[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7486798B2 - Method, processor, and program for estimating a load frequency control signal - Google Patents

Method, processor, and program for estimating a load frequency control signal Download PDF

Info

Publication number
JP7486798B2
JP7486798B2 JP2020125514A JP2020125514A JP7486798B2 JP 7486798 B2 JP7486798 B2 JP 7486798B2 JP 2020125514 A JP2020125514 A JP 2020125514A JP 2020125514 A JP2020125514 A JP 2020125514A JP 7486798 B2 JP7486798 B2 JP 7486798B2
Authority
JP
Japan
Prior art keywords
time
control signal
load
lfc
frequency control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020125514A
Other languages
Japanese (ja)
Other versions
JP2022021737A (en
Inventor
隆治 松橋
思楠 蔡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP2020125514A priority Critical patent/JP7486798B2/en
Publication of JP2022021737A publication Critical patent/JP2022021737A/en
Application granted granted Critical
Publication of JP7486798B2 publication Critical patent/JP7486798B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/12Energy storage units, uninterruptible power supply [UPS] systems or standby or emergency generators, e.g. in the last power distribution stages
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/12Remote or cooperative charging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

特許法第30条第2項適用 令和1年7月29日~令和1年8月19日に第38回エネルギー・資源学会研究発表会のウェブサイトにて発表 令和1年8月6日に第38回エネルギー・資源学会研究発表会にて発表 令和2年1月10日にエネルギー・資源学会論文誌のウェブサイトにて発表 令和2年1月10日にエネルギー・資源学会論文誌 第41巻 第1号 第60頁にて発表Patent Act Article 30, Paragraph 2 applied. Published on the website of the 38th Research Symposium of the Japan Society of Energy and Resources from July 29, 2019 to August 19, 2019. Published at the 38th Research Symposium of the Japan Society of Energy and Resources on August 6, 2019. Published on the website of the Journal of the Japan Society of Energy and Resources on January 10, 2020. Published on page 60 of the Journal of the Japan Society of Energy and Resources, Vol. 41, No. 1, on January 10, 2020.

本発明は、負荷周波数制御信号を推定する方法、プロセッサ、及びプログラムに関わる。 The present invention relates to a method, a processor, and a program for estimating a load frequency control signal.

電力事業の電力系統では、例えば、原子力発電所、火力発電所、及び水力発電所(揚水発電所を含む)などの各種の電源が用いられている。これらの電源は、電力の需給に不均衡が生じると、その周波数が変動する。これらの電源の内、原子力発電所は常に一定の電力を出力するように運用されている。原子力発電所を除く他の電源は、負荷の消費電力の変動、すなわち、需要変動に対応して中央給電指令所から出される出力制御信号に基づいて出力調整を行っている。その結果、出力調整による各電源からの供給電力と負荷の消費電力とのバランスを保って周波数を基準周波数(例えば、50Hz又は60Hz)に対して所定の偏差(例えば制御目標±0.1Hz)内に維持している。 In the power grid of the electric power industry, various power sources are used, such as nuclear power plants, thermal power plants, and hydroelectric power plants (including pumped-storage power plants). The frequency of these power sources fluctuates when an imbalance occurs in the supply and demand of electricity. Of these power sources, nuclear power plants are operated to always output a constant amount of power. Power sources other than nuclear power plants adjust their output based on output control signals issued by the central load dispatching center in response to fluctuations in the power consumption of the load, i.e., fluctuations in demand. As a result, the balance between the power supply from each power source and the power consumption of the load is maintained through output adjustments, and the frequency is maintained within a specified deviation (e.g., control target ±0.1 Hz) from the reference frequency (e.g., 50 Hz or 60 Hz).

電力の需要と供給のバランスを図るアプローチとして、原子力発電所、火力発電所、及び水力発電所などの従来の発電制御に加え、各地に点在する電気自動車を電力の需給調整に活用する取り組みが検討されている。電気自動車1台あたりの電力需給調整能力は、小規模であるものの、IoT(Internet of Things)技術を用いて、多数の電気自動車を一斉に制御することにより、一つの発電所に匹敵する電力需給調整能力を発揮することができる。 As an approach to balancing the supply and demand of electricity, in addition to conventional power generation control at nuclear power plants, thermal power plants, and hydroelectric power plants, efforts are being considered to utilize electric vehicles scattered around the country to adjust the supply and demand of electricity. Although the power supply and demand adjustment capacity of each electric vehicle is small, by controlling a large number of electric vehicles simultaneously using IoT (Internet of Things) technology, it is possible to achieve a power supply and demand adjustment capacity equivalent to that of a single power plant.

このような事情を背景に、特許文献1は、管轄区域内の電力需給調整を管理する中央給電指令所と、複数の電気自動車のそれぞれの充電状態の管理及び充放電指示を行うアグリゲータと、大規模発電設備(例えば、原子力発電所、火力発電所、及び水力発電所など)とを備える電力系統について言及している。中央給電指令所は、管轄区域内の電力需給を調整するための各設備(アグリゲータ及び各大規模発電設備)の出力配分を決定し、決定された出力配分に基づく出力制御信号を各設備に送信する。 Against this background, Patent Document 1 describes a power system that includes a central load dispatching center that manages the adjustment of power supply and demand within its jurisdiction, an aggregator that manages the charging state of each of a number of electric vehicles and issues charging and discharging instructions, and large-scale power generation facilities (e.g., nuclear power plants, thermal power plants, hydroelectric power plants, etc.). The central load dispatching center determines the output allocation of each facility (aggregator and each large-scale power generation facility) to adjust the power supply and demand within its jurisdiction, and transmits an output control signal based on the determined output allocation to each facility.

国際公開第2011/077780号International Publication No. 2011/077780

しかし、出力制御信号が中央給電指令所により送信されてから通信網を経由してアグリゲータにより受信されるまでには、通信遅延が発生する。また、アグリゲータは、各電気自動車の充電状態に応じて各電気自動車の出力配分(充放電量)を計算する必要があるため、その計算処理に要する時間の分だけ更に遅延が発生する。この結果、電気自動車が受信する出力制御信号は、上述の通信遅延と上述の計算処理による遅延とが加えられた過去の出力制御信号となるため、短期間(例えば、秒単位)の負荷変動に追従できないという問題が生じる。 However, a communication delay occurs between when the output control signal is sent by the central load dispatching center and when it is received by the aggregator via the communication network. In addition, because the aggregator needs to calculate the output allocation (charge/discharge amount) for each electric vehicle based on the charging state of each electric vehicle, a further delay occurs for the time required for this calculation process. As a result, the output control signal received by the electric vehicle is a past output control signal to which the above-mentioned communication delay and the above-mentioned delay due to the calculation process have been added, resulting in a problem of being unable to follow short-term (e.g., seconds) load fluctuations.

そこで、本発明は、このような問題を解決し、上述の遅延を補償する技術を提案することを課題とする。 Therefore, the objective of the present invention is to propose a technique to solve such problems and compensate for the above-mentioned delay.

