[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7494842B2 - Semiconductor device having a dolmen structure and its manufacturing method, and laminated film for forming a support piece and its manufacturing method - Google Patents

Semiconductor device having a dolmen structure and its manufacturing method, and laminated film for forming a support piece and its manufacturing method Download PDF

Info

Publication number
JP7494842B2
JP7494842B2 JP2021516269A JP2021516269A JP7494842B2 JP 7494842 B2 JP7494842 B2 JP 7494842B2 JP 2021516269 A JP2021516269 A JP 2021516269A JP 2021516269 A JP2021516269 A JP 2021516269A JP 7494842 B2 JP7494842 B2 JP 7494842B2
Authority
JP
Japan
Prior art keywords
chip
support piece
film
forming
piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021516269A
Other languages
Japanese (ja)
Other versions
JPWO2020218524A1 (en
Inventor
達也 矢羽田
紘平 谷口
慎太郎 橋本
義信 尾崎
圭 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Publication of JPWO2020218524A1 publication Critical patent/JPWO2020218524A1/ja
Application granted granted Critical
Publication of JP7494842B2 publication Critical patent/JP7494842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0652Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00 the devices being arranged next and on each other, i.e. mixed assemblies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • H01L25/0657Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Die Bonding (AREA)
  • Dicing (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

本開示は、基板と、基板上に配置された第一のチップと、基板上であって第一のチップの周囲に配置された複数の支持片と、複数の支持片によって支持され且つ第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置に関する。また、本開示は、ドルメン構造を有する半導体装置の製造方法、並びに、支持片形成用積層フィルム及びその製造方法に関する。なお、ドルメン(dolmen、支石墓)は、石墳墓の一種であり、複数の支柱石と、その上に載せられた板状の岩とを備える。ドルメン構造を有する半導体装置において、支持片が「支柱石」に相当し、第二のチップが「板状の岩」に相当する。The present disclosure relates to a semiconductor device having a dolmen structure including a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate around the first chip, and a second chip supported by the plurality of support pieces and arranged to cover the first chip. The present disclosure also relates to a method for manufacturing a semiconductor device having a dolmen structure, and a laminated film for forming support pieces and a method for manufacturing the same. A dolmen is a type of stone tomb, and comprises a plurality of supporting stones and a slab-shaped rock placed on the supporting stones. In the semiconductor device having a dolmen structure, the support pieces correspond to the "support stones" and the second chip corresponds to the "slab-shaped rock".

近年、半導体装置の分野において、高集積、小型化及び高速化が求められている。半導体装置の一態様として、基板上に配置されたコントローラーチップの上に半導体チップを積層させる構造が注目を集めている。例えば、特許文献1は、コントローラダイと、コントローラダイの上に支持部材によって支持されたメモリダイとを含む半導体ダイアセンブリを開示している。特許文献1の図1Aに図示された半導体アセンブリ100はドルメン構造を有するということができる。すなわち、半導体アセンブリ100は、パッケージ基板102と、その表面上に配置されたコントローラダイ103と、コントローラダイ103の上方に配置されたメモリダイ106a,106bと、メモリダイ106aを支持する支持部材130a,130bとを備える。In recent years, in the field of semiconductor devices, there is a demand for high integration, miniaturization, and high speed. As one aspect of semiconductor devices, a structure in which a semiconductor chip is stacked on a controller chip arranged on a substrate has attracted attention. For example, Patent Document 1 discloses a semiconductor die assembly including a controller die and a memory die supported by a support member on the controller die. The semiconductor assembly 100 illustrated in FIG. 1A of Patent Document 1 can be said to have a dolmen structure. That is, the semiconductor assembly 100 includes a package substrate 102, a controller die 103 arranged on its surface, memory dies 106a, 106b arranged above the controller die 103, and support members 130a, 130b that support the memory die 106a.

特表2017-515306号公報JP 2017-515306 A

特許文献1は、支持部材(支持片)として、シリコンなどの半導体材料を使用できること、より具体的には半導体ウェハをダイシングして得られる半導体材料の断片を使用できることを開示している(特許文献1の[0012]、[0014]及び図2参照)。半導体ウェハを使用してドルメン構造用の支持片を製造するには、通常の半導体チップの製造と同様、例えば、以下の各工程が必要である。
(1)半導体ウェハにバックグラインドテープを貼り付ける工程
(2)半導体ウェハをバックグラインドする工程
(3)ダイシングリングとその中に配置されたバックグラインド後の半導体ウェハに対し、粘着層と接着剤層とを有するフィルム(ダイシング・ダイボンディング一体型フィルム)を貼り付ける工程
(4)半導体ウェハからバックグラインドテープを剥がす工程
(5)半導体ウェハを個片化する工程
(6)半導体チップと接着剤片の積層体からなる支持片を粘着層からピックアップする工程
(7)複数の支持片を基板の所定の位置に圧着する工程
Patent Document 1 discloses that a semiconductor material such as silicon can be used as the support member (support piece), and more specifically, that pieces of a semiconductor material obtained by dicing a semiconductor wafer can be used (see [0012], [0014] and FIG. 2 of Patent Document 1). To manufacture a support piece for a dolmen structure using a semiconductor wafer, the following steps are required, for example, as in the manufacture of a normal semiconductor chip.
(1) A step of attaching a backgrind tape to a semiconductor wafer; (2) A step of backgrinding the semiconductor wafer; (3) A step of attaching a film having an adhesive layer and an adhesive layer (a dicing/die bonding integrated film) to a dicing ring and the backgrinded semiconductor wafer placed therein; (4) A step of peeling off the backgrind tape from the semiconductor wafer; (5) A step of dividing the semiconductor wafer into individual pieces; (6) A step of picking up a support piece consisting of a stack of a semiconductor chip and an adhesive piece from the adhesive layer; (7) A step of pressing a plurality of support pieces into predetermined positions on a substrate.

本開示は、ドルメン構造を有する半導体装置の製造プロセスにおいて支持片を作製する工程を簡略化でとともに、支持片の優れたピックアップ性を達成できる半導体装置の製造方法を提供する。また、本開示は、ドルメン構造を有する半導体装置、並びに支持片形成用積層フィルム及びその製造方法を提供する。 The present disclosure provides a method for manufacturing a semiconductor device that can simplify the process of producing a support piece in the manufacturing process of a semiconductor device having a dolmen structure and achieve excellent pick-up properties of the support piece. The present disclosure also provides a semiconductor device having a dolmen structure, as well as a laminated film for forming the support piece and a manufacturing method thereof.

本開示の一側面はドルメン構造を有する半導体装置の製造方法に関する。この製造方法は以下の工程を含む。
(A)基材フィルムと、粘着層と、支持片形成用フィルムとをこの順序で備える積層フィルムを準備する工程
(B)支持片形成用フィルムを個片化することによって、粘着層の表面上に複数の支持片を形成する工程
(C)粘着層から支持片をピックアップする工程
(D)基板上に第一のチップを配置する工程
(E)基板上であって第一のチップの周囲又は第一のチップが配置されるべき領域の周囲に複数の支持片を配置する工程
(F)第二のチップと、第二のチップの一方の面上に設けられた接着剤片とを備える接着剤片付きチップを準備する工程
(G)複数の支持片の表面上に接着剤片付きチップを配置することによってドルメン構造を構築する工程
上記支持片形成用フィルムは引張弾性率8.0MPa以上の樹脂層を少なくとも含む多層構造を有する。支持片形成用フィルムが有する樹脂層の引張弾性率が8.0MPa以上であることで、支持片形成用フィルムを個片化して得られる支持片の優れたピックアップ性を達成できる。支持片形成用フィルムは、樹脂層の他に、例えば、樹脂層と異なる材質で構成されている熱硬化性樹脂層を含んでもよい。本開示において、引張弾性率はJIS K7127:1999(プラスチック-引張特性の試験方法- 第3部:フィルム及びシートの試験条件)に記載の方法に準拠し、以下の条件で測定される値を意味する。
・試験片寸法:10mm×40mm
・チャック間隔:30mm
・引張速度:300mm/分
(D)工程及び(E)工程はどちらを先に実施してもよい。(D)工程を先に実施する場合、(E)工程において、基板上であって第一のチップの周囲に複数の支持片を配置すればよい。他方、(E)工程を先に実施する場合、(E)工程において、基板上であって第一のチップが配置されるべき領域の周囲に複数の支持片を配置し、その後、(D)工程において、当該領域に第一のチップを配置すればよい。
One aspect of the present disclosure relates to a method for manufacturing a semiconductor device having a dolmen structure, the method including the following steps.
(A) A step of preparing a laminated film having a base film, an adhesive layer, and a support piece forming film in this order. (B) A step of forming a plurality of support pieces on the surface of the adhesive layer by dividing the support piece forming film. (C) A step of picking up the support piece from the adhesive layer. (D) A step of arranging a first chip on a substrate. (E) A step of arranging a plurality of support pieces on the substrate around the first chip or around the area where the first chip should be arranged. (F) A step of preparing an adhesive piece-attached chip comprising a second chip and an adhesive piece provided on one surface of the second chip. (G) A step of constructing a dolmen structure by arranging the adhesive piece-attached chip on the surface of a plurality of support pieces. The support piece forming film has a multilayer structure including at least a resin layer having a tensile modulus of 8.0 MPa or more. By having the tensile modulus of the resin layer of the support piece forming film be 8.0 MPa or more, excellent pick-up properties of the support piece obtained by dividing the support piece forming film can be achieved. In addition to the resin layer, the support piece forming film may also include, for example, a thermosetting resin layer composed of a material different from the resin layer. In the present disclosure, the tensile modulus refers to a value measured under the following conditions in accordance with the method described in JIS K7127:1999 (Plastics-Test methods for tensile properties-Part 3: Test conditions for films and sheets).
・Test piece dimensions: 10mm x 40mm
Chuck spacing: 30 mm
- Pulling speed: 300 mm/min Either step (D) or step (E) may be performed first. When step (D) is performed first, a plurality of support pieces may be arranged around the first chip on the substrate in step (E). On the other hand, when step (E) is performed first, a plurality of support pieces may be arranged around the region on the substrate where the first chip is to be arranged in step (E), and then the first chip may be arranged in that region in step (D).

本開示に係る上記製造方法においては、支持片形成用フィルムを個片化して得られる支持片を使用する。これにより、支持片として、半導体ウェハをダイシングして得られる半導体材料の断片を使用する従来の製造方法と比較すると、支持片を作製する工程を簡略化できる。すなわち、従来、上述の(1)~(7)の工程を必要としていたのに対し、支持片形成用フィルムは半導体ウェハを含まないため、半導体ウェハのバックグラインドに関する(1)、(2)及び(4)の工程を省略できる。また、樹脂材料と比較して高価な半導体ウェハを使用しないため、コストも削減できる。In the above manufacturing method according to the present disclosure, support pieces obtained by dividing the support piece forming film are used. This simplifies the process of producing the support pieces compared to conventional manufacturing methods that use pieces of semiconductor material obtained by dicing a semiconductor wafer as the support pieces. That is, whereas conventionally the above-mentioned steps (1) to (7) were required, since the support piece forming film does not include a semiconductor wafer, steps (1), (2), and (4) related to backgrinding the semiconductor wafer can be omitted. In addition, since semiconductor wafers, which are expensive compared to resin materials, are not used, costs can also be reduced.

(A)工程で準備する積層フィルムの粘着層は、感圧型であっても、紫外線硬化型であってもよい。すなわち、粘着層は、紫外線照射によって硬化するものであってもそうでなくてもよく、換言すれば、光反応性を有する炭素-炭素二重結合を有する樹脂を含有しても含有しなくてもよい。なお、感圧型の粘着層が光反応性を有する炭素-炭素二重結合を有する樹脂を含有してもよい。例えば、粘着層は、その所定の領域に紫外線を照射することによって当該領域の粘着性を低下させたものであってもよく、例えば、光反応性を有する炭素-炭素二重結合を有する樹脂が残存していてもよい。粘着層が紫外線硬化型である場合、(B)工程と(C)工程の間に、粘着層に紫外線を照射する工程を実施することで粘着層の粘着性を低下させることができる。The adhesive layer of the laminated film prepared in step (A) may be pressure-sensitive or UV-curable. That is, the adhesive layer may or may not be cured by UV irradiation, in other words, it may or may not contain a resin having a photoreactive carbon-carbon double bond. The pressure-sensitive adhesive layer may contain a resin having a photoreactive carbon-carbon double bond. For example, the adhesive layer may have the adhesiveness of a specific region reduced by irradiating the specific region with UV light, and for example, the resin having a photoreactive carbon-carbon double bond may remain in the specific region. When the adhesive layer is UV-curable, the adhesiveness of the adhesive layer can be reduced by performing a step of irradiating the adhesive layer with UV light between steps (B) and (C).

支持片形成用フィルムが熱硬化性樹脂層を含む場合、支持片形成用フィルム又は支持片を加熱して熱硬化性樹脂層又は接着剤片を硬化させる工程は適切なタイミングで実施すればよく、例えば、(G)工程よりも前に実施すればよい。複数の支持片の表面に接するように接着剤片付きチップを配置する段階において、熱硬化性樹脂層が既に硬化していることで接着剤片付きチップの配置に伴って支持片が変形することを抑制できる。なお、熱硬化性樹脂層は他の部材(例えば、基板)に対して接着性を有するため、支持片に接着剤層等を別途設けなくてもよい。When the film for forming a support piece includes a thermosetting resin layer, the step of heating the film for forming a support piece or the support piece to harden the thermosetting resin layer or the adhesive piece may be performed at an appropriate time, for example, before step (G). At the stage of arranging the chips with adhesive pieces so that they are in contact with the surfaces of the multiple support pieces, the thermosetting resin layer is already hardened, so that deformation of the support pieces due to the arrangement of the chips with adhesive pieces can be suppressed. Note that since the thermosetting resin layer has adhesive properties to other members (e.g., a substrate), it is not necessary to provide a separate adhesive layer or the like on the support pieces.

