[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7493585B2 - Heat exchanger, heat exchanger unit and refrigeration cycle device - Google Patents

Heat exchanger, heat exchanger unit and refrigeration cycle device Download PDF

Info

Publication number
JP7493585B2
JP7493585B2 JP2022510301A JP2022510301A JP7493585B2 JP 7493585 B2 JP7493585 B2 JP 7493585B2 JP 2022510301 A JP2022510301 A JP 2022510301A JP 2022510301 A JP2022510301 A JP 2022510301A JP 7493585 B2 JP7493585 B2 JP 7493585B2
Authority
JP
Japan
Prior art keywords
gas
liquid
refrigerant
heat exchanger
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022510301A
Other languages
Japanese (ja)
Other versions
JPWO2021192192A1 (en
JPWO2021192192A5 (en
Inventor
敦 森田
剛志 前田
篤史 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2021192192A1 publication Critical patent/JPWO2021192192A1/ja
Publication of JPWO2021192192A5 publication Critical patent/JPWO2021192192A5/ja
Application granted granted Critical
Publication of JP7493585B2 publication Critical patent/JP7493585B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0214Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only longitudinal partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • F25B39/028Evaporators having distributing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0207Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions the longitudinal or transversal partitions being separate elements attached to header boxes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/027Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本開示は、熱交換器、熱交換器ユニット及び冷凍サイクル装置に関し、特に複数の伝熱管に冷媒を分配するための構造に関する。 The present disclosure relates to a heat exchanger, a heat exchanger unit and a refrigeration cycle device, and in particular to a structure for distributing refrigerant to multiple heat transfer tubes.

従来、重力方向に間隔を空けて配置された複数の伝熱管と、複数の伝熱管の端部に接続されているヘッダと、を備え、複数の伝熱管の内部を流れる冷媒と空気と熱交換している熱交換器が知られている。熱交換器は、例えば空気調和装置などの冷凍サイクル装置に設置され冷凍サイクルを形成している。空気調和装置は、冷媒回路内の冷媒量の削減、熱交換器の高性能化のため、熱交換器の伝熱管の細径化が進んでいる。伝熱管を細径化させる場合、伝熱管を通過する冷媒の圧力損失の増加を抑制する必要がある。そのため熱交換器は、パス数(分岐数)が増加している。熱交換器の冷媒分岐数の多数化に対応して、熱交換器の冷媒分配器(ヘッダ)は、熱交換器が蒸発器として作用する場合、流入した気液二相冷媒を複数の伝熱管のそれぞれに均等に分配することが求められる。Conventionally, a heat exchanger is known that includes a plurality of heat transfer tubes arranged at intervals in the direction of gravity and a header connected to the ends of the plurality of heat transfer tubes, and exchanges heat between the refrigerant flowing inside the plurality of heat transfer tubes and the air. The heat exchanger is installed in a refrigeration cycle device such as an air conditioner to form a refrigeration cycle. In air conditioners, the diameter of the heat transfer tubes of the heat exchanger is becoming thinner in order to reduce the amount of refrigerant in the refrigerant circuit and to improve the performance of the heat exchanger. When the diameter of the heat transfer tube is made thinner, it is necessary to suppress the increase in the pressure loss of the refrigerant passing through the heat transfer tube. For this reason, the number of paths (number of branches) in the heat exchanger is increasing. In response to the increase in the number of refrigerant branches in the heat exchanger, the refrigerant distributor (header) of the heat exchanger is required to evenly distribute the two-phase gas-liquid refrigerant that flows in to each of the plurality of heat transfer tubes when the heat exchanger acts as an evaporator.

例えば、ヘッダに流入した冷媒をヘッダ内で循環させることで、気液二相冷媒であっても重力上下方向に配列された伝熱管のそれぞれに流入する液冷媒及び気相冷媒の量を均等にする熱交換器が提案されている(例えば、特許文献1を参照)。For example, a heat exchanger has been proposed that circulates the refrigerant that flows into the header within the header, making the amount of liquid refrigerant and gas phase refrigerant equal that flows into each of the heat transfer tubes arranged in the vertical direction due to gravity, even if the refrigerant is a gas-liquid two-phase refrigerant (see, for example, Patent Document 1).

特許第6369650号公報Patent No. 6369650

しかし、特許文献1に開示されている熱交換器において、冷凍サイクル装置が低負荷運転している場合などの冷媒流速が遅い条件においては、液冷媒が重力の影響によりヘッダの最上部へ持ち上がらない場合がある。このとき、熱交換器は、ヘッダの下方にある伝熱管に多くの液冷媒が流れ、熱交換性能の低下を招くという課題があった。However, in the heat exchanger disclosed in Patent Document 1, when the refrigerant flow rate is slow, such as when the refrigeration cycle device is operating at a low load, the liquid refrigerant may not rise to the top of the header due to the effects of gravity. In such cases, the heat exchanger has an issue in that a large amount of liquid refrigerant flows into the heat transfer tubes below the header, resulting in a decrease in heat exchange performance.

本開示は、上記のような課題を解決するためのものであり、冷凍サイクル装置が低負荷運転であっても、複数の伝熱管に流れる液冷媒及び気相冷媒の偏りを抑制できる、熱交換器、熱交換器ユニット及び冷凍サイクル装置を得ることを目的とする。 The present disclosure is intended to solve the above-mentioned problems, and aims to provide a heat exchanger, heat exchanger unit, and refrigeration cycle device that can suppress bias in liquid refrigerant and gas phase refrigerant flowing through multiple heat transfer tubes even when the refrigeration cycle device is operating at low load.

本開示に係る熱交換器は、第1方向に並列され、前記第1方向に交差する第2方向に延びる複数の伝熱管と、前記複数の伝熱管の一方の端部が接続された冷媒分配器と、前記冷媒分配器に接続された冷媒流入管と、を備え、前記第1方向の一端を上に位置させ、他端を下に位置させて使用される熱交換器であって、前記冷媒分配器は、前記第1方向に沿って延びるように形成され、前記冷媒流入管から流入した冷媒を気相冷媒と液相冷媒とに分離する気液分離室と、前記複数の伝熱管の前記端部が接続された分配室と、前記第2方向において、内部の空間を前記気液分離室とそれ以外の空間とに仕切る仕切板と、前記気液分離室と前記分配室とを連通し、前記液相冷媒が流れる液流通孔と、前記気液分離室と前記分配室とを連通し、前記液流通孔に対し前記第1方向において上にずれて位置し、前記気相冷媒が流れるガス流通孔と、を備え、前記冷媒流入管は、前記第1方向において前記ガス流通孔と前記液流通孔との間に位置し、前記気液分離室は、前記第2方向において、前記分配室よりも前記複数の伝熱管から遠い側に位置し、前記冷媒流入管と前記液流通孔との間に前記冷媒流入管が設置されている側の壁面から前記仕切板に向かって延びる邪魔板と、前記ガス流通孔から延び前記邪魔板から前記液流通孔が配置されている側の空間である第1空間と前記ガス流通孔とを連通するガス流通管と、を備え、前記邪魔板は、前記第1空間と前記ガス流通孔が配置されている側の空間である第2空間とを連通する連通穴を備える。 A heat exchanger according to the present disclosure includes a plurality of heat transfer tubes arranged in parallel in a first direction and extending in a second direction intersecting the first direction, a refrigerant distributor to which one ends of the plurality of heat transfer tubes are connected, and a refrigerant inlet tube connected to the refrigerant distributor, and is used with one end in the first direction positioned at an upper position and the other end positioned at a lower position, the refrigerant distributor is formed to extend along the first direction and includes a gas-liquid separation chamber that separates the refrigerant flowing in from the refrigerant inlet tube into a gas-phase refrigerant and a liquid-phase refrigerant, a distribution chamber to which the ends of the plurality of heat transfer tubes are connected, a partition plate that divides an internal space into the gas-liquid separation chamber and other spaces in the second direction, liquid circulation holes that communicate between the gas-liquid separation chamber and the distribution chamber and through which the liquid-phase refrigerant flows, and a liquid passage between the gas-liquid separation chamber and the distribution chamber. the gas-liquid separation chamber is located farther from the plurality of heat transfer tubes than the distribution chamber in the second direction; and the gas-liquid separation chamber is provided with a baffle plate extending from a wall surface on a side where the refrigerant inlet pipe is installed between the refrigerant inlet pipe and the liquid circulation hole toward the partition plate ; and a gas circulation pipe extending from the gas circulation hole and communicating a first space, which is a space on a side from the baffle plate where the liquid circulation hole is located, with the gas circulation hole, and the baffle plate is provided with a communication hole communicating the first space with a second space, which is the space on the side where the gas circulation hole is located.

本開示に係る熱交換器ユニットは、上記の熱交換器と、前記熱交換器に空気を送る送風機と、を備える。The heat exchanger unit of the present disclosure comprises the above-mentioned heat exchanger and a blower that sends air to the heat exchanger.

本開示に係る冷凍サイクル装置は、上記の熱交換器ユニットを備える。The refrigeration cycle device of the present disclosure is equipped with the above-mentioned heat exchanger unit.

本開示によれば、上記構成により、熱交換器に流入した気液二相冷媒を気相冷媒及び液相冷媒に分離してから複数の伝熱管に分配することができる。これにより、冷媒流速が遅い条件下においても、複数の伝熱管のそれぞれに流れる液相冷媒と気相冷媒との比率のばらつきを抑制できる。According to the present disclosure, the above configuration allows the gas-liquid two-phase refrigerant flowing into the heat exchanger to be separated into gas-phase refrigerant and liquid-phase refrigerant and then distributed to multiple heat transfer tubes. This makes it possible to suppress variation in the ratio of liquid-phase refrigerant to gas-phase refrigerant flowing through each of the multiple heat transfer tubes, even under conditions where the refrigerant flow velocity is slow.

実施の形態1に係る熱交換器6を備えた冷凍サイクル装置100の構成を示す冷媒回路図である。1 is a refrigerant circuit diagram showing a configuration of a refrigeration cycle device 100 including a heat exchanger 6 according to a first embodiment. 実施の形態1に係る熱交換器6の構造を説明する分解斜視図である。FIG. 2 is an exploded perspective view illustrating the structure of the heat exchanger 6 according to the first embodiment. 実施の形態1に係る熱交換器6の冷媒分配器10の断面構造の説明図である。2 is an explanatory diagram of a cross-sectional structure of a refrigerant distributor 10 of a heat exchanger 6 according to the first embodiment. FIG. 気液分離室20の断面図である。2 is a cross-sectional view of the gas-liquid separation chamber 20. FIG. 実施の形態1に係る冷凍サイクル装置100のモリエル線図である。FIG. 2 is a Mollier diagram of the refrigeration cycle apparatus 100 according to the first embodiment. 実施の形態2に係る熱交換器206を備えた冷凍サイクル装置200の構成を示す冷媒回路図である。FIG. 11 is a refrigerant circuit diagram showing a configuration of a refrigeration cycle device 200 including a heat exchanger 206 according to a second embodiment. 実施の形態2に係る熱交換器206の構造を説明する分解斜視図である。FIG. 11 is an exploded perspective view illustrating the structure of a heat exchanger 206 according to a second embodiment. 実施の形態2に係る熱交換器206の冷媒分配器210の断面構造の説明図である。11 is an explanatory diagram of a cross-sectional structure of a refrigerant distributor 210 of a heat exchanger 206 according to embodiment 2. FIG. 気液分離室20の断面図である。2 is a cross-sectional view of the gas-liquid separation chamber 20. FIG. 分配室21の断面図である。FIG. 2 is a cross-sectional view of the distribution chamber 21. 図10の複数の伝熱管30の液相冷媒及び気相冷媒が流れる領域と温度分布を示す説明図である。11 is an explanatory diagram showing regions through which liquid-phase refrigerant and gas-phase refrigerant flow and temperature distribution in the plurality of heat transfer tubes 30 in FIG. 10 . FIG. 実施の形態3に係る熱交換器306の冷媒分配器310の断面構造の説明図である。13 is an explanatory diagram of a cross-sectional structure of a refrigerant distributor 310 of a heat exchanger 306 according to embodiment 3. FIG. 図12の複数の伝熱管30の液相冷媒及び気相冷媒が流れる領域と温度分布を示す説明図である。13 is an explanatory diagram showing regions through which liquid-phase refrigerant and gas-phase refrigerant flow and temperature distribution in the plurality of heat transfer tubes 30 in FIG. 12 . FIG. 実施の形態4に係る熱交換器406の構造を説明する分解斜視図である。FIG. 11 is an exploded perspective view illustrating the structure of a heat exchanger 406 according to embodiment 4. 実施の形態4に係る熱交換器406の冷媒分配器410の断面構造の説明図である。13 is an explanatory diagram of a cross-sectional structure of a refrigerant distributor 410 of a heat exchanger 406 according to embodiment 4. FIG. 実施の形態4に係る熱交換器406の変形例である熱交換器406aの構造を説明する分解斜視図である。FIG. 13 is an exploded perspective view illustrating the structure of a heat exchanger 406a which is a modified example of the heat exchanger 406 according to the fourth embodiment. 実施の形態5に係る熱交換器506の断面構造の説明図である。13 is an explanatory diagram of a cross-sectional structure of a heat exchanger 506 according to embodiment 5. FIG. 実施の形態6に係る熱交換器606の断面構造の説明図である。13 is an explanatory diagram of a cross-sectional structure of a heat exchanger 606 according to embodiment 6. FIG.