上述の課題を解決するため、本発明に関わる方法は、系統周波数と基準周波数との間の周波数偏差を検出するとともに、中央給電指令所から送信される負荷周波数制御信号を受信するコンピュータが、第1の時刻で検出された周波数偏差を示す信号と、第1の時刻よりも所定時間過去の第2の時刻で中央給電指令所から送信され且つ第1の時刻で受信された負荷周波数制御信号とを入力し、周波数偏差を示す信号を所定時間遅延させた信号と負荷周波数制御信号との間の時系列的な関係を表す関係変数を計算し、第3の時刻で検出された周波数偏差を示す信号と関係変数とから第3の時刻で中央給電指令所から送信されたものと推定される負荷周波数制御信号を生成する。 In order to solve the above-mentioned problems, the method according to the present invention involves a computer that detects a frequency deviation between a system frequency and a reference frequency and receives a load frequency control signal transmitted from a central load dispatching center, inputting a signal indicating the frequency deviation detected at a first time and a load frequency control signal transmitted from the central load dispatching center at a second time that is a predetermined time before the first time and received at the first time, calculating a relational variable that indicates the time-series relationship between a signal obtained by delaying the signal indicating the frequency deviation by a predetermined time and the load frequency control signal, and generating a load frequency control signal that is estimated to have been transmitted from the central load dispatching center at a third time from the signal indicating the frequency deviation detected at a third time and the relational variable.

本発明によれば、負荷周波数制御信号の遅延を補償することができる。 According to the present invention, it is possible to compensate for the delay in the load frequency control signal.

本発明の実施形態に関わる電力系統制御の全体のシステム構成を示す説明図である。1 is an explanatory diagram showing an overall system configuration of a power system control according to an embodiment of the present invention; 本発明の実施形態に関わる電気自動車の構成を示す説明図である。1 is an explanatory diagram showing a configuration of an electric vehicle according to an embodiment of the present invention; 本発明の実施形態に関わる出力制御信号の生成過程を示す説明図である。FIG. 4 is an explanatory diagram showing a process of generating an output control signal according to an embodiment of the present invention. 本発明の実施形態に関わるコントローラの機能ブロック図である。FIG. 2 is a functional block diagram of a controller according to the embodiment of the present invention. 本発明の実施形態に関わる推定器の機能ブロック図である。FIG. 2 is a functional block diagram of an estimator according to an embodiment of the present invention. 本発明の実施形態に関わる制御器の機能ブロック図である。FIG. 2 is a functional block diagram of a controller according to the embodiment of the present invention. 本発明の実施形態に関わる負荷周波数制御信号の推定処理の流れを示すフローチャートである。5 is a flowchart showing a flow of a process of estimating a load frequency control signal according to an embodiment of the present invention. 本発明の実施形態に関わる負荷周波数制御信号の推定処理のシミュレーション結果である。13 is a simulation result of the estimation process of the load frequency control signal according to the embodiment of the present invention. 本発明の実施形態に関わる負荷周波数制御信号の推定処理の評価結果である。13 shows evaluation results of the estimation process of the load frequency control signal according to the embodiment of the present invention.

以下、図面を参照しながら本発明の実施形態について説明する。ここで、同一符号は同一の構成要素を示すものとし、重複する説明は省略する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings. Here, the same reference numerals indicate the same components, and duplicate explanations will be omitted.

図1は本発明の実施形態に関わる電力系統制御の全体のシステム構成を示す説明図である。中央給電指令所500、大規模発電設備400、アグリゲータ300、及び充放電スポット200は、通信線601を通じて接続されている。通信線601は、広域通信網600に接続されている。大規模発電設備400は、例えば、原子力発電所、火力発電所、及び水力発電所などの電源である。充放電スポット200は、例えば、家屋やビルなどの建物であり、その建物の配線設備からコンセント82に接続された電源コード81を通じて電気自動車100の車載蓄電池を充放電する。 Figure 1 is an explanatory diagram showing the overall system configuration of power system control according to an embodiment of the present invention. A central load dispatching center 500, a large-scale power generation facility 400, an aggregator 300, and a charging/discharging spot 200 are connected via a communication line 601. The communication line 601 is connected to a wide-area communication network 600. The large-scale power generation facility 400 is, for example, a power source such as a nuclear power plant, a thermal power plant, or a hydroelectric power plant. The charging/discharging spot 200 is, for example, a building such as a house or a building, and charges and discharges the on-board storage battery of the electric vehicle 100 through a power cord 81 connected from the wiring equipment of the building to an outlet 82.

説明の便宜上、図1には、一台の電気自動車100と、一か所の充放電スポット200とが広域通信網600に接続されている例が示されているが、複数台の電気自動車100と、複数個所の充放電スポット200とが広域通信網600に接続されてもよい。アグリゲータ300は、中央給電指令所500からの出力制御信号に応答して、複数台の電気自動車100の充放電を管理及び制御するエネルギー・リソース・アグリゲーション・ビジネスにおけるプロバイダである。アグリゲータ300は、通信線601を通じて充放電スポット200に接続している。アグリゲータ300は、充放電スポット200に接続している各電気自動車100の充電量を示す情報を電気自動車100から通信線601を経由して受信し、その情報を定期的に更新及び管理している。 For ease of explanation, FIG. 1 shows an example in which one electric vehicle 100 and one charging/discharging spot 200 are connected to the wide area communication network 600, but multiple electric vehicles 100 and multiple charging/discharging spots 200 may be connected to the wide area communication network 600. The aggregator 300 is a provider in the energy resource aggregation business that manages and controls the charging and discharging of multiple electric vehicles 100 in response to an output control signal from the central load dispatching center 500. The aggregator 300 is connected to the charging/discharging spot 200 through a communication line 601. The aggregator 300 receives information indicating the charge amount of each electric vehicle 100 connected to the charging/discharging spot 200 from the electric vehicle 100 via the communication line 601, and periodically updates and manages the information.

大規模発電設備400及び充放電スポット200は、それぞれ、電力送電線701を通じて電力系統700に接続している。中央給電指令所500は、管轄区域内の電力需給調整を管理し、電力系統700の系統周波数と基準周波数との間の周波数偏差が所定の偏差以内になるように、大規模発電設備400及びアグリゲータ300に出力制御信号を送信する。 The large-scale power generation facility 400 and the charging/discharging spot 200 are each connected to the power grid 700 via a power transmission line 701. The central load dispatching center 500 manages the adjustment of power supply and demand within its jurisdiction, and transmits output control signals to the large-scale power generation facility 400 and the aggregator 300 so that the frequency deviation between the system frequency of the power grid 700 and the reference frequency is within a predetermined deviation.

図2は、電気自動車100の構成を示す説明図である。電気自動車100は、電源コード81及びコンセント82を通じて充放電スポット200に接続している。充放電スポット200は、電力量計、分電盤及び宅内電気配線などで構成される配線設備を備えており、電気自動車100と電力送電線701との間の電力の授受は、充放電スポット200内の配線設備を通じて行われる。また、充放電スポット200は、ブロードバンド通信モデム、電力線通信モデム、及び宅内電気配線などで構成される電力線通信設備を備えており、電気自動車100と通信線601との間の通信は、充放電スポット200内の電力線通信設備を通じて行われる。 Figure 2 is an explanatory diagram showing the configuration of the electric vehicle 100. The electric vehicle 100 is connected to the charging/discharging spot 200 via a power cord 81 and a socket 82. The charging/discharging spot 200 is equipped with wiring equipment consisting of a watt-hour meter, a distribution board, and indoor electrical wiring, and power is exchanged between the electric vehicle 100 and the power transmission line 701 through the wiring equipment in the charging/discharging spot 200. The charging/discharging spot 200 is also equipped with power line communication equipment consisting of a broadband communication modem, a power line communication modem, and indoor electrical wiring, and communication between the electric vehicle 100 and the communication line 601 is performed through the power line communication equipment in the charging/discharging spot 200.

