to the absolute value of the Seebeck coefficient in each Example.

(塗工適性)
分散液の塗工適性は、グラインドゲージ(溝の深さ50μm)を用いて評価した。
◎:10μm以上の粗大粒子による筋引きや粗大粒子がない(非常に良好)
〇:10μm以上の粗大粒子による筋引きや粗大粒子はあるが、20μm以上の粗大粒子による筋引きや粗大粒子がない(良好)
△:20μm以上の粗大粒子による筋引きや粗大粒子はあるが、30μm以上の粗大粒子による筋引きや粗大粒子がない(使用可能)
×:30μm以上の粗大粒子による筋引きや粗大粒子がある(使用不可)
(Coating suitability)
The coating suitability of the dispersion liquid was evaluated using a grind gauge (groove depth 50 μm).
◎: No streaks or coarse particles due to coarse particles of 10 μm or more (very good)
○: There are streaks and coarse particles due to coarse particles of 10 μm or more, but no streaks or coarse particles due to coarse particles of 20 μm or more (good)
△: There are streaks and coarse particles due to coarse particles of 20 μm or more, but no streaks or coarse particles due to coarse particles of 30 μm or more (usable)
×: There are streaks or coarse particles due to coarse particles of 30 μm or more (unusable)

表10が示すように、本発明の熱電変換材料は、高い導電率とゼーベック係数を示した。
さらに、本発明の熱電変換材料を含有する分散液は、いずれも良好な塗工適性(塗膜状態)を示した。これに対して、色素導入ポリマー1を用いた比較例1では、低い導電率とゼーベック係数を示した。
As shown in Table 10, the thermoelectric conversion material of the present invention exhibited high electrical conductivity and Seebeck coefficient.
Further, all of the dispersions containing the thermoelectric conversion material of the present invention exhibited good coating suitability (coating film condition). On the other hand, Comparative Example 1 using dye-introduced polymer 1 showed low electrical conductivity and Seebeck coefficient.

<熱電変換素子の製造>
[実施例73]
(熱電変換素子1)
厚さ50μmのPETフィルム上に、実施例1で調製した分散液1を塗布し、厚さ20μm、5mm×30mmの形状を有する導電層を、それぞれ10mm間隔に5つ作製した(図1の符号2を参照)。次いで、各導電層がそれぞれ直列に接続されるように、銀ペーストを用いて、厚さ10μm、5mm×33mmの形状を有する銀回路(電極)を4つ作製し(図1の符号3を参照)、熱電変換素子1を得た。上記銀ペーストとしては、トーヨーケム株式会社製のREXALPHA RA FS 074を使用した。
<Manufacture of thermoelectric conversion elements>
[Example 73]
(Thermoelectric conversion element 1)
Dispersion 1 prepared in Example 1 was applied onto a PET film with a thickness of 50 μm to produce five conductive layers each having a thickness of 20 μm and a shape of 5 mm × 30 mm, spaced apart by 10 mm (reference numbers in FIG. 1). 2). Next, four silver circuits (electrodes) having a thickness of 10 μm and a shape of 5 mm x 33 mm were fabricated using silver paste so that each conductive layer was connected in series (see reference numeral 3 in FIG. 1). ), a thermoelectric conversion element 1 was obtained. As the silver paste, REXALPHA RA FS 074 manufactured by Toyochem Co., Ltd. was used.

[実施例74~144、比較例2]
(熱電変換素子2~72、101)
熱電変換素子1で使用した分散液1を、表11に示す分散液にそれぞれ変更した以外は、熱電変換素子1と同様にして、熱電変換素子2~72、101をそれぞれ得た。
<熱電変換素子の評価>
得られた熱電変換素子について、以下のようにして起電力を評価した。結果を表11に示す。
[Examples 74 to 144, Comparative Example 2]
(Thermoelectric conversion elements 2 to 72, 101)
Thermoelectric conversion elements 2 to 72 and 101 were obtained in the same manner as thermoelectric conversion element 1, except that dispersion liquid 1 used in thermoelectric conversion element 1 was changed to the dispersion liquid shown in Table 11.
<Evaluation of thermoelectric conversion element>
The electromotive force of the obtained thermoelectric conversion element was evaluated as follows. The results are shown in Table 11.

(起電力の測定)
各熱電変換素子について、熱電変換膜及び銀回路が内側になるように(図2に示すA-A’線に沿うように)折り曲げ、その状態のまま、100℃に加熱したホットプレート上に設置した。なお、折り曲げの程度は、図2のB-B’間の距離が10mmになるようにそれぞれ調整した。上記のように折り曲げたサンプルをホットプレート上に設置して10分後の塗膜間の起電力について電圧計を用いて測定した。測定は、室温下(20℃)で実施した。以下の基準に従い、測定値から熱電特性について評価した。
◎:起電力が1mV以上である(良好)
〇:起電力が500μV以上、1mV未満である(実用可能)
×:起電力が500μV未満である(不良)
(Measurement of electromotive force)
Bend each thermoelectric conversion element so that the thermoelectric conversion film and silver circuit are on the inside (along line AA' shown in Figure 2), and place it in that state on a hot plate heated to 100°C. did. The degree of bending was adjusted so that the distance between BB' in FIG. 2 was 10 mm. The sample bent as described above was placed on a hot plate, and the electromotive force between the coating films was measured using a voltmeter 10 minutes later. The measurements were carried out at room temperature (20°C). The thermoelectric properties were evaluated from the measured values according to the following criteria.
◎: Electromotive force is 1 mV or more (good)
〇: Electromotive force is 500μV or more and less than 1mV (practical possible)
×: Electromotive force is less than 500 μV (defective)