以下に、熱交換器、熱交換器ユニット及び冷凍サイクル装置の実施の形態について説明する。なお、図面の形態は一例であり、本開示を限定するものではない。また、各図において同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。また、理解を容易にするために方向を表す用語(例えば「上」、「下」、「右」、「左」、「前」、「後」など)を適宜用いるが、それらの表記は、説明の便宜上、そのように記載しているだけであって、装置あるいは部品の配置及び向きを限定するものではない。更に、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 The following describes embodiments of a heat exchanger, a heat exchanger unit, and a refrigeration cycle device. Note that the forms in the drawings are merely examples and do not limit the present disclosure. In addition, the same reference numerals in each drawing denote the same or equivalent parts, and this is common throughout the entire specification. In addition, to facilitate understanding, terms expressing directions (e.g., "up," "down," "right," "left," "front," "rear," etc.) are used as appropriate, but these notations are merely written in this way for the sake of convenience and do not limit the arrangement and orientation of the device or parts. Furthermore, the size relationships of the components in the following drawings may differ from the actual ones.

実施の形態1.
図1は、実施の形態1に係る熱交換器6を備えた冷凍サイクル装置100の構成を示す冷媒回路図である。まず、図1を用いて冷媒分配器10を備えた冷凍サイクル装置100について説明する。なお、図1において、矢印は、冷凍サイクル装置100の冷媒回路99において、暖房運転時における冷媒の流れる方向を示すものである。実線で示された矢印は液相冷媒の流れ、点線で示された矢印は気相冷媒の流れ、破線で示された矢印は気液二相冷媒の流れである。実施の形態1では、冷凍サイクル装置100として空気調和装置を例示しているが、冷凍サイクル装置100は、例えば、冷蔵庫、冷凍庫、自動販売機、空気調和装置、冷凍装置、又は給湯器等の、冷凍用途又は空調用途に使用されるものである。
Embodiment 1.
FIG. 1 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle apparatus 100 including a heat exchanger 6 according to the first embodiment. First, the refrigeration cycle apparatus 100 including a refrigerant distributor 10 will be described with reference to FIG. 1. In FIG. 1, the arrows indicate the direction of refrigerant flow in the refrigerant circuit 99 of the refrigeration cycle apparatus 100 during heating operation. The arrows shown by solid lines indicate the flow of liquid-phase refrigerant, the arrows shown by dotted lines indicate the flow of gas-phase refrigerant, and the arrows shown by dashed lines indicate the flow of two-phase gas-liquid refrigerant. In the first embodiment, an air conditioner is illustrated as the refrigeration cycle apparatus 100, but the refrigeration cycle apparatus 100 is used for refrigeration or air conditioning purposes, such as a refrigerator, a freezer, a vending machine, an air conditioner, a refrigeration apparatus, or a water heater.

冷凍サイクル装置100は、圧縮機3、流路切替装置7、室内熱交換器4、減圧装置5及び室外熱交換器6が冷媒配管を介して環状に接続された冷媒回路99を有する。冷凍サイクル装置100は、室外機1及び室内機2を有している。室外機1は、圧縮機3、流路切替装置7、室外熱交換器6、冷媒分配器10及び減圧装置5と、を備える。室外機1は、室外熱交換器6の近傍に室外空気を供給する室外送風機6fが収容されている。室内機2は、室内熱交換器4と、室内熱交換器4に空気を供給する室内送風機4fとが収容されている。室外機1と室内機2との間は、冷媒配管の一部である2本の延長配管111及び延長配管112を介して接続されている。なお、室外送風機6f及び室内送風機4fを総称して送風機と称する場合がある。また、室外機1及び室内機2のように内部に熱交換器を備える機器を、熱交換器ユニットと称する場合がある。The refrigeration cycle device 100 has a refrigerant circuit 99 in which a compressor 3, a flow switching device 7, an indoor heat exchanger 4, a pressure reducing device 5, and an outdoor heat exchanger 6 are connected in a ring shape via refrigerant piping. The refrigeration cycle device 100 has an outdoor unit 1 and an indoor unit 2. The outdoor unit 1 has a compressor 3, a flow switching device 7, an outdoor heat exchanger 6, a refrigerant distributor 10, and a pressure reducing device 5. The outdoor unit 1 houses an outdoor blower 6f that supplies outdoor air near the outdoor heat exchanger 6. The indoor unit 2 houses an indoor heat exchanger 4 and an indoor blower 4f that supplies air to the indoor heat exchanger 4. The outdoor unit 1 and the indoor unit 2 are connected via two extension pipes 111 and 112, which are part of the refrigerant piping. The outdoor blower 6f and the indoor blower 4f may be collectively referred to as blowers. Furthermore, a device having a heat exchanger therein, such as the outdoor unit 1 and the indoor unit 2, may be referred to as a heat exchanger unit.

圧縮機3は、吸入した冷媒を圧縮して吐出する流体機械である。流路切替装置7は、例えば四方弁であり、制御装置(図示は省略)の制御により、冷房運転時と暖房運転時とで冷媒の流路を切り替える装置である。室内熱交換器4は、内部を流通する冷媒と、室内送風機4fにより供給される室内空気と、の熱交換を行う熱交換器である。室内熱交換器4は、暖房運転時には凝縮器として機能し、冷房運転時には蒸発器として機能する。減圧装置5は、例えば膨張弁であり、冷媒を減圧させる装置である。減圧装置5としては、制御装置の制御により開度が調節される電子膨張弁を用いることができる。室外熱交換器6は、内部を流通する冷媒と室外送風機6fにより供給される空気との間で熱交換を行う熱交換器である。室外熱交換器6は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。The compressor 3 is a fluid machine that compresses and discharges the sucked refrigerant. The flow path switching device 7 is, for example, a four-way valve, and is a device that switches the flow path of the refrigerant between cooling operation and heating operation under the control of a control device (not shown). The indoor heat exchanger 4 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the indoor air supplied by the indoor blower 4f. The indoor heat exchanger 4 functions as a condenser during heating operation and as an evaporator during cooling operation. The pressure reducing device 5 is, for example, an expansion valve, and is a device that reduces the pressure of the refrigerant. As the pressure reducing device 5, an electronic expansion valve whose opening degree is adjusted under the control of the control device can be used. The outdoor heat exchanger 6 is a heat exchanger that exchanges heat between the refrigerant flowing inside and the air supplied by the outdoor blower 6f. The outdoor heat exchanger 6 functions as an evaporator during heating operation and as a condenser during cooling operation.

実施の形態1に係る冷凍サイクル装置100の冷媒回路99は、室外熱交換器6の冷媒分配器10から複数の伝熱管30(図2参照)を経由しないバイパス流路9を備える。バイパス流路9は、流量調整弁8が設置されており、制御装置により開度が調節される。The refrigerant circuit 99 of the refrigeration cycle device 100 according to the first embodiment includes a bypass flow path 9 that does not pass through a plurality of heat transfer tubes 30 (see FIG. 2) from the refrigerant distributor 10 of the outdoor heat exchanger 6. The bypass flow path 9 is provided with a flow control valve 8, and the opening degree of the flow control valve 8 is adjusted by the control device.

図2は、実施の形態1に係る熱交換器6の構造を説明する分解斜視図である。図3は、実施の形態1に係る熱交換器6の冷媒分配器10の断面構造の説明図である。実施の形態1においては、冷凍サイクル装置100の暖房運転時の室外熱交換器6について説明する。以降の説明において、室外熱交換器6を単に熱交換器6と称する場合がある。また、図2には、それぞれ互いに直交するx軸、y軸及びz軸が示されているが、これは各図において対応している。 Figure 2 is an exploded perspective view illustrating the structure of the heat exchanger 6 according to embodiment 1. Figure 3 is an explanatory diagram of the cross-sectional structure of the refrigerant distributor 10 of the heat exchanger 6 according to embodiment 1. In embodiment 1, the outdoor heat exchanger 6 during heating operation of the refrigeration cycle device 100 is described. In the following description, the outdoor heat exchanger 6 may be simply referred to as the heat exchanger 6. Also, Figure 2 shows an x-axis, a y-axis, and a z-axis that are mutually orthogonal, which correspond in each figure.

熱交換器6は、複数の伝熱管30と、複数の伝熱管30の一方の端部が接続される冷媒分配器10と、を備える。複数の伝熱管30は、それぞれ管軸を平行にしてz方向に並列されている。複数の伝熱管30は、管軸がx方向に沿って延びるように配置されている。冷媒分配器10は、複数の伝熱管30のx方向の端部に接続されている。図3に矢印AFで示すように、送風機6fにより、空気は、y方向に沿って流れ、複数の伝熱管30の間を通過する。なお、z方向を第1方向、x方向を第2方向、y方向を第3方向と称する場合がある。実施の形態1において、z方向は、重力方向上向きである。しかし、z方向は、重力方向に平行であることに限定されず、重力方向に対して傾斜していてもよく、少なくとも一端が上に位置し、他端が下に位置していればよい。The heat exchanger 6 includes a plurality of heat transfer tubes 30 and a refrigerant distributor 10 to which one end of the plurality of heat transfer tubes 30 is connected. The plurality of heat transfer tubes 30 are arranged in parallel in the z direction with their tube axes parallel to each other. The plurality of heat transfer tubes 30 are arranged so that their tube axes extend along the x direction. The refrigerant distributor 10 is connected to the ends of the plurality of heat transfer tubes 30 in the x direction. As shown by the arrow AF in FIG. 3, the air flows along the y direction by the blower 6f and passes between the plurality of heat transfer tubes 30. The z direction may be referred to as the first direction, the x direction as the second direction, and the y direction as the third direction. In the first embodiment, the z direction is upward in the direction of gravity. However, the z direction is not limited to being parallel to the direction of gravity, and may be inclined with respect to the direction of gravity, as long as at least one end is located above and the other end is located below.

図3に示される様に、冷媒分配器10は、z軸に垂直な断面において、内部が2つの空間に仕切られている。冷媒分配器10は、筒部60の内部が仕切板11でx方向に2つの空間に仕切られ、複数の伝熱管30に近い側に位置する空間を分配室21と称し、複数の伝熱管30から遠い側に位置する空間を気液分離室20と称する。分配室21は、内部に複数の伝熱管30の一方の端部31が挿し込まれている。気液分離室20は、冷媒流入管14が接続されており、暖房運転時において熱交換器6の外部から気液二相冷媒が流入する。As shown in FIG. 3, the inside of the refrigerant distributor 10 is divided into two spaces in a cross section perpendicular to the z-axis. The inside of the tubular portion 60 of the refrigerant distributor 10 is divided into two spaces in the x-direction by a partition plate 11, and the space located closer to the heat transfer tubes 30 is called the distribution chamber 21, and the space located farther from the heat transfer tubes 30 is called the gas-liquid separation chamber 20. One end 31 of the heat transfer tubes 30 is inserted into the distribution chamber 21. The gas-liquid separation chamber 20 is connected to the refrigerant inlet pipe 14, and gas-liquid two-phase refrigerant flows in from outside the heat exchanger 6 during heating operation.