電気自動車100は、充放電スポット200内の通信プロトコル(電力線通信プロトコル)と電気自動車100内の通信プロトコル(CAN(Controller Area Network)プロトコル)との変換を行うインタフェース80と、充放電スポット200を通じて電力送電線701との間で電力の授受を行うことにより、電力を充放電する蓄電池90とを備えている。蓄電池90は、例えば、鉛電池、ニッケル水素電池、又はリチウムイオン電池などの車載バッテリである。 The electric vehicle 100 includes an interface 80 that converts between the communication protocol (power line communication protocol) in the charging/discharging spot 200 and the communication protocol (CAN (Controller Area Network) protocol) in the electric vehicle 100, and a storage battery 90 that charges and discharges power by transferring power to and from the power transmission line 701 via the charging/discharging spot 200. The storage battery 90 is, for example, an on-board battery such as a lead battery, a nickel-metal hydride battery, or a lithium-ion battery.

充放電スポット200は、蓄電池90の充放電を制御するコントローラ10を備えている。コントローラ10は、中央給電指令所500から送信される出力制御信号を、通信線601及び充放電スポット200内の電力線通信設備を通じて受信する。コントローラ10が受信する出力制御信号は、ある程度の遅延が加えられた過去の出力制御信号であるため、コントローラ10は、遅延補償がなされた出力制御信号を推定し、この推定された出力制御信号に基づいて蓄電池90の充放電を制御する。出力制御信号の推定処理の詳細については、後述する。 The charging/discharging spot 200 is equipped with a controller 10 that controls the charging/discharging of the storage battery 90. The controller 10 receives an output control signal transmitted from the central load dispatching center 500 via the communication line 601 and the power line communication equipment in the charging/discharging spot 200. Since the output control signal received by the controller 10 is a past output control signal with a certain degree of delay added, the controller 10 estimates an output control signal with delay compensation, and controls the charging/discharging of the storage battery 90 based on this estimated output control signal. Details of the output control signal estimation process will be described later.

コントローラ10は、プロセッサ40、メモリ50、及び記憶装置60を備えるコンピュータである。記憶装置60は、例えば、不揮発性のコンピュータ読み取り可能な記憶媒体から構成されている。記憶装置60には、遅延補償がなされた出力制御信号を推定する処理を行うためのプログラム70が格納されている。メモリ50は、例えば、揮発性の記憶媒体から構成されている。プログラム70は、記憶装置60からメモリ50に読み込まれてプロセッサ40により実行される。 The controller 10 is a computer including a processor 40, a memory 50, and a storage device 60. The storage device 60 is, for example, a non-volatile computer-readable storage medium. The storage device 60 stores a program 70 for performing a process of estimating an output control signal for which delay compensation has been performed. The memory 50 is, for example, a volatile storage medium. The program 70 is read from the storage device 60 into the memory 50 and executed by the processor 40.

図3は出力制御信号の生成過程を示す説明図である。電力系統700では、負荷周波数制御によって、電力系統700の系統周波数と基準周波数との間の周波数偏差Δf(t)が所定の偏差以内に制御されている。負荷周波数制御による出力制御信号は、負荷周波数制御信号と呼ばれる。中央給電指令所500は、管轄区域内の電力系統700のキャパシティPWと周波数偏差Δf(t)とを乗算器501により乗算し、その乗算結果に電力系統700の定数502を乗じて、管轄区域内の地域要求量ARを算出する。地域要求量ARは、管轄区域内の供給電力と消費電力との差分を示している。中央給電指令所500は、地域要求量ARに演算処理(ローパスフィルタ503、デッドバンド504、及び比例積分制御505を用いた処理)を行い、管轄区域全体の出力調整を指示する負荷周波数制御信号LFCarea(t)を生成する。 FIG. 3 is an explanatory diagram showing the generation process of the output control signal. In the power system 700, the frequency deviation Δf(t) between the system frequency of the power system 700 and the reference frequency is controlled within a predetermined deviation by the load frequency control. The output control signal by the load frequency control is called a load frequency control signal. The central load dispatching center 500 multiplies the capacity PW and the frequency deviation Δf(t) of the power system 700 in the jurisdiction by a multiplier 501, and multiplies the multiplication result by a constant 502 of the power system 700 to calculate the area demand AR in the jurisdiction. The area demand AR indicates the difference between the supply power and the power consumption in the jurisdiction. The central load dispatching center 500 performs calculation processing (processing using a low-pass filter 503, a dead band 504, and a proportional integral control 505) on the area demand AR to generate a load frequency control signal LFC area (t) that instructs the output adjustment of the entire jurisdiction.

中央給電指令所500は、ハイパスフィルタ506を用いて、負荷周波数制御信号LFCarea(t)をフィルタリングし、複数の電気自動車100全体の出力調整を指示する負荷周波数制御信号LFCEV(t)を生成する。中央給電指令所500は、負荷周波数制御信号LFCEV(t)をアグリゲータ300に送信する。なお、中央給電指令所500は、大規模発電設備400の出力調整を指示する負荷周波数制御信号を負荷周波数制御信号LFCarea(t)から生成するが、電気自動車100の出力調整とは関係ないため、その説明を省略する。 The central load dispatching center 500 filters the load frequency control signal LFC area (t) using a high-pass filter 506, and generates a load frequency control signal LFC EV (t) that instructs output adjustment of the entire plurality of electric vehicles 100. The central load dispatching center 500 transmits the load frequency control signal LFC EV (t) to the aggregator 300. Note that the central load dispatching center 500 generates a load frequency control signal that instructs output adjustment of the large-scale power generation facility 400 from the load frequency control signal LFC area (t), but since this is not related to output adjustment of the electric vehicles 100, a description thereof will be omitted.