表11が示すように、本発明の熱電変換素子は、比較例2の熱電変換素子に比べて優れた熱電特性を有していた。以上のことから、本願発明の実施形態によれば、ゼーベック係数及び導電性に優れ、高いPFを示す、優れた熱電特性を有する熱電変換材料を実現することができ、高効率の熱電変換素子を実現できることが分かる。 As shown in Table 11, the thermoelectric conversion element of the present invention had superior thermoelectric properties compared to the thermoelectric conversion element of Comparative Example 2. From the above, according to the embodiments of the present invention, it is possible to realize a thermoelectric conversion material having excellent Seebeck coefficient and conductivity, and exhibiting a high PF and excellent thermoelectric properties, and a highly efficient thermoelectric conversion element can be realized. I know it can be achieved.

本発明の実施形態である熱電変換材料は、導電性及びゼーベック係数を両立し、熱電特性にも優れるため、上記材料を使用して、高性能の熱電変換素子を提供することができる。 The thermoelectric conversion material according to the embodiment of the present invention has both electrical conductivity and Seebeck coefficient, and also has excellent thermoelectric properties, so the above material can be used to provide a high-performance thermoelectric conversion element.

1:基材
2:熱電変換膜
3:回路
10:熱電変換素子の試験サンプル
20:ホットプレート
1: Base material 2: Thermoelectric conversion film 3: Circuit 10: Thermoelectric conversion element test sample 20: Hot plate

Claims (3)

一般式(1)で表される化合物(A)と、炭素材料、金属材料及び導電性高分子からなる群から選ばれる少なくとも1種の導電材料(B)と、を含有してなり、
前記化合物(A)の含有率が、前記導電材料(B)の全量に対して400質量%以下であり、
前記導電材料(B)が、カーボンナノチューブ、ケッチェンブラック、グラフェンナノプレート及びグラフェンからなる群から選ばれる少なくとも1種を含む、熱電変換材料。
[一般式(1)中、R1~R8は、それぞれ独立に、水素原子、水酸基、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、ナトリウムスルホナト基、置換もしくは未置換のアルキル基、置換もしくは未置換のアルコキシ基、置換もしくは未置換のアリールオキシ基、置換もしくは未置換のアルキルチオ基、置換もしくは未置換のアリールチオ基、置換もしくは未置換のアリール基、置換もしくは未置換の複素環基、又は、置換もしくは未置換のアミノ基を表す。R1~R8は、隣接する基同士が結合して環を形成しても良い。ただし、R1~R8の内、少なくとも一つは、水素原子以外の基である。]
Containing a compound (A) represented by general formula (1) and at least one conductive material (B) selected from the group consisting of carbon materials, metal materials, and conductive polymers ,
The content of the compound (A) is 400% by mass or less based on the total amount of the conductive material (B),
A thermoelectric conversion material, wherein the conductive material (B) contains at least one member selected from the group consisting of carbon nanotubes, Ketjenblack, graphene nanoplates, and graphene .
[In general formula (1), R 1 to R 8 are each independently a hydrogen atom, a hydroxyl group, a halogen atom, a cyano group, a nitro group, a carboxyl group, a sodium sulfonate group, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkoxy group, substituted or unsubstituted aryloxy group, substituted or unsubstituted alkylthio group, substituted or unsubstituted arylthio group, substituted or unsubstituted aryl group, substituted or unsubstituted heterocyclic group, or , represents a substituted or unsubstituted amino group. Adjacent groups of R 1 to R 8 may be bonded to each other to form a ring. However, at least one of R 1 to R 8 is a group other than a hydrogen atom. ]
前記導電材料(B)が、カーボンナノチューブを含む、請求項に記載の熱電変換材料。 The thermoelectric conversion material according to claim 1 , wherein the conductive material (B) includes carbon nanotubes. 請求項1又は2に記載の熱電変換材料を含んでなる熱電変換膜と、電極とを有し、前記熱電変換膜と、前記電極とが電気的に接続されている熱電変換素子。 A thermoelectric conversion element comprising a thermoelectric conversion film comprising the thermoelectric conversion material according to claim 1 or 2 and an electrode, the thermoelectric conversion film and the electrode being electrically connected.
JP2019209278A 2019-11-20 2019-11-20 Thermoelectric conversion materials and thermoelectric conversion elements Active JP7400384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019209278A JP7400384B2 (en) 2019-11-20 2019-11-20 Thermoelectric conversion materials and thermoelectric conversion elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019209278A JP7400384B2 (en) 2019-11-20 2019-11-20 Thermoelectric conversion materials and thermoelectric conversion elements

Publications (2)