本開示の一側面はドルメン構造を有する半導体装置に関する。すなわち、この半導体装置は、基板と、基板上に配置された第一のチップと、基板上であって第一のチップの周囲に配置された複数の支持片と、複数の支持片によって支持され且つ第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有し、支持片が引張弾性率8.0MPa以上の樹脂片を少なくとも含む多層構造を有する。One aspect of the present disclosure relates to a semiconductor device having a dolmen structure. That is, the semiconductor device has a dolmen structure including a substrate, a first chip arranged on the substrate, a plurality of support pieces arranged on the substrate around the first chip, and a second chip supported by the plurality of support pieces and arranged to cover the first chip, and the support pieces have a multi-layer structure including at least a resin piece having a tensile modulus of elasticity of 8.0 MPa or more.

本開示に係る上記半導体装置は、第二のチップの一方の面上に設けられており且つ第二のチップと複数の支持片とによって挟まれている接着剤片を更に備えてもよい。この場合、上記第一のチップは、接着剤片と離間していてもよいし、接着剤片と接していてもよい。この接着剤片は、例えば、第二のチップにおける第一のチップと対面する領域を少なくとも覆うように設けられている。当該接着剤片は、第二のチップの上記領域から第二のチップの周縁側にまで連続的に延在しており第二のチップと複数の支持片とによって挟まれていてもよい。つまり、一つの当該接着剤片が第二のチップの上記領域を覆い且つ第二のチップと複数の支持片とを接着していてもよい。The semiconductor device according to the present disclosure may further include an adhesive piece provided on one surface of the second chip and sandwiched between the second chip and the multiple support pieces. In this case, the first chip may be separated from the adhesive piece or may be in contact with the adhesive piece. The adhesive piece is provided, for example, so as to cover at least the area of the second chip facing the first chip. The adhesive piece may extend continuously from the area of the second chip to the peripheral side of the second chip and be sandwiched between the second chip and the multiple support pieces. In other words, one adhesive piece may cover the area of the second chip and bond the second chip to the multiple support pieces.

本開示の一側面は支持片形成用積層フィルムに関する。この積層フィルムは、基材フィルムと、粘着層と、支持片形成用フィルムとをこの順序で備え、支持片形成用フィルムは引張弾性率8.0MPa以上の樹脂層を少なくとも含む多層構造を有する。この樹脂層は、例えば、ポリイミド層である。支持片形成用フィルムは、樹脂層の他に、樹脂層と異なる材質で構成されている熱硬化性樹脂層を含んでもよい。支持片形成用フィルムが互いに異なる材質からなる複数の層を有することで、各層に機能を分担させることができ、例えば、同じ材質の複数の層からなるものと比較してフィルムの高機能化を図ることができる。かかる多層構造のフィルムを個片化することで、ドルメン構造に適した支持片を得ることができる。かかる支持片は、樹脂片(樹脂層が個片化されたもの)と、樹脂片の一方の面上に設けられた接着剤片(熱硬化性樹脂層が個片化されたもの)とを含み、樹脂片が接着剤片と異なる材質で構成されている。かかる支持片は、樹脂片と、樹脂片を挟む一対の接着剤片との三層構造を含み、樹脂片が一対の接着剤片と異なる材質で構成されたものであってもよい。One aspect of the present disclosure relates to a laminated film for forming a support piece. This laminated film includes a base film, an adhesive layer, and a film for forming a support piece in this order, and the film for forming a support piece has a multilayer structure including at least a resin layer having a tensile modulus of elasticity of 8.0 MPa or more. This resin layer is, for example, a polyimide layer. In addition to the resin layer, the film for forming a support piece may include a thermosetting resin layer made of a material different from that of the resin layer. By having a plurality of layers made of different materials, the film for forming a support piece can be assigned a function to each layer, and the film can be made more highly functional than, for example, a film made of a plurality of layers made of the same material. By dividing a film having such a multilayer structure into individual pieces, a support piece suitable for a dolmen structure can be obtained. Such a support piece includes a resin piece (a resin layer divided into individual pieces) and an adhesive piece (a thermosetting resin layer divided into individual pieces) provided on one side of the resin piece, and the resin piece is made of a material different from that of the adhesive piece. Such a support piece may have a three-layer structure consisting of a resin piece and a pair of adhesive pieces sandwiching the resin piece, and the resin pieces may be made of a different material from the pair of adhesive pieces.

上記支持片形成用フィルムの厚さは、例えば、5~180μmである。支持片形成用フィルムの厚さがこの範囲であることで、第一のチップ(例えば、コントローラチップ)に対して適度な高さのドルメン構造を構築できる。支持片形成用フィルムは熱硬化性樹脂層を含んでもよい。熱硬化性樹脂層は、例えば、エポキシ樹脂を含み、エラストマを含むことが好ましい。支持片を構成する熱硬化性樹脂層がエラストマを含むことで半導体装置内における応力を緩和できる。The thickness of the support piece forming film is, for example, 5 to 180 μm. By having the thickness of the support piece forming film in this range, a dolmen structure of appropriate height can be constructed for the first chip (e.g., a controller chip). The support piece forming film may include a thermosetting resin layer. The thermosetting resin layer preferably includes, for example, an epoxy resin and an elastomer. By including an elastomer in the thermosetting resin layer constituting the support piece, stress within the semiconductor device can be alleviated.

本開示の一側面は支持片形成用積層フィルムの製造方法に関する。この製造方法は、基材フィルムと、その一方の面上に形成された粘着層とを有する粘着フィルムを準備する工程と、粘着層の表面上に支持片形成用フィルムを積層する工程とを含み、支持片形成用フィルムは引張弾性率8.0MPa以上の樹脂層を少なくとも含む多層構造を有する。One aspect of the present disclosure relates to a method for producing a laminated film for forming a support piece. This production method includes a step of preparing an adhesive film having a base film and an adhesive layer formed on one surface of the base film, and a step of laminating a film for forming a support piece on the surface of the adhesive layer, and the film for forming a support piece has a multilayer structure including at least a resin layer having a tensile modulus of elasticity of 8.0 MPa or more.

熱硬化性樹脂層及び樹脂層を有する支持片形成用積層フィルムは、例えば、以下のように製造することができる。すなわち、この支持片形成用積層フィルムの製造方法は、基材フィルムと、粘着層と、熱硬化性樹脂層とをこの順序で備える積層フィルムを準備する工程と、熱硬化性樹脂層の表面に、引張弾性率8.0MPa以上の樹脂層を貼り合わせる工程とを含む。A laminated film for forming a support piece having a thermosetting resin layer and a resin layer can be manufactured, for example, as follows. That is, the manufacturing method of this laminated film for forming a support piece includes a step of preparing a laminated film having a base film, an adhesive layer, and a thermosetting resin layer in this order, and a step of bonding a resin layer having a tensile modulus of elasticity of 8.0 MPa or more to the surface of the thermosetting resin layer.

本開示によれば、ドルメン構造を有する半導体装置の製造プロセスにおいて支持片を作製する工程を簡略化できるとともに、支持片の優れたピックアップ性を達成できる半導体装置の製造方法が提供される。また、本開示によれば、ドルメン構造を有する半導体装置、並びに支持片形成用積層フィルム及びその製造方法が提供される。 According to the present disclosure, a method for manufacturing a semiconductor device is provided that can simplify the process of producing a support piece in the manufacturing process of a semiconductor device having a dolmen structure and achieve excellent pick-up properties of the support piece. In addition, according to the present disclosure, a semiconductor device having a dolmen structure, and a laminated film for forming a support piece and a manufacturing method thereof are provided.

図1は本開示に係る半導体装置の第一実施形態を模式的に示す断面図である。FIG. 1 is a cross-sectional view illustrating a schematic diagram of a first embodiment of a semiconductor device according to the present disclosure. 図2(a)及び図2(b)は第一のチップと複数の支持片との位置関係の例を模式的に示す平面図である。2A and 2B are plan views each showing a schematic example of the positional relationship between a first chip and a plurality of support pieces. 図3(a)は支持片形成用積層フィルムの一実施形態を模式的に示す平面図であり、図3(b)は図3(a)のb-b線における断面図である。FIG. 3(a) is a plan view that shows a schematic diagram of one embodiment of the laminated film for forming a support piece, and FIG. 3(b) is a cross-sectional view taken along line bb in FIG. 3(a). 図4は粘着層と支持片形成用フィルムとを貼り合わせる工程を模式的に示す断面図である。FIG. 4 is a cross-sectional view that typically illustrates a process of bonding the adhesive layer and the support piece-forming film together. 図5(a)~図5(d)は支持片の作製過程を模式的に示す断面図である。5(a) to 5(d) are cross-sectional views that typically show the process of producing the support piece. 図6は基板上であって第一のチップの周囲に複数の支持片を配置した状態を模式的に示す断面図である。FIG. 6 is a cross-sectional view that shows a schematic state in which a plurality of support pieces are arranged around a first chip on a substrate. 図7は接着剤片付きチップの一例を模式的に示す断面図である。FIG. 7 is a cross-sectional view showing a schematic example of a chip with an adhesive piece. 図8は基板上に形成されたドルメン構造を模式的に示す断面図である。FIG. 8 is a cross-sectional view showing a schematic diagram of a dolmen structure formed on a substrate. 図9は本開示に係る半導体装置の第二実施形態を模式的に示す断面図である。FIG. 9 is a cross-sectional view illustrating a schematic diagram of a second embodiment of a semiconductor device according to the present disclosure. 図10は支持片形成用積層フィルムの他の実施形態を模式的に示す断面図である。FIG. 10 is a cross-sectional view that illustrates a schematic view of another embodiment of the laminated film for forming a support piece.

以下、図面を参照しつつ、本開示の実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。なお、本明細書において、「(メタ)アクリル酸」とは、アクリル酸又はメタクリル酸を意味し、「(メタ)アクリレート」とは、アクリレート又はそれに対応するメタクリレートを意味する。「A又はB」とは、AとBのどちらか一方を含んでいればよく、両方とも含んでいてもよい。Hereinafter, the embodiments of the present disclosure will be described in detail with reference to the drawings. However, the present invention is not limited to the following embodiments. In this specification, "(meth)acrylic acid" means acrylic acid or methacrylic acid, and "(meth)acrylate" means acrylate or the corresponding methacrylate. "A or B" may include either A or B, or may include both.

本明細書において「層」との語は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。In this specification, the term "layer" includes structures with shapes formed over the entire surface as well as structures with shapes formed on only a portion of the surface when observed in a plan view. Furthermore, in this specification, the term "process" includes not only independent processes, but also processes that cannot be clearly distinguished from other processes as long as the intended effect of the process is achieved. Furthermore, a numerical range indicated using "~" indicates a range that includes the numerical values before and after "~" as the minimum and maximum values, respectively.

本明細書において組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。また、例示材料は特に断らない限り単独で用いてもよいし、2種以上を組み合わせて用いてもよい。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。In this specification, the content of each component in the composition means the total amount of the multiple substances present in the composition when multiple substances corresponding to each component are present in the composition, unless otherwise specified. In addition, unless otherwise specified, the example materials may be used alone or in combination of two or more types. In addition, in the numerical ranges described in stages in this specification, the upper limit or lower limit of a certain numerical range may be replaced by the upper limit or lower limit of a numerical range of another stage. In addition, in the numerical ranges described in this specification, the upper limit or lower limit of the numerical range may be replaced by the value shown in the examples.

<第一実施形態>
(半導体装置)
図1は本実施形態に係る半導体装置を模式的に示す断面図である。この図に示す半導体装置100は、基板10と、基板10の表面上に配置されたチップT1(第一のチップ)と、基板10の表面上であってチップT1の周囲に配置された複数の支持片Dcと、チップT1の上方に配置されたチップT2(第二のチップ)と、チップT2と複数の支持片Dcとによって挟まれている接着剤片Tcと、チップT2上に積層されたチップT3,T4と、基板10の表面上の電極(不図示)とチップT1~T4とをそれぞれ電気的に接続する複数のワイヤwと、チップT1とチップT2との隙間等に充填された封止材50とを備える。
First Embodiment
(Semiconductor device)
1 is a cross-sectional view showing a semiconductor device according to the present embodiment. The semiconductor device 100 shown in this figure includes a substrate 10, a chip T1 (first chip) arranged on the surface of the substrate 10, a plurality of support pieces Dc arranged around the chip T1 on the surface of the substrate 10, a chip T2 (second chip) arranged above the chip T1, an adhesive piece Tc sandwiched between the chip T2 and the plurality of support pieces Dc, chips T3 and T4 stacked on the chip T2, a plurality of wires w that electrically connect electrodes (not shown) on the surface of the substrate 10 to the chips T1 to T4, and a sealant 50 that fills gaps between the chips T1 and T2.

本実施形態においては、複数の支持片Dcと、チップT2と、支持片DcとチップT2との間に位置する接着剤片Tcとによって基板10上にドルメン構造が構成されている。チップT1は、接着剤片Tcと離間している。支持片Dcの厚さを適宜設定することで、チップT1の上面と基板10とを接続するワイヤwのためのスペースを確保することができる。チップT1が接着剤片Tcと離間していることで、チップT1と接続されるワイヤwの上部がチップT2に接することによるワイヤwのショートを防ぐことができる。また、チップT2と接する接着剤片Tcにワイヤを埋め込む必要性がないため、接着剤片Tcを薄くできるという利点がある。In this embodiment, a dolmen structure is formed on the substrate 10 by a plurality of support pieces Dc, a chip T2, and an adhesive piece Tc located between the support pieces Dc and the chip T2. The chip T1 is spaced apart from the adhesive piece Tc. By appropriately setting the thickness of the support piece Dc, it is possible to secure space for the wire w that connects the upper surface of the chip T1 to the substrate 10. By spaced apart from the adhesive piece Tc, it is possible to prevent a short circuit of the wire w that is caused by the upper part of the wire w connected to the chip T1 coming into contact with the chip T2. In addition, since there is no need to embed a wire in the adhesive piece Tc that comes into contact with the chip T2, there is an advantage in that the adhesive piece Tc can be made thin.

図1に示すように、チップT1とチップT2の間の接着剤片Tcは、チップT2におけるチップT1と対面する領域Rを覆うとともに、領域RからチップT2の周縁側にまで連続的に延在している。つまり、一つの接着剤片Tcが、チップT2の領域Rを覆うとともに、チップT2と複数の支持片の間に介在し、これらを接着している。なお、図1には、接着剤片TcがチップT2の一方の面(下面)の全体を覆うように設けられている態様を図示した。しかし、接着剤片Tcは、半導体装置100の製造過程において収縮することがあり得るため、チップT2の一方の面(下面)の全体を実質的に覆っていればよく、例えば、チップT2の周縁の一部に接着剤片Tcで覆われていない箇所があってもよい。図1におけるチップT2の下面はチップの裏面に相当する。近年のチップの裏面は凹凸が形成されていることが多い。チップT2の裏面の実質的全体が接着剤片Tcで覆われていることで、チップT2にクラック又は割れが生じることを抑制できる。As shown in FIG. 1, the adhesive piece Tc between the chip T1 and the chip T2 covers the region R of the chip T2 facing the chip T1, and extends continuously from the region R to the periphery of the chip T2. In other words, one adhesive piece Tc covers the region R of the chip T2, and is interposed between the chip T2 and the multiple support pieces to bond them. Note that FIG. 1 illustrates an embodiment in which the adhesive piece Tc is provided so as to cover the entire one side (lower side) of the chip T2. However, since the adhesive piece Tc may shrink during the manufacturing process of the semiconductor device 100, it is sufficient that the adhesive piece Tc substantially covers the entire one side (lower side) of the chip T2, and for example, there may be a portion of the periphery of the chip T2 that is not covered by the adhesive piece Tc. The lower surface of the chip T2 in FIG. 1 corresponds to the back surface of the chip. In recent years, the back surface of the chip is often uneven. By substantially covering the entire back surface of the chip T2 with the adhesive piece Tc, it is possible to suppress the occurrence of cracks or breakage in the chip T2.

基板10は、有機基板であってもよく、リードフレーム等の金属基板であってもよい。基板10は、半導体装置100の反りを抑制する観点から、基板10の厚さは、例えば、90~300μmであり、90~210μmであってもよい。The substrate 10 may be an organic substrate or a metal substrate such as a lead frame. From the viewpoint of suppressing warping of the semiconductor device 100, the thickness of the substrate 10 is, for example, 90 to 300 μm, and may be 90 to 210 μm.

チップT1は、例えば、コントローラーチップであり、接着剤片T1cによって基板10に接着され且つワイヤwによって基板10と電気的に接続されている。平面視におけるチップT1の形状は、例えば矩形(正方形又は長方形)である。チップT1の一辺の長さは、例えば、5mm以下であり、2~5mm又は1~5mmであってもよい。チップT1の厚さは、例えば、10~150μmであり、20~100μmであってもよい。Chip T1 is, for example, a controller chip, and is adhered to substrate 10 by adhesive piece T1c and electrically connected to substrate 10 by wire w. The shape of chip T1 in plan view is, for example, rectangular (square or oblong). The length of one side of chip T1 is, for example, 5 mm or less, and may be 2 to 5 mm or 1 to 5 mm. The thickness of chip T1 is, for example, 10 to 150 μm, and may be 20 to 100 μm.

チップT2は、例えば、メモリチップであり、接着剤片Tcを介して支持片Dcの上に接着されている。平面視でチップT2は、チップT1よりも大きいサイズを有する。平面視におけるチップT2の形状は、例えば矩形(正方形又は長方形)である。チップT2の一辺の長さは、例えば、20mm以下であり、4~20mm又は4~12mmであってもよい。チップT2の厚さは、例えば、10~170μmであり、20~120μmであってもよい。なお、チップT3,T4も、例えば、メモリチップであり、接着剤片Tcを介してチップT2の上に接着されている。チップT3,T4の一辺の長さは、チップT2と同様であればよく、チップT3,T4の厚さもチップT2と同様であればよい。Chip T2 is, for example, a memory chip, and is adhered onto support piece Dc via adhesive piece Tc. In plan view, chip T2 has a size larger than chip T1. In plan view, chip T2 has a shape, for example, a rectangle (square or oblong). The length of one side of chip T2 is, for example, 20 mm or less, and may be 4 to 20 mm or 4 to 12 mm. The thickness of chip T2 is, for example, 10 to 170 μm, and may be 20 to 120 μm. Chips T3 and T4 are also, for example, memory chips, and are adhered onto chip T2 via adhesive piece Tc. The length of one side of chips T3 and T4 may be the same as that of chip T2, and the thickness of chips T3 and T4 may be the same as that of chip T2.

支持片Dcは、チップT1の周囲に空間を形成するスペーサーの役割を果たす。支持片Dcは、二つの接着剤片5cと、これらに挟まれた樹脂片6pとによって構成されている。接着剤片5cは熱硬化性樹脂組成物(接着剤片5p)の硬化物からなる。樹脂片6pは引張弾性率8.0MPa以上の樹脂(例えば、ポリイミド)からなる。樹脂片6pは、接着剤片5cと異なる材質で構成されている。支持片Dcが互いに異なる材質からなる複数の層を有することで、各層に機能を分担させることができ、同じ材質の複数の層からなるものと比較して支持片の高機能化を図ることができる。The support piece Dc acts as a spacer that forms a space around the chip T1. The support piece Dc is composed of two adhesive pieces 5c and a resin piece 6p sandwiched between them. The adhesive piece 5c is made of a cured product of a thermosetting resin composition (adhesive piece 5p). The resin piece 6p is made of a resin (e.g., polyimide) with a tensile modulus of elasticity of 8.0 MPa or more. The resin piece 6p is made of a material different from that of the adhesive piece 5c. By having multiple layers of different materials, the support piece Dc can be assigned a function to each layer, and the support piece can be made more highly functional than one made of multiple layers of the same material.

なお、図2(a)に示すように、チップT1の両側の離れた位置に、二つの支持片Dc(形状:長方形)を配置してもよいし、図2(b)に示すように、チップT1の角に対応する位置にそれぞれ一つの支持片Dc(形状:正方形、計4個)を配置してもよい。平面視における支持片Dcの一辺の長さは、例えば、20mm以下であり、1~20mm又は1~12mmであってもよい。支持片Dcの厚さ(高さ)は、例えば、10~180μmであり、20~120μmであってもよい。As shown in FIG. 2(a), two support pieces Dc (rectangular shape) may be arranged at separate positions on both sides of the chip T1, or as shown in FIG. 2(b), one support piece Dc (square shape, total of four) may be arranged at each position corresponding to the corner of the chip T1. The length of one side of the support piece Dc in a planar view is, for example, 20 mm or less, and may be 1 to 20 mm or 1 to 12 mm. The thickness (height) of the support piece Dc is, for example, 10 to 180 μm, and may be 20 to 120 μm.

支持片Dcの厚さに対する二つの接着剤片5c,5cの厚さの合計の比率は好ましくは0.1~0.9であり、より好ましくは0.2~0.8であり、更に好ましくは0.2~0.7である。この比率が0.1以上であることで、接着剤片5cがその役割(例えば、チップT2の支持及び樹脂片6pの位置ずれ防止)をより一層高度に果たすことができる。他方、比率が0.9以下であれば、樹脂片6pが十分な厚さを有するため、樹脂片6pがバネ板のような役割を果たし、より優れたピックアップ性を達成できる(図5(d)参照)。これらの観点から、樹脂片6pの厚さは、例えば、10~80μmであり、20~60μmであってもよい。接着剤片5c(一層)の厚さは、例えば、5~120μmであり、10~60μmであってもよい。The ratio of the total thickness of the two adhesive pieces 5c, 5c to the thickness of the support piece Dc is preferably 0.1 to 0.9, more preferably 0.2 to 0.8, and even more preferably 0.2 to 0.7. When this ratio is 0.1 or more, the adhesive piece 5c can perform its role (for example, supporting the chip T2 and preventing the resin piece 6p from shifting) to a higher degree. On the other hand, if the ratio is 0.9 or less, the resin piece 6p has a sufficient thickness, so that the resin piece 6p can function like a spring plate and achieve better pickup properties (see FIG. 5(d)). From these viewpoints, the thickness of the resin piece 6p may be, for example, 10 to 80 μm, or 20 to 60 μm. The thickness of the adhesive piece 5c (one layer) may be, for example, 5 to 120 μm, or 10 to 60 μm.

(支持片の作製方法)
支持片の作製方法の一例について説明する。なお、図1に示す支持片Dcは、これに含まれる接着剤片(熱硬化性樹組成物)が硬化した後のものである。一方、支持片Daは、これに含まれる接着剤片(熱硬化性樹組成物)が完全に硬化する前の状態のものである(例えば、図5(b)参照)。
(Method of manufacturing the support piece)
An example of a method for producing the support piece will be described. Note that the support piece Dc shown in Fig. 1 is a piece after the adhesive piece (thermosetting resin composition) contained therein has hardened. On the other hand, the support piece Da is a piece before the adhesive piece (thermosetting resin composition) contained therein has completely hardened (see, for example, Fig. 5(b)).

まず、図3(a)及び図3(b)に示す支持片形成用積層フィルム20(以下、場合により「積層フィルム20」という。)を準備する。積層フィルム20は、基材フィルム1と、粘着層2と、支持片形成用フィルムDとを備える。基材フィルム1は、例えば、ポリエチレンテレフタレートフィルム(PETフィルム)である。粘着層2は、パンチング等によって円形に形成されている(図3(a)参照)。粘着層2は、紫外線硬化型の粘着剤からなる。すなわち、粘着層2は紫外線が照射されることによって粘着性が低下する性質を有する。支持片形成用フィルムDは、パンチング等によって円形に形成されており、粘着層2よりも小さい直径を有する(図3(a)参照)。支持片形成用フィルムDは、二つの熱硬化性樹脂層5と、これらに挟まれた樹脂層6とによって構成されている。First, prepare a laminated film 20 for forming a support piece as shown in FIG. 3(a) and FIG. 3(b) (hereinafter, sometimes referred to as "laminated film 20"). The laminated film 20 includes a base film 1, an adhesive layer 2, and a film D for forming a support piece. The base film 1 is, for example, a polyethylene terephthalate film (PET film). The adhesive layer 2 is formed into a circular shape by punching or the like (see FIG. 3(a)). The adhesive layer 2 is made of an ultraviolet-curing adhesive. That is, the adhesive layer 2 has a property that its adhesiveness decreases when irradiated with ultraviolet rays. The film D for forming a support piece is formed into a circular shape by punching or the like, and has a smaller diameter than the adhesive layer 2 (see FIG. 3(a)). The film D for forming a support piece is composed of two thermosetting resin layers 5 and a resin layer 6 sandwiched between them.

熱硬化性樹脂層5の厚さは、例えば、5~180μmであり、10~170μm又は15~160μmであってもよい。二つの熱硬化性樹脂層5の厚さは同じであってもよいし、異なっていてもよい。樹脂層6は、例えば、ポリイミド層である。熱硬化性樹脂層5は熱硬化性樹脂組成物からなる。熱硬化性樹脂組成物は、半硬化(Bステージ)状態を経て、その後の硬化処理によって完全硬化物(Cステージ)状態となり得るものである。熱硬化性樹脂組成物は、エポキシ樹脂と、硬化剤と、エラストマ(例えば、アクリル樹脂)とを含み、必要に応じて、無機フィラー及び硬化促進剤等を更に含む。二つの熱硬化性樹脂層5の組成は同じであってもよいし、異なっていてもよい。熱硬化性樹脂層5を構成する熱硬化性樹脂組成物の詳細については後述する。The thickness of the thermosetting resin layer 5 is, for example, 5 to 180 μm, and may be 10 to 170 μm or 15 to 160 μm. The thicknesses of the two thermosetting resin layers 5 may be the same or different. The resin layer 6 is, for example, a polyimide layer. The thermosetting resin layer 5 is made of a thermosetting resin composition. The thermosetting resin composition can be in a semi-cured (B stage) state and then in a completely cured (C stage) state by a subsequent curing process. The thermosetting resin composition contains an epoxy resin, a curing agent, and an elastomer (e.g., an acrylic resin), and further contains an inorganic filler and a curing accelerator, etc., as necessary. The composition of the two thermosetting resin layers 5 may be the same or different. Details of the thermosetting resin composition constituting the thermosetting resin layer 5 will be described later.

樹脂層6の厚さは、例えば、5~100μmであり、10~90μm又は20~80μmであってもよい。樹脂層6の引張弾性率は8.0MPa以上であり、9.0MPa以上又は10.0MPa以上であってもよい。樹脂層6の引張弾性率が8.0MPa以上であることで、支持片Daをピックアップする工程において(図5(d)参照)、樹脂片6pがバネ板のような役割を果たし、優れたピックアップ性を達成できる。なお、樹脂層6の引張弾性率の上限値は材料の入手のしやすさの点から15MPa程度である。樹脂層6を構成する材質としては、例えば、ポリイミド及びポリエチレンテレフタレート(PET)が挙げられる。樹脂層6は引張弾性率が上記範囲となるように硬化処理が施された熱硬化性樹脂組成物又は光硬化性樹脂組成物からなる層であってもよい。The thickness of the resin layer 6 is, for example, 5 to 100 μm, and may be 10 to 90 μm or 20 to 80 μm. The tensile modulus of the resin layer 6 is 8.0 MPa or more, and may be 9.0 MPa or more or 10.0 MPa or more. When the tensile modulus of the resin layer 6 is 8.0 MPa or more, the resin piece 6p plays a role like a spring plate in the process of picking up the support piece Da (see FIG. 5 (d)), and excellent pick-up properties can be achieved. The upper limit of the tensile modulus of the resin layer 6 is about 15 MPa in terms of ease of obtaining materials. Examples of materials constituting the resin layer 6 include polyimide and polyethylene terephthalate (PET). The resin layer 6 may be a layer made of a thermosetting resin composition or a photocurable resin composition that has been subjected to a curing treatment so that the tensile modulus is within the above range.

積層フィルム20は、例えば、基材フィルム1とその表面上に粘着層2とを有する第1の積層フィルムと、カバーフィルム3とその表面上に支持片形成用フィルムDとを有する第2の積層フィルムとを貼り合わせることによって作製することができる(図4参照)。第1の積層フィルムは、基材フィルム1の表面上に粘着層を塗工によって形成する工程と、粘着層をパンチング等によって所定の形状(例えば、円形)に加工する工程を経て得られる。第2の積層フィルムは、カバーフィルム3(例えば、PETフィルム又はポリエチレンフィルム)の表面上に熱硬化性樹脂層5を塗工によって形成する工程と、熱硬化性樹脂層5の表面に樹脂層6を形成する工程と、樹脂層6の表面上に熱硬化性樹脂層5を塗工によって形成する工程と、これらの工程を経て形成された支持片形成用フィルムをパンチング等によって所定の形状(例えば、円形)に加工する工程を経て得られる。積層フィルム20を使用するに際し、カバーフィルム3は適当なタイミングで剥がされる。The laminated film 20 can be produced, for example, by bonding a first laminated film having a base film 1 and an adhesive layer 2 on its surface, and a second laminated film having a cover film 3 and a support piece forming film D on its surface (see FIG. 4). The first laminated film is obtained through a process of forming an adhesive layer on the surface of the base film 1 by coating, and a process of processing the adhesive layer into a predetermined shape (e.g., circular) by punching or the like. The second laminated film is obtained through a process of forming a thermosetting resin layer 5 on the surface of the cover film 3 (e.g., a PET film or a polyethylene film) by coating, a process of forming a resin layer 6 on the surface of the thermosetting resin layer 5, a process of forming a thermosetting resin layer 5 on the surface of the resin layer 6 by coating, and a process of processing the support piece forming film formed through these processes into a predetermined shape (e.g., circular) by punching or the like. When using the laminated film 20, the cover film 3 is peeled off at an appropriate timing.

図5(a)に示されたように、積層フィルム20にダイシングリングDRを貼り付ける。すなわち、積層フィルム20の粘着層2にダイシングリングDRを貼り付け、ダイシングリングDRの内側に支持片形成用フィルムDが配置された状態にする。支持片形成用フィルムDをダイシングによって個片化する(図5(b)参照)。これにより、支持片形成用フィルムDから多数の支持片Daが得られる。支持片Daは、二つの接着剤片5pと、これらに挟まれた樹脂片6pとによって構成される。その後、粘着層2に対して紫外線を照射することにより、粘着層2と支持片Daとの間の粘着力を低下させる。紫外線照射後、図5(c)に示されるように、基材フィルム1をエキスパンドすることで、支持片Daを互いに離間させる。図5(d)に示されるように、支持片Daを突き上げ治具42で突き上げることによって粘着層2から支持片Daを剥離させるとともに、吸引コレット44で吸引して支持片Daをピックアップする。なお、ダイシング前の支持片形成用フィルムD又はピックアップ前の支持片Daを加熱することによって、熱硬化性樹脂の硬化反応を進行させておいてもよい。ピックアップする際に支持片Daが適度に硬化していることで優れたピックアップ性を達成し得る。個片化のための切り込みは支持片形成用フィルムDの外縁まで形成されていることが好ましい。支持片形成用フィルムDの直径は、例えば、300~310mm又は300~305mmであってもよい。支持片形成用フィルムDの平面視における形状は、図3(a)に示す円形に限られず、矩形(正方形又は長方形)であってもよい。As shown in FIG. 5(a), a dicing ring DR is attached to the laminated film 20. That is, the dicing ring DR is attached to the adhesive layer 2 of the laminated film 20, and the support piece forming film D is arranged inside the dicing ring DR. The support piece forming film D is diced into individual pieces (see FIG. 5(b)). As a result, a large number of support pieces Da are obtained from the support piece forming film D. The support piece Da is composed of two adhesive pieces 5p and a resin piece 6p sandwiched between them. After that, the adhesive layer 2 is irradiated with ultraviolet light to reduce the adhesive force between the adhesive layer 2 and the support piece Da. After the ultraviolet light irradiation, the base film 1 is expanded as shown in FIG. 5(c), so that the support pieces Da are separated from each other. As shown in FIG. 5(d), the support pieces Da are pushed up by a push-up jig 42 to peel off the support pieces Da from the adhesive layer 2, and the support pieces Da are picked up by suction with a suction collet 44. The curing reaction of the thermosetting resin may be allowed to proceed by heating the support piece forming film D before dicing or the support piece Da before picking up. When the support piece Da is appropriately cured at the time of picking up, excellent pick-up properties can be achieved. It is preferable that the cuts for individualization are formed up to the outer edge of the support piece forming film D. The diameter of the support piece forming film D may be, for example, 300 to 310 mm or 300 to 305 mm. The shape of the support piece forming film D in a plan view is not limited to the circle shown in FIG. 3(a) and may be rectangular (square or oblong).

支持片形成用フィルムDの厚さに対する二つの熱硬化性樹脂層5,5の厚さの合計の比率は好ましくは0.1~0.9であり、より好ましくは0.2~0.8であり、更に好ましくは0.2~0.7である。この比率が0.1以上であることで、上述のとおり、接着剤片5cがその役割(例えば、チップT2の支持及び樹脂片6pの位置ずれ防止)をより一層高度に果たすことができる。他方、比率が0.9以下であれば、樹脂片6pが十分な厚さを有するため、樹脂片6pがバネ板のような役割を果たし、より優れたピックアップ性を達成できる(図5(d)参照)。これらの観点から、樹脂層6の厚さは、例えば、10~80μmであり、20~60μmであってもよい。熱硬化性樹脂層5(一層)の厚さは、例えば、5~120μmであり、10~60μmであってもよい。The ratio of the total thickness of the two thermosetting resin layers 5, 5 to the thickness of the support piece forming film D is preferably 0.1 to 0.9, more preferably 0.2 to 0.8, and even more preferably 0.2 to 0.7. When this ratio is 0.1 or more, as described above, the adhesive piece 5c can perform its role (for example, supporting the chip T2 and preventing the resin piece 6p from shifting) to a higher degree. On the other hand, if the ratio is 0.9 or less, the resin piece 6p has a sufficient thickness, so that the resin piece 6p can function like a spring plate and achieve better pickup properties (see FIG. 5(d)). From these viewpoints, the thickness of the resin layer 6 is, for example, 10 to 80 μm, and may be 20 to 60 μm. The thickness of the thermosetting resin layer 5 (one layer) is, for example, 5 to 120 μm, and may be 10 to 60 μm.

(半導体装置の製造方法)
半導体装置100の製造方法について説明する。本実施形態に係る製造方法は、以下の(A)~(H)の工程を含む。
(A)積層フィルム20を準備する工程(図4参照)
(B)支持片形成用フィルムDを個片化することによって、粘着層2の表面上に複数の支持片Daを形成する工程(図5(b)参照)
(C)粘着層2から支持片Daをピックアップする工程(図5(d)参照)
(D)基板10上に第一のチップT1を配置する工程
(E)基板10上であって第一のチップT1の周囲に複数の支持片Daを配置する工程(図6参照)
(F)第二のチップT2と、第二のチップT2の一方の面上に設けられた接着剤片Taとを備える接着剤片付きチップT2aを準備する工程(図7参照)
(G)複数の支持片Dcの表面上に接着剤片付きチップT2aを配置することによってドルメン構造を構築する工程(図8参照)
(H)チップT1とチップT2との隙間等を封止材50で封止する工程(図1参照)
(Method of manufacturing a semiconductor device)
The following describes a method for manufacturing the semiconductor device 100. The manufacturing method according to this embodiment includes the following steps (A) to (H).
(A) A step of preparing a laminated film 20 (see FIG. 4)
(B) A step of forming a plurality of support pieces Da on the surface of the adhesive layer 2 by dividing the support piece forming film D (see FIG. 5(b)).
(C) Step of picking up the support piece Da from the adhesive layer 2 (see FIG. 5(d))
(D) a step of arranging a first chip T1 on the substrate 10; (E) a step of arranging a plurality of support pieces Da around the first chip T1 on the substrate 10 (see FIG. 6 );
(F) A step of preparing an adhesive piece-attached chip T2a including a second chip T2 and an adhesive piece Ta provided on one surface of the second chip T2 (see FIG. 7).
(G) A process of constructing a dolmen structure by placing adhesive chips T2a on the surfaces of multiple support pieces Dc (see FIG. 8).
(H) A process of sealing the gap between the chip T1 and the chip T2 with a sealing material 50 (see FIG. 1).

(A)~(C)工程は、複数の支持片Daを作製するプロセスであり、説明済みである。(D)~(H)工程は、複数の支持片Daを使用してドルメン構造を基板10上に構築していくプロセスである。以下、図6~8を参照しながら、(D)~(H)工程について説明する。 Steps (A) to (C) are the process of producing multiple support pieces Da, and have already been explained. Steps (D) to (H) are the process of constructing a dolmen structure on the substrate 10 using multiple support pieces Da. Steps (D) to (H) are explained below with reference to Figures 6 to 8.

[(D)工程]
(D)工程は、基板10上に第一のチップT1を配置する工程である。例えば、まず、基板10上の所定の位置に接着剤層T1cを介してチップT1を配置する。その後、チップT1はワイヤwで基板10と電気的に接続される。(D)工程は、(E)工程よりも前に行われる工程であってよく、(A)工程よりも前、(A)工程と(B)工程の間、(B)工程と(C)工程の間、又は(C)工程と(E)工程の間であってもよい。
[Step (D)]
Step (D) is a step of arranging a first chip T1 on the substrate 10. For example, first, the chip T1 is arranged at a predetermined position on the substrate 10 via an adhesive layer T1c. Then, the chip T1 is electrically connected to the substrate 10 by a wire w. Step (D) may be a step performed before step (E), or may be performed before step (A), between steps (A) and (B), between steps (B) and (C), or between steps (C) and (E).

[(E)工程]
(E)工程は、基板10上であって第一のチップT1の周囲に複数の支持片Daを配置する工程である。この工程を経て、図6に示す構造体30が作製される。構造体30は、基板10と、その表面上に配置されたチップT1と、複数の支持片Daとを備える。支持片Daの配置は圧着処理によって行えばよい。圧着処理は、例えば、80~180℃、0.01~0.50MPaの条件で、0.5~3.0秒間にわたって実施することが好ましい。なお、支持片Daは、これに含まれる接着剤片5pが(E)工程の時点で完全に硬化して支持片Dcとなっていてもよく、この時点では完全硬化していなくてもよい。支持片Daに含まれる接着剤片5pは(G)工程の開始前の時点で完全硬化して接着剤片5cとなっていてもよい。
[Step (E)]
Step (E) is a step of arranging a plurality of support pieces Da around the first chip T1 on the substrate 10. Through this step, the structure 30 shown in FIG. 6 is produced. The structure 30 includes the substrate 10, the chip T1 arranged on the surface thereof, and a plurality of support pieces Da. The arrangement of the support pieces Da may be performed by a pressure bonding process. The pressure bonding process is preferably performed, for example, under conditions of 80 to 180° C. and 0.01 to 0.50 MPa for 0.5 to 3.0 seconds. The adhesive piece 5p contained in the support piece Da may be completely cured to become the support piece Dc at the time of step (E), or may not be completely cured at this time. The adhesive piece 5p contained in the support piece Da may be completely cured to become the adhesive piece 5c at the time before the start of step (G).

[(F)工程]
(F)工程は、図7に示す接着剤片付きチップT2aを準備する工程である。接着剤片付きチップT2aは、チップT2と、その一方の表面に設けられた接着剤片Taとを備える。接着剤片付きチップT2aは、例えば、半導体ウェハ及びダイシング・ダイボンディング一体型フィルムを使用し、ダイシング工程及びピックアップ工程を経て得ることができる。
[Step (F)]
Step (F) is a step of preparing the chip T2a with adhesive piece shown in Fig. 7. The chip T2a with adhesive piece includes the chip T2 and an adhesive piece Ta provided on one surface of the chip T2. The chip T2a with adhesive piece can be obtained, for example, by using a semiconductor wafer and a dicing/die bonding integrated film through a dicing step and a pick-up step.

[(G)工程]
(G)工程は、複数の支持片Dcの上面に接着剤片Taが接するように、チップT1の上方に接着剤片付きチップT2aを配置する工程である。具体的には、支持片Dcの上面に接着剤片Taを介してチップT2を圧着する。この圧着処理は、例えば、80~180℃、0.01~0.50MPaの条件で、0.5~3.0秒間にわたって実施することが好ましい。次に、加熱によって接着剤片Taを硬化させる。この硬化処理は、例えば、60~175℃、0.01~1.0MPaの条件で、5分間以上にわたって実施することが好ましい。これにより、接着剤片Taが硬化して接着剤片Tcとなる。この工程を経て、基板10上にドルメン構造が構築される(図8参照)。
[Step (G)]
Step (G) is a step of arranging the chip T2a with adhesive pieces above the chip T1 so that the adhesive pieces Ta are in contact with the upper surfaces of the multiple support pieces Dc. Specifically, the chip T2 is pressure-bonded to the upper surface of the support piece Dc via the adhesive pieces Ta. This pressure-bonding process is preferably carried out for 0.5 to 3.0 seconds under conditions of, for example, 80 to 180°C and 0.01 to 0.50 MPa. Next, the adhesive pieces Ta are hardened by heating. This hardening process is preferably carried out for 5 minutes or more under conditions of, for example, 60 to 175°C and 0.01 to 1.0 MPa. As a result, the adhesive pieces Ta harden and become adhesive pieces Tc. Through this process, a dolmen structure is constructed on the substrate 10 (see FIG. 8).

(G)工程後であって(H)工程前に、チップT2の上に接着剤片を介してチップT3を配置し、更に、チップT3の上に接着剤片を介してチップT4を配置する。接着剤片は上述の接着剤片Taと同様の熱硬化性樹脂組成物であればよく、加熱硬化によって接着剤片Tcとなる(図1参照)。他方、チップT2,T3,T4と基板10とをワイヤwで電気的にそれぞれ接続する。なお、チップT1の上方に積層するチップの数は本実施形態の三つに限定されず、適宜設定すればよい。After step (G) and before step (H), chip T3 is placed on chip T2 via an adhesive piece, and chip T4 is placed on chip T3 via an adhesive piece. The adhesive piece may be a thermosetting resin composition similar to the adhesive piece Ta described above, and becomes adhesive piece Tc by heat curing (see Figure 1). Meanwhile, chips T2, T3, and T4 are each electrically connected to substrate 10 by wires w. Note that the number of chips stacked above chip T1 is not limited to three as in this embodiment, and may be set as appropriate.

[(H)工程]
(H)工程は、チップT1とチップT2との隙間等を封止材50で封止する工程である。この工程を経て図1に示す半導体装置100が完成する。
[Step (H)]
Step (H) is a step of sealing the gap between the chip T1 and the chip T2 with the sealing material 50. Through this step, the semiconductor device 100 shown in FIG.

(熱硬化性樹脂組成物)
熱硬化性樹脂層5を構成する熱硬化性樹脂組成物は、上述のとおり、エポキシ樹脂と、硬化剤と、エラストマとを含み、必要に応じて、無機フィラー及び硬化促進剤等を更に含む。本発明者らの検討によると、支持片Da及び硬化後の支持片Dcは以下の特性を有することが好ましい。
・特性1:基板10の所定の位置に支持片Daを熱圧着したとき位置ずれが生じにくいこと(120℃における接着剤片5pの溶融粘度が、例えば、4300~50000Pa・s又は5000~40000Pa・sであること)
・特性2:半導体装置100内において接着剤片5cが応力緩和性を発揮すること(熱硬化性樹脂組成物がエラストマ(ゴム成分)を含むこと)
・特性3:接着剤片付きチップの接着剤片Tcとの接着強度が十分に高いこと(接着剤片Tcに対する接着剤片5cのダイシェア強度が、例えば、2.0~7.0Mpa又は3.0~6.0Mpaであること)
・特性4:硬化に伴う収縮率が十分に小さいこと
・特性5:ピックアップ工程においてカメラによる支持片Daの視認性が良いこと(熱硬化性樹脂組成物が、例えば、着色料を含んでいること)
・特性6:接着剤片5cが十分な機械的強度を有すること
(Thermosetting resin composition)
As described above, the thermosetting resin composition constituting the thermosetting resin layer 5 contains an epoxy resin, a curing agent, and an elastomer, and further contains an inorganic filler, a curing accelerator, etc., as necessary. According to the studies of the present inventors, it is preferable that the support piece Da and the support piece Dc after curing have the following characteristics.
Characteristic 1: When the support piece Da is thermocompression-bonded to a predetermined position on the substrate 10, displacement is unlikely to occur (the melt viscosity of the adhesive piece 5p at 120°C is, for example, 4300 to 50000 Pa·s or 5000 to 40000 Pa·s).
Characteristic 2: The adhesive piece 5c exhibits stress relaxation properties within the semiconductor device 100 (the thermosetting resin composition contains an elastomer (rubber component)).
Characteristic 3: The adhesive strength of the chip with adhesive piece to the adhesive piece Tc is sufficiently high (the die shear strength of the adhesive piece 5c to the adhesive piece Tc is, for example, 2.0 to 7.0 MPa or 3.0 to 6.0 MPa).
Characteristic 4: The shrinkage rate associated with curing is sufficiently small. Characteristic 5: The support piece Da is easily visible by a camera in the pick-up process (the thermosetting resin composition contains, for example, a coloring agent).
Property 6: The adhesive piece 5c has sufficient mechanical strength

[エポキシ樹脂]
エポキシ樹脂は、硬化して接着作用を有するものであれば特に限定されない。ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等の二官能エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂などを使用することができる。また、多官能エポキシ樹脂、グリシジルアミン型エポキシ樹脂、複素環含有エポキシ樹脂または脂環式エポキシ樹脂など、一般に知られているものを適用することができる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Epoxy resin]
The epoxy resin is not particularly limited as long as it has an adhesive action when cured. Bifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin, novolac type epoxy resins such as phenol novolac type epoxy resin and cresol novolac type epoxy resin, etc. can be used. In addition, generally known epoxy resins such as multifunctional epoxy resins, glycidylamine type epoxy resins, heterocyclic epoxy resins, and alicyclic epoxy resins can be applied. These may be used alone or in combination of two or more.

[硬化剤]
硬化剤として、例えば、フェノール樹脂、エステル化合物、芳香族アミン、脂肪族アミン及び酸無水物が挙げられる。これらのうち、高いダイシェア強度を達成する観点から、フェノール樹脂が好ましい。フェノール樹脂の市販品として、例えば、DIC(株)製のLF-4871(商品名、BPAノボラック型フェノール樹脂)、エア・ウォーター(株)製のHE-100C-30(商品名、フェニルアラキル型フェノール樹脂)、DIC(株)製のフェノライトKA及びTDシリーズ、三井化学(株)製のミレックスXLC-シリーズとXLシリーズ(例えば、ミレックスXLC-LL)、エア・ウォーター(株)製のHEシリーズ(例えば、HE100C-30)、明和化成(株)製のMEHC-7800シリーズ(例えばMEHC-7800-4S)、JEFケミカル(株)製のJDPPシリーズが挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Curing agent]
Examples of the curing agent include phenolic resins, ester compounds, aromatic amines, aliphatic amines, and acid anhydrides. Of these, phenolic resins are preferred from the viewpoint of achieving high die shear strength. Commercially available phenolic resins include, for example, LF-4871 (trade name, BPA novolac type phenolic resin) manufactured by DIC Corporation, HE-100C-30 (trade name, phenylarakyl type phenolic resin) manufactured by Air Water Inc., Phenolite KA and TD series manufactured by DIC Corporation, Milex XLC-series and XL series (e.g., Milex XLC-LL) manufactured by Mitsui Chemicals Inc., HE series (e.g., HE100C-30) manufactured by Air Water Inc., MEHC-7800 series (e.g., MEHC-7800-4S) manufactured by Meiwa Kasei Co., Ltd., and JDPP series manufactured by JEF Chemical Co., Ltd. These may be used alone or in combination of two or more types.

エポキシ樹脂とフェノール樹脂の配合量は、高いダイシェア強度を達成する観点から、それぞれエポキシ当量と水酸基当量の当量比が0.6~1.5であることが好ましく、0.7~1.4であることがより好ましく、0.8~1.3であることが更に好ましい。配合比が上記範囲内であることで、硬化性及び流動性の両方を十分に高水準に達成しやすい。 From the viewpoint of achieving high die shear strength, the blending ratio of epoxy equivalent to hydroxyl equivalent of the epoxy resin and phenolic resin is preferably 0.6 to 1.5, more preferably 0.7 to 1.4, and even more preferably 0.8 to 1.3. By keeping the blending ratio within the above range, it is easy to achieve sufficiently high levels of both curability and fluidity.

[エラストマ]
エラストマとして、例えば、アクリル樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、シリコーン樹脂、ポリブタジエン、アクリロニトリル、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリルが挙げられる。
[Elastomer]
Examples of the elastomer include acrylic resin, polyester resin, polyamide resin, polyimide resin, silicone resin, polybutadiene, acrylonitrile, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.

高いダイシェア強度を達成する観点から、エラストマとしてアクリル系樹脂が好ましく、更に、グリシジルアクリレート又はグリシジルメタクリレート等のエポキシ基又はグリシジル基を架橋性官能基として有する官能性モノマーを重合して得たエポキシ基含有(メタ)アクリル共重合体等のアクリル系樹脂がより好ましい。アクリル系樹脂のなかでもエポキシ基含有(メタ)アクリル酸エステル共重合体及びエポキシ基含有アクリルゴムが好ましく、エポキシ基含有アクリルゴムがより好ましい。エポキシ基含有アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリル等の共重合体、エチルアクリレートとアクリロニトリル等の共重合体などからなる、エポキシ基を有するゴムである。なお、アクリル系樹脂は、エポキシ基だけでなく、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基を有していてもよい。From the viewpoint of achieving high die shear strength, acrylic resins are preferred as elastomers, and more preferably, acrylic resins such as epoxy group-containing (meth)acrylic copolymers obtained by polymerizing functional monomers having epoxy groups or glycidyl groups as crosslinkable functional groups, such as glycidyl acrylate or glycidyl methacrylate. Among acrylic resins, epoxy group-containing (meth)acrylic acid ester copolymers and epoxy group-containing acrylic rubbers are preferred, and epoxy group-containing acrylic rubbers are more preferred. Epoxy group-containing acrylic rubbers are rubbers having epoxy groups, mainly composed of acrylic acid esters and copolymers of butyl acrylate and acrylonitrile, ethyl acrylate and acrylonitrile, etc. The acrylic resins may have not only epoxy groups, but also crosslinkable functional groups such as alcoholic or phenolic hydroxyl groups and carboxyl groups.

アクリル樹脂の市販品としては、ナガセケムテック(株)製のSG-70L、SG-708-6、WS-023 EK30、SG-280 EK23、SG-P3溶剤変更品(商品名、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤はシクロヘキサノン)等が挙げられる。Commercially available acrylic resins include SG-70L, SG-708-6, WS-023 EK30, SG-280 EK23, and SG-P3 solvent-modified product (product name, acrylic rubber, weight average molecular weight: 800,000, Tg: 12°C, solvent is cyclohexanone) manufactured by Nagase Chemtec Corporation.

アクリル樹脂のガラス転移温度(Tg)は、高いダイシェア強度を達成する観点から、-50~50℃であることが好ましく、-30~30℃であることがより好ましい。アクリル樹脂の重量平均分子量(Mw)は、高いダイシェア強度を達成する観点から、10万~300万であることが好ましく、50万~200万であることがより好ましい。ここで、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)で測定し、標準ポリスチレンによる検量線を用いて換算した値を意味する。なお、分子量分布の狭いアクリル樹脂を用いることにより、高弾性の接着剤片を形成できる傾向にある。From the viewpoint of achieving high die shear strength, the glass transition temperature (Tg) of the acrylic resin is preferably -50 to 50°C, and more preferably -30 to 30°C. From the viewpoint of achieving high die shear strength, the weight average molecular weight (Mw) of the acrylic resin is preferably 100,000 to 3,000,000, and more preferably 500,000 to 2,000,000. Here, Mw means a value measured by gel permeation chromatography (GPC) and converted using a calibration curve of standard polystyrene. Note that by using an acrylic resin with a narrow molecular weight distribution, it tends to be possible to form adhesive pieces with high elasticity.

熱硬化性樹脂組成物に含まれるアクリル樹脂の量は、高いダイシェア強度を達成する観点から、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して10~200質量部であることが好ましく、20~100質量部であることがより好ましい。From the viewpoint of achieving high die shear strength, the amount of acrylic resin contained in the thermosetting resin composition is preferably 10 to 200 parts by mass, and more preferably 20 to 100 parts by mass, per 100 parts by mass of the epoxy resin and epoxy resin curing agent combined.

[無機フィラー]
無機フィラーとして、例えば、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、ケイ酸カルシウム、ケイ酸マグネシウム、酸化カルシウム、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、ホウ酸アルミウィスカ、窒化ホウ素及び結晶性シリカ、非晶性シリカが挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Inorganic filler]
Examples of inorganic fillers include aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, calcium silicate, magnesium silicate, calcium oxide, magnesium oxide, aluminum oxide, aluminum nitride, aluminum borate whiskers, boron nitride, crystalline silica, and amorphous silica. These may be used alone or in combination of two or more.

無機フィラーの平均粒径は、高いダイシェア強度を達成する観点から、0.005μm~1.0μmが好ましく、0.05~0.5μmがより好ましい。無機フィラーの表面は、高いダイシェア強度を達成する観点から、化学修飾されていることが好ましい。表面を化学修飾する材料として適したものにシランカップリング剤が挙げられる。シランカップリング剤の官能基の種類として、例えば、ビニル基、アクリロイル基、エポキシ基、メルカプト基、アミノ基、ジアミノ基、アルコキシ基、エトキシ基が挙げられる。From the viewpoint of achieving high die shear strength, the average particle size of the inorganic filler is preferably 0.005 μm to 1.0 μm, and more preferably 0.05 to 0.5 μm. From the viewpoint of achieving high die shear strength, it is preferable that the surface of the inorganic filler is chemically modified. A silane coupling agent is an example of a suitable material for chemically modifying the surface. Examples of types of functional groups of the silane coupling agent include vinyl groups, acryloyl groups, epoxy groups, mercapto groups, amino groups, diamino groups, alkoxy groups, and ethoxy groups.

高いダイシェア強度を達成する観点から、熱硬化性樹脂組成物の樹脂成分100質量部に対して、無機フィラーの含有量は20~200質量部であることが好ましく、30~100質量部であることがより好ましい。 In order to achieve high die shear strength, the content of inorganic filler is preferably 20 to 200 parts by mass, and more preferably 30 to 100 parts by mass, per 100 parts by mass of the resin component of the thermosetting resin composition.

[硬化促進剤]
硬化促進剤として、例えば、イミダゾール類及びその誘導体、有機リン系化合物、第二級アミン類、第三級アミン類、及び第四級アンモニウム塩が挙げられる。高いダイシェア強度を達成する観点から、イミダゾール系の化合物が好ましい。イミダゾール類としては、2-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチルー2-メチルイミダゾール等が挙げられる。これらは一種を単独で使用してもよいし、二種以上を併用してもよい。
[Curing accelerator]
Examples of the curing accelerator include imidazoles and their derivatives, organic phosphorus compounds, secondary amines, tertiary amines, and quaternary ammonium salts. From the viewpoint of achieving high die shear strength, imidazole compounds are preferred. Examples of imidazoles include 2-methylimidazole, 1-benzyl-2-methylimidazole, 1-cyanoethyl-2-phenylimidazole, and 1-cyanoethyl-2-methylimidazole. These may be used alone or in combination of two or more.

熱硬化性樹脂組成物における硬化促進剤の含有量は、高いダイシェア強度を達成する観点から、エポキシ樹脂及びエポキシ樹脂硬化剤の合計100質量部に対して0.04~3質量部が好ましく、0.04~0.2質量部がより好ましい。From the viewpoint of achieving high die shear strength, the content of the curing accelerator in the thermosetting resin composition is preferably 0.04 to 3 parts by mass, and more preferably 0.04 to 0.2 parts by mass, per 100 parts by mass of the epoxy resin and epoxy resin curing agent combined.

<第二実施形態>
図9は第二実施形態に係る半導体装置を模式的に示す断面図である。第一実施形態に係る半導体装置100はチップT1が接着剤片Tcと離間している態様であったのに対し、本実施形態に係る半導体装置200はチップT1が接着剤片Tcと接している。つまり、接着剤片Tcは、チップT1の上面及び支持片Dcの上面に接している。例えば、支持片形成用フィルムDの厚さを適宜設定することで、チップT1の上面の位置と支持片Dcの上面の位置を一致させることができる。
Second Embodiment
9 is a cross-sectional view showing a semiconductor device according to the second embodiment. In the semiconductor device 100 according to the first embodiment, the chip T1 is separated from the adhesive piece Tc, whereas in the semiconductor device 200 according to the present embodiment, the chip T1 is in contact with the adhesive piece Tc. In other words, the adhesive piece Tc is in contact with the upper surface of the chip T1 and the upper surface of the support piece Dc. For example, by appropriately setting the thickness of the support piece forming film D, the position of the upper surface of the chip T1 can be made to coincide with the position of the upper surface of the support piece Dc.

半導体装置200においては、チップT1が基板10に対し、ワイヤボンディングではなく、フリップチップ接続されている。なお、ワイヤwが接着剤片Taに埋め込まれる構成とすれば、基板10にチップT1がワイヤボンディングされた態様であっても、チップT1が接着剤片Tcと接した状態とすることができる。接着剤片TaはチップT2とともに接着剤片付きチップT2aを構成するものである(図8参照)。In the semiconductor device 200, the chip T1 is flip-chip connected to the substrate 10, not by wire bonding. If the wire w is embedded in the adhesive piece Ta, the chip T1 can be in contact with the adhesive piece Tc even if the chip T1 is wire-bonded to the substrate 10. The adhesive piece Ta and the chip T2 form the adhesive piece-attached chip T2a (see FIG. 8).

図9に示すように、チップT1とチップT2の間の接着剤片Tcは、チップT2におけるチップT1と対面する領域Rを覆うとともに、領域RからチップT2の周縁側にまで連続的に延在している。この一つの接着剤片Tcが、チップT2の領域Rを覆うとともに、チップT2と複数の支持片の間に介在し、これらを接着している。図9におけるチップT2の下面は裏面に相当する。上述のとおり、近年のチップの裏面は凹凸が形成されていることが多い。チップT2の裏面の実質的全体が接着剤片Tcで覆われていることで、接着剤片TcにチップT1の上面が接してもチップT2にクラック又は割れが生じることを抑制できる。As shown in FIG. 9, the adhesive piece Tc between chip T1 and chip T2 covers the region R of chip T2 facing chip T1 and extends continuously from region R to the peripheral side of chip T2. This single adhesive piece Tc covers region R of chip T2 and is interposed between chip T2 and multiple support pieces, bonding them together. The lower surface of chip T2 in FIG. 9 corresponds to the back surface. As mentioned above, the back surfaces of modern chips often have irregularities. By covering substantially the entire back surface of chip T2 with adhesive piece Tc, it is possible to prevent cracks or breakage in chip T2 even if the upper surface of chip T1 comes into contact with adhesive piece Tc.

以上、本開示の実施形態について詳細に説明したが、本発明は上記実施形態に限定されるものではない。例えば、上記実施形態においては、紫外線硬化型の粘着層2を有する積層フィルム20を例示したが、粘着層2は感圧型であってもよい。Although the embodiments of the present disclosure have been described in detail above, the present invention is not limited to the above embodiments. For example, the above embodiment illustrates a laminated film 20 having an ultraviolet-curing adhesive layer 2, but the adhesive layer 2 may be a pressure-sensitive type.

上記実施形態においては、図3(b)に示すように、三層構造の支持片形成用フィルムDを備える支持片形成用積層フィルム20を例示したが、支持片形成用積層フィルムは二層であっても四層以上であってもよい。図10に示す支持片形成用積層フィルム20Aは、熱硬化性樹脂層5と、樹脂層6とを有する二層フィルムD2(支持片形成用フィルム)を有する。すなわち、支持片形成用積層フィルム20Aにおいては、粘着層2と最外面の樹脂層6との間に熱硬化性樹脂層5が配置されている。In the above embodiment, as shown in FIG. 3(b), a laminate film 20 for forming a support piece is illustrated, which includes a three-layer structure film D for forming a support piece. However, the laminate film for forming a support piece may be two layers or four or more layers. The laminate film 20A for forming a support piece shown in FIG. 10 has a two-layer film D2 (film for forming a support piece) having a thermosetting resin layer 5 and a resin layer 6. That is, in the laminate film 20A for forming a support piece, a thermosetting resin layer 5 is disposed between the adhesive layer 2 and the outermost resin layer 6.

二層フィルムD2の厚さに対する熱硬化性樹脂層5の厚さの比率は好ましくは0.1~0.8であり、より好ましくは0.2~0.7であり、更に好ましくは0.2~0.6である。この比率が0.1以上であることで、接着剤片5p,5cがその役割(例えば、チップT2の支持及び樹脂片6pの位置ずれ防止)をより一層高度に果たすことができる。他方、比率が0.8以下であれば、樹脂片6pが十分な厚さを有するため、樹脂片6pがバネ板のような役割を果たし、より優れたピックアップ性を達成できる(図5(d)参照)。これらの観点から、樹脂層6の厚さは、例えば、20~80μmであり、20~60μmであってもよい。熱硬化性樹脂層5の厚さは、例えば、5~120μmであり、10~60μmであってもよい。The ratio of the thickness of the thermosetting resin layer 5 to the thickness of the two-layer film D2 is preferably 0.1 to 0.8, more preferably 0.2 to 0.7, and even more preferably 0.2 to 0.6. When this ratio is 0.1 or more, the adhesive pieces 5p and 5c can perform their roles (e.g., supporting the chip T2 and preventing the resin piece 6p from shifting) to a higher degree. On the other hand, when the ratio is 0.8 or less, the resin piece 6p has a sufficient thickness, so that the resin piece 6p plays a role like a spring plate, and a better pickup performance can be achieved (see FIG. 5(d)). From these viewpoints, the thickness of the resin layer 6 may be, for example, 20 to 80 μm, or 20 to 60 μm. The thickness of the thermosetting resin layer 5 may be, for example, 5 to 120 μm, or 10 to 60 μm.

なお、支持片形成用積層フィルム20,20Aにおいて、樹脂層6の代わりに、引張弾性率8.0MPa以上の金属層(例えば、銅層又はアルミニウム層)を採用してもよい。金属層の厚さは、例えば、5~100μmであり、10~90μm又は20~80μmであってもよい。支持片形成用積層フィルム20,20Aが金属層を含むことで、優れたピックアップ性に加え、樹脂材料と金属材料の光学的なコントラストにより、ピックアップ工程において支持片の優れた視認性を達成し得る。In addition, in the laminated film 20, 20A for forming a support piece, a metal layer (e.g., a copper layer or an aluminum layer) having a tensile modulus of elasticity of 8.0 MPa or more may be used instead of the resin layer 6. The thickness of the metal layer is, for example, 5 to 100 μm, and may be 10 to 90 μm or 20 to 80 μm. By including a metal layer in the laminated film 20, 20A for forming a support piece, in addition to excellent pick-up properties, the optical contrast between the resin material and the metal material can achieve excellent visibility of the support piece in the pick-up process.

支持片形成用積層フィルム20Aは、例えば、以下の工程を経て製造することができる。
・基材フィルム1と、粘着層2と、熱硬化性樹脂層5とをこの順序で備える積層フィルムを準備する工程
・上記積層フィルムの表面に樹脂層6を貼り合わせる工程
The support piece forming laminate film 20A can be manufactured, for example, through the following steps.
A step of preparing a laminated film having a base film 1, an adhesive layer 2, and a thermosetting resin layer 5 in this order; and a step of bonding a resin layer 6 to the surface of the laminated film.

以下、実施例により本開示について説明するが、本発明はこれらの実施例に限定されるものではない。The present disclosure will now be described with reference to examples, but the present invention is not limited to these examples.

(ワニスAの調製)
以下の材料を使用して支持片形成用フィルムの熱硬化性樹脂層を形成するためのワニスAを調製した。
・エポキシ樹脂1:YDCN-700-10:(商品名、新日鉄住金化学(株)製、クレゾールノボラック型エポキシ樹脂、25℃において固体)5.4質量部
・エポキシ樹脂2:YDF-8170C:(商品名、新日鉄住金化学(株)製、液状ビスフェノールF型エポキシ樹脂、25℃において液状)16.2質量部
・フェノール樹脂(硬化剤):LF-4871:(商品名、DIC(株)製、BPAノボラック型フェノール樹脂)13.3質量部
・無機フィラー:SC2050-HLG:(商品名、(株)アドマテックス製、シリカフィラー分散液、平均粒径0.50μm)49.8質量部
・エラストマ:SG-P3溶剤変更品(商品名、ナガセケムテックス(株)製、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤はシクロヘキサノン)14.9質量部
・カップリング剤1:A-189:(商品名、GE東芝(株)製、γ-メルカプトプロピルトリメトキシシラン)0.1質量部
・カップリング剤2:A-1160:(商品名、GE東芝(株)製、γ-ウレイドプロピルトリエトキシシラン)0.3質量部
・硬化促進剤:キュアゾール2PZ-CN:(商品名、四国化成工業(株)製、1-シアノエチル-2-フェニルイミダゾール)0.05質量部
・溶媒:シクロヘキサン
(Preparation of Varnish A)
Varnish A for forming a thermosetting resin layer of a film for forming a support piece was prepared using the following materials.
Epoxy resin 1: YDCN-700-10: (trade name, Nippon Steel & Sumitomo Metal Chemical Co., Ltd., cresol novolac type epoxy resin, solid at 25°C) 5.4 parts by mass Epoxy resin 2: YDF-8170C: (trade name, Nippon Steel & Sumitomo Metal Chemical Co., Ltd., liquid bisphenol F type epoxy resin, liquid at 25°C) 16.2 parts by mass Phenol resin (hardener): LF-4871: (trade name, DIC Corporation, BPA novolac type phenolic resin) 13.3 parts by mass Inorganic filler: SC2050-HLG: (trade name, Admatechs Co., Ltd., silica filler dispersion, average particle size 0.50 μm) 49.8 parts by mass Lastmer: SG-P3 solvent change product (trade name, Nagase ChemteX Corporation, acrylic rubber, weight average molecular weight: 800,000, Tg: 12°C, solvent is cyclohexanone) 14.9 parts by mass Coupling agent 1: A-189: (trade name, GE Toshiba Corporation, γ-mercaptopropyltrimethoxysilane) 0.1 parts by mass Coupling agent 2: A-1160: (trade name, GE Toshiba Corporation, γ-ureidopropyltriethoxysilane) 0.3 parts by mass Curing accelerator: Curesol 2PZ-CN: (trade name, Shikoku Chemical Industry Co., Ltd., 1-cyanoethyl-2-phenylimidazole) 0.05 parts by mass Solvent: Cyclohexane

(ワニスBの調製)
以下の材料を使用して支持片形成用フィルムの熱硬化性樹脂層を形成するためのワニスBを調製した。
・エポキシ樹脂:YDCN-700-10:(商品名、新日鉄住金化学(株)製、クレゾールノボラック型エポキシ樹脂、25℃において固体)13.2質量部
・フェノール樹脂(硬化剤):HE-100C-30:(商品名、エア・ウォーター(株)製、フェニルアラキル型フェノール樹脂)11.0質量部
・無機フィラー:アエロジルR972:(商品名、日本アエロジル(株)製、シリカ、平均粒径0.016μm)7.8質量部
・エラストマ:SG-P3溶剤変更品(商品名、ナガセケムテックス(株)製、アクリルゴム、重量平均分子量:80万、Tg:12℃、溶剤はシクロヘキサノン)66.4質量部
・カップリング剤1:A-189:(商品名、GE東芝(株)製、γ-メルカプトプロピルトリメトキシシラン)0.4質量部
・カップリング剤2:A-1160:(商品名、GE東芝(株)製、γ-ウレイドプロピルトリエトキシシラン)1.15質量部
・硬化促進剤:キュアゾール2PZ-CN:(商品名、四国化成工業(株)製、1-シアノエチル-2-フェニルイミダゾール)0.03質量部
・溶媒:シクロヘキサン
(Preparation of Varnish B)
Varnish B for forming a thermosetting resin layer of a film for forming a support piece was prepared using the following materials.
Epoxy resin: YDCN-700-10: (trade name, Nippon Steel & Sumikin Chemical Co., Ltd., cresol novolac type epoxy resin, solid at 25°C) 13.2 parts by mass Phenolic resin (curing agent): HE-100C-30: (trade name, Air Water Inc., phenylarakyl type phenolic resin) 11.0 parts by mass Inorganic filler: Aerosil R972: (trade name, Nippon Aerosil Co., Ltd., silica, average particle size 0.016 μm) 7.8 parts by mass Elastomer: SG-P3 solvent change product (trade name, Nagase ChemteX Corporation, acrylic 66.4 parts by weight of 1,3-diphenylmolecular-weight rubber, weight average molecular weight: 800,000, Tg: 12°C, solvent: cyclohexanone; 0.4 parts by weight of coupling agent 1: A-189 (trade name, manufactured by GE Toshiba Corporation, γ-mercaptopropyltrimethoxysilane); 1.15 parts by weight of coupling agent 2: A-1160 (trade name, manufactured by GE Toshiba Corporation, γ-ureidopropyltriethoxysilane); 0.03 parts by weight of curing accelerator: Curesol 2PZ-CN (trade name, manufactured by Shikoku Chemical Industry Co., Ltd., 1-cyanoethyl-2-phenylimidazole); 0.03 parts by weight of solvent: cyclohexane

<実施例1>
上記のとおり、溶媒としてシクロヘキサノンを使用し、ワニスAの固形分割合が40質量%となるように調整した。100メッシュのフィルターでワニスAをろ過するとともに真空脱泡した。ワニスAを塗布するフィルムとして、離型処理が施されたポリエチレンテレフタレート(PET)フィルム(厚さ38μm)を準備した。真空脱泡後のワニスAを、PETフィルムの離型処理が施された面上に塗布した。塗布したワニスAを、90℃で5分間、続いて140℃で5分間の二段階で加熱乾燥した。こうして、Bステージ状態(半硬化状態)の熱硬化性樹脂層をPETフィルムの表面上に形成した。熱硬化性樹脂層の表面にポリイミドフィルム(厚さ:25μm、引張弾性率:46.4MPa)を70℃のホットプレート上で貼り付けることによって、図10に示す二層フィルムD2と同様の構成の支持片形成用フィルムをPETフィルムの表面上に作製した。
Example 1
As described above, cyclohexanone was used as a solvent, and the solid content of varnish A was adjusted to 40% by mass. Varnish A was filtered through a 100-mesh filter and vacuum degassed. A polyethylene terephthalate (PET) film (thickness 38 μm) that had been subjected to a release treatment was prepared as a film to which varnish A was applied. The varnish A after vacuum degassing was applied to the release-treated surface of the PET film. The applied varnish A was heated and dried in two stages at 90 ° C for 5 minutes and then at 140 ° C for 5 minutes. In this way, a thermosetting resin layer in a B-stage state (semi-cured state) was formed on the surface of the PET film. A polyimide film (thickness: 25 μm, tensile modulus: 46.4 MPa) was attached to the surface of the thermosetting resin layer on a hot plate at 70 ° C., thereby producing a support piece forming film having the same configuration as the two-layer film D2 shown in FIG. 10 on the surface of the PET film.

紫外線硬化型の粘着層を有する積層フィルム(ダイシングテープ)を以下の手順で作製した。まず、アクリル酸2-エチルヘキシル83質量部、アクリル酸2-ヒドロキシエチル15質量部、メタクリル酸2質量部を原料として、溶媒には酢酸エチルを用いて、溶液ラジカル重合により共重合体を得た。このアクリル共重合体に対し、2-メタクリロイルオキシエチルイソシアネートを、12質量部反応させて、炭素-炭素二重結合を有する紫外線照射型アクリル共重合体を合成した。上記の反応にあたっては、重合禁止剤としてヒドロキノン・モノメチルエーテルを0.05部用いた。合成したアクリル共重合体の重量平均分子量をGPCにより測定したところ、30万~70万であった。このようにして得られたアクリル共重合体と、硬化剤としてポリイソシアネート化合物(日本ポリウレタン(株)製、商品名:コロネートL)を固形分換算で2.0部と、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン0.5部とを混合し、紫外線照射型粘着剤溶液を調製した。この紫外線照射型粘着剤溶液を、ポリエチレンテレフタレート製剥離フィルム(厚み:38μm)上に、乾燥後の厚さが10μmとなるように塗布及び乾燥した。その後、粘着剤層に、片面にコロナ放電処理が施されたポリオレフィン製フィルム(厚さ:90μm)を貼り合わせた。得られた積層フィルムを40℃の恒温槽で72時間エージングを行い、ダイシングテープを作製した。A laminated film (dicing tape) having an ultraviolet-curing adhesive layer was prepared by the following procedure. First, 83 parts by mass of 2-ethylhexyl acrylate, 15 parts by mass of 2-hydroxyethyl acrylate, and 2 parts by mass of methacrylic acid were used as raw materials, and ethyl acetate was used as a solvent to obtain a copolymer by solution radical polymerization. 12 parts by mass of 2-methacryloyloxyethyl isocyanate was reacted with this acrylic copolymer to synthesize an ultraviolet-irradiation type acrylic copolymer having a carbon-carbon double bond. In the above reaction, 0.05 parts of hydroquinone monomethyl ether was used as a polymerization inhibitor. The weight-average molecular weight of the synthesized acrylic copolymer was measured by GPC and was found to be 300,000 to 700,000. The acrylic copolymer obtained in this manner was mixed with 2.0 parts in terms of solid content of a polyisocyanate compound (manufactured by Nippon Polyurethane Co., Ltd., product name: Coronate L) as a curing agent, and 0.5 parts of 1-hydroxycyclohexyl phenyl ketone as a photopolymerization initiator to prepare an ultraviolet-irradiation type adhesive solution. This ultraviolet irradiation type adhesive solution was applied and dried on a polyethylene terephthalate release film (thickness: 38 μm) so that the thickness after drying was 10 μm. Then, a polyolefin film (thickness: 90 μm) with one side subjected to corona discharge treatment was attached to the adhesive layer. The obtained laminated film was aged in a thermostatic chamber at 40° C. for 72 hours to prepare a dicing tape.

上記ダイシングテープの粘着層に支持片形成用フィルム(熱硬化性樹脂層とポリイミドフィルムとの二層フィルム)を、支持片形成用フィルムの熱硬化性樹脂層を有する面が粘着層と対向するようにして、70℃のホットプレート上でゴムロールを使用して貼り合わせた。これにより、支持片形成用フィルムと、ダイシングテープとの積層体を得た。熱硬化性樹脂層の厚さは25μmであった。A support piece forming film (a two-layer film of a thermosetting resin layer and a polyimide film) was attached to the adhesive layer of the dicing tape using a rubber roll on a hot plate at 70°C, with the side of the support piece forming film having the thermosetting resin layer facing the adhesive layer. This resulted in a laminate of the support piece forming film and the dicing tape. The thickness of the thermosetting resin layer was 25 μm.

<実施例2>
ワニスAの代わりにワニスBを使用したことの他は、実施例1と同様にして、支持片形成用フィルムと、ダイシングテープとの積層体を得た。
Example 2
A laminate of a support piece-forming film and a dicing tape was obtained in the same manner as in Example 1, except that varnish B was used instead of varnish A.

<比較例1,2>
熱硬化性樹脂層の厚さを25μmとする代わりに50μmとしたこと、及び、熱硬化性樹脂層の表面にポリイミドフィルムを貼り付けなかったことの他は、実施例1及び実施例2と同様にして、比較例1及び比較例2に係る積層体を得た。
<Comparative Examples 1 and 2>
Laminates according to Comparative Examples 1 and 2 were obtained in the same manner as in Examples 1 and 2, except that the thickness of the thermosetting resin layer was 50 μm instead of 25 μm, and no polyimide film was attached to the surface of the thermosetting resin layer.

実施例及び比較例の支持片形成用フィルムに対して以下の評価を行った。
(1)剥離強度
実施例及び比較例に係る支持片形成用フィルムを含む積層体を幅25mm、長さ100mmの長さにそれぞれカットして試験片を作製した。その後、ハロゲンランンプにて80mW/cm、200mJ/cmの条件でダイシングテープ側から紫外線を照射した。紫外線照射の粘着層と支持片形成用フィルムとの界面の剥離強度(剥離角度:180°、剥離速度:300mm/分)を測定した。各実施例及び各比較例につき、測定を3回ずつ行い、その平均値を以下に示す。
・実施例1…0.04N/25mm
・実施例2…0.05N/25mm
・比較例1…0.09N/25mm
・比較例2…0.05N/25mm
The films for forming support pieces of the Examples and Comparative Examples were evaluated as follows.
(1) Peel strength The laminate including the support piece forming film according to the examples and comparative examples was cut to a width of 25 mm and a length of 100 mm to prepare a test piece. Then, ultraviolet rays were irradiated from the dicing tape side under conditions of 80 mW/cm 2 and 200 mJ/cm 2 using a halogen lamp. The peel strength (peel angle: 180°, peel speed: 300 mm/min) of the interface between the adhesive layer irradiated with ultraviolet rays and the support piece forming film was measured. For each example and comparative example, the measurement was performed three times, and the average value is shown below.
Example 1: 0.04N/25mm
Example 2: 0.05N/25mm
Comparative Example 1: 0.09 N/25 mm
Comparative Example 2: 0.05N/25mm

(2)ピックアップ性
実施例及び比較例に係る支持片形成用フィルム(形状:直径320mmの円形)と、前記ダイシングテープ(形状:直径335mmの円形)の積層体を準備した。この積層体のダイシングテープにダイシングリングを70℃の条件でラミネートした。ダイサーを用いて支持片形成用フィルムをハイト55μmの条件で個片化した。これにより、サイズが10mm×10mmの支持片を得た。支持片の粘着層に向けてハロゲンランンプにて80mW/cm、200mJ/cmの条件でダイシングテープ側から紫外線照射した。その後、ダイボンダにてエキスパンド(エキスパンド量:3mm)した状態で、支持片をピックアップした。突き上げ治具として、三段突き上げステージを使用し、条件は突き上げ速度10mm/秒及び突き上げ高さ1200μmとした。各実施例及び各比較例について、6個の支持片に対してピックアップを試みた。その結果、実施例1,2については6個の支持片のすべてをピックアップすることができた。これに対し、比較例1,2については6個の支持片のうち、ピックアップできた支持片は2個以下であった。
(2) Pick-up properties A laminate of the support piece forming film (shape: circular with a diameter of 320 mm) and the dicing tape (shape: circular with a diameter of 335 mm) according to the examples and comparative examples was prepared. A dicing ring was laminated to the dicing tape of this laminate at 70°C. The support piece forming film was cut into individual pieces with a height of 55 μm using a dicer. As a result, a support piece having a size of 10 mm x 10 mm was obtained. The adhesive layer of the support piece was irradiated with ultraviolet light from the dicing tape side under conditions of 80 mW/cm 2 and 200 mJ/cm 2 using a halogen lamp. After that, the support piece was picked up in a state where it was expanded (expanded amount: 3 mm) by a die bonder. A three-stage push-up stage was used as a push-up jig, and the conditions were a push-up speed of 10 mm/sec and a push-up height of 1200 μm. Pick-up was attempted for six support pieces for each example and each comparative example. As a result, all six support pieces could be picked up for Examples 1 and 2. In contrast, in Comparative Examples 1 and 2, of the six support pieces, two or less could be picked up.

本開示によれば、ドルメン構造を有する半導体装置の製造プロセスにおいて支持片を作製する工程を簡略化できるとともに、支持片の優れたピックアップ性を達成できる半導体装置の製造方法が提供される。また、本開示によれば、ドルメン構造を有する半導体装置、並びに支持片形成用積層フィルム及びその製造方法が提供される。 According to the present disclosure, a method for manufacturing a semiconductor device is provided that can simplify the process of producing a support piece in the manufacturing process of a semiconductor device having a dolmen structure and achieve excellent pick-up properties of the support piece. In addition, according to the present disclosure, a semiconductor device having a dolmen structure, and a laminated film for forming a support piece and a manufacturing method thereof are provided.

1…基材フィルム、2…粘着層、5…熱硬化性樹脂層、5c…接着剤片(硬化物)、5p…接着剤片、6…樹脂層、6p…樹脂片、10…基板、20,20A…支持片形成用積層フィルム、50…封止材、100,200…半導体装置、D…支持片形成用フィルム、D2…二層フィルム(支持片形成用フィルム)、Da,Dc…支持片、R…領域、T1…第一のチップ、T2…第二のチップ、T2a…接着剤片付きチップ、Ta,Tc…接着剤片 1...base film, 2...adhesive layer, 5...thermosetting resin layer, 5c...adhesive piece (cured product), 5p...adhesive piece, 6...resin layer, 6p...resin piece, 10...substrate, 20, 20A...laminated film for forming support piece, 50...sealing material, 100, 200...semiconductor device, D...film for forming support piece, D2...two-layer film (film for forming support piece), Da, Dc...support piece, R...area, T1...first chip, T2...second chip, T2a...chip with adhesive piece, Ta, Tc...adhesive piece

Claims (12)

基板と、前記基板上に配置された第一のチップと、前記基板上であって前記第一のチップの周囲に配置された複数の支持片と、前記複数の支持片によって支持され且つ前記第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造方法であって、
(A)基材フィルムと、粘着層と、支持片形成用フィルムとをこの順序で備える積層フィルムを準備する工程と、
(B)前記支持片形成用フィルムを個片化することによって、前記粘着層の表面上に複数の支持片を形成する工程と、
(C)前記粘着層から前記支持片をピックアップする工程と、
(D)基板上に第一のチップを配置する工程と、
(E)前記基板上であって前記第一のチップの周囲又は前記第一のチップが配置されるべき領域の周囲に複数の前記支持片を配置する工程と、
(F)第二のチップと、前記第二のチップの一方の面上に設けられた接着剤片とを備える接着剤片付きチップを準備する工程と、
(G)複数の前記支持片の表面上に前記接着剤片付きチップを配置することによってドルメン構造を構築する工程と、
を含み、
前記支持片形成用フィルムが引張弾性率8.0MPa以上の樹脂層を少なくとも含む多層構造を有する、半導体装置の製造方法。
A method for manufacturing a semiconductor device having a dolmen structure including a substrate, a first chip disposed on the substrate, a plurality of support pieces disposed around the first chip on the substrate, and a second chip supported by the plurality of support pieces and disposed so as to cover the first chip, comprising:
(A) preparing a laminated film having a base film, an adhesive layer, and a support piece-forming film in this order;
(B) forming a plurality of support pieces on the surface of the adhesive layer by dividing the support piece forming film;
(C) picking up the support piece from the adhesive layer;
(D) disposing a first chip on a substrate;
(E) arranging a plurality of the support pieces on the substrate around the first chip or around a region in which the first chip is to be arranged;
(F) preparing a chip with an adhesive piece, the chip comprising a second chip and an adhesive piece provided on one surface of the second chip;
(G) constructing a dolmen structure by placing the adhesive chips on the surfaces of a plurality of the support pieces;
Including,
The method for manufacturing a semiconductor device, wherein the support piece-forming film has a multilayer structure including at least a resin layer having a tensile modulus of elasticity of 8.0 MPa or more.
前記粘着層が紫外線硬化型であり、
(B)工程と(C)工程の間に、前記粘着層に紫外線を照射する工程を含む、請求項1に記載の半導体装置の製造方法。
The adhesive layer is an ultraviolet curing type,
The method for manufacturing a semiconductor device according to claim 1 , further comprising the step of irradiating the adhesive layer with ultraviolet light between steps (B) and (C).
前記支持片形成用フィルムが熱硬化性樹脂層を含み、
(G)工程よりも前に、前記支持片形成用フィルム又は前記支持片を加熱する工程を含む、請求項1又は2に記載の半導体装置の製造方法。
The support piece forming film includes a thermosetting resin layer,
The method for manufacturing a semiconductor device according to claim 1 , further comprising the step of heating the support piece-forming film or the support piece prior to the step (G).
基板と、前記基板上に配置された第一のチップと、前記基板上であって前記第一のチップの周囲に配置された複数の支持片と、前記複数の支持片によって支持され且つ前記第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造プロセスにおいて使用される支持片形成用積層フィルムであって、
基材フィルムと、
粘着層と、
個片化されることによって複数の前記支持片となる支持片形成用フィルムと、
をこの順序で備え、
前記支持片形成用フィルムが引張弾性率8.0MPa以上の樹脂層を少なくとも含む多層構造を有する、支持片形成用積層フィルム。
A support piece forming laminated film used in a manufacturing process of a semiconductor device having a dolmen structure including a substrate, a first chip disposed on the substrate, a plurality of support pieces disposed on the substrate around the first chip, and a second chip supported by the plurality of support pieces and disposed so as to cover the first chip,
A base film;
An adhesive layer;
A support piece forming film that is divided into a plurality of support pieces ;
in this order,
The support piece-forming laminate film has a multilayer structure including at least a resin layer having a tensile modulus of elasticity of 8.0 MPa or more.
前記樹脂層がポリイミド層である、請求項に記載の支持片形成用積層フィルム。 The support piece-forming laminate film according to claim 4 , wherein the resin layer is a polyimide layer. 前記支持片形成用フィルムの厚さが5~180μmである、請求項又はに記載の支持片形成用積層フィルム。 The support piece forming laminate film according to claim 4 or 5 , wherein the support piece forming film has a thickness of 5 to 180 μm. 前記粘着層が感圧型又は紫外線硬化型である、請求項のいずれか一項に記載の支持片形成用積層フィルム。 The support piece forming laminate film according to any one of claims 4 to 6 , wherein the adhesive layer is a pressure-sensitive type or an ultraviolet-curable type. 前記支持片形成用フィルムが熱硬化性樹脂層を含み、
前記熱硬化性樹脂層が前記樹脂層と異なる材質で構成されている、請求項のいずれか一項に記載の支持片形成用積層フィルム。
The support piece forming film includes a thermosetting resin layer,
The support piece forming laminate film according to claim 4 , wherein the thermosetting resin layer is made of a material different from that of the resin layer.
前記熱硬化性樹脂層がエポキシ樹脂を含む、請求項に記載の支持片形成用積層フィルム。 The laminated film for forming a support piece according to claim 8 , wherein the thermosetting resin layer contains an epoxy resin. 前記熱硬化性樹脂層がエラストマを含む、請求項又はに記載の支持片形成用積層フィルム。 The support piece-forming laminate film according to claim 8 or 9 , wherein the thermosetting resin layer contains an elastomer. 基板と、前記基板上に配置された第一のチップと、前記基板上であって前記第一のチップの周囲に配置された複数の支持片と、前記複数の支持片によって支持され且つ前記第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造プロセスにおいて使用される支持片形成用積層フィルムの製造方法であって、
基材フィルムと、その一方の面上に形成された粘着層とを有する粘着フィルムを準備する工程と、
前記粘着層の表面上に、個片化されることによって複数の前記支持片となる支持片形成用フィルムを積層する工程と、
を含み、
前記支持片形成用フィルムが引張弾性率8.0MPa以上の樹脂層を少なくとも含む多層構造を有する、支持片形成用積層フィルムの製造方法。
A method for manufacturing a support piece-forming laminated film used in a manufacturing process of a semiconductor device having a dolmen structure including a substrate, a first chip disposed on the substrate, a plurality of support pieces disposed on the substrate around the first chip, and a second chip supported by the plurality of support pieces and disposed so as to cover the first chip, comprising:
A step of preparing an adhesive film having a base film and an adhesive layer formed on one surface of the base film;
A step of laminating a support piece forming film on a surface of the adhesive layer , the film being cut into individual pieces to form the plurality of support pieces ;
Including,
The method for producing a laminated film for forming a support piece, wherein the film for forming a support piece has a multilayer structure including at least a resin layer having a tensile modulus of elasticity of 8.0 MPa or more.
基板と、前記基板上に配置された第一のチップと、前記基板上であって前記第一のチップの周囲に配置された複数の支持片と、前記複数の支持片によって支持され且つ前記第一のチップを覆うように配置された第二のチップとを含むドルメン構造を有する半導体装置の製造プロセスにおいて使用される支持片形成用積層フィルムの製造方法であって、
基材フィルムと、粘着層と、熱硬化性樹脂層とをこの順序で備える積層フィルムを準備する工程と、
前記熱硬化性樹脂層の表面に、引張弾性率8.0MPa以上の樹脂層を貼り合わせることによって支持片形成用フィルムを形成する工程と、
を含み、
前記支持片形成用フィルムは前記熱硬化性樹脂層と前記樹脂層とを含み且つ個片化されることによって複数の前記支持片となる、支持片形成用積層フィルムの製造方法。
A method for manufacturing a support piece-forming laminated film used in a manufacturing process of a semiconductor device having a dolmen structure including a substrate, a first chip disposed on the substrate, a plurality of support pieces disposed on the substrate around the first chip, and a second chip supported by the plurality of support pieces and disposed so as to cover the first chip, comprising:
A step of preparing a laminated film having a base film, an adhesive layer, and a thermosetting resin layer in this order;
A step of forming a support piece-forming film by laminating a resin layer having a tensile modulus of 8.0 MPa or more on a surface of the thermosetting resin layer;
Including,
The method for producing a laminated film for forming a support piece, wherein the film for forming a support piece includes the thermosetting resin layer and the resin layer, and is singulated to form a plurality of the support pieces.
JP2021516269A 2019-04-25 2020-04-24 Semiconductor device having a dolmen structure and its manufacturing method, and laminated film for forming a support piece and its manufacturing method Active JP7494842B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2019/017733 2019-04-25
PCT/JP2019/017733 WO2020217411A1 (en) 2019-04-25 2019-04-25 Semiconductor device having dolmen structure and method for manufacturing same, and laminated film for forming support piece and method for manufacturing same
PCT/JP2020/017729 WO2020218524A1 (en) 2019-04-25 2020-04-24 Semiconductor device having dolmen structure and method for manufacturing same, and laminated film for forming support piece and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2020218524A1 JPWO2020218524A1 (en) 2020-10-29
JP7494842B2 true JP7494842B2 (en) 2024-06-04

Family

ID=72941598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021516269A Active JP7494842B2 (en) 2019-04-25 2020-04-24 Semiconductor device having a dolmen structure and its manufacturing method, and laminated film for forming a support piece and its manufacturing method

Country Status (6)

Country Link
JP (1) JP7494842B2 (en)
KR (1) KR20220002258A (en)
CN (1) CN113574664A (en)
SG (1) SG11202110094XA (en)
TW (1) TWI830905B (en)
WO (2) WO2020217411A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005333A (en) 2004-05-20 2006-01-05 Toshiba Corp Stacked electronic component and manufacturing method of same
JP2014082498A (en) 2013-11-11 2014-05-08 Nitto Denko Corp Manufacturing method of dicing die-bonding film
JP2017515306A (en) 2014-04-29 2017-06-08 マイクロン テクノロジー, インク. Stacked semiconductor die assembly having support members and associated systems and methods

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002222889A (en) * 2001-01-24 2002-08-09 Nec Kyushu Ltd Semiconductor device and method of manufacturing the same
KR20030018204A (en) * 2001-08-27 2003-03-06 삼성전자주식회사 Multi chip package having spacer
US6930378B1 (en) * 2003-11-10 2005-08-16 Amkor Technology, Inc. Stacked semiconductor die assembly having at least one support
TWI292617B (en) * 2006-02-03 2008-01-11 Siliconware Precision Industries Co Ltd Stacked semiconductor structure and fabrication method thereof
US20080029885A1 (en) * 2006-08-07 2008-02-07 Sandisk Il Ltd. Inverted Pyramid Multi-Die Package Reducing Wire Sweep And Weakening Torques
JP5840479B2 (en) * 2011-12-20 2016-01-06 株式会社東芝 Semiconductor device and manufacturing method thereof
KR101906269B1 (en) * 2012-04-17 2018-10-10 삼성전자 주식회사 Semiconductor package and method of fabricating the same
JP2015176906A (en) * 2014-03-13 2015-10-05 株式会社東芝 Semiconductor device and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006005333A (en) 2004-05-20 2006-01-05 Toshiba Corp Stacked electronic component and manufacturing method of same
JP2014082498A (en) 2013-11-11 2014-05-08 Nitto Denko Corp Manufacturing method of dicing die-bonding film
JP2017515306A (en) 2014-04-29 2017-06-08 マイクロン テクノロジー, インク. Stacked semiconductor die assembly having support members and associated systems and methods

Also Published As

Publication number Publication date
JPWO2020218524A1 (en) 2020-10-29
SG11202110094XA (en) 2021-11-29
WO2020218524A1 (en) 2020-10-29
TW202107669A (en) 2021-02-16
TWI830905B (en) 2024-02-01
WO2020217411A1 (en) 2020-10-29
KR20220002258A (en) 2022-01-06
CN113574664A (en) 2021-10-29

Similar Documents

Publication Publication Date Title
US20240371832A1 (en) Semiconductor device having dolmen structure and manufacturing method therefor, and support piece formation laminate film and manufacturing method therefor
JP7494844B2 (en) Manufacturing method for semiconductor device having dolmen structure, manufacturing method for support piece and laminated film
TWI830901B (en) Semiconductor device manufacturing method
JP7494843B2 (en) Semiconductor device having a dolmen structure and its manufacturing method, and laminated film for forming a support piece and its manufacturing method
TWI833985B (en) Method for manufacturing support sheet, method for manufacturing semiconductor device, and laminated film for forming support sheet
JP7494842B2 (en) Semiconductor device having a dolmen structure and its manufacturing method, and laminated film for forming a support piece and its manufacturing method
JP7351335B2 (en) Semiconductor device having dolmen structure, method for manufacturing the same, method for manufacturing support piece, and laminated film for forming support piece
WO2020218530A1 (en) Method for manufacturing semiconductor device having dolmen structure, and method for manufacturing support piece
JP7482112B2 (en) Manufacturing method of semiconductor device having dolmen structure, manufacturing method of support piece, and laminated film for forming support piece
TWI857050B (en) Method for manufacturing semiconductor device having dolmen structure, method for manufacturing support sheet, and laminated film
WO2020218532A1 (en) Method for producing semiconductor device having dolmen structure and method for producing supporting pieces
JP2022153830A (en) Method for manufacturing support member and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240506

R150 Certificate of patent or registration of utility model

Ref document number: 7494842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150