アグリゲータ300が管理する電気自動車100の台数をkとするとき、アグリゲータ300は、i番目の電気自動車100の充電量を示すパラメータ301-iを保持している。アグリゲータ300は、パラメータ301-iに基づいて、i番目の電気自動車100の出力調整を指示する負荷周波数制御信号LFCi(t)を生成し、これをi番目の電気自動車100に送信する。ここで、i番目の電気自動車100が受信する負荷周波数制御信号LFCi(t)には、中央給電指令所500からアグリゲータ300を通じてi番目の電気自動車100に到達するまでの通信時間と、アグリゲータ300において負荷周波数制御信号LFCEV(t)から負荷周波数制御信号LFCi(t)を計算するのに要する処理時間とが遅延時間として加えられている。なお、i番目の電気自動車100が受信する負荷周波数制御信号LFCi(t)に加えられている通信遅延と、j番目の電気自動車100が受信する負荷周波数制御信号LFCj(t)に加えられている通信遅延とは、それぞれの通信経路によって異なり得る。但し、i,jは、1以上k以下の整数であり、kは2以上の整数である。 When the number of electric vehicles 100 managed by the aggregator 300 is k, the aggregator 300 holds a parameter 301-i indicating the charge amount of the i-th electric vehicle 100. The aggregator 300 generates a load frequency control signal LFC i (t) instructing output adjustment of the i-th electric vehicle 100 based on the parameter 301-i, and transmits this to the i-th electric vehicle 100. Here, the load frequency control signal LFC i (t) received by the i -th electric vehicle 100 has added thereto, as delay times, the communication time required for the signal to reach the i-th electric vehicle 100 from the central load dispatching center 500 via the aggregator 300 and the processing time required for the aggregator 300 to calculate the load frequency control signal LFC i (t) from the load frequency control signal LFC EV (t). The communication delay applied to the load frequency control signal LFC i (t) received by the i-th electric vehicle 100 and the communication delay applied to the load frequency control signal LFC j (t) received by the j-th electric vehicle 100 may differ depending on the respective communication paths, where i and j are integers between 1 and k, and k is an integer of 2 or more.

図4はコントローラ10の機能ブロック図である。プログラム70が記憶装置60からメモリ50に読み込まれてプロセッサ40により実行されることにより、コントローラ10は、推定器20及び制御器30として機能する。説明の便宜上、図4に示すコントローラ10は、i番目の電気自動車100のコントローラ10であると仮定し、i番目の電気自動車100が受信する負荷周波数制御信号LFCi(t)を、単に、負荷周波数制御信号LFC(t)と表記する。プロセッサ40は、時刻tで負荷周波数制御信号LFC(t)受信するとともに、周波数偏差Δf(t)を検出する。 Fig. 4 is a functional block diagram of the controller 10. A program 70 is loaded from the storage device 60 into the memory 50 and executed by the processor 40, whereby the controller 10 functions as the estimator 20 and the control unit 30. For ease of explanation, it is assumed that the controller 10 shown in Fig. 4 is the controller 10 of the i-th electric vehicle 100, and the load frequency control signal LFC i (t) received by the i-th electric vehicle 100 is simply referred to as the load frequency control signal LFC(t). The processor 40 receives the load frequency control signal LFC(t) at time t and detects the frequency deviation Δf(t).

推定器20は、時刻tでプロセッサ40により検出された周波数偏差Δf(t)を示す信号と、時刻tよりも所定時間dk過去の時刻で中央給電指令所500から送信され、且つ時刻tでプロセッサ40により受信された負荷周波数制御信号LFC(t)とを入力する。所定時間dkは、負荷周波数制御信号LFC(t)に加えられた遅延時間に相当する。 The estimator 20 receives as input a signal indicating the frequency deviation Δf(t) detected by the processor 40 at time t, and a load frequency control signal LFC(t) transmitted from the central load dispatching center 500 at a time that is a predetermined time d k earlier than time t and received by the processor 40 at time t. The predetermined time d k corresponds to a delay time added to the load frequency control signal LFC(t).

推定器20は、周波数偏差Δf(t)を示す信号を所定時間dk遅延させた信号と負荷周波数制御信号LFC(t)との間の時系列的な関係を表す関係変数θ(t)を計算する。関係変数θ(t)は、伝達関数(Z変換式)の形で記述することができ、関係変数θ(t)の計算処理を一定期間継続的に繰り返し行うことにより、伝達関数のパラメータ(定数)の値を、精度のよい値に逐次更新することができる。 The estimator 20 calculates a relational variable θ(t) that expresses a time-series relation between a signal obtained by delaying a signal indicating the frequency deviation Δf(t) by a predetermined time dk and the load frequency control signal LFC(t). The relational variable θ(t) can be described in the form of a transfer function (Z-transform equation), and the values of the parameters (constants) of the transfer function can be successively updated to more accurate values by continuously repeating the calculation process of the relational variable θ(t) for a certain period of time.

制御器30は、時刻tでプロセッサ40により検出された周波数偏差Δf(t)を示す信号と、関係変数θ(t)とから、時刻tで中央給電指令所500から送信されたものと推定される負荷周波数制御信号LFC’(t)を生成する。プロセッサ40は、負荷周波数制御信号LFC’(t)に基づいて蓄電池90の充放電を制御する。 The controller 30 generates a load frequency control signal LFC'(t) that is estimated to have been transmitted from the central load dispatching center 500 at time t from a signal indicating the frequency deviation Δf(t) detected by the processor 40 at time t and the relational variable θ(t). The processor 40 controls the charging and discharging of the storage battery 90 based on the load frequency control signal LFC'(t).

ここで、tを時刻とし、t0を初期時刻とし、nを自然数とし、遅延時間をdkとし、関係変数をθ(t)とし、関係変数の初期値をθ0とし、ゲイン行列をPとし、ゲイン行列の転置行列をPTとし、ゲイン行列の初期値をP0とし、ゲイン行列の転置行列の初期値をPT 0とし、第1の回帰ベクトルをφ(t)とし、第2の回帰ベクトルをφ’(t)とし、誤差をe(t)とし、時刻tにおいてプロセッサ40が検出する周波数偏差を示す信号をΔf(t)とし、時刻tにおいてプロセッサ40が受信する負荷周波数制御信号をLFC(t)とし、時刻tにおいて中央給電指令所500から送信されたものと推定される負荷周波数制御信号をLFC’(t)とすると、(1)式~(8)式のZ変換式が成立する。 Here, t is the time, t0 is the initial time, n is a natural number, the delay time is dk , the relational variable is θ(t), the initial value of the relational variable is θ0 , the gain matrix is P, the transposed matrix of the gain matrix is PT , the initial value of the gain matrix is P0 , the initial value of the transposed matrix of the gain matrix is PT0 , the first regression vector is φ ( t), the second regression vector is φ'(t), the error is e(t), the signal indicating the frequency deviation detected by the processor 40 at time t is Δf(t), the load frequency control signal received by the processor 40 at time t is LFC(t), and the load frequency control signal estimated to have been transmitted from the central load dispatching center 500 at time t is LFC'(t), then the Z-transform equations (1) to (8) are established.