Publication Number Publication Date
JP2021082719A JP2021082719A (en) 2021-05-27
JP7400384B2 true JP7400384B2 (en) 2023-12-19

Family

ID=75963311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019209278A Active JP7400384B2 (en) 2019-11-20 2019-11-20 Thermoelectric conversion materials and thermoelectric conversion elements

Country Status (1)

Country Link
JP (1) JP7400384B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246355A (en) 2008-03-12 2009-10-22 Sumitomo Chemical Co Ltd Wiring board and method of making the same
WO2012014466A1 (en) 2010-07-28 2012-02-02 出光興産株式会社 Phenanthroline compound, electron transport material obtained from said compound, and organic thin-film photovoltaic cell comprising said compound
JP2012530158A (en) 2009-06-15 2012-11-29 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ Pyrene polymers for organic light emitting diodes (OLEDs)
WO2014133029A1 (en) 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 Method for selecting dopant, dopant composition, method for manufacturing carbon-nanotube/dopant composite, sheet-form material, and carbon-nanotube/dopant composite
US20150069304A1 (en) 2013-09-11 2015-03-12 Nano-C, Inc. Cyclohexadiene fullerene derivatives
WO2015050113A1 (en) 2013-10-01 2015-04-09 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
JP2016042508A (en) 2014-08-15 2016-03-31 アシザワ・ファインテック株式会社 Electronic element

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009246355A (en) 2008-03-12 2009-10-22 Sumitomo Chemical Co Ltd Wiring board and method of making the same
JP2012530158A (en) 2009-06-15 2012-11-29 マツクス−プランク−ゲゼルシャフト ツール フエルデルング デル ヴイツセンシャフテン エー フアウ Pyrene polymers for organic light emitting diodes (OLEDs)
WO2012014466A1 (en) 2010-07-28 2012-02-02 出光興産株式会社 Phenanthroline compound, electron transport material obtained from said compound, and organic thin-film photovoltaic cell comprising said compound
JP2012025716A (en) 2010-07-28 2012-02-09 Idemitsu Kosan Co Ltd Phenanthroline compound, electron transport material comprising the same, and organic thin film solar cell comprising the compound
US20130180590A1 (en) 2010-07-28 2013-07-18 Keiichi Yasukawa Phenanthroline compound, electron transport material obtained from said compound, and organic thin-film solar cell comprising said compound
WO2014133029A1 (en) 2013-02-28 2014-09-04 国立大学法人奈良先端科学技術大学院大学 Method for selecting dopant, dopant composition, method for manufacturing carbon-nanotube/dopant composite, sheet-form material, and carbon-nanotube/dopant composite
US20150069304A1 (en) 2013-09-11 2015-03-12 Nano-C, Inc. Cyclohexadiene fullerene derivatives
WO2015036075A1 (en) 2013-09-11 2015-03-19 Merck Patent Gmbh Cyclohexadiene fullerene derivatives
JP2016538321A (en) 2013-09-11 2016-12-08 メルク パテント ゲーエムベーハー Cyclohexadiene fullerene derivative
WO2015050113A1 (en) 2013-10-01 2015-04-09 富士フイルム株式会社 Thermoelectric conversion material and thermoelectric conversion element
US20160211433A1 (en) 2013-10-01 2016-07-21 Fujifilm Corporation Thermoelectric conversion material and thermoelectric conversion element
JP2016042508A (en) 2014-08-15 2016-03-31 アシザワ・ファインテック株式会社 Electronic element

Also Published As

Publication number Publication date
JP2021082719A (en) 2021-05-27

Similar Documents

Publication Publication Date Title
JP6110818B2 (en) Thermoelectric conversion material, thermoelectric conversion element, article for thermoelectric power generation using the same, and power source for sensor
JP6247771B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP5984870B2 (en) Thermoelectric conversion element, composition for forming a thermoelectric conversion layer
JP7409038B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
JP6838622B2 (en) Thermoelectric conversion material and thermoelectric conversion element using it
JP7400442B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
JP7400384B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
JP7400396B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
WO2020129836A1 (en) Thermoelectric conversion material, and thermoelectric conversion element prepared therewith
JP7540244B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
JP7451932B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements using the same
JP2021097147A (en) Thermoelectric conversion material, its processing method and thermoelectric conversion element
JP7508889B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
CN113228318A (en) Thermoelectric conversion material and thermoelectric conversion element using same
JP6331251B2 (en) Composition for thermoelectric conversion element and use thereof
JP7500968B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
JP2020107642A (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP7585628B2 (en) Thermoelectric conversion materials and thermoelectric conversion elements
JP2020205396A (en) Surface-modified carbon material, and conductive composition, conductive layer and thermoelectric conversion element which are arranged by use thereof
JP2021190584A (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP2020068297A (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP2020107643A (en) Thermoelectric conversion material and thermoelectric conversion element using the same
JP2023038087A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2023004148A (en) Thermoelectric conversion material and thermoelectric conversion element
JP2023094642A (en) Thermoelectric conversion material, thermoelectric conversion layer, and thermoelectric conversion element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R151 Written notification of patent or utility model registration

Ref document number: 7400384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151