JP7485904B2 - How charcoal is made - Google Patents
How charcoal is made Download PDFInfo
- Publication number
- JP7485904B2 JP7485904B2 JP2020035977A JP2020035977A JP7485904B2 JP 7485904 B2 JP7485904 B2 JP 7485904B2 JP 2020035977 A JP2020035977 A JP 2020035977A JP 2020035977 A JP2020035977 A JP 2020035977A JP 7485904 B2 JP7485904 B2 JP 7485904B2
- Authority
- JP
- Japan
- Prior art keywords
- wood
- charcoal
- specific gravity
- carbonization
- strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003610 charcoal Substances 0.000 title claims description 175
- 239000002023 wood Substances 0.000 claims description 125
- 238000003763 carbonization Methods 0.000 claims description 102
- 230000005484 gravity Effects 0.000 claims description 90
- 239000000571 coke Substances 0.000 claims description 40
- 238000004519 manufacturing process Methods 0.000 claims description 27
- 238000010438 heat treatment Methods 0.000 claims description 26
- 239000003245 coal Substances 0.000 claims description 25
- 238000011049 filling Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 118
- 239000011269 tar Substances 0.000 description 83
- 239000007789 gas Substances 0.000 description 53
- 238000000034 method Methods 0.000 description 39
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 26
- 241000894007 species Species 0.000 description 25
- 230000008569 process Effects 0.000 description 23
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 14
- 239000001569 carbon dioxide Substances 0.000 description 13
- 229910002092 carbon dioxide Inorganic materials 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 12
- 238000005087 graphitization Methods 0.000 description 12
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 11
- 239000001301 oxygen Substances 0.000 description 11
- 229910052760 oxygen Inorganic materials 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- 241000196324 Embryophyta Species 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000011148 porous material Substances 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 8
- 238000009628 steelmaking Methods 0.000 description 8
- 239000002028 Biomass Substances 0.000 description 7
- 238000004458 analytical method Methods 0.000 description 6
- 238000009835 boiling Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 241000167854 Bourreria succulenta Species 0.000 description 4
- 241000190019 Guaiacum Species 0.000 description 4
- 235000004440 Guaiacum sanctum Nutrition 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 4
- 239000011449 brick Substances 0.000 description 4
- 238000010000 carbonizing Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 239000003638 chemical reducing agent Substances 0.000 description 4
- 235000019693 cherries Nutrition 0.000 description 4
- 230000006378 damage Effects 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000006722 reduction reaction Methods 0.000 description 4
- 239000011593 sulfur Substances 0.000 description 4
- 229910052717 sulfur Inorganic materials 0.000 description 4
- 235000021419 vinegar Nutrition 0.000 description 4
- 239000000052 vinegar Substances 0.000 description 4
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 3
- 235000017491 Bambusa tulda Nutrition 0.000 description 3
- 241000218691 Cupressaceae Species 0.000 description 3
- 240000003133 Elaeis guineensis Species 0.000 description 3
- 235000001950 Elaeis guineensis Nutrition 0.000 description 3
- 240000007049 Juglans regia Species 0.000 description 3
- 235000009496 Juglans regia Nutrition 0.000 description 3
- 240000007182 Ochroma pyramidale Species 0.000 description 3
- 244000082204 Phyllostachys viridis Species 0.000 description 3
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011425 bamboo Substances 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000000197 pyrolysis Methods 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 235000020234 walnut Nutrition 0.000 description 3
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 244000274906 Quercus alba Species 0.000 description 2
- 235000009137 Quercus alba Nutrition 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000921 elemental analysis Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 235000014571 nuts Nutrition 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- -1 1-methylnaphthalene Chemical class 0.000 description 1
- 238000007088 Archimedes method Methods 0.000 description 1
- 241000233788 Arecaceae Species 0.000 description 1
- 235000018185 Betula X alpestris Nutrition 0.000 description 1
- 235000018212 Betula X uliginosa Nutrition 0.000 description 1
- 241000218645 Cedrus Species 0.000 description 1
- 241000218631 Coniferophyta Species 0.000 description 1
- 235000003385 Diospyros ebenum Nutrition 0.000 description 1
- 241000792913 Ebenaceae Species 0.000 description 1
- 229920002488 Hemicellulose Polymers 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000007476 Maximum Likelihood Methods 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 244000021150 Orbignya martiana Species 0.000 description 1
- 235000014643 Orbignya martiana Nutrition 0.000 description 1
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 244000273618 Sphenoclea zeylanica Species 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000002551 biofuel Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- TXKMVPPZCYKFAC-UHFFFAOYSA-N disulfur monoxide Inorganic materials O=S=S TXKMVPPZCYKFAC-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 230000008676 import Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006057 reforming reaction Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical compound S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Coke Industry (AREA)
Description
本発明は、木炭の強度を向上させることができる木炭の製造方法に関するものである。 The present invention relates to a method for producing charcoal that can improve the strength of the charcoal.