Δf’(t)=z-dk[Δf](t)…(1)
φ(t)=[z-n[Δf’](t),z-n+1[Δf’](t),…,z-2[Δf’] (t),z-1[Δf’](t),Δf’(t),z-n[LFC](t),z-n+1[L FC](t),…,z-2[LFC](t),z-1[LFC](t)]T …(2)
2(t)=1+φT(t)P(t-1)φ(t),P(t0-1)=P0=PT 0 >0 …(3)
P(t)=P(t-1)-[P(t-1)φ(t)φT(t)P(t-1)]/m2 (t),P(t0-1)=P0=PT 0>0 …(4)
θ(t+1)=θ(t)-[P(t-1)φ(t)e(t)]/m2(t),θ(t 0)=θ0 …(5)
e(t)=θT(t)φ(t)-LFC(t) …(6)
φ’(t)=[z-n[Δf](t),z-n+1[Δf](t),…,z-2[Δf](t ),z-1[Δf](t),Δf(t),z-n[LFC’](t),z-n+1[LFC’ ](t),…,z-2[LFC’](t),z-1[LFC’](t)]T …(7)
LFC’(t)=θT(t)φ’(t)…(8)
Δf'(t) = z - dk [Δf](t) ... (1)
φ(t) = [z −n [Δf'](t), z −n+1 [Δf'](t), ..., z −2 [Δf'](t), z −1 [Δf'](t), Δf'(t), z −n [LFC](t), z −n+1 [LFC](t), ..., z −2 [LFC](t), z −1 [LFC](t)] T ... (2)
m 2 (t) = 1 + φ T (t) P (t - 1) φ (t), P (t 0 - 1) = P 0 = P T 0 > 0 ... (3)
P(t)=P(t−1)−[P(t−1)φ(t)φ T (t) P(t−1)]/m 2 (t), P(t 0 −1)=P 0 =P T 0 >0 ... (4)
θ(t+1)=θ(t)−[P(t−1)φ(t)e(t)]/m 2 (t), θ(t 0 )=θ 0 ...(5)
e(t)=θ T (t)φ(t)−LFC(t) (6)
φ'(t) = [z -n [Δf](t), z -n+1 [Δf](t), ..., z -2 [Δf](t), z -1 [Δf](t), Δf(t), z -n [LFC'](t), z -n+1 [LFC'](t), ..., z -2 [LFC'](t), z -1 [LFC'](t)] T ... (7)
LFC'(t)=θ T (t)φ'(t) (8)

なお、プロセッサ40が検出する周波数偏差Δf(t)には、遅延がないため、周波数偏差Δf(t)から遅延時間dkを求めることはできない。(1)~(8)式を用いてLFC’(t)を計算するには、遅延時間dkを推定する必要がある。遅延時間dkは、中央給電指令所500と電気自動車100との間の距離に応じた通信遅延や、アグリゲータ300によるLFC(t)の計算に要する時間などを考慮して、その値を推定することができる。例えば、遅延時間dkの推定最小値をdk’とし、(1)~(8)式において、dkにdk’を代入してθ(t)を計算する。そして、推定値dk’の値を増加させる処理と、増加したdk’をdkに代入して、θ(t)を再計算する処理とを繰り返すと、dk’>dkのときに、LFC’(t)を記述する数式モデルの動特性(応答特性)が変化する。この変化を検出することにより、dk’=dkとなるdk’を見つけることができ、(1)~(8)式を用いて、LFC’(t)を計算することができる。なお、推定最小値dk’=0として、上述の方法により、dk’=dkとなるdk’を見つけてもよい。 In addition, since the frequency deviation Δf(t) detected by the processor 40 does not have a delay, the delay time d k cannot be obtained from the frequency deviation Δf(t). In order to calculate LFC'(t) using the formulas (1) to (8), it is necessary to estimate the delay time d k . The delay time d k can be estimated by taking into consideration a communication delay according to the distance between the central load dispatching center 500 and the electric vehicle 100, the time required for the aggregator 300 to calculate LFC(t), and the like. For example, the estimated minimum value of the delay time d k is set to d k ', and θ(t) is calculated by substituting d k ' for d k in the formulas (1) to (8). Then, by repeating a process of increasing the estimated value d k ' and a process of substituting the increased d k ' for d k and recalculating θ(t), the dynamic characteristics (response characteristics) of the mathematical model describing LFC'(t) change when d k '>d k . By detecting this change, dk ' where dk ' = dk can be found, and LFC'(t) can be calculated using equations (1) to (8). Note that dk ' where dk ' = dk may be found by the above-mentioned method, with the estimated minimum value dk ' = 0.

(2)式及び(7)式のnは、推定精度を指定するものである。例えば、n=2の場合、(2)式は、(2)’式のように記述することができる。同様に、(7)式は、(7)’式のように記述することができる。
φ(t)=[z-2[Δf’](t),z-1[Δf’](t),Δf’(t),z-2[LFC](t),z-1[LFC](t)]T …(2)’
φ’(t)=[z-2[Δf](t),z-1[Δf](t),Δf(t),z-2[LFC’](t),z-1[LFC’](t)]T …(7)’
In equations (2) and (7), n specifies the estimation accuracy. For example, when n=2, equation (2) can be written as equation (2)'. Similarly, equation (7) can be written as equation (7)'.
φ(t) = [z −2 [Δf′](t), z −1 [Δf′](t), Δf′(t), z −2 [LFC](t), z −1 [LFC](t)] T ... (2)'
φ'(t) = [z -2 [Δf](t), z -1 [Δf](t), Δf(t), z -2 [LFC'](t), z -1 [LFC'](t)] T ... (7)'

図5は、n=2の場合の推定器20の機能ブロック図を示す。推定器20は、(1)式、(2)’式、(3)式~(6)式に基づいて、Δf(t)及びLFC(t)からθ(t)を計算する。図5の符号201~207は、遅延演算子を示す。符号208,209は、入力される行列の転置行列を出力する演算子を示す。符号210は、マルチプレクサを示す。符号211~220は、これらの符号が示すブロックに表記されている演算を行う演算子を示す。例えば、符号211は、4つの入力の乗算結果を出力する演算子を示す。 Figure 5 shows a functional block diagram of the estimator 20 when n = 2. The estimator 20 calculates θ(t) from Δf(t) and LFC(t) based on equations (1), (2)', and (3) to (6). References 201 to 207 in Figure 5 indicate delay operators. References 208 and 209 indicate operators that output the transpose of an input matrix. Reference 210 indicates a multiplexer. References 211 to 220 indicate operators that perform the operations indicated in the blocks indicated by these reference symbols. For example, reference 211 indicates an operator that outputs the multiplication result of four inputs.

図6は、n=2の場合の制御器30の機能ブロック図を示す。制御器30は、(7)’式及び(8)式に基づいて、θ(t)及びΔf(t)からLFC’(t)を計算する。符号301~304は、遅延演算子を示す。符号305は、入力される行列の転置行列を出力する演算子を示す。符号306は、マルチプレクサを示す。符号307は、2つの入力の乗算結果を出力する演算子を示す。 Figure 6 shows a functional block diagram of the controller 30 when n = 2. The controller 30 calculates LFC'(t) from θ(t) and Δf(t) based on equations (7)' and (8). References 301 to 304 indicate delay operators. Reference 305 indicates an operator that outputs the transpose of an input matrix. Reference 306 indicates a multiplexer. Reference 307 indicates an operator that outputs the multiplication result of two inputs.

図7は負荷周波数制御信号の推定処理の流れを示すフローチャートである。プログラム70がプロセッサ40により実行されることにより、負荷周波数制御信号の推定処理が実行される。
ステップ701において、プロセッサ40は、第1の時刻でプロセッサ40により検出された周波数偏差Δf(t)を示す信号と、第1の時刻よりも所定時間dk過去の第2の時刻で中央給電指令所500から送信され且つ第1の時刻でプロセッサ40により受信された負荷周波数制御信号LFC(t)とを入力する。
ステップ702において、プロセッサ40は、周波数偏差Δf(t)を示す信号を所定時間dk遅延させた信号と負荷周波数制御信号LFC(t)との間の時系列的な関係を表す関係変数θ(t)を計算する。
ステップ703において、プロセッサ40は、第3の時刻でプロセッサ40により検出された周波数偏差Δf(t)を示す信号と関係変数θ(t)とから第3の時刻で中央給電指令所500から送信されたものと推定される負荷周波数制御信号LFC’(t)を生成する。ここで、第3の時刻は、第1の時刻と同時刻でもよく、或いは第1の時刻以降の任意の時刻でもよい。
ステップ704において、プロセッサ40は、負荷周波数制御信号LFC’(t)に基づいて蓄電池90の充放電を制御する。
7 is a flowchart showing the flow of the load frequency control signal estimation process. The load frequency control signal estimation process is performed by executing the program 70 by the processor 40.
In step 701, the processor 40 inputs a signal indicating the frequency deviation Δf(t) detected by the processor 40 at a first time, and a load frequency control signal LFC(t) transmitted from the central load dispatching center 500 at a second time that is a predetermined time d k in the past from the first time and received by the processor 40 at the first time.
In step 702, the processor 40 calculates a relational variable θ(t) that represents the time-series relationship between a signal obtained by delaying a signal indicating the frequency deviation Δf(t) by a predetermined time d k and the load frequency control signal LFC(t).
In step 703, the processor 40 generates a load frequency control signal LFC'(t) estimated to have been transmitted from the central load dispatching center 500 at the third time from the signal indicating the frequency deviation Δf(t) detected by the processor 40 at the third time and the relational variable θ(t). Here, the third time may be the same as the first time or may be any time after the first time.
In step 704, the processor 40 controls the charging and discharging of the storage battery 90 based on the load frequency control signal LFC'(t).

図8は、負荷周波数制御信号の推定処理のシミュレーション結果を示す。符号801は、中央給電指令所500から送信される負荷周波数制御信号を示す。符号802は、中央給電指令所500から送信されて電気自動車100により受信された負荷周波数制御信号を示す。符号801,802で示されるグラフを比較すると、電気自動車100が受信する負荷周波数制御信号は、中央給電指令所500から送信される負荷周波数制御信号に対して時間的に遅延していることが分かる。符号803は、本発明の実施形態に関わる推定処理により推定される負荷周波数制御信号を示す。符号801,803で示されるグラフを比較すると、負荷周波数制御信号の高精度な遅延補償がなされていることが分かる。 Figure 8 shows the simulation results of the estimation process of the load frequency control signal. Reference numeral 801 indicates the load frequency control signal transmitted from the central load dispatching center 500. Reference numeral 802 indicates the load frequency control signal transmitted from the central load dispatching center 500 and received by the electric vehicle 100. Comparing the graphs indicated by reference numerals 801 and 802, it can be seen that the load frequency control signal received by the electric vehicle 100 is delayed in time with respect to the load frequency control signal transmitted from the central load dispatching center 500. Reference numeral 803 indicates the load frequency control signal estimated by the estimation process related to an embodiment of the present invention. Comparing the graphs indicated by reference numerals 801 and 803, it can be seen that highly accurate delay compensation is performed on the load frequency control signal.

図9は、負荷周波数制御信号の推定処理の評価結果を示す。パラメータxは、測定ノイズの大きさが正規分布N(0,(0.02x/3)2)に従うと仮定したときのxを示している。例えば、x=1の場合、測定ノイズの標準偏差は、0.02/3である。パラメータAは、オリジナルの信号と比較対象の信号との間の相関係数を示しており、両者の信号波形の形状が類似している程、相関係数は高くなる。パラメータPは、オリジナルの信号と比較対象の信号との間で単位面積あたりにつき重なり合う部分の面積の割合いを示している。「遅延補償あり(次数=10)」は、伝達関数の次数が10である関係変数θ(t)を用いて、負荷周波数制御信号の推定処理を行うことを意味する。「遅延補償あり(次数=20)」は、伝達関数の次数が20である関係変数θ(t)を用いて、負荷周波数制御信号の推定処理を行うことを意味する。「遅延補償なし」は、時間的に遅延している負荷周波数制御信号をそのまま受信するだけの処理を意味する。 FIG. 9 shows the evaluation results of the estimation process of the load frequency control signal. The parameter x indicates x when it is assumed that the magnitude of the measurement noise follows a normal distribution N(0, (0.02x/3) 2 ). For example, when x=1, the standard deviation of the measurement noise is 0.02/3. The parameter A indicates the correlation coefficient between the original signal and the signal to be compared, and the more similar the shapes of the signal waveforms of the two are, the higher the correlation coefficient becomes. The parameter P indicates the ratio of the area of the overlapping part per unit area between the original signal and the signal to be compared. "With delay compensation (order=10)" means that the estimation process of the load frequency control signal is performed using a relation variable θ(t) whose transfer function has an order of 10. "With delay compensation (order=20)" means that the estimation process of the load frequency control signal is performed using a relation variable θ(t) whose transfer function has an order of 20. "Without delay compensation" means that the load frequency control signal, which is delayed in time, is simply received as it is.

遅延補償の有無に関係なく、オリジナルの信号と比較対象の信号との間に信号波形の実質的な相違は見られないことから、パラメータAの値に実質的な差異は見られない。一方、遅延補償をしない場合よりも、遅延補償をする場合の方がパラメータPの値は高いことが分かる。更に、伝達関数の次数が低い関係変数θ(t)を用いて、負荷周波数制御信号の推定処理を行う場合よりも、伝達関数の次数が高い関係変数θ(t)を用いて、負荷周波数制御信号の推定処理を行う場合の方がパラメータPの値は高いことが分かる。これらの評価結果から、(1)式~(8)式において、nの値を大きくする程、精度の高い遅延補償を行えることが分かる。 Regardless of whether or not delay compensation is used, there is no substantial difference in the signal waveform between the original signal and the comparison signal, and therefore no substantial difference in the value of parameter A. On the other hand, it can be seen that the value of parameter P is higher when delay compensation is used than when delay compensation is not used. Furthermore, it can be seen that the value of parameter P is higher when the load frequency control signal estimation process is performed using a relational variable θ(t) with a high order transfer function than when the load frequency control signal estimation process is performed using a relational variable θ(t) with a low order transfer function. From these evaluation results, it can be seen that the larger the value of n in equations (1) to (8), the more accurate the delay compensation can be.

本発明の実施形態によれば、負荷周波数制御信号の精度の高い遅延補償を行うことができるため、短期間の負荷変動に追従して電力需給調整を図ることができるという利点を有する。また、エネルギー・リソース・アグリゲーション・ビジネスにおいては、負荷周波数制御信号に精度よく追従して充放電する程、需要者には、高い対価が付与されるため、ビジネス上の利点も有する。 According to an embodiment of the present invention, it is possible to perform highly accurate delay compensation of the load frequency control signal, which has the advantage of being able to adjust power supply and demand in response to short-term load fluctuations. In addition, in the energy resource aggregation business, the more accurately the load frequency control signal is followed to charge and discharge, the higher the price is paid to the consumer, which also has a business advantage.

なお、上述の説明では、電気自動車100の蓄電池90の充放電制御を例示したが、本発明はこれに限られるものではなく、電力需給調整に利用し得る様々な蓄電池(例えば、家庭用蓄電池や産業用蓄電池など)の充放電制御にも応用可能である。 In the above explanation, the charge/discharge control of the storage battery 90 of the electric vehicle 100 is exemplified, but the present invention is not limited to this, and can also be applied to the charge/discharge control of various storage batteries (e.g., household storage batteries, industrial storage batteries, etc.) that can be used to adjust power supply and demand.

以上、説明した実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更又は改良され得るととともに、本発明にはその等価物も含まれる。すなわち、実施形態に当業者が適宜設計変更を加えたものも、本発明の特徴を備えている限り、本発明の範囲に包含される。また、実施形態が備える各要素は、技術的に可能な限りにおいて組み合わせることができ、これらを組み合わせたものも、本発明の特徴を含む限り、本発明の範囲に包含される。 The above-described embodiments are intended to facilitate understanding of the present invention, and are not intended to limit the present invention. The present invention may be modified or improved without departing from the spirit thereof, and equivalents are also included in the present invention. In other words, even if a person skilled in the art makes appropriate design changes to the embodiments, they will be included in the scope of the present invention as long as they include the characteristics of the present invention. Furthermore, the elements of the embodiments can be combined to the extent technically possible, and such combinations will be included in the scope of the present invention as long as they include the characteristics of the present invention.

100…電気自動車 10…コントローラ 20…推定器 30…制御器 40…プロセッサ 50…メモリ 60…記憶装置 70…プログラム 200…充放電スポット 300…アグリゲータ 400…大規模発電設備 500…中央給電指令所 600…通信網 601…通信線 700…電力系統 701…電力送電線 100... Electric vehicle 10... Controller 20... Estimator 30... Controller 40... Processor 50... Memory 60... Storage device 70... Program 200... Charging/discharging spot 300... Aggregator 400... Large-scale power generation facility 500... Central load dispatching center 600... Communication network 601... Communication line 700... Power system 701... Power transmission line

Claims (6)

系統周波数と基準周波数との間の周波数偏差を検出するとともに、中央給電指令所から送信される負荷周波数制御信号を受信するコンピュータが、
第1の時刻で検出された前記周波数偏差を示す信号と、前記第1の時刻よりも所定時間過去の第2の時刻で前記中央給電指令所から送信され且つ前記第1の時刻で受信された負荷周波数制御信号とを入力し、
前記周波数偏差を示す信号を前記所定時間遅延させた信号と前記負荷周波数制御信号との間の時系列的な関係を表す関係変数を計算し、
第3の時刻で検出された前記周波数偏差を示す信号と前記関係変数とから前記第3の時刻で前記中央給電指令所から送信されたものと推定される負荷周波数制御信号を生成する、方法。
A computer that detects a frequency deviation between a system frequency and a reference frequency and receives a load frequency control signal transmitted from a central load dispatching center,
a signal indicating the frequency deviation detected at a first time and a load frequency control signal transmitted from the central load dispatching center at a second time that is a predetermined time before the first time and received at the first time are input;
Calculating a relational variable representing a time-series relation between a signal obtained by delaying the signal indicating the frequency deviation by the predetermined time and the load frequency control signal;
generating a load frequency control signal estimated to have been transmitted from the central load dispatching center at the third time from the signal indicating the frequency deviation detected at the third time and the related variable.
請求項1に記載の方法であって、
前記コンピュータは、前記推定される負荷周波数制御信号に基づいて蓄電池の充放電を制御する、方法。
2. The method of claim 1 ,
The computer controls charging and discharging of a battery based on the estimated load frequency control signal.
請求項2に記載の方法であって、
前記蓄電池は、電気自動車の車載バッテリである、方法。
3. The method of claim 2,
The method according to claim 1, wherein the storage battery is an on-board battery of an electric vehicle.
請求項3項に記載の方法であって、
tを時刻とし、
0を初期時刻とし、
nを自然数とし、
前記所定時間をdkとし、
前記関係変数をθ(t)とし、
前記関係変数の初期値をθ0とし、
ゲイン行列をPとし、
前記ゲイン行列の転置行列をPTとし、
前記ゲイン行列の初期値をP0とし、
前記ゲイン行列の転置行列の初期値をPT 0とし、
第1の回帰ベクトルをφ(t)とし、
第2の回帰ベクトルをφ’(t)とし、
誤差をe(t)とし、
時刻tにおいて前記コンピュータが検出する周波数偏差を示す信号をΔf(t)とし、
時刻tにおいて前記コンピュータが受信する負荷周波数制御信号をLFC(t)とし、
時刻tにおいて前記中央給電指令所から送信されたものと推定される負荷周波数制御信号をLFC’(t)とすると、
(1)式~(8)式のZ変換式を満たす、方法。
Δf’(t)=z-dk[Δf](t)…(1)
φ(t)=[z-n[Δf’](t),z-n+1[Δf’](t),…,z-2[Δf’] (t),z-1[Δf’](t),Δf’(t),z-n[LFC](t),z-n+1[L FC](t),…,z-2[LFC](t),z-1[LFC](t)]T …(2)
2(t)=1+φT(t)P(t-1)φ(t),P(t0-1)=P0=PT 0 >0 …(3)
P(t)=P(t-1)-[P(t-1)φ(t)φT(t)P(t-1)]/m2 (t),P(t0-1)=P0=PT 0>0 …(4)
θ(t+1)=θ(t)-[P(t-1)φ(t)e(t)]/m2(t),θ(t 0)=θ0 …(5)
e(t)=θT(t)φ(t)-LFC(t) …(6)
φ’(t)=[z-n[Δf](t),z-n+1[Δf](t),…,z-2[Δf](t ),z-1[Δf](t),Δf(t),z-n[LFC’](t),z-n+1[LFC’ ](t),…,z-2[LFC’](t),z-1[LFC’](t)]T …(7)
LFC’(t)=θT(t)φ’(t)…(8)
4. The method of claim 3, further comprising:
Let t be the time,
Let t0 be the initial time,
n is a natural number,
The predetermined time is d k ,
The relational variable is θ(t),
The initial value of the relational variable is θ 0 ,
Let P be the gain matrix,
The transpose of the gain matrix is P T ,
The initial value of the gain matrix is P 0 ,
The initial value of the transposed matrix of the gain matrix is P T 0 ,
Let the first regression vector be φ(t),
Let the second regression vector be φ′(t),
Let the error be e(t),
A signal indicating a frequency deviation detected by the computer at time t is denoted as Δf(t),
Let LFC(t) be the load frequency control signal received by the computer at time t,
If the load frequency control signal estimated to have been transmitted from the central load dispatching center at time t is LFC'(t), then
A method for satisfying the Z-transform equations (1) to (8).
Δf'(t) = z - dk [Δf](t) ... (1)
φ(t) = [z −n [Δf'](t), z −n+1 [Δf'](t), ..., z −2 [Δf'](t), z −1 [Δf'](t), Δf'(t), z −n [LFC](t), z −n+1 [LFC](t), ..., z −2 [LFC](t), z −1 [LFC](t)] T ... (2)
m 2 (t) = 1 + φ T (t) P (t - 1) φ (t), P (t 0 - 1) = P 0 = P T 0 > 0 ... (3)
P(t)=P(t−1)−[P(t−1)φ(t)φ T (t) P(t−1)]/m 2 (t), P(t 0 −1)=P 0 =P T 0 >0 ... (4)
θ(t+1)=θ(t)−[P(t−1)φ(t)e(t)]/m 2 (t), θ(t 0 )=θ 0 ...(5)
e(t)=θ T (t)φ(t)−LFC(t) (6)
φ'(t) = [z -n [Δf](t), z -n+1 [Δf](t), ..., z -2 [Δf](t), z -1 [Δf](t), Δf(t), z -n [LFC'](t), z -n+1 [LFC'](t), ..., z -2 [LFC'](t), z -1 [LFC'](t)] T ... (7)
LFC'(t)=θ T (t)φ'(t) (8)
系統周波数と基準周波数との間の周波数偏差を検出するとともに、中央給電指令所から送信される負荷周波数制御信号を受信するプロセッサであって、
第1の時刻で検出された前記周波数偏差を示す信号と、前記第1の時刻よりも所定時間過去の第2の時刻で前記中央給電指令所から送信され且つ前記第1の時刻で受信された負荷周波数制御信号とを入力する処理と、
前記周波数偏差を示す信号を前記所定時間遅延させた信号と前記負荷周波数制御信号との間の時系列的な関係を表す関係変数を計算する処理と、
第3の時刻で検出された前記周波数偏差を示す信号と前記関係変数とから前記第3の時刻で前記中央給電指令所から送信されたものと推定される負荷周波数制御信号を生成する処理と、
を実行するように構成されたプロセッサ。
A processor that detects a frequency deviation between a system frequency and a reference frequency and receives a load frequency control signal transmitted from a central load dispatching center,
A process of inputting a signal indicating the frequency deviation detected at a first time and a load frequency control signal transmitted from the central load dispatching center at a second time that is a predetermined time before the first time and received at the first time;
A process of calculating a relational variable representing a time-series relation between a signal obtained by delaying the signal indicating the frequency deviation by the predetermined time and the load frequency control signal;
A process of generating a load frequency control signal estimated to have been transmitted from the central load dispatching center at the third time from the signal indicating the frequency deviation detected at the third time and the related variable;
A processor configured to run
系統周波数と基準周波数との間の周波数偏差を検出するとともに、中央給電指令所から送信される負荷周波数制御信号を受信するコンピュータに、
第1の時刻で検出された前記周波数偏差を示す信号と、前記第1の時刻よりも所定時間過去の第2の時刻で前記中央給電指令所から送信され且つ前記第1の時刻で受信された負荷周波数制御信号とを入力する処理と、
前記周波数偏差を示す信号を前記所定時間遅延させた信号と前記負荷周波数制御信号との間の時系列的な関係を表す関係変数を計算する処理と、
第3の時刻で検出された前記周波数偏差を示す信号と前記関係変数とから前記第3の時刻で前記中央給電指令所から送信されたものと推定される負荷周波数制御信号を生成する処理と、
を実行させるプログラム。
A computer that detects a frequency deviation between a system frequency and a reference frequency and receives a load frequency control signal transmitted from a central load dispatching center,
A process of inputting a signal indicating the frequency deviation detected at a first time and a load frequency control signal transmitted from the central load dispatching center at a second time that is a predetermined time before the first time and received at the first time;
A process of calculating a relational variable representing a time-series relation between a signal obtained by delaying the signal indicating the frequency deviation by the predetermined time and the load frequency control signal;
A process of generating a load frequency control signal estimated to have been transmitted from the central load dispatching center at the third time from the signal indicating the frequency deviation detected at the third time and the related variable;
A program that executes the following.
JP2020125514A 2020-07-22 2020-07-22 Method, processor, and program for estimating a load frequency control signal Active JP7486798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020125514A JP7486798B2 (en) 2020-07-22 2020-07-22 Method, processor, and program for estimating a load frequency control signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020125514A JP7486798B2 (en) 2020-07-22 2020-07-22 Method, processor, and program for estimating a load frequency control signal

Publications (2)

Publication Number Publication Date
JP2022021737A JP2022021737A (en) 2022-02-03
JP7486798B2 true JP7486798B2 (en) 2024-05-20

Family

ID=80220649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020125514A Active JP7486798B2 (en) 2020-07-22 2020-07-22 Method, processor, and program for estimating a load frequency control signal

Country Status (1)

Country Link
JP (1) JP7486798B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042475A1 (en) 2011-09-22 2013-03-28 日本電気株式会社 Battery control system, battery control device, battery control method and recording medium
WO2014167768A1 (en) 2013-04-12 2014-10-16 パナソニック株式会社 Frequency control method and frequency control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013042475A1 (en) 2011-09-22 2013-03-28 日本電気株式会社 Battery control system, battery control device, battery control method and recording medium
WO2014167768A1 (en) 2013-04-12 2014-10-16 パナソニック株式会社 Frequency control method and frequency control system

Also Published As

Publication number Publication date
JP2022021737A (en) 2022-02-03

Similar Documents

Publication Publication Date Title
US11085969B2 (en) Electrical energy storage system with battery resistance estimation
US8498832B2 (en) Method and device for assessing and monitoring voltage security in a power system
US10205317B2 (en) Management of grid-scale energy storage systems for multiple services
US9507367B2 (en) Method and system for dynamic stochastic optimal electric power flow control
CN109861202B (en) Dynamic optimization scheduling method and system for flexible interconnected power distribution network
CN110120686B (en) New energy bearing capacity early warning method based on online inertia estimation of power system
US20070185665A1 (en) Method for determining power flow in an electrical distribution system
US10069302B2 (en) Power flow control system and power flow control method
JP7120600B2 (en) Processing device, processing method and program
CN103199554A (en) Method for achieving power grid light storage system capacity configuration and optimization distribution
JP2010130762A (en) Electric power supply system containing natural energy generating apparatus and supply/demand adjusting method
US10599175B1 (en) Time synchronized frequency and voltage regulation of electric power balancing areas
JP6548570B2 (en) POWER SUPPLY SYSTEM, CONTROL DEVICE AND PROGRAM FOR POWER SUPPLY SYSTEM
WO2017149618A1 (en) Control device, power generation control device, control method, system, and program
CN105391059A (en) Distributed power generation system state estimation method based on current measurement transformation
CN102510060B (en) Computing method of frequency characteristic coefficient of electric system
JP2019509712A (en) System for efficiently charging distributed batteries
CN105680444A (en) Power factor control analysis method for power transmission and distribution line
WO2019130665A1 (en) Power generation system
Wang et al. Phase balancing in power distribution network with data center
KR101961703B1 (en) Management apparatus and method of ess
CN111555369A (en) Medium-voltage and low-voltage collaborative optimization method for power distribution network
JP7486798B2 (en) Method, processor, and program for estimating a load frequency control signal
Majumder et al. Allowable delay heuristic in provision of primary frequency reserve in future power systems
JP7319838B2 (en) Power management device and power management method

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20200818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240426

R150 Certificate of patent or registration of utility model

Ref document number: 7486798

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150