筒部60は、板材を半円筒形状に曲げて加工した外郭部材12及び13を組み合わせて形成されている。複数の伝熱管30から遠い側に位置する外郭部材12は、z方向の端部にガス流通孔15が設けられガス流通管15aが接続され、z方向の中央部に冷媒流入管14が接続されている。また、複数の伝熱管30に近い側に位置する外郭部材13は、複数の伝熱管30の端部31が挿入されるスリットが複数形成されている。筒部60のz方向の両端部は、半円形状の板状部材である端部部材25及び26により塞がれている。なお、実施の形態1において、冷媒分配器10は、図2及び図3に示される様な筒状の形態であるが、これだけに限定されるものではない。例えば、冷媒分配器10は、矩形の箱体であっても良い。The cylindrical portion 60 is formed by combining the outer casing members 12 and 13, which are formed by bending and processing a plate material into a semi-cylindrical shape. The outer casing member 12 located on the side farther from the heat transfer tubes 30 has a gas circulation hole 15 at the end in the z direction, to which the gas circulation tube 15a is connected, and the refrigerant inlet tube 14 is connected to the center in the z direction. The outer casing member 13 located on the side closer to the heat transfer tubes 30 has a plurality of slits into which the ends 31 of the heat transfer tubes 30 are inserted. Both ends of the cylindrical portion 60 in the z direction are blocked by end members 25 and 26, which are semicircular plate-shaped members. In the first embodiment, the refrigerant distributor 10 has a cylindrical shape as shown in Figs. 2 and 3, but is not limited to this. For example, the refrigerant distributor 10 may be a rectangular box.

仕切板11は、z方向逆側の端部に液流通孔16を備える。液流通孔16は、気液分離室20の下部と分配室21の下部とを連通するものである。また、気液分離室20の上部には、ガス流通孔15が設けられ、熱交換器6の外部につながるガス流通管15aが接続されている。ガス流通管15aは、図1に示されるバイパス流路9に接続されている。The partition plate 11 has a liquid flow hole 16 at the end opposite the z-direction. The liquid flow hole 16 connects the lower part of the gas-liquid separation chamber 20 with the lower part of the distribution chamber 21. A gas flow hole 15 is provided at the upper part of the gas-liquid separation chamber 20, and a gas flow pipe 15a leading to the outside of the heat exchanger 6 is connected to the gas flow pipe 15a. The gas flow pipe 15a is connected to the bypass flow path 9 shown in FIG. 1.

図4は、気液分離室20の断面図である。図4は、図3のA-A部の断面に相当する。図4に示される円は、気液分離室20に接続されている冷媒流入管14、ガス流通孔15及び液流通孔16の位置を模式的に表している。暖房運転時において気液分離室20には、冷媒流入管14から気液二相冷媒が流入する。気液二相冷媒のうち密度の高い液相冷媒92は、重力の影響を受けて気液分離室20の下部に偏って溜まる。一方、気液二相冷媒のうち密度の低い気相冷媒91は、気液分離室20の上部に移動する。すると、図4に示すように、上部に気相冷媒91が溜まり、下部に液相冷媒92が溜まり、気液二相冷媒は、気相冷媒91と液相冷媒92とに分離する。 Figure 4 is a cross-sectional view of the gas-liquid separation chamber 20. Figure 4 corresponds to the cross section of the A-A portion of Figure 3. The circles shown in Figure 4 are schematic representations of the positions of the refrigerant inlet pipe 14, the gas flow hole 15, and the liquid flow hole 16 connected to the gas-liquid separation chamber 20. During heating operation, gas-liquid two-phase refrigerant flows into the gas-liquid separation chamber 20 from the refrigerant inlet pipe 14. The liquid phase refrigerant 92, which has a higher density among the gas-liquid two-phase refrigerant, is influenced by gravity and accumulates unevenly at the lower part of the gas-liquid separation chamber 20. On the other hand, the gas phase refrigerant 91, which has a lower density among the gas-liquid two-phase refrigerant, moves to the upper part of the gas-liquid separation chamber 20. Then, as shown in Figure 4, the gas phase refrigerant 91 accumulates at the upper part and the liquid phase refrigerant 92 accumulates at the lower part, and the gas-liquid two-phase refrigerant is separated into the gas phase refrigerant 91 and the liquid phase refrigerant 92.

気液分離室20の上部には、ガス流通孔15が設けられているため、気相冷媒91は、ガス流通孔15からガス流通管15aを経て冷媒回路99のバイパス流路9に流れ込む。従って、バイパス流路9には、冷媒分配器10に流れ込んだ気液二相冷媒のうち気相冷媒91が流れることになる。Since a gas flow hole 15 is provided at the top of the gas-liquid separation chamber 20, the gas-phase refrigerant 91 flows from the gas flow hole 15 through the gas flow pipe 15a into the bypass flow path 9 of the refrigerant circuit 99. Therefore, the gas-phase refrigerant 91 of the gas-liquid two-phase refrigerant that has flowed into the refrigerant distributor 10 flows into the bypass flow path 9.

一方、気液分離室20の下部には、分配室21に連通する液流通孔16が設けられているため、液相冷媒92は、液流通孔16を経て分配室21に流れ込む。従って、分配室21には、液相冷媒92が流入する。ただし、冷凍サイクル装置100の暖房運転開始時等においては、分配室21に気液二相冷媒が流通する場合があり得る。On the other hand, since the lower part of the gas-liquid separation chamber 20 is provided with a liquid flow hole 16 that communicates with the distribution chamber 21, the liquid-phase refrigerant 92 flows into the distribution chamber 21 through the liquid flow hole 16. Therefore, the liquid-phase refrigerant 92 flows into the distribution chamber 21. However, when the heating operation of the refrigeration cycle device 100 starts, etc., there may be cases where a two-phase gas-liquid refrigerant flows through the distribution chamber 21.

分配室21は液相冷媒92のみが流入する。そのため、実施の形態1において、複数の伝熱管30には、液相冷媒92のみが流れる。従って、複数の伝熱管30は、重力方向において上部に位置する伝熱管30及び下部に位置する伝熱管30のそれぞれに均等に液相冷媒92が流れる。従って、熱交換器6が蒸発器として機能する際に、冷媒の蒸発に寄与しない気相冷媒が伝熱管30に流れない。Only liquid phase refrigerant 92 flows into the distribution chamber 21. Therefore, in the first embodiment, only liquid phase refrigerant 92 flows through the multiple heat transfer tubes 30. Therefore, the liquid phase refrigerant 92 flows evenly through the multiple heat transfer tubes 30 located at the top and the bottom in the direction of gravity. Therefore, when the heat exchanger 6 functions as an evaporator, gas phase refrigerant that does not contribute to the evaporation of the refrigerant does not flow through the heat transfer tubes 30.

図5は、実施の形態1に係る冷凍サイクル装置100のモリエル線図である。図5において、実線で示された線図は、比較例としての冷凍サイクル装置のものであり、気液二相冷媒をそのまま蒸発器を通過させた場合の線図である。また、図5において点線で示された線図は、実施の形態1に係る冷凍サイクル装置100を循環する冷媒のモリエル線図である。実施の形態1に係る冷凍サイクル装置100において、減圧装置5により減圧されて図1及び図5の点Dの状態になった気液二相冷媒は、熱交換器6に流入し、気液分離室20で分離される。気液分離室20で分離され分配室21に流入した液相冷媒92は、点D2の状態である。その後、液相冷媒92は、複数の伝熱管30に流入し、蒸発し点A2の状態になる。図5において実線で示された比較例の冷凍サイクル装置においては、蒸発器を通過した冷媒は、点Dから点Aへ変化する。このとき、気液二相冷媒は、複数の伝熱管30を通過し気相冷媒に変化するが、複数の伝熱管30を通過する際の圧力損失により圧力が低下する。一方、実施の形態1に係る冷凍サイクル装置100においては、複数の伝熱管30を通過する冷媒は図5の点D2で示される液相冷媒92である。そして、気相冷媒91は、バイパス流路9を通過し、蒸発器である熱交換器6を通過した気相冷媒と合流する。つまり、図5の点E2の状態であるバイパス流路9を通過した気相冷媒91と、図5の点E3の状態である複数の伝熱管30を通過して蒸発した気相冷媒と、が合流し、図5の点A2の状態になり、圧縮機3に吸入される。実施の形態1に係る冷凍サイクル装置100は、蒸発器である熱交換器6の冷媒分配器10において気相冷媒と液相冷媒とに冷媒を分離させ、熱交換器6の複数の伝熱管30に液相冷媒のみを流し、気相冷媒をバイパス流路9にバイパスさせることにより、冷媒の圧力損失を低減させることができる。また、複数の伝熱管30に液相冷媒のみが流れることにより、空気と液相冷媒との温度差を確保し易くなり、液相冷媒の潜熱を効率良く利用することができるため、熱交換器6の熱交換性能が向上する。5 is a Mollier diagram of the refrigeration cycle device 100 according to the first embodiment. In FIG. 5, the solid line is a diagram of a refrigeration cycle device as a comparative example, and is a diagram in the case where the gas-liquid two-phase refrigerant is passed through the evaporator as it is. Also, the dotted line in FIG. 5 is a Mollier diagram of the refrigerant circulating in the refrigeration cycle device 100 according to the first embodiment. In the refrigeration cycle device 100 according to the first embodiment, the gas-liquid two-phase refrigerant decompressed by the decompression device 5 to the state of point D in FIG. 1 and FIG. 5 flows into the heat exchanger 6 and is separated in the gas-liquid separation chamber 20. The liquid phase refrigerant 92 separated in the gas-liquid separation chamber 20 and flowing into the distribution chamber 21 is in the state of point D2. Thereafter, the liquid phase refrigerant 92 flows into a plurality of heat transfer tubes 30, evaporates, and becomes the state of point A2. In the refrigeration cycle device of the comparative example shown by the solid line in FIG. 5, the refrigerant that has passed through the evaporator changes from point D to point A. At this time, the gas-liquid two-phase refrigerant passes through the heat transfer tubes 30 and changes to a gas-phase refrigerant, but the pressure drops due to pressure loss when passing through the heat transfer tubes 30. On the other hand, in the refrigeration cycle device 100 according to the first embodiment, the refrigerant passing through the heat transfer tubes 30 is a liquid-phase refrigerant 92 indicated by point D2 in Fig. 5. Then, the gas-phase refrigerant 91 passes through the bypass passage 9 and merges with the gas-phase refrigerant that has passed through the heat exchanger 6, which is an evaporator. That is, the gas-phase refrigerant 91 that has passed through the bypass passage 9, which is in the state of point E2 in Fig. 5, and the gas-phase refrigerant that has evaporated after passing through the heat transfer tubes 30, which is in the state of point E3 in Fig. 5, merge to reach the state of point A2 in Fig. 5, and is sucked into the compressor 3. The refrigeration cycle apparatus 100 according to the first embodiment can reduce the pressure loss of the refrigerant by separating the refrigerant into a gas phase refrigerant and a liquid phase refrigerant in the refrigerant distributor 10 of the heat exchanger 6 serving as an evaporator, flowing only the liquid phase refrigerant through the heat transfer tubes 30 of the heat exchanger 6, and bypassing the gas phase refrigerant to the bypass flow path 9. Furthermore, by flowing only the liquid phase refrigerant through the heat transfer tubes 30, it becomes easier to ensure a temperature difference between the air and the liquid phase refrigerant, and the latent heat of the liquid phase refrigerant can be efficiently utilized, thereby improving the heat exchange performance of the heat exchanger 6.

実施の形態2.
実施の形態2に係る冷凍サイクル装置200は、実施の形態1に係る冷凍サイクル装置100の冷媒回路99からバイパス流路9を削除し、熱交換器6の構造を変更したものである。実施の形態2に係る冷凍サイクル装置200においては、実施の形態1に対する変更点を中心に説明する。実施の形態2に係る冷凍サイクル装置200の各部については、各図面において同一の機能を有するものは実施の形態1の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 2.
The refrigeration cycle apparatus 200 according to the second embodiment is obtained by deleting the bypass passage 9 from the refrigerant circuit 99 of the refrigeration cycle apparatus 100 according to the first embodiment and by changing the structure of the heat exchanger 6. The refrigeration cycle apparatus 200 according to the second embodiment will be described mainly with respect to the changes from the first embodiment. Regarding the components of the refrigeration cycle apparatus 200 according to the second embodiment, those having the same functions in each drawing are indicated by the same reference numerals as those in the drawings used in the description of the first embodiment.

図6は、実施の形態2に係る熱交換器206を備えた冷凍サイクル装置200の構成を示す冷媒回路図である。実施の形態2に係る冷凍サイクル装置200の冷媒回路299は、実施の形態1に係る冷媒回路99に対し室外機1の室外熱交換器6の冷媒分配器10から複数の伝熱管30を経由せずに流路切替装置7に至るバイパス流路9が削除されている。6 is a refrigerant circuit diagram showing the configuration of a refrigeration cycle apparatus 200 including a heat exchanger 206 according to embodiment 2. The refrigerant circuit 299 of the refrigeration cycle apparatus 200 according to embodiment 2 is different from the refrigerant circuit 99 according to embodiment 1 in that the bypass flow path 9 that runs from the refrigerant distributor 10 of the outdoor heat exchanger 6 of the outdoor unit 1 to the flow path switching device 7 without passing through multiple heat transfer tubes 30 is eliminated.

図7は、実施の形態2に係る熱交換器206の構造を説明する分解斜視図である。図8は、実施の形態2に係る熱交換器206の冷媒分配器210の断面構造の説明図である。実施の形態2に係る熱交換器206は、冷媒分配器210の気液分離室20から熱交換器206の外部に向かうガス流通孔15及びガス流通管15aを有していない。その代わりに、z方向において、気液分離室20の上部に分配室21と連通するガス流通孔215が設けられている。また、実施の形態1と同様に、z方向において、気液分離室20の下部に、分配室21と連通する液流通孔16が設けられている。 Figure 7 is an exploded perspective view illustrating the structure of the heat exchanger 206 according to the second embodiment. Figure 8 is an explanatory diagram of the cross-sectional structure of the refrigerant distributor 210 of the heat exchanger 206 according to the second embodiment. The heat exchanger 206 according to the second embodiment does not have a gas circulation hole 15 and a gas circulation pipe 15a leading from the gas-liquid separation chamber 20 of the refrigerant distributor 210 to the outside of the heat exchanger 206. Instead, a gas circulation hole 215 communicating with the distribution chamber 21 is provided at the upper part of the gas-liquid separation chamber 20 in the z direction. Also, as in the first embodiment, a liquid circulation hole 16 communicating with the distribution chamber 21 is provided at the lower part of the gas-liquid separation chamber 20 in the z direction.

実施の形態2に係る分配室21は、図8に示すように分割板217によりy方向に2つの空間に仕切られている。即ち、分配室21は、風上側に第1分配室221と、風下側に第2分配室222と、を備える。なお、図8において、送風機6fは、y方向に向かって空気を送るように構成されている。第1分配室221と第2分配室222とは、複数の伝熱管30の配置に合わせて櫛歯形状に形成されている分割板217により仕切られている。 As shown in Fig. 8, the distribution chamber 21 according to the second embodiment is divided into two spaces in the y direction by a dividing plate 217. That is, the distribution chamber 21 has a first distribution chamber 221 on the windward side and a second distribution chamber 222 on the leeward side. In Fig. 8, the blower 6f is configured to send air in the y direction. The first distribution chamber 221 and the second distribution chamber 222 are divided by the dividing plate 217 formed in a comb-tooth shape according to the arrangement of the multiple heat transfer tubes 30.

第1分配室221は、液流通孔16により気液分離室20と連通している。液流通孔16は、重力方向において気液分離室20の下部に形成されているため、気液分離室20の下部に溜まる液相冷媒92を第1分配室221に流入させる。The first distribution chamber 221 is connected to the gas-liquid separation chamber 20 via the liquid flow hole 16. The liquid flow hole 16 is formed at the bottom of the gas-liquid separation chamber 20 in the direction of gravity, and thus causes the liquid phase refrigerant 92 that accumulates at the bottom of the gas-liquid separation chamber 20 to flow into the first distribution chamber 221.

第2分配室222は、ガス流通孔215により気液分離室20と連通している。ガス流通孔215は、重力方向において気液分離室20の上部に形成されているため、気液分離室20の上部に溜まる気相冷媒91を第2分配室222に流入させる。The second distribution chamber 222 is connected to the gas-liquid separation chamber 20 via the gas flow hole 215. The gas flow hole 215 is formed at the upper part of the gas-liquid separation chamber 20 in the direction of gravity, and therefore allows the gas phase refrigerant 91 that accumulates at the upper part of the gas-liquid separation chamber 20 to flow into the second distribution chamber 222.

図9は、気液分離室20の断面図である。図9は、x軸に垂直な断面を示しており、図8のA-A部の断面を示している。気液分離室20は、実施の形態1と同様に冷媒流入管14から流入した気液二相冷媒が重力の影響を受けて分離している。 Figure 9 is a cross-sectional view of the gas-liquid separation chamber 20. Figure 9 shows a cross section perpendicular to the x-axis, and shows a cross section of part A-A in Figure 8. In the gas-liquid separation chamber 20, the two-phase gas-liquid refrigerant flowing in from the refrigerant inlet pipe 14 is separated by the effect of gravity, as in embodiment 1.

気液分離室20の上部には、ガス流通孔215が設けられているため、気相冷媒91は、ガス流通孔215から分配室21の第2分配室222に流入する。従って、第2分配室222には、気相冷媒91のみが存在する。Since a gas flow hole 215 is provided at the top of the gas-liquid separation chamber 20, the gas phase refrigerant 91 flows from the gas flow hole 215 into the second distribution chamber 222 of the distribution chamber 21. Therefore, only the gas phase refrigerant 91 exists in the second distribution chamber 222.

一方、気液分離室20の下部には、分配室21に連通する液流通孔16が設けられているため、液相冷媒92は、液流通孔16を経て分配室21の第1分配室221に流れ込む。従って、第1分配室221には、液相冷媒92のみが存在する。このようにして、実施の形態2に係る熱交換器206は、気液二相冷媒が分離される。なお、液流通孔16及びガス流通孔215は、想定される冷媒流量に応じて適正な大きさに設計される。 Meanwhile, since a liquid flow hole 16 communicating with the distribution chamber 21 is provided at the bottom of the gas-liquid separation chamber 20, the liquid phase refrigerant 92 flows into the first distribution chamber 221 of the distribution chamber 21 through the liquid flow hole 16. Therefore, only the liquid phase refrigerant 92 is present in the first distribution chamber 221. In this way, the heat exchanger 206 according to embodiment 2 separates the gas-liquid two-phase refrigerant. The liquid flow hole 16 and the gas flow hole 215 are designed to be of appropriate size according to the expected refrigerant flow rate.

図10は、分配室21の断面図である。図10は、x軸に垂直な断面を示しており、図8のB-B部の断面を示している。図10に示されている様に、複数の伝熱管30は、分配室21の第1分配室221及び第2分配室222の両方に挿し込まれている。複数の伝熱管30の内部の冷媒流通部32(図11参照)は、端面33(図11参照)において一部が第1分配室221に連通し、一部が第2分配室222に連通する。 Figure 10 is a cross-sectional view of the distribution chamber 21. Figure 10 shows a cross section perpendicular to the x-axis, and shows a cross section of part B-B in Figure 8. As shown in Figure 10, the multiple heat transfer tubes 30 are inserted into both the first distribution chamber 221 and the second distribution chamber 222 of the distribution chamber 21. The refrigerant flow section 32 (see Figure 11) inside the multiple heat transfer tubes 30 is partially connected to the first distribution chamber 221 and partially connected to the second distribution chamber 222 at the end face 33 (see Figure 11).

図11は、図10の複数の伝熱管30の液相冷媒及び気相冷媒が流れる領域と温度分布を示す説明図である。実施の形態2に係る熱交換器206において、複数の伝熱管30の風上側の領域Lの冷媒流通部32は、液相冷媒が流動している。また、複数の伝熱管30の風下側の領域Gの冷媒流通部32は、気相冷媒が流動している。実施の形態2においては、液相冷媒が複数の伝熱管30に流入する領域Lは、気相冷媒が複数の伝熱管30に流入する領域Gよりも大きく設定されるのが望ましい。11 is an explanatory diagram showing the regions through which the liquid-phase refrigerant and gas-phase refrigerant flow in the multiple heat transfer tubes 30 of FIG. 10 and the temperature distribution. In the heat exchanger 206 according to the second embodiment, the liquid-phase refrigerant flows in the refrigerant flow section 32 in the region L on the windward side of the multiple heat transfer tubes 30. Also, the gas-phase refrigerant flows in the refrigerant flow section 32 in the region G on the leeward side of the multiple heat transfer tubes 30. In the second embodiment, it is desirable to set the region L through which the liquid-phase refrigerant flows into the multiple heat transfer tubes 30 larger than the region G through which the gas-phase refrigerant flows into the multiple heat transfer tubes 30.

蒸発器である熱交換器206の複数の伝熱管30の間に空気が流入すると、風上側の領域Lにおいては、冷媒温度はほぼ一定である。一方、冷媒と熱交換される空気は、領域Lを通過する際に液冷媒の潜熱により温度が低下する。領域Lを通過する冷媒は、空気からの顕熱により蒸発し、気相冷媒に変化する。また、風下側の領域Lにおいては、気相冷媒の温度は、液相冷媒が流れる領域Lから離れるに従い温度が高い。これは、領域Lから離れた部分においては、領域Gを通過する空気との顕熱交換により温度が高くなり、領域Lに近い領域においては、領域Lの液相冷媒の潜熱の影響を受けるためである。When air flows between the heat transfer tubes 30 of the heat exchanger 206, which is an evaporator, the refrigerant temperature is almost constant in the upwind region L. On the other hand, the temperature of the air exchanging heat with the refrigerant drops as it passes through region L due to the latent heat of the liquid refrigerant. The refrigerant passing through region L evaporates due to the sensible heat from the air and changes to gas-phase refrigerant. Also, in the downwind region L, the temperature of the gas-phase refrigerant increases the further it is from region L where the liquid-phase refrigerant flows. This is because the temperature increases in the parts far from region L due to sensible heat exchange with the air passing through region G, and in the regions close to region L, it is affected by the latent heat of the liquid-phase refrigerant in region L.

実施の形態2に係る熱交換器206においては、複数の伝熱管30の風上側の領域Lに液冷媒が流れるため、空気と冷媒との温度差を確保し易くなり、熱交換器206の伝熱性能が向上する。In the heat exchanger 206 of embodiment 2, liquid refrigerant flows in the region L on the windward side of the multiple heat transfer tubes 30, making it easier to maintain a temperature difference between the air and the refrigerant, thereby improving the heat transfer performance of the heat exchanger 206.

実施の形態2に係る熱交換器206は、気液二相冷媒を第1分配室221及び第2分配室222に分離してから、複数の伝熱管30の別々の領域に液相冷媒と気相冷媒とを流している。従って、複数の伝熱管30のそれぞれに流れる冷媒は、気相冷媒と液相冷媒との比率のばらつきが抑制されている。よって、熱交換器206は、所望の熱交換性能を発揮することができる。The heat exchanger 206 according to the second embodiment separates the gas-liquid two-phase refrigerant into the first distribution chamber 221 and the second distribution chamber 222, and then flows the liquid phase refrigerant and the gas phase refrigerant in separate regions of the multiple heat transfer tubes 30. Therefore, the refrigerant flowing through each of the multiple heat transfer tubes 30 has a reduced variation in the ratio of gas phase refrigerant to liquid phase refrigerant. Therefore, the heat exchanger 206 can exhibit the desired heat exchange performance.

実施の形態3.
実施の形態3に係る冷凍サイクル装置300は、実施の形態2に係る熱交換器206の第1分配室221及び第2分配室222の位置を逆転させたものである。実施の形態3に係る冷凍サイクル装置300においては、実施の形態2に対する変更点を中心に説明する。実施の形態3に係る冷凍サイクル装置300の各部については、各図面において同一の機能を有するものは実施の形態1及び2の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 3.
In the refrigeration cycle apparatus 300 according to the third embodiment, the positions of the first distribution chamber 221 and the second distribution chamber 222 of the heat exchanger 206 according to the second embodiment are reversed. In the refrigeration cycle apparatus 300 according to the third embodiment, changes from the second embodiment will be mainly described. In the drawings, the components of the refrigeration cycle apparatus 300 according to the third embodiment that have the same functions are denoted by the same reference numerals as those in the drawings used in the description of the first and second embodiments.

図12は、実施の形態3に係る熱交換器306の冷媒分配器310の断面構造の説明図である。熱交換器306の冷媒分配器310は、y方向において、第1分配室221と第2分配室222との位置関係が入れ替わっている。つまり、熱交換器306は、風上側に第2分配室222が配置され、風下側に第1分配室221が配置されている。 Figure 12 is an explanatory diagram of the cross-sectional structure of the refrigerant distributor 310 of the heat exchanger 306 according to embodiment 3. In the refrigerant distributor 310 of the heat exchanger 306, the positional relationship between the first distribution chamber 221 and the second distribution chamber 222 is swapped in the y direction. That is, in the heat exchanger 306, the second distribution chamber 222 is arranged on the windward side, and the first distribution chamber 221 is arranged on the leeward side.

図13は、図12の複数の伝熱管30の液相冷媒及び気相冷媒が流れる領域と温度分布を示す説明図である。実施の形態3に係る熱交換器306は、複数の伝熱管30の風上側に気相冷媒が流動している領域Gが配置され、風下側には液相冷媒が流動している領域Lが配置されている。実施の形態3においても、液相冷媒が複数の伝熱管30に流入する領域Lは、気相冷媒が複数の伝熱管30に流入する領域Gよりも大きく設定されるのが望ましい。13 is an explanatory diagram showing the regions through which the liquid-phase refrigerant and gas-phase refrigerant flow in the multiple heat transfer tubes 30 of FIG. 12, and the temperature distribution. In the heat exchanger 306 according to the third embodiment, a region G through which the gas-phase refrigerant flows is arranged on the windward side of the multiple heat transfer tubes 30, and a region L through which the liquid-phase refrigerant flows is arranged on the leeward side. In the third embodiment as well, it is desirable to set the region L through which the liquid-phase refrigerant flows into the multiple heat transfer tubes 30 larger than the region G through which the gas-phase refrigerant flows into the multiple heat transfer tubes 30.

蒸発器である熱交換器306の複数の伝熱管30の間に空気が流入すると、風上側の領域Gにおいては、領域Lから離れるほど冷媒温度が高い。これは、領域Gを流れる気相冷媒が、領域Gを通過する温度が高い空気と顕熱交換を行うためである。従って、領域Gは比較的温度が高いため、低外気温条件下に暖房運転を行う際に、最も着霜が生じ易い複数の伝熱管30の風上側の領域において、着霜の発生を抑制することができる。これにより、熱交換器306は、着霜により空気の流れが阻害されることがないため、所望の熱交換性能を発揮できる。また、実施の形態2と同様に、複数の伝熱管30のそれぞれに流れる冷媒は、気相冷媒と液相冷媒との比率のばらつきが抑制されている。よって、熱交換器306は、所望の熱交換性能を発揮することができる。When air flows between the heat transfer tubes 30 of the heat exchanger 306, which is an evaporator, the refrigerant temperature in the windward region G is higher the further away from the region L. This is because the gas phase refrigerant flowing in the region G exchanges sensible heat with the air of high temperature passing through the region G. Therefore, since the temperature in the region G is relatively high, the occurrence of frost can be suppressed in the windward region of the heat transfer tubes 30, which is most likely to cause frost, when performing heating operation under low outdoor air temperature conditions. As a result, the heat exchanger 306 can exhibit the desired heat exchange performance because the flow of air is not obstructed by frost. Also, as in the second embodiment, the refrigerant flowing through each of the heat transfer tubes 30 has a suppressed variation in the ratio of gas phase refrigerant to liquid phase refrigerant. Therefore, the heat exchanger 306 can exhibit the desired heat exchange performance.

実施の形態4.
実施の形態4に係る冷凍サイクル装置400は、実施の形態2に係る熱交換器206の構造を変更したものである。実施の形態4に係る冷凍サイクル装置400においては、実施の形態2に対する変更点を中心に説明する。実施の形態4に係る冷凍サイクル装置400の各部については、各図面において同一の機能を有するものは実施の形態1~3の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 4.
The refrigeration cycle apparatus 400 according to the fourth embodiment is obtained by modifying the structure of the heat exchanger 206 according to the second embodiment. The refrigeration cycle apparatus 400 according to the fourth embodiment will be described mainly with respect to the changes made to the second embodiment. Regarding the components of the refrigeration cycle apparatus 400 according to the fourth embodiment, those components having the same functions in each drawing are indicated by the same reference numerals as those in the drawings used in the description of the first to third embodiments.

図14は、実施の形態4に係る熱交換器406の構造を説明する分解斜視図である。図15は、実施の形態4に係る熱交換器406の冷媒分配器410の断面構造の説明図である。実施の形態4に係る熱交換器406の冷媒分配器410は、気液分離室20において冷媒流入管14から流入した気液二相冷媒を気相冷媒と液相冷媒とに分離する点が実施の形態1~3における熱交換器6、206及び306と同様である。しかし、実施の形態4に係る熱交換器406の冷媒分配器410は、複数の伝熱管30が接続される分配室421がz方向において仕切部材42により複数に分割されている。また、気液分離室20と分配室421との間に液相冷媒のみが流入する液室427と気相冷媒のみが流入するガス室428とを備える。 Figure 14 is an exploded perspective view illustrating the structure of the heat exchanger 406 according to the fourth embodiment. Figure 15 is an explanatory diagram of the cross-sectional structure of the refrigerant distributor 410 of the heat exchanger 406 according to the fourth embodiment. The refrigerant distributor 410 of the heat exchanger 406 according to the fourth embodiment is similar to the heat exchangers 6, 206, and 306 in the first to third embodiments in that it separates the gas-liquid two-phase refrigerant flowing in from the refrigerant inlet pipe 14 into a gas-phase refrigerant and a liquid-phase refrigerant in the gas-liquid separation chamber 20. However, the refrigerant distributor 410 of the heat exchanger 406 according to the fourth embodiment has a distribution chamber 421 to which a plurality of heat transfer tubes 30 are connected, which is divided into a plurality of chambers in the z direction by a partition member 42. In addition, between the gas-liquid separation chamber 20 and the distribution chamber 421, there is a liquid chamber 427 into which only the liquid-phase refrigerant flows, and a gas chamber 428 into which only the gas-phase refrigerant flows.

図14に示される様に、気液分離室20の上部、即ち仕切板411の上部には、ガス流通孔415aが設けられており、下部には液流通孔416aが設けられている。ガス室428は、ガス流通孔415aにより気液分離室20と連通しているため、気相冷媒のみが流入する。また、液室427は、液流通孔416aにより気液分離室20と連通しているため、液相冷媒のみが流入する。液室427とガス室428とは、分割板417により仕切られており、それぞれが独立した空間になっている。また、液室427及びガス室428と分配室421とは、仕切板418で仕切られている。 As shown in FIG. 14, a gas flow hole 415a is provided at the top of the gas-liquid separation chamber 20, i.e., at the top of the partition plate 411, and a liquid flow hole 416a is provided at the bottom. The gas chamber 428 is connected to the gas-liquid separation chamber 20 via the gas flow hole 415a, so only gas phase refrigerant flows in. The liquid chamber 427 is connected to the gas-liquid separation chamber 20 via the liquid flow hole 416a, so only liquid phase refrigerant flows in. The liquid chamber 427 and the gas chamber 428 are separated by a partition plate 417, and each is an independent space. The liquid chamber 427 and the gas chamber 428 are separated from the distribution chamber 421 by a partition plate 418.

仕切板418に設けられており、液室427は分配室421に連通する液流通孔416bを備える。また、ガス室428は、分配室421に連通するガス流通孔415bを備える。実施の形態4において、複数の伝熱管30が挿し込まれている分配室421は、z方向において複数の合流部421a、421b、421c及び421dに分割されている。液流通孔416b及びガス流通孔415bは、それぞれ複数の合流部421a、421b、421c及び421dに対応して設けられている。よって、液室427にある液相冷媒及びガス室428にある気相冷媒は、それぞれ複数の合流部421a、421b、421c及び421dのそれぞれに偏りなく流入する。複数の合流部421a、421b、421c及び421dに流入した気相冷媒及び液相冷媒は、それぞれ混合され複数の伝熱管30に流入する。複数の合流部421a、421b、421c及び421dは、それぞれ分離した気相冷媒及び液相冷媒が別々の経路から流入するため、気相冷媒と液相冷媒との比率のばらつきが抑えられる。The liquid chamber 427 is provided in the partition plate 418, and has a liquid circulation hole 416b communicating with the distribution chamber 421. The gas chamber 428 has a gas circulation hole 415b communicating with the distribution chamber 421. In the fourth embodiment, the distribution chamber 421 into which the heat transfer tubes 30 are inserted is divided into a plurality of junctions 421a, 421b, 421c, and 421d in the z direction. The liquid circulation hole 416b and the gas circulation hole 415b are provided corresponding to the plurality of junctions 421a, 421b, 421c, and 421d, respectively. Therefore, the liquid phase refrigerant in the liquid chamber 427 and the gas phase refrigerant in the gas chamber 428 flow into each of the plurality of junctions 421a, 421b, 421c, and 421d without bias. The gas phase refrigerant and liquid phase refrigerant flowing into the multiple junctions 421a, 421b, 421c, and 421d are mixed and flow into the multiple heat transfer tubes 30. Since the separated gas phase refrigerant and liquid phase refrigerant flow into the multiple junctions 421a, 421b, 421c, and 421d from separate paths, the variation in the ratio of the gas phase refrigerant to the liquid phase refrigerant is suppressed.

また、複数の伝熱管30が扁平多穴管の場合、各冷媒流路ごとに気相冷媒と液相冷媒が個別に流れると、気相冷媒と液相冷媒との間で温度差が生じる。すると、気相冷媒と液相冷媒との間で熱交換が起こり、熱交換器を通過する空気と冷媒との熱交換量が落ちる場合がある。実施の形態4においては、複数の合流部421a、421b、421c及び421dにそれぞれ同じような比率で気相冷媒と液相冷媒とが流入し、合流する。これにより、複数の伝熱管30のそれぞれに気相冷媒と液相冷媒とが混合した冷媒を流すことができるため、気相冷媒と液相冷媒との間の熱交換を抑え、空気と冷媒との熱交換が促進される。また、実施の形態1~3と同様に、熱交換器406は、気液二相冷媒を一度気相冷媒と液相冷媒とに分離してから分割された複数の合流部421a、421b、421c及び421dで合流させる。そのため、複数の合流部421a、421b、421c及び421dのそれぞれに流れ込む気相冷媒と液相冷媒との比率のばらつきが抑えられ、複数の伝熱管30のそれぞれに流れる冷媒の気相冷媒と液相冷媒との比率のばらつきも抑えられる。In addition, when the multiple heat transfer tubes 30 are flat multi-hole tubes, if the gas phase refrigerant and the liquid phase refrigerant flow separately for each refrigerant flow path, a temperature difference occurs between the gas phase refrigerant and the liquid phase refrigerant. Then, heat exchange occurs between the gas phase refrigerant and the liquid phase refrigerant, and the amount of heat exchange between the air and the refrigerant passing through the heat exchanger may decrease. In the fourth embodiment, the gas phase refrigerant and the liquid phase refrigerant flow into the multiple junctions 421a, 421b, 421c, and 421d in the same ratio and merge. As a result, a refrigerant mixed with the gas phase refrigerant and the liquid phase refrigerant can flow into each of the multiple heat transfer tubes 30, suppressing heat exchange between the gas phase refrigerant and the liquid phase refrigerant and promoting heat exchange between the air and the refrigerant. In addition, as in the first to third embodiments, the heat exchanger 406 separates the gas-liquid two-phase refrigerant into the gas phase refrigerant and the liquid phase refrigerant, and then merges them at the multiple junctions 421a, 421b, 421c, and 421d that are divided. As a result, the variation in the ratio of gas phase refrigerant to liquid phase refrigerant flowing into each of the multiple junctions 421a, 421b, 421c, and 421d is reduced, and the variation in the ratio of gas phase refrigerant to liquid phase refrigerant flowing into each of the multiple heat transfer tubes 30 is also reduced.

(変形例)
図16は、実施の形態4に係る熱交換器406の変形例である熱交換器406aの構造を説明する分解斜視図である。熱交換器406は、2つの仕切板411及び418を用いて冷媒分配器410をx方向に3つの空間に仕切ることにより、冷媒の分離と合流とを行う空間を作り出している。これに対し変形例に係る熱交換器406aは、板材451及び454を積層させて、それぞれにガス流通孔415、液流通孔416等の孔又は長孔を設けることにより、冷媒の分離する空間と合流する空間とを作り出している。
(Modification)
16 is an exploded perspective view illustrating the structure of a heat exchanger 406a which is a modification of the heat exchanger 406 according to the fourth embodiment. The heat exchanger 406 creates spaces for refrigerant separation and merging by dividing the refrigerant distributor 410 into three spaces in the x direction using two partition plates 411 and 418. In contrast, the heat exchanger 406a according to the modification creates spaces for refrigerant separation and merging by stacking plate materials 451 and 454 and providing holes or elongated holes such as gas circulation holes 415 and liquid circulation holes 416 in each of the plate materials.

具体的には、液室427及びガス室428は、一枚の板材451に長軸がz方向に延びる長孔452をy方向に2つ並列させて設けることにより形成されている。そして、2つの長孔452の間にある板材451の中央部分453が分割板417に相当する部分になる。2つの長孔452は、一方がガス流通孔415により気液分離室20に連通し、他方が液流通孔416により気液分離室20に連通している。Specifically, the liquid chamber 427 and the gas chamber 428 are formed by providing two long holes 452, whose major axes extend in the z direction, in parallel in the y direction in a single plate material 451. The central portion 453 of the plate material 451 between the two long holes 452 corresponds to the dividing plate 417. One of the two long holes 452 communicates with the gas-liquid separation chamber 20 via the gas circulation hole 415, and the other communicates with the gas-liquid separation chamber 20 via the liquid circulation hole 416.

変形例に係る熱交換器406aの複数の分配室421は、板材454にy方向に長軸が延びる複数の長孔455をz方向に並列して設けることにより形成されている。複数の長孔455は、複数の伝熱管30のそれぞれに対応して形成されている。そして、複数の長孔455のそれぞれは、液室427となっている長孔452及びガス室428となっている長孔452の両方に連通している。これにより、液室427からの液相冷媒及びガス室428からの気相冷媒が、複数の分配室421となっている複数の長孔455のそれぞれで合流する。なお、複数の長孔455は、複数の伝熱管30のそれぞれに対応しているが、この形態だけに限定されるものではない。例えば、2つ以上の伝熱管30に対応して、1つの分配室421が接続されていても良い。The multiple distribution chambers 421 of the heat exchanger 406a according to the modified example are formed by providing multiple long holes 455 with their major axes extending in the y direction in parallel in the z direction in the plate material 454. The multiple long holes 455 are formed corresponding to each of the multiple heat transfer tubes 30. Each of the multiple long holes 455 is connected to both the long hole 452 that is the liquid chamber 427 and the long hole 452 that is the gas chamber 428. As a result, the liquid phase refrigerant from the liquid chamber 427 and the gas phase refrigerant from the gas chamber 428 merge in each of the multiple long holes 455 that are the multiple distribution chambers 421. Note that the multiple long holes 455 correspond to each of the multiple heat transfer tubes 30, but are not limited to this form. For example, one distribution chamber 421 may be connected to two or more heat transfer tubes 30.

変形例に係る熱交換器406aの冷媒分配器410aは、板材451及び454のような部材に穴を設けるだけの単純な形状の部材を積層させて形成される。このため、熱交換器406aは、少ない部品点数で安価に製造することができる。また、熱交換器406aの冷媒分配器410aは、板材451及び454のような部材を積層させるため、x方向の厚さ寸法が低減するため、その分だけ複数の伝熱管30が設置されている伝熱部の面積を大きくすることができる。The refrigerant distributor 410a of the heat exchanger 406a according to the modified example is formed by stacking members of a simple shape, such as plate materials 451 and 454, which are simply holes provided in the members. Therefore, the heat exchanger 406a can be manufactured inexpensively with a small number of parts. In addition, since the refrigerant distributor 410a of the heat exchanger 406a is formed by stacking members such as plate materials 451 and 454, the thickness dimension in the x direction is reduced, and the area of the heat transfer section in which the multiple heat transfer tubes 30 are installed can be increased accordingly.

実施の形態5.
実施の形態5に係る冷凍サイクル装置500は、実施の形態2に係る熱交換器206の構造を変更したものである。実施の形態5に係る冷凍サイクル装置500においては、実施の形態2に対する変更点を中心に説明する。実施の形態5に係る冷凍サイクル装置500の各部については、各図面において同一の機能を有するものは実施の形態1~4の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 5.
The refrigeration cycle apparatus 500 according to the fifth embodiment is obtained by modifying the structure of the heat exchanger 206 according to the second embodiment. The refrigeration cycle apparatus 500 according to the fifth embodiment will be described mainly with respect to the changes made to the second embodiment. Regarding the components of the refrigeration cycle apparatus 500 according to the fifth embodiment, those components having the same functions in each drawing are indicated by the same reference numerals as those in the drawings used in the description of the first to fourth embodiments.

図17は、実施の形態5に係る熱交換器506の断面構造の説明図である。図17は、xz軸に沿った断面を示している。実施の形態5に係る熱交換器506の冷媒分配器510は、気液分離室20に液冷媒捕捉構造570を備える。液冷媒捕捉構造570は、例えばメッシュフィルターであり、網の目の細かさ及び材質は適宜設定することができる。液冷媒捕捉構造570は、z方向において冷媒流入管514とガス流通孔15との間に位置し、気液分離室20をz方向に仕切るように配置されている。 Figure 17 is an explanatory diagram of the cross-sectional structure of the heat exchanger 506 according to embodiment 5. Figure 17 shows a cross section along the xz axis. The refrigerant distributor 510 of the heat exchanger 506 according to embodiment 5 is provided with a liquid refrigerant capture structure 570 in the gas-liquid separation chamber 20. The liquid refrigerant capture structure 570 is, for example, a mesh filter, and the mesh size and material can be set appropriately. The liquid refrigerant capture structure 570 is located between the refrigerant inlet pipe 514 and the gas flow hole 15 in the z direction, and is arranged to divide the gas-liquid separation chamber 20 in the z direction.

冷媒流入管514は、z逆向き方向に傾斜して気液分離室20に挿し込まれている。従って、冷媒流入管514から流入した気液二相冷媒は、z逆向き方向に向かって進む。その過程で、気液二相冷媒は重力の影響を受け液相冷媒が気液分離室20の下部に偏って溜まる。また、気相冷媒及び細かい粒子となっている液相冷媒は、気液分離室20の上部に偏在する。気液分離室20の上部には、ガス流通孔15が設置されており、分離された気相冷媒は、分配室21のうち第2分配室222に流入する。このとき、気相冷媒とともに細かい粒子となって漂っている液相冷媒も第2分配室222に流入する場合がある。なお、実施の形態5に係る熱交換器506の冷媒分配器510は、実施の形態2に係る熱交換器206の冷媒分配器210と同様に、第1分配室221及び第2分配室222から構成される分配室21を備えるものである。The refrigerant inlet pipe 514 is inserted into the gas-liquid separation chamber 20 at an incline in the z-reverse direction. Therefore, the gas-liquid two-phase refrigerant flowing in from the refrigerant inlet pipe 514 moves in the z-reverse direction. In the process, the gas-liquid two-phase refrigerant is influenced by gravity, and the liquid phase refrigerant is biased and accumulates in the lower part of the gas-liquid separation chamber 20. In addition, the gas phase refrigerant and the liquid phase refrigerant in the form of fine particles are biased to the upper part of the gas-liquid separation chamber 20. A gas circulation hole 15 is installed in the upper part of the gas-liquid separation chamber 20, and the separated gas phase refrigerant flows into the second distribution chamber 222 of the distribution chamber 21. At this time, the liquid phase refrigerant floating in the form of fine particles together with the gas phase refrigerant may also flow into the second distribution chamber 222. The refrigerant distributor 510 of the heat exchanger 506 according to embodiment 5 is provided with a distribution chamber 21 consisting of a first distribution chamber 221 and a second distribution chamber 222, similar to the refrigerant distributor 210 of the heat exchanger 206 according to embodiment 2.

液冷媒捕捉構造570は、気相冷媒を通せる構造になっている。熱交換器506は、液冷媒捕捉構造570を備えることにより、気相冷媒とともに気液分離室20の上部に移動する液相冷媒が液冷媒捕捉構造570に付着し、液滴となって重力方向に落下する。これにより、実施の形態5に係る熱交換器506は、気相冷媒と液相冷媒との分離が促進される。The liquid refrigerant capture structure 570 is structured to allow gas phase refrigerant to pass through. By providing the liquid refrigerant capture structure 570 to the heat exchanger 506, the liquid phase refrigerant that moves to the upper part of the gas-liquid separation chamber 20 together with the gas phase refrigerant adheres to the liquid refrigerant capture structure 570 and falls in the direction of gravity as droplets. As a result, the heat exchanger 506 according to the fifth embodiment promotes separation of the gas phase refrigerant and the liquid phase refrigerant.

実施の形態6.
実施の形態6に係る冷凍サイクル装置600は、実施の形態2に係る熱交換器206の構造を変更したものである。実施の形態6に係る冷凍サイクル装置600においては、実施の形態2に対する変更点を中心に説明する。実施の形態6に係る冷凍サイクル装置600の各部については、各図面において同一の機能を有するものは実施の形態1~5の説明で使用した図面と同一の符号を付して表示するものとする。
Embodiment 6.
The refrigeration cycle apparatus 600 according to the sixth embodiment is obtained by modifying the structure of the heat exchanger 206 according to the second embodiment. The refrigeration cycle apparatus 600 according to the sixth embodiment will be described mainly with respect to the changes made to the second embodiment. Regarding the components of the refrigeration cycle apparatus 600 according to the sixth embodiment, those components having the same functions in each drawing are indicated by the same reference numerals as those in the drawings used in the description of the first to fifth embodiments.

図18は、実施の形態6に係る熱交換器606の断面構造の説明図である。図18は、xz軸に沿った断面を示している。実施の形態6に係る熱交換器606の冷媒分配器610は、気液分離室20に邪魔板670を備える。邪魔板670は、冷媒流入管614が挿入されている部位の下方に配置されており、冷媒流入管614が設置されている壁面から仕切板11に向かって延びている。邪魔板670は、仕切板11側の部位で気液分離室20の上部と下部とを連通する連通穴671が形成されている。邪魔板670は、仕切板11側に向かうに従いz逆向き方向に傾斜しており、同様にz逆向き方向に傾斜している冷媒流入管614から流れ込む気液二相冷媒が沿って流れる様に形成されている。実施の形態6において、邪魔板670と冷媒流入管614とが平行になる様に形成されているが、これだけに限定されるものではない。例えば、冷媒流入管614を邪魔板670よりも大きくz逆向き方向に傾斜させて、冷媒流入管614から流入した気液二相冷媒が邪魔板670に当たるように形成されても良い。気液二相冷媒が邪魔板670に当たることにより、気液二相冷媒に含まれる液相冷媒が邪魔板670の表面に付着し、連通穴671から下方に流れ落ちる。これにより気液分離室20内においては、冷媒の気液分離が促進される。 Figure 18 is an explanatory diagram of the cross-sectional structure of the heat exchanger 606 according to the sixth embodiment. Figure 18 shows a cross section along the xz axis. The refrigerant distributor 610 of the heat exchanger 606 according to the sixth embodiment is provided with a baffle plate 670 in the gas-liquid separation chamber 20. The baffle plate 670 is disposed below the portion where the refrigerant inlet pipe 614 is inserted, and extends from the wall surface where the refrigerant inlet pipe 614 is installed toward the partition plate 11. The baffle plate 670 has a communication hole 671 that communicates the upper and lower parts of the gas-liquid separation chamber 20 at the portion on the partition plate 11 side. The baffle plate 670 is inclined in the z-reverse direction toward the partition plate 11 side, and is formed so that the gas-liquid two-phase refrigerant flowing in from the refrigerant inlet pipe 614, which is also inclined in the z-reverse direction, flows along it. In the sixth embodiment, the baffle plate 670 and the refrigerant inlet pipe 614 are formed so as to be parallel to each other, but this is not limited to this. For example, the refrigerant inflow pipe 614 may be inclined in the z-reverse direction more than the baffle plate 670 so that the gas-liquid two-phase refrigerant flowing in from the refrigerant inflow pipe 614 hits the baffle plate 670. When the gas-liquid two-phase refrigerant hits the baffle plate 670, the liquid phase refrigerant contained in the gas-liquid two-phase refrigerant adheres to the surface of the baffle plate 670 and flows downward through the communication holes 671. This promotes gas-liquid separation of the refrigerant in the gas-liquid separation chamber 20.

気液分離室20は、邪魔板670によりz方向に2つの空間に仕切られており、図18において邪魔板670の下方の空間を第1空間620a、上方の空間を第2空間620bと称する。気液分離室20の上部の空間である第2空間620bに設けられているガス流通孔615にはガス流通管615aが接続されている。ガス流通管615aの先端部615bは、邪魔板670の下方の空間である第2空間620bに位置している。ガス流通管615aは、邪魔板670の下方の空間のうちの上部から気相冷媒を第2分配室222に送る様に構成されている。このように構成されることにより、液相冷媒は、邪魔板670及び仕切板11に付着することにより下方に流下するため、ガス流通管615aには気相冷媒が流入する。よって、気液分離室20における冷媒の気液分離が効率良く行われる。The gas-liquid separation chamber 20 is divided into two spaces in the z direction by the baffle plate 670, and in FIG. 18, the space below the baffle plate 670 is called the first space 620a, and the space above is called the second space 620b. A gas circulation pipe 615a is connected to the gas circulation hole 615 provided in the second space 620b, which is the space at the top of the gas-liquid separation chamber 20. The tip 615b of the gas circulation pipe 615a is located in the second space 620b, which is the space below the baffle plate 670. The gas circulation pipe 615a is configured to send the gas phase refrigerant from the upper part of the space below the baffle plate 670 to the second distribution chamber 222. By being configured in this way, the liquid phase refrigerant flows downward by adhering to the baffle plate 670 and the partition plate 11, and the gas phase refrigerant flows into the gas circulation pipe 615a. Therefore, gas-liquid separation of the refrigerant in the gas-liquid separation chamber 20 is performed efficiently.

本開示は、上記において説明した構成のみに限定されるものではない。例えば、実施の形態1~6に係る熱交換器6、206、306、406、506及び606は、熱交換器406aのように一部の構造において板材を積層して構成しても良い。熱交換器6、206、306、406、506及び606は、室外機1だけでなく室内機2に適用しても良い。更に、本開示は各実施の形態を組み合わせて構成されていても良い。例えば、実施の形態1、3、4、又は6に、実施の形態5の液冷媒捕捉構造570を適用しても良い。また実施の形態1、3、4、又は5に実施の形態6の邪魔板670の構造を適用しても良い。The present disclosure is not limited to the configurations described above. For example, the heat exchangers 6, 206, 306, 406, 506, and 606 according to the first to sixth embodiments may be configured by stacking plate materials in some structures, like the heat exchanger 406a. The heat exchangers 6, 206, 306, 406, 506, and 606 may be applied not only to the outdoor unit 1 but also to the indoor unit 2. Furthermore, the present disclosure may be configured by combining each embodiment. For example, the liquid refrigerant capture structure 570 of the fifth embodiment may be applied to the first, third, fourth, or sixth embodiment. The structure of the baffle plate 670 of the sixth embodiment may be applied to the first, third, fourth, or fifth embodiment.

1 室外機、2 室内機、3 圧縮機、4 室内熱交換器、4f 室内送風機、5 減圧装置、6 (室外)熱交換器、6f 室外送風機、7 流路切替装置、8 流量調整弁、9 バイパス流路、10 冷媒分配器、11 仕切板、12 外郭部材、13 外郭部材、14 冷媒流入管、15 ガス流通孔、15a ガス流通管、16 液流通孔、20 気液分離室、21 分配室、25 端部部材、30 伝熱管、31 端部、32 冷媒流通部、33 端面、42 仕切部材、60 筒部、91 気相冷媒、92 液相冷媒、99 冷媒回路、100 冷凍サイクル装置、111 延長配管、112 延長配管、200 冷凍サイクル装置、206 熱交換器、210 冷媒分配器、215 ガス流通孔、217 分割板、221 第1分配室、222 第2分配室、299 冷媒回路、300 冷凍サイクル装置、306 熱交換器、310 冷媒分配器、400 冷凍サイクル装置、406 熱交換器、406a 熱交換器、410 冷媒分配器、410a 冷媒分配器、411 仕切板、415 ガス流通孔、415a ガス流通孔、415b ガス流通孔、416 液流通孔、416a 液流通孔、416b 液流通孔、417 分割板、421 分配室、421a 合流部、421b 合流部、421c 合流部、427 液室、428 ガス室、451 板材、452 長孔、453 中央部分、454 板材、455 長孔、500 冷凍サイクル装置、506 熱交換器、510 冷媒分配器、514 冷媒流入管、570 液冷媒捕捉構造、600 冷凍サイクル装置、606 熱交換器、610 冷媒分配器、614 冷媒流入管、615 ガス流通孔、615a ガス流通管、615b 先端部、620a 第1空間、620b 第2空間、670 邪魔板、671 連通穴、AF 矢印、G 領域、L 領域。1 outdoor unit, 2 indoor unit, 3 compressor, 4 indoor heat exchanger, 4f indoor blower, 5 pressure reducing device, 6 (outdoor) heat exchanger, 6f outdoor blower, 7 flow path switching device, 8 flow control valve, 9 bypass flow path, 10 refrigerant distributor, 11 partition plate, 12 outer casing member, 13 outer casing member, 14 refrigerant inlet pipe, 15 gas flow hole, 15a gas flow pipe, 16 liquid flow hole, 20 gas-liquid separation chamber, 21 distribution chamber, 25 end member, 30 heat transfer tube, 31 end, 32 refrigerant flow section, 33 end surface, 42 partition member, 60 tube portion, 91 gas phase refrigerant, 92 liquid phase refrigerant, 99 refrigerant circuit, 100 refrigeration cycle device, 111 extension pipe, 112 extension pipe, 200 refrigeration cycle device, 206 heat exchanger, 210 Refrigerant distributor, 215 Gas circulation hole, 217 Dividing plate, 221 First distribution chamber, 222 Second distribution chamber, 299 Refrigerant circuit, 300 Refrigeration cycle device, 306 Heat exchanger, 310 Refrigerant distributor, 400 Refrigeration cycle device, 406 Heat exchanger, 406a Heat exchanger, 410 Refrigerant distributor, 410a Refrigerant distributor, 411 Partition plate, 415 Gas circulation hole, 415a Gas circulation hole, 415b Gas circulation hole, 416 Liquid circulation hole, 416a Liquid circulation hole, 416b Liquid circulation hole, 417 Dividing plate, 421 Distribution chamber, 421a Junction, 421b Junction, 421c Junction, 427 Liquid chamber, 428 Gas chamber, 451 Plate material, 452 Long hole, 453 Center portion, 454 Plate material, 455 long hole, 500 refrigeration cycle device, 506 heat exchanger, 510 refrigerant distributor, 514 refrigerant inlet pipe, 570 liquid refrigerant capture structure, 600 refrigeration cycle device, 606 heat exchanger, 610 refrigerant distributor, 614 refrigerant inlet pipe, 615 gas circulation hole, 615a gas circulation pipe, 615b tip portion, 620a first space, 620b second space, 670 baffle plate, 671 communication hole, AF arrow, G region, L region.

Claims (11)

第1方向に並列され、前記第1方向に交差する第2方向に延びる複数の伝熱管と、
前記複数の伝熱管の一方の端部が接続された冷媒分配器と、
前記冷媒分配器に接続された冷媒流入管と、を備え、前記第1方向の一端を上に位置させ、他端を下に位置させて使用される熱交換器であって、
前記冷媒分配器は、
前記第1方向に沿って延びるように形成され、
前記冷媒流入管から流入した冷媒を気相冷媒と液相冷媒とに分離する気液分離室と、
前記複数の伝熱管の前記端部が接続された分配室と、
前記第2方向において、内部の空間を前記気液分離室とそれ以外の空間とに仕切る仕切板と、
前記気液分離室と前記分配室とを連通し、前記液相冷媒が流れる液流通孔と、
前記気液分離室と前記分配室とを連通し、前記液流通孔に対し前記第1方向において上にずれて位置し、前記気相冷媒が流れるガス流通孔と、を備え、
前記冷媒流入管は、
前記第1方向において前記ガス流通孔と前記液流通孔との間に位置し、
前記気液分離室は、
前記第2方向において、前記分配室よりも前記複数の伝熱管から遠い側に位置し、
前記冷媒流入管と前記液流通孔との間に前記冷媒流入管が設置されている側の壁面から前記仕切板に向かって延びる邪魔板と、
前記ガス流通孔から延び前記邪魔板から前記液流通孔が配置されている側の空間である第1空間と前記ガス流通孔とを連通するガス流通管と、を備え、
前記邪魔板は、
前記第1空間と前記ガス流通孔が配置されている側の空間である第2空間とを連通する連通穴を備える、熱交換器。
A plurality of heat transfer tubes arranged in parallel in a first direction and extending in a second direction intersecting the first direction;
a refrigerant distributor to which one ends of the plurality of heat transfer tubes are connected;
a refrigerant inlet pipe connected to the refrigerant distributor, the refrigerant inlet pipe being used with one end in the first direction positioned at an upper position and the other end positioned at a lower position,
The refrigerant distributor comprises:
The insulating film is formed to extend along the first direction,
a gas-liquid separation chamber that separates the refrigerant flowing in from the refrigerant inlet pipe into a gas phase refrigerant and a liquid phase refrigerant;
a distribution chamber to which the ends of the plurality of heat transfer tubes are connected;
a partition plate that divides the internal space into the gas-liquid separation chamber and other spaces in the second direction;
a liquid flow hole that communicates the gas-liquid separation chamber with the distribution chamber and through which the liquid phase refrigerant flows;
a gas circulation hole that communicates the gas-liquid separation chamber with the distribution chamber, is shifted upward in the first direction with respect to the liquid circulation hole, and through which the gas-phase refrigerant flows;
The refrigerant inlet pipe is
a gas passage hole and a liquid passage hole,
The gas-liquid separation chamber is
In the second direction, the heat transfer tube is located farther from the distribution chamber ,
a baffle plate extending from a wall surface on a side where the refrigerant inlet pipe is installed between the refrigerant inlet pipe and the liquid circulation hole toward the partition plate;
a gas circulation pipe extending from the gas circulation hole and communicating the gas circulation hole with a first space, which is a space on the side of the baffle plate on which the liquid circulation hole is disposed;
The baffle plate is
a communication hole that communicates the first space with a second space, which is the space on the side where the gas circulation holes are arranged.
第1方向に並列され、前記第1方向に交差する第2方向に延びる複数の伝熱管と、
前記複数の伝熱管の一方の端部が接続された冷媒分配器と、
前記冷媒分配器に接続された冷媒流入管と、を備え、前記第1方向の一端を上に位置させ、他端を下に位置させて使用される熱交換器であって、
前記冷媒分配器は、
前記第1方向に沿って延びるように形成され、
前記冷媒流入管から流入した冷媒を気相冷媒と液相冷媒とに分離する気液分離室と、
前記複数の伝熱管の前記端部が接続された分配室と、
前記第2方向において、内部の空間を前記気液分離室とそれ以外の空間とに仕切る仕切板と、
前記気液分離室と前記分配室とを連通し、前記液相冷媒が流れる液流通孔と、
前記気液分離室と前記分配室とを連通し、前記液流通孔に対し前記第1方向において上にずれて位置し、前記気相冷媒が流れるガス流通孔と、を備え、
前記気液分離室は、
前記第2方向において、前記分配室よりも前記複数の伝熱管から遠い側に位置し、
前記分配室は、
前記第1方向及び前記第2方向に平行な平面に交差する第3方向において分割された第1分配室及び第2分配室を備え、
前記第1分配室は、
前記液流通孔により前記気液分離室と連通し、
前記第2分配室は、
前記ガス流通孔を介して前記気液分離室と連通する、熱交換器。
A plurality of heat transfer tubes arranged in parallel in a first direction and extending in a second direction intersecting the first direction;
a refrigerant distributor to which one ends of the plurality of heat transfer tubes are connected;
a refrigerant inlet pipe connected to the refrigerant distributor, the heat exchanger being used with one end in the first direction positioned at an upper position and the other end positioned at a lower position,
The refrigerant distributor comprises:
The insulating film is formed to extend along the first direction,
a gas-liquid separation chamber that separates the refrigerant flowing in from the refrigerant inlet pipe into a gas phase refrigerant and a liquid phase refrigerant;
a distribution chamber to which the ends of the plurality of heat transfer tubes are connected;
a partition plate that divides the internal space into the gas-liquid separation chamber and other spaces in the second direction;
a liquid flow hole that communicates the gas-liquid separation chamber with the distribution chamber and through which the liquid phase refrigerant flows;
a gas circulation hole that communicates the gas-liquid separation chamber with the distribution chamber, is shifted upward in the first direction with respect to the liquid circulation hole, and through which the gas-phase refrigerant flows;
The gas-liquid separation chamber is
In the second direction, the heat transfer tube is located farther from the distribution chamber,
The distribution chamber comprises:
a first distribution chamber and a second distribution chamber divided in a third direction intersecting a plane parallel to the first direction and the second direction,
The first distribution chamber is
The liquid passage hole communicates with the gas-liquid separation chamber,
The second distribution chamber is
a heat exchanger communicating with the gas-liquid separation chamber through the gas communication hole.
第1方向に並列され、前記第1方向に交差する第2方向に延びる複数の伝熱管と、
前記複数の伝熱管の一方の端部が接続された冷媒分配器と、
前記冷媒分配器に接続された冷媒流入管と、を備え、前記第1方向の一端を上に位置させ、他端を下に位置させて使用される熱交換器であって、
前記冷媒分配器は、
前記第1方向に沿って延びるように形成され、
前記冷媒流入管から流入した冷媒を気相冷媒と液相冷媒とに分離する気液分離室と、
前記複数の伝熱管の前記端部が接続された分配室と、
前記第2方向において、内部の空間を前記気液分離室とそれ以外の空間とに仕切る仕切板と、
前記気液分離室と前記分配室とを連通し、前記液相冷媒が流れる液流通孔と、
前記気液分離室と前記分配室とを連通し、前記液流通孔に対し前記第1方向において上にずれて位置し、前記気相冷媒が流れるガス流通孔と、を備え、
前記気液分離室は、
前記第2方向において、前記分配室よりも前記複数の伝熱管から遠い側に位置し、
前記分配室と前記気液分離室との間に配置されたガス室及び液室を更に備え、
前記ガス室は、
前記ガス流通孔を介して前記気液分離室と連通し、
前記液室は、
前記液流通孔を介して前記気液分離室と連通し、
前記ガス室及び前記液室のそれぞれは、
前記分配室に連通している、熱交換器。
A plurality of heat transfer tubes arranged in parallel in a first direction and extending in a second direction intersecting the first direction;
a refrigerant distributor to which one ends of the plurality of heat transfer tubes are connected;
a refrigerant inlet pipe connected to the refrigerant distributor, the heat exchanger being used with one end in the first direction positioned at an upper position and the other end positioned at a lower position,
The refrigerant distributor comprises:
The insulating film is formed to extend along the first direction,
a gas-liquid separation chamber that separates the refrigerant flowing in from the refrigerant inlet pipe into a gas phase refrigerant and a liquid phase refrigerant;
a distribution chamber to which the ends of the plurality of heat transfer tubes are connected;
a partition plate that divides the internal space into the gas-liquid separation chamber and other spaces in the second direction;
a liquid flow hole that communicates the gas-liquid separation chamber with the distribution chamber and through which the liquid phase refrigerant flows;
a gas circulation hole that communicates the gas-liquid separation chamber with the distribution chamber, is shifted upward in the first direction with respect to the liquid circulation hole, and through which the gas-phase refrigerant flows;
The gas-liquid separation chamber is
In the second direction, the heat transfer tube is located farther from the distribution chamber,
Further comprising a gas chamber and a liquid chamber disposed between the distribution chamber and the gas-liquid separation chamber,
The gas chamber comprises:
The gas-liquid separation chamber communicates with the gas-liquid separation chamber through the gas flow hole,
The liquid chamber is
The liquid passage hole is connected to the gas-liquid separation chamber,
Each of the gas chamber and the liquid chamber is
A heat exchanger in communication with the distribution chamber.
前記分配室は、
前記第1方向において複数の合流部に分割されている、請求項に記載の熱交換器。
The distribution chamber comprises:
The heat exchanger according to claim 3 , wherein the heat exchanger is divided into a plurality of junctions in the first direction.
第1方向に並列され、前記第1方向に交差する第2方向に延びる複数の伝熱管と、
前記複数の伝熱管の一方の端部が接続された冷媒分配器と、
前記冷媒分配器に接続された冷媒流入管と、を備え、前記第1方向の一端を上に位置させ、他端を下に位置させて使用される熱交換器であって、
前記冷媒分配器は、
前記第1方向に沿って延びるように形成され、
前記冷媒流入管から流入した冷媒を気相冷媒と液相冷媒とに分離する気液分離室と、
前記複数の伝熱管の前記端部が接続された分配室と、
前記第2方向において、内部の空間を前記気液分離室とそれ以外の空間とに仕切る仕切板と、
前記気液分離室と前記分配室とを連通し、前記液相冷媒が流れる液流通孔と、
前記気液分離室と前記分配室とを連通し、前記液流通孔に対し前記第1方向において上にずれて位置し、前記気相冷媒が流れるガス流通孔と、を備え、
前記気液分離室は、
前記第2方向において、前記分配室よりも前記複数の伝熱管から遠い側に位置し、
前記冷媒分配器は、
複数の板状部材を積層して形成される、熱交換器。
A plurality of heat transfer tubes arranged in parallel in a first direction and extending in a second direction intersecting the first direction;
a refrigerant distributor to which one ends of the plurality of heat transfer tubes are connected;
a refrigerant inlet pipe connected to the refrigerant distributor, the heat exchanger being used with one end in the first direction positioned at an upper position and the other end positioned at a lower position,
The refrigerant distributor comprises:
The insulating film is formed to extend along the first direction,
a gas-liquid separation chamber that separates the refrigerant flowing in from the refrigerant inlet pipe into a gas phase refrigerant and a liquid phase refrigerant;
a distribution chamber to which the ends of the plurality of heat transfer tubes are connected;
a partition plate that divides the internal space into the gas-liquid separation chamber and other spaces in the second direction;
a liquid flow hole that communicates the gas-liquid separation chamber with the distribution chamber and through which the liquid phase refrigerant flows;
a gas circulation hole that communicates the gas-liquid separation chamber with the distribution chamber, is shifted upward in the first direction with respect to the liquid circulation hole, and through which the gas-phase refrigerant flows;
The gas-liquid separation chamber is
In the second direction, the heat transfer tube is located farther from the distribution chamber,
The refrigerant distributor comprises:
A heat exchanger formed by stacking a plurality of plate-like members.
前記気液分離室は、
前記ガス流通孔と前記冷媒流入管との間に液冷媒を捕捉する液冷媒捕捉構造を備える、請求項2~請求項5の何れか1項に記載の熱交換器。
The gas-liquid separation chamber is
The heat exchanger according to claim 2 , further comprising a liquid refrigerant trapping structure that traps liquid refrigerant between the gas circulation hole and the refrigerant inlet pipe.
請求項1~請求項の何れか1項に記載の熱交換器と、
前記熱交換器に空気を送る送風機と、を備える、熱交換器ユニット。
A heat exchanger according to any one of claims 1 to 6 ,
A blower that blows air to the heat exchanger.
前記熱交換器は、
前記第1方向を重力方向に向けて配置される、請求項に記載の熱交換器ユニット。
The heat exchanger includes:
The heat exchanger unit according to claim 7 , wherein the first direction is oriented in a direction of gravity.
請求項又は請求項に記載の熱交換器と、
前記熱交換器に空気を送る送風機と、を備え、
前記ガス室は、
前記液室よりも風上側に位置する、熱交換器ユニット。
A heat exchanger according to claim 3 or claim 4 ;
A blower that blows air to the heat exchanger,
The gas chamber comprises:
A heat exchanger unit located on the windward side of the liquid chamber.
請求項又は請求項に記載の熱交換器と、
前記熱交換器に空気を送る送風機と、を備え、
前記ガス室は、
前記液室よりも風下側に位置する、熱交換器ユニット。
A heat exchanger according to claim 3 or claim 4 ;
A blower that blows air to the heat exchanger,
The gas chamber comprises:
A heat exchanger unit located on the downwind side of the liquid chamber.
請求項~請求項10の何れか1項に記載の熱交換器ユニットを備える、冷凍サイクル装置。 A refrigeration cycle device comprising the heat exchanger unit according to any one of claims 7 to 10 .
JP2022510301A 2020-03-27 2020-03-27 Heat exchanger, heat exchanger unit and refrigeration cycle device Active JP7493585B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/013890 WO2021192192A1 (en) 2020-03-27 2020-03-27 Heat exchanger, heat exchanger unit, and refrigeration cycle device

Publications (3)

Publication Number Publication Date
JPWO2021192192A1 JPWO2021192192A1 (en) 2021-09-30
JPWO2021192192A5 JPWO2021192192A5 (en) 2022-08-02
JP7493585B2 true JP7493585B2 (en) 2024-05-31

Family

ID=77891115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022510301A Active JP7493585B2 (en) 2020-03-27 2020-03-27 Heat exchanger, heat exchanger unit and refrigeration cycle device

Country Status (3)

Country Link
EP (1) EP4130612A4 (en)
JP (1) JP7493585B2 (en)
WO (1) WO2021192192A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118548613A (en) * 2024-05-30 2024-08-27 山东钰霖制冷设备有限公司 Heat exchanger device for refrigeration equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132587A1 (en) 2006-11-22 2011-06-09 Johnson Controls Technology Company Multichannel Evaporator with Flow Mixing Manifold
JP2017155992A (en) 2016-02-29 2017-09-07 三菱重工業株式会社 Heat exchanger and air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06341736A (en) * 1993-06-01 1994-12-13 Nippondenso Co Ltd Refrigerant condenser
JP3122578B2 (en) * 1994-06-23 2001-01-09 シャープ株式会社 Heat exchanger
JP2011094946A (en) * 2009-09-30 2011-05-12 Daikin Industries Ltd Gas refrigerant separator, gas refrigerant separator-cum-refrigerant flow divider, expansion valve, and refrigeration device
DE102012019512A1 (en) * 2012-10-05 2014-04-10 Hochschule Coburg -Hochschule für angewandte Wissenschaften- Refrigerant circuit and separator and evaporator for a refrigerant circuit
ES2811851T3 (en) * 2016-06-27 2021-03-15 Mitsubishi Electric Corp Refrigeration cycle device
JP2018100800A (en) * 2016-12-20 2018-06-28 三菱重工サーマルシステムズ株式会社 Heat exchanger and air conditioner
JP6369648B1 (en) 2017-03-27 2018-08-08 ダイキン工業株式会社 Heat exchanger and air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110132587A1 (en) 2006-11-22 2011-06-09 Johnson Controls Technology Company Multichannel Evaporator with Flow Mixing Manifold
JP2017155992A (en) 2016-02-29 2017-09-07 三菱重工業株式会社 Heat exchanger and air conditioner

Also Published As

Publication number Publication date
WO2021192192A1 (en) 2021-09-30
EP4130612A1 (en) 2023-02-08
JPWO2021192192A1 (en) 2021-09-30
EP4130612A4 (en) 2023-04-26

Similar Documents

Publication Publication Date Title
AU2007303268B2 (en) Indoor unit for air conditioner
WO2020161761A1 (en) Heat exchanger and air-conditioner provided with same
US9951996B2 (en) Refrigerant evaporator
KR102512052B1 (en) Heat exchanger
US20210041115A1 (en) Indoor heat exchanger and air conditioning apparatus
JP6890509B2 (en) Air conditioner
TWI768340B (en) Heat Exchangers and Refrigeration Cycle Devices
JP7036166B2 (en) Heat exchanger
US10161659B2 (en) Refrigerant evaporator
EP1809971A2 (en) Parallel flow evaporator with non-uniform characteristics
EP1426714A1 (en) Refrigerating system and condenser for decompression tube system
JP7493585B2 (en) Heat exchanger, heat exchanger unit and refrigeration cycle device
CN113739454A (en) Heat exchanger
JP6590957B2 (en) Refrigeration equipment
JP2001221535A (en) Refrigerant evaporator
CN111902683B (en) Heat exchanger and refrigeration cycle device
WO2020017036A1 (en) Refrigeration cycle device
CN114041037B (en) Heat exchanger and refrigeration cycle device
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JP2018048769A (en) Heat exchanger
WO2019155571A1 (en) Heat exchanger and refrigeration cycle device
WO2023233572A1 (en) Heat exchanger, and refrigeration cycle device
JPH08145490A (en) Heat exchanger for heat pump air conditioner
WO2022215165A1 (en) Heat exchanger and air-conditioning device
WO2023062801A1 (en) Heat exchanger and air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230530

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240125

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20240213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240521

R150 Certificate of patent or registration of utility model

Ref document number: 7493585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150