二酸化炭素は代表的な温室効果ガスとして知られている。製鉄業は二酸化炭素排出量が多い産業として知られており、世界中の二酸化炭素排出量の約5%は製鉄業に由来すると試算されている。製鉄プロセスの中でも、高炉で発生する二酸化炭素の量は多く、高炉法を主体とする製鉄プロセスでは、8割から9割程度の二酸化炭素が高炉での還元反応に伴って発生することが知られている。高炉内での鉄鉱石の還元反応は、主として、石炭やコークスを還元剤として利用しており、不可避的に化石燃料由来の二酸化炭素が大量に発生してしまう。そこで、非化石燃料を還元剤として利用することで、高炉内での反応に伴う二酸化炭素の発生量を低減する試みが多数進められている。 Carbon dioxide is known as a typical greenhouse gas. The steel industry is known to be an industry that emits a large amount of carbon dioxide, and it is estimated that about 5% of the world's carbon dioxide emissions come from the steel industry. Among the steelmaking processes, the amount of carbon dioxide generated in blast furnaces is large, and it is known that in steelmaking processes that mainly use the blast furnace method, about 80 to 90% of the carbon dioxide is generated as a result of the reduction reaction in the blast furnace. The reduction reaction of iron ore in the blast furnace mainly uses coal and coke as a reducing agent, and a large amount of carbon dioxide derived from fossil fuels is inevitably generated. Therefore, many attempts are being made to reduce the amount of carbon dioxide generated from the reaction in the blast furnace by using non-fossil fuels as a reducing agent.
高炉での化石燃料使用量を削減することを目的に、木材などのバイオマスを炭化し、還元剤として高炉内に装入する試みが古くより行われている。高炉の羽口から吹き込まれる微粉炭は、全量を木炭で置き換えることができることがいくつかの研究で報告されており(非特許文献1、2)、また、微粉鉄鉱石と木炭粉とを混合してペレット化し、原料として利用する手法も報告されており、実機の高炉での試験も達成されている(非特許文献3)。またブラジルでは、小型の高炉については、すべての還元剤を木炭とした操業も達成されている。 In order to reduce the amount of fossil fuel used in blast furnaces, attempts have long been made to carbonize biomass such as wood and charge it into the blast furnace as a reducing agent. Several studies have reported that the pulverized coal blown into the blast furnace tuyeres can be entirely replaced with charcoal (Non-Patent Documents 1 and 2), and a method has also been reported in which fine iron ore and charcoal powder are mixed, pelletized, and used as a raw material, and testing has been achieved in an actual blast furnace (Non-Patent Document 3). In Brazil, small blast furnaces have also been operated using charcoal as the only reducing agent.
近代の大型高炉の炉頂から装入されるコークスについても、この製造に際して木炭の利用を試みた例が報告されている。例えば、コークス製造時に、粘結炭の一部を木炭に置き換える検討は多数なされているが、質量比で5%以下程度を木炭に置き換えた場合においては、通常のコークスに近い強度が得られることが報告されている(特許文献1)。その他、バイオマス粉とバインダーを混合したうえで、加圧条件下で炭化する手法が多数開示されており(特許文献2~4)、適切な処理を施すことで製鉄用のコークスと同程度の高い強度が得られている。また、特別な処理を施さずに、木材を炭化して木炭を製造した場合にも、一部の報告においては製鉄用コークスに近い強度が得られたとの報告がある(非特許文献4、5)。 There have also been reports of attempts to use charcoal in the production of coke, which is charged into the top of modern large blast furnaces. For example, many studies have been conducted on replacing part of the caking coal with charcoal during coke production, and it has been reported that when 5% or less by mass of the coal is replaced with charcoal, strength close to that of regular coke can be obtained (Patent Document 1). In addition, many methods have been disclosed in which biomass powder is mixed with a binder and then carbonized under pressure (Patent Documents 2 to 4), and by carrying out appropriate processing, high strength comparable to that of coke used in steelmaking can be obtained. In addition, some reports have reported that when charcoal is produced by carbonizing wood without carrying out any special processing, strength close to that of coke used in steelmaking can be obtained (Non-Patent Documents 4 and 5).
しかしながら、木炭から大型高炉向けの製鉄用コークスを製造する手法として、従来報告されているものはいずれも課題がある。例えば、コークス製造時に、粘結炭の一部を木炭に置き換える検討は多数なされているが、いずれも質量比で5%程度を木炭に置き換えただけで製品コークスの強度が著しく低下することが報告されている(非特許文献6)。しかもその強度低下の度合は、コークスと木炭の加重平均値よりも低く、木炭が含む含酸素官能基がコークス品質を著しく低下させるとされている。既述の通り、バイオマス添加量が質量比3%未満であれば強度を保持した報告もあるが(特許文献1)、そうした少量の利用では二酸化炭素排出量の削減に対する効果は小さい。その他、バイオマス粉とバインダーを混合したうえで、加圧条件下で炭化する手法については(特許文献2~4)、非常に高コストであり、製鉄プロセスで利用するような膨大な量の木炭を製造するのに適した手法ではない。また、もとより高い強度を有する実などを用いた報告が多く、大量に入手可能な木材で高強度木炭を得たという報告もない。さらには、試料間でのばらつきが非常に大きいことも指摘されている(非特許文献7)。 However, all of the previously reported methods for producing coke for steelmaking from charcoal for large blast furnaces have problems. For example, many studies have been conducted on replacing part of the caking coal with charcoal during coke production, but it has been reported that the strength of the product coke is significantly reduced by only replacing about 5% by mass with charcoal (Non-Patent Document 6). Moreover, the degree of strength reduction is lower than the weighted average of coke and charcoal, and it is said that the oxygen-containing functional groups contained in charcoal significantly reduce the quality of the coke. As mentioned above, there are reports that strength is maintained if the amount of biomass added is less than 3% by mass (Patent Document 1), but the effect of reducing carbon dioxide emissions is small when such a small amount is used. In addition, the method of mixing biomass powder and a binder and carbonizing it under pressurized conditions (Patent Documents 2 to 4) is very expensive and is not suitable for producing a huge amount of charcoal to be used in the steelmaking process. In addition, there are many reports of using nuts, which have high strength to begin with, and there are no reports of obtaining high-strength charcoal from wood that is available in large quantities. Furthermore, it has been pointed out that there is a very large variation between samples (Non-Patent Document 7).
上述した従来の手法を踏まえ、本発明の目的は、大量に入手可能な木材を用いて、木炭の強度を向上させることができる木炭の製造方法を提供するものである。 Based on the above-mentioned conventional methods, the object of the present invention is to provide a method for producing charcoal that can improve the strength of charcoal using wood that is available in large quantities.
本発明は、次の態様を含む。
[1]
木材にタール蒸気を供給しながら、前記木材を800℃まで昇温して炭化させ、見かけ比重が0.55g/cm3以上の木炭を製造することを特徴とする木炭の製造方法。
[2]
気乾比重が0.68g/cm3以上である木材にタール蒸気を供給しながら、前記木材を700℃以上1200℃以下の温度まで昇温して炭化させることを特徴とする木炭の製造方法。
[3]
木材にタール蒸気を供給しながら、前記木材を1000℃まで昇温して炭化させ、見かけ比重が0.48g/cm3以上の木炭を製造することを特徴とする木炭の製造方法。
[4]
気乾比重が0.55g/cm3以上である木材にタール蒸気を供給しながら、前記木材を700℃以上1200℃以下の温度まで昇温して炭化させることを特徴とする木炭の製造方法。
[5]
木材にタール蒸気を供給しながら、前記木材を1100℃まで昇温して炭化させ、見かけ比重が0.45g/cm3以上の木炭を製造することを特徴とする木炭の製造方法。
[6]
前記木材の気乾比重が0.55g/cm3以上であることを特徴とする[5]に記載の木炭の製造方法。
[7]
木材にタール蒸気を供給しながら、前記木材を700℃以上1200℃以下の温度(700℃を除く)まで昇温して炭化させ、
コークス炉炭化室に充填された石炭の充填層の上面に前記木材を充填し、前記タール蒸気として、前記石炭の乾留によって発生するガスに含まれるタール成分を用いることを特徴とする木炭の製造方法。
[8]
木材にタール蒸気を供給しながら、前記木材を700℃以上1200℃以下の温度(700℃を除く)まで昇温して炭化させ、
前記木炭は、高炉用コークスの代替物として用いられることを特徴とする木炭の製造方法。
[9]
10℃/分以下の昇温速度で前記木材を昇温することを特徴とする[1]~[8]のいずれか1項に記載の木炭の製造方法。
The present invention includes the following aspects .
[1 ]
A method for producing charcoal, comprising the steps of: supplying tar vapor to wood while heating the wood to 800°C to carbonize the wood; and producing charcoal having an apparent specific gravity of 0.55 g/ cm3 or more.
[ 2 ]
A method for producing charcoal, comprising the steps of: supplying tar vapor to wood having an air-dry specific gravity of 0.68 g/cm3 or more ; and heating the wood to a temperature of 700°C or more and 1200°C or less to carbonize the wood.
[ 3 ]
A method for producing charcoal, comprising the steps of: supplying tar vapor to wood while heating the wood to 1000°C to carbonize the wood, thereby producing charcoal having an apparent specific gravity of 0.48 g/ cm3 or more.
[ 4 ]
A method for producing charcoal, comprising the steps of: supplying tar vapor to wood having an air-dry specific gravity of 0.55 g/cm3 or more ; and heating the wood to a temperature of 700°C or more and 1200°C or less to carbonize the wood.
[ 5 ]
A method for producing charcoal, comprising the steps of: supplying tar vapor to wood while heating the wood to 1100°C to carbonize the wood; and producing charcoal having an apparent specific gravity of 0.45 g/ cm3 or more.
[ 6 ]
The method for producing charcoal according to [ 5 ], characterized in that the air-dry specific gravity of the wood is 0.55 g/ cm3 or more.
[ 7 ]
While supplying tar vapor to the wood, the wood is heated to a temperature of 700° C. or more and 1200° C. or less (excluding 700° C.) to carbonize the wood,
A method for producing charcoal, comprising filling the wood on top of a packed bed of coal filled in a carbonization chamber of a coke oven, and using tar components contained in a gas generated by carbonization of the coal as the tar vapor .
[8 ]
While supplying tar vapor to the wood, the wood is heated to a temperature of 700° C. or more and 1200° C. or less (excluding 700° C.) to carbonize the wood,
A method for producing charcoal , characterized in that the charcoal is used as a substitute for blast furnace coke.
[9]
The method for producing charcoal according to any one of [1] to [8], characterized in that the temperature of the wood is increased at a temperature increase rate of 10° C./min or less.
本発明によれば、木炭の強度を向上させることができる。 The present invention makes it possible to improve the strength of charcoal.
以下、本発明の実施形態である木炭の製造方法について説明する。木炭とは、酸素を供給しない条件で木材を加熱昇温することで、炭素の比率を高めたものである。最高到達温度が200~300℃となる条件で加熱昇温処理することをトレファクション(半炭化)と呼び、300℃を超える最高到達温度で加熱昇温処理することを炭化と呼ぶ。木材にいずれの処理(半炭化又は炭化)を施した場合でも、得られるものは木炭である。まず、製鉄プロセスのうち特に高炉用途で木炭を用いる場合に、木炭に要求される性能を示したうえで、その性能を備えた木炭を製造するために着目したパラメーターの詳細を以下に説明する。また、それを踏まえて、実際に木炭を製造するプロセスの概略についても以下に説明する。 The following describes a method for producing charcoal, which is an embodiment of the present invention. Charcoal is wood that has been heated and heated without oxygen being supplied, resulting in a higher carbon content. Heating and heating under conditions where the maximum temperature is between 200 and 300°C is called torrefaction (semi-carbonization), while heating and heating at a maximum temperature exceeding 300°C is called carbonization. Regardless of the treatment (semi-carbonization or carbonization) that wood is subjected to, the product is charcoal. First, the performance required for charcoal when using charcoal in the steelmaking process, particularly in blast furnace applications, is shown, and the parameters focused on in order to produce charcoal with these performances are described in detail below. Based on this, an outline of the actual process for producing charcoal is also described below.
(高炉装入炭用途の木炭に求められる性能)
高炉の炉頂から装入する装入炭として利用される炭材には、高い強度と二酸化炭素に対する低い反応性、そして価格が安いことが求められる。以下でこれら各要素について説明を行う。
(Performance required for charcoal for blast furnace charging)
The coal used as the charge coal for the blast furnace top must have high strength, low reactivity to carbon dioxide, and be inexpensive. Each of these factors is explained below.
まず、高炉の装入炭には、高い強度が求められる。高炉内の還元反応は、主として還元性ガスと酸化鉄(鉱石)との間の反応として進行する。従って、高炉内の通気抵抗を下げ、還元性ガスが効率よく流れることが、高炉の生産性を高めることにつながる。高炉に装入する炭材の強度が低く、すぐに粉化してしまうと、高炉内の通気抵抗を高めて、高炉の生産性を低下させる原因となる。したがって、木炭を高炉の装入炭用途に用いる場合においても、木炭には高い強度が必要となる。 First, high strength is required for the coal charged into a blast furnace. The reduction reaction inside a blast furnace mainly proceeds as a reaction between reducing gas and iron oxide (ore). Therefore, lowering the air flow resistance inside the blast furnace and allowing the reducing gas to flow efficiently leads to increased blast furnace productivity. If the strength of the carbonaceous material charged into the blast furnace is low and it quickly becomes pulverized, it will increase the air flow resistance inside the blast furnace, causing a decrease in the productivity of the blast furnace. Therefore, even when charcoal is used as charging coal for a blast furnace, the charcoal needs to have high strength.
高炉に装入される木炭は、炉頂までの搬送中の衝撃や、高炉内部における荷重(上方に積載された装入物からの荷重)にさらされることになるが、それらに十分に耐えられる強度を持つ必要がある。具体的には、木炭をコークス代替として利用する場合には、圧壊強度で8MPa以上が必要であり、木炭をナットコークス代替として利用する場合でも、圧壊強度で3MPa以上が必要である。また、高炉内に装入されてからもしばらくは粉化せずに元の形状を保つ必要がある。したがって、高炉内の雰囲気に含まれる二酸化炭素との反応性を低下させる必要もある。しかしながら、無機化合物の影響を無視すれば、一般的に高強度の炭材ほど、二酸化炭素との反応性も低くなる傾向にあるため、本実施形態においても製品としての木炭の強度に特に着目して評価を行う。 The charcoal charged into the blast furnace is exposed to shocks during transportation to the furnace top and loads inside the blast furnace (loads from the charges loaded above), but it needs to have sufficient strength to withstand these. Specifically, when charcoal is used as a substitute for coke, it needs a crushing strength of 8 MPa or more, and when charcoal is used as a substitute for nut coke, it needs a crushing strength of 3 MPa or more. In addition, it needs to maintain its original shape without being pulverized for a while after being charged into the blast furnace. Therefore, it is also necessary to reduce the reactivity with carbon dioxide contained in the atmosphere inside the blast furnace. However, if the effect of inorganic compounds is ignored, the higher the strength of the carbon material, the lower the reactivity with carbon dioxide in general, so in this embodiment, the evaluation is also performed with a particular focus on the strength of the charcoal as a product.
続いて、高炉に用いる炭材は、価格が安く、また大量に入手可能である必要がある。高炉用コークスの製造に利用される石炭の価格は、およそ1万5千円/トン~2万円/トンであり、日本国内で利用される高炉用コークスの量は、およそ4000万トン/年である。したがって、高炉用コークスの一部を木炭に代替する場合にも、木炭の価格は高炉用コークスの価格と同程度以下であり、そして少なくとも100万トン/年程度の生産量が可能となりうる木材を用意する必要がある。 Next, the carbonaceous material used in blast furnaces needs to be cheap and available in large quantities. The price of coal used to manufacture blast furnace coke is approximately 15,000 to 20,000 yen per ton, and the amount of blast furnace coke used in Japan is approximately 40 million tons per year. Therefore, even if part of the blast furnace coke is replaced with charcoal, the price of the charcoal must be equal to or lower than the price of blast furnace coke, and wood must be available that can be produced in an amount of at least 1 million tons per year.
(高強度木炭の製造に際して留意すること)
高炉用コークスを代替することを目的に木炭を利用するためには、木炭の強度が高く、比較的安価で、大量に入手可能であることが必要である。こうした性能を持つ木炭を製造するために、原料である木材の樹種と、炭化温度、炭化雰囲気に着目した。以下で各項目について述べる。
(Things to keep in mind when producing high-strength charcoal)
In order to use charcoal as a replacement for blast furnace coke, it is necessary that the charcoal has high strength, is relatively inexpensive, and is available in large quantities. In order to produce charcoal with these properties, we focused on the species of wood used as the raw material, the carbonization temperature, and the carbonization atmosphere. Each item is described below.
(樹種の気乾比重)
木炭の原料である木材は、その樹種によって大きく性質が異なる。まず、比重に大きな違いがある。木材は、その樹種によらず、セルロース、ヘミセルロース、リグニンを主成分としているが、それらの構成比率が樹種によって大きく異なっており、その結果として炭化処理の前後において密度や強度が大きく変化する。
(Air-dry specific gravity of wood species)
The properties of wood, the raw material for charcoal, vary greatly depending on the species. First of all, there is a large difference in specific gravity. Regardless of the species, wood is mainly composed of cellulose, hemicellulose, and lignin, but the composition ratio of these components varies greatly depending on the species, and as a result, the density and strength change greatly before and after carbonization.
空気中で風乾された後の比重である気乾比重(気乾密度ともいう)で比較すると、生育環境や部位によってばらつきがあるものの、最も気乾比重の小さい木材であるバルサは0.15g/cm3程度、一方で最も気乾比重が大きい木材であるリグナムバイタは1.4g/cm3程度であり、樹種によって10倍程度の違いがある。気乾比重と炭化処理後の比重との間には、ほぼ比例関係が成立することが報告されており、密度の高い木が、比重の大きい木炭になりやすい(Byrne, Christopher E., and Dennis C. Nagle. "Carbonization of wood for advanced materials applications." Carbon 35.2 (1997): 259-266.)。また、定量的に調べた報告は見当たらないが、比重の大きい木炭が高い強度を持つ傾向があることが知られている。したがって、炭化処理によって得られた木炭の見かけ比重が期待する値よりも小さい場合には、原料として用いる木材を選定しなおし、気乾比重がより大きい木材を選択することで、木炭の見かけ比重を高めることができる。同じ樹種であっても、生育環境や樹齢などによって木材の気乾比重は変化するため、トレーサビリティーが確保された木材を入手することで、目標とする見かけ比重を持つ木炭を製造可能である。 When comparing the air-dry specific gravity (also called air-dry density), which is the specific gravity after air-drying in the air, although there are variations depending on the growing environment and the part, the wood with the smallest air-dry specific gravity, balsa, is about 0.15 g/cm 3 , while the wood with the highest air-dry specific gravity, lignum vitae, is about 1.4 g/cm 3 , with a difference of about 10 times depending on the tree species. It has been reported that there is an almost proportional relationship between the air-dry specific gravity and the specific gravity after carbonization, and wood with high density is more likely to become charcoal with a high specific gravity (Byrne, Christopher E., and Dennis C. Nagle. "Carbonization of wood for advanced materials applications." Carbon 35.2 (1997): 259-266.). In addition, although there are no quantitative reports, it is known that charcoal with a high specific gravity tends to have high strength. Therefore, if the apparent specific gravity of the charcoal obtained by carbonization is lower than expected, the apparent specific gravity of the charcoal can be increased by reselecting the wood used as the raw material and choosing wood with a higher air-dry specific gravity. Even for the same tree species, the air-dry specific gravity of wood varies depending on the growing environment and age of the tree, so by obtaining wood with guaranteed traceability, it is possible to produce charcoal with the desired apparent specific gravity.
したがって、高い強度の木炭を製造するには、比重が大きい樹種を選択することが好ましいと言えるが、そうした木材は価格が高く、入手も難しい傾向がある。例えば、バルサ(気乾比重0.15g/cm3程度)やスギ(気乾比重0.3g/cm3程度)、ヒノキ(気乾比重0.4g/cm3程度)、バーチ(気乾比重0.7g/cm3程度)などは流通量が多く、ホームセンターなどでも入手可能である。一方で、イチイカシ(0.8g/cm3程度)、シラカシ(0.9g/cm3程度)、シマコクタン(1.1g/cm3程度)、リグナムバイタ(1.4g/cm3程度)は流通量が少なく、一部の高級家具等に利用されるのみである。リグナムバイタについては、絶滅危惧種(ワシントン条約の附属書II)に指定されており、輸出入に際して特別な許可も必要とされている。したがって、気乾比重が相対的に小さい樹種を用いた場合でも十分な強度を持つ木炭を製造可能とする必要がある。 Therefore, it is preferable to select a tree species with a high specific gravity in order to produce high-strength charcoal, but such wood tends to be expensive and difficult to obtain. For example, balsa (air-dry specific gravity of about 0.15 g/cm 3 ), cedar (air-dry specific gravity of about 0.3 g/cm 3 ), cypress (air-dry specific gravity of about 0.4 g/cm 3 ), and birch (air-dry specific gravity of about 0.7 g/cm 3 ) are widely distributed and can be obtained at home improvement stores. On the other hand, yew (about 0.8 g/cm 3 ), white oak (about 0.9 g/cm 3 ), Japanese ebony (about 1.1 g/cm 3 ), and lignum vitae (about 1.4 g/cm 3 ) are not widely distributed and are only used for some high-end furniture. Lignum vitae is designated as an endangered species (Appendix II of the Convention on International Trade in Endangered Species of Wild Fauna and Flora), and special permission is required for import and export. Therefore, it is necessary to be able to produce charcoal with sufficient strength even when using tree species with a relatively low air-dry specific gravity.
(樹種の無機成分)
樹種の選定に際しては、気乾比重に加え、その組成にも注意が必要である。特に、樹木に含まれる無機成分は、炭化処理によって得られる木炭にも残留するために注意が必要である。高炉の内壁はカーボンレンガで覆われており、カーボンレンガの寿命によって高炉改修までの期間が変化する。したがって、カーボンレンガにダメージを与える成分は、高炉用コークスの代替となる木炭に含まれることは好ましくない。
(Inorganic components of wood species)
When selecting a tree species, attention must be paid to its composition as well as its air-dry specific gravity. In particular, care must be taken with the inorganic components contained in the tree, as they remain in the charcoal obtained by carbonization. The inner walls of a blast furnace are covered with carbon bricks, and the time until the blast furnace is refurbished varies depending on the lifespan of the carbon bricks. Therefore, it is undesirable for components that damage the carbon bricks to be contained in charcoal, which is used as a substitute for blast furnace coke.
具体的には、第1族元素のアルカリ元素、第17族元素のハロゲン元素は、カーボンレンガの損耗を促進するため、木炭への含有を避けるべきである。パームヤシの幹(トランク)は、ドライベースの質量比で2.5質量%程度のカリウムと、2質量%程度の塩素を含むため、高炉用コークスの用途の木炭としては利用できない(S.K. Loh, The potential of the Malaysian oil palm biomass as a renewable energy source, Energy Convers. Manag. 141 (2017) 285-298、K.T. Lee, C. Ofori-Boateng, Sustainability of Biofuel Production from Oil Palm Biomass, 1st ed., Springer Singapore, Singapore, 2013、R. Hashim, N. Saari, O. Sulaiman, T. Sugimoto, S. Hiziroglu, M. Sato, R. Tanaka, Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk, Mater. Des. 31 (2010) 4251-4257)。 Specifically, alkali elements from Group 1 and halogen elements from Group 17 should be avoided in charcoal because they accelerate wear on the carbon bricks. Palm trunks contain about 2.5% potassium and about 2% chlorine on a dry basis, so they cannot be used as charcoal for blast furnace coke (S.K. Loh, The potential of the Malaysian oil palm biomass as a renewable energy source, Energy Convers. Manag. 141 (2017) 285-298, K.T. Lee, C. Ofori-Boateng, Sustainability of Biofuel Production from Oil Palm Biomass, 1st ed., Springer Singapore, Singapore, 2013, R. Hashim, N. Saari, O. Sulaiman, T. Sugimoto, S. Hiziroglu, M. Sato, R. Tanaka, Effect of particle geometry on the properties of binderless particleboard manufactured from oil palm trunk, Mater. Des. 31 (2010) 4251-4257).
また、竹についてもパームヤシと同様にカリウム含有量が非常に高いことが知られているため、高炉用コークスの代替となる木炭には適さない。さらに、竹は茎が空洞になっており、単位体積あたりの重量が小さくなるために運搬効率(1回の運搬における運搬量)が悪いという課題もある。一般的には、ヤシや竹は「木」として扱われるが、これらは形成層を持たないために厳密には草本であり、針葉樹や広葉樹に代表される木本とは別のものである。草本に分類される植物は、カリウムや塩素の含有量が多いことや、灰分の含有比率が木本に比べて高いことが多いため、高炉用コークスの代替となる木炭には適していない。湿式処理などでそうした元素の含有量を低減せしめた報告もあるものの、非常に手間がかかるため、大量の原料(草本)に同様の処理を施すことは現実的ではない。木本に限定すれば、樹種や部位によって違いはあるものの、アルカリ元素やハロゲン元素の含有比率は一般に低く、炭化処理によって得られる木炭に含まれる灰分の割合も質量比で1~2質量%程度と少なくなる。したがって、木炭の原料として木本を選択するとよい。 Bamboo is also known to have a very high potassium content, just like palm, and is therefore not suitable for use as charcoal to replace blast furnace coke. Furthermore, bamboo has hollow stems, which reduces the weight per unit volume, resulting in poor transport efficiency (amount transported in one trip). Generally, palms and bamboo are treated as "trees," but because they do not have a cambium, they are strictly herbaceous plants, and are different from woody plants such as conifers and broad-leaved trees. Plants classified as herbaceous plants often contain a high amount of potassium and chlorine, and often have a higher ash content than woody plants, making them unsuitable for use as charcoal to replace blast furnace coke. Although there have been reports of reducing the content of such elements through wet processing, this is extremely time-consuming and therefore unrealistic to subject a large amount of raw material (herbaceous plants) to similar processing. In woody plants, although there are differences depending on the species and part of the tree, the content of alkali elements and halogen elements is generally low, and the ash content of the charcoal obtained by carbonization is also low, at around 1 to 2% by mass. Therefore, it is a good idea to choose woody plants as a source of charcoal.
(木本の年輪方向)
大量に入手可能な木本は殆どの場合に明瞭な年輪を持ち、冬目の部分の強度が高く、春目の部分の強度は弱くなっている。したがって、年輪に対する相対的な方向(以下に説明する3つの方向)によって大きく強度が異なる。円柱状の幹の長手方向における圧壊強度が最も高い。一方で、円柱状の幹の周方向における圧壊強度が最も低くなる。円柱状の幹の径方向における圧壊強度は、長手方向における圧壊強度よりも低く、周方向における圧壊強度よりも高くなる。炭化処理後の木炭においても同様であり、年輪に対する相対的な方向によって大きく強度が異なっている。したがって、木炭の強度評価を行う際には、年輪に対する相対的な方向を考慮して試験を実施するべきである。また、炭化処理に伴う木本の収縮率も年輪に対する相対的な方向で異なっており、長手方向、径方向、周方向の順で収縮率が大きくなる。したがって、最終製品の木炭に特に求める寸法がある場合には、選択した樹種の収縮率を考慮した寸法に予め切断しておいてもよい。また、特段に求める寸法が無い場合には、任意の形状の木本に対して炭化処理を行ってもよく、木本をペレット状に破砕したうえで炭化処理を行ってもよい。
(Tree ring direction)
Most woody plants available in large quantities have clear annual rings, with the strength of the winter-eared parts being high and the strength of the spring-eared parts being low. Therefore, the strength varies greatly depending on the relative direction to the annual rings (the three directions described below). The crushing strength of a cylindrical trunk is highest in the longitudinal direction. On the other hand, the crushing strength of a cylindrical trunk is lowest in the circumferential direction. The crushing strength of a cylindrical trunk in the radial direction is lower than the crushing strength in the longitudinal direction and higher than the crushing strength in the circumferential direction. The same is true for charcoal after carbonization, and the strength varies greatly depending on the relative direction to the annual rings. Therefore, when evaluating the strength of charcoal, tests should be carried out taking into account the relative direction to the annual rings. In addition, the shrinkage rate of woody plants due to carbonization also differs depending on the relative direction to the annual rings, with the shrinkage rate increasing in the order of longitudinal, radial, and circumferential. Therefore, if there is a particular size required for the final charcoal product, it may be cut in advance to a size that takes into account the shrinkage rate of the selected tree species. Furthermore, if there is no particular size required, the carbonization process may be carried out on wood of any shape, or the wood may be crushed into pellets and then carbonized.
(炭化条件:温度)
いずれの樹種を用いた場合においても、炭化処理によって得られる木炭の性状は炭化処理時の温度に強く依存する。木炭の炭化処理を行う際には、昇温速度と最高到達温度の双方が重要である。木材を昇温し、熱分解する際には、300℃以下の温度で水分と水酸基が脱離する。300~600℃の範囲でカルボキシル基やメチル基の脱離が進行し、炭化が進んで大きく重量が減少する。その後、昇温するに従って、水素の脱離が進行し、グラファイト化が進行する。この過程でのガス発生量が多く、体積収縮も大きいため、昇温速度が速すぎると、木材中の温度が不均一となることで木材中の箇所に応じて収縮率にムラが生じ、亀裂が生成する原因となる。したがって、昇温速度は遅い方が好ましい。
(Carbonization conditions: temperature)
Regardless of the type of wood used, the properties of the charcoal obtained by carbonization strongly depend on the temperature during the carbonization process. When carbonizing charcoal, both the heating rate and the maximum temperature are important. When wood is heated and pyrolyzed, moisture and hydroxyl groups are released at temperatures below 300°C. In the range of 300 to 600°C, the release of carboxyl groups and methyl groups progresses, carbonization progresses, and the weight decreases significantly. Thereafter, as the temperature rises, the release of hydrogen progresses and graphitization progresses. In this process, a large amount of gas is generated and the volume shrinkage is also large, so if the heating rate is too fast, the temperature in the wood becomes uneven, causing unevenness in the shrinkage rate depending on the location in the wood, which causes cracks to form. Therefore, a slow heating rate is preferable.
具体的には、昇温速度が10℃/分以下であることが好ましく、5℃/分以下であることがさらに好ましく、3℃/分以下であることがより一層好ましい。特に、炭化反応が主に進行する300~600℃の範囲で昇温するときに、上述した昇温速度とすることが好ましい。また、炭化処理中の最高到達温度が高いほどグラファイト化が進行し、一般的には好ましいが、最高到達温度が高すぎると、最高到達温度に到達させるまでの熱量が必要になってコストが高くなるほか、木炭にマイクロクラックが入り、強度が低下することが知られている。したがって、最高到達温度は700℃以上でかつ1200℃以下であることが好ましく、800℃以上でかつ1200℃以下であることがより好ましい。また、炭化処理中の温度を最高到達温度付近で一定時間保持することで、木炭の粒子内部の温度が均一となり、粒子全体を均一な炭化状態とすることができる。具体的には、最高到達温度に達して±50℃以内の温度範囲にて10分以上保持することが好ましく、30分以上保持することがより好ましく、60分以上保持することがさらに好ましい。 Specifically, the heating rate is preferably 10°C/min or less, more preferably 5°C/min or less, and even more preferably 3°C/min or less. In particular, when heating in the range of 300 to 600°C where the carbonization reaction mainly proceeds, the heating rate described above is preferably used. In addition, the higher the maximum temperature reached during the carbonization process, the more graphitization proceeds, which is generally preferable, but it is known that if the maximum temperature is too high, the amount of heat required to reach the maximum temperature increases, which increases costs, and microcracks occur in the charcoal, resulting in a decrease in strength. Therefore, the maximum temperature reached is preferably 700°C or more and 1200°C or less, and more preferably 800°C or more and 1200°C or less. In addition, by maintaining the temperature during the carbonization process near the maximum temperature for a certain period of time, the temperature inside the charcoal particles becomes uniform, and the entire particle can be carbonized uniformly. Specifically, it is preferable to maintain the maximum temperature within a temperature range of ±50°C for 10 minutes or more, more preferably 30 minutes or more, and even more preferably 60 minutes or more.
後述する実施例で示す通り、木材を800℃(最高到達温度)まで昇温することにより、見かけ比重が0.55g/cm3以上の木炭を製造することができ、この木炭の原料となる木材としては、気乾比重が0.68g/cm3以上である木材を用いることができる。また、木材を1000℃(最高到達温度)まで昇温することにより、見かけ比重が0.48g/cm3以上の木炭を製造することができ、この木炭の原料となる木材としては、気乾比重が0.55g/cm3以上である木材を用いることができる。さらに、木材を1100℃(最高到達温度)まで昇温することにより、見かけ比重が0.45g/cm3以上の木炭を製造することができ、この木炭の原料となる木材としては、気乾比重が0.55g/cm3以上である木材を用いることができる。 As shown in the examples described later, by heating wood to 800°C (maximum temperature reached), charcoal with an apparent specific gravity of 0.55 g/ cm3 or more can be produced, and wood with an air-dry specific gravity of 0.68 g/cm3 or more can be used as the raw material for this charcoal. Also, by heating wood to 1000°C (maximum temperature reached), charcoal with an apparent specific gravity of 0.48 g/cm3 or more can be produced, and wood with an air-dry specific gravity of 0.55 g/ cm3 or more can be used as the raw material for this charcoal. Furthermore, by heating wood to 1100°C (maximum temperature reached), charcoal with an apparent specific gravity of 0.45 g/ cm3 or more can be produced, and wood with an air-dry specific gravity of 0.55 g/cm3 or more can be used as the raw material for this charcoal.
(炭化条件:雰囲気)
炭化処理中の雰囲気もまた、木炭の品質に大きな影響を与えることが知られている。本実施形態においては、木炭の強度向上を図るために、タール蒸気フロー条件での炭化試験を行っている。以下で、本手法の技術思想を示し、それを踏まえてタール蒸気の導入条件について説明を行う。
(Carbonization conditions: atmosphere)
It is known that the atmosphere during the carbonization process also has a significant effect on the quality of the charcoal. In this embodiment, in order to improve the strength of the charcoal, a carbonization test is performed under tar vapor flow conditions. Below, the technical concept of this method is presented, and the introduction conditions of the tar vapor are explained based on this concept.
木材を炭化処理することで製造した木炭の強度が、高炉用コークスの強度よりも低い理由は主に二つである。一つ目の理由は、グラファイト化が進行し難いことである。木材は、低温で溶融せず、また木材を構成する分子は、直鎖やエーテル結合などを多量に含む巨大分子である。従って、溶融に伴う分子の並び代わりが進行する前に、三次元的に炭素の結合が進行してしまい、グラファイト化が進行しない。二つ目の理由は、木炭が細孔を大量に含む構造を有することである。木炭には、原料の木材の持つ細胞や維管束の構造が残っており、多孔質な構造を有している。したがって、高炉用コークスと比較して肉薄であり、比重が小さく、低強度となる。以上より、木炭の強度を高めるためには、炭化処理中のグラファイト化を促進するとともに、細孔を埋めて比重を高めることが必要である。 There are two main reasons why the strength of charcoal produced by carbonizing wood is lower than that of blast furnace coke. The first reason is that graphitization is difficult to proceed. Wood does not melt at low temperatures, and the molecules that make up wood are huge molecules that contain a large amount of linear chains and ether bonds. Therefore, before the molecular rearrangement that accompanies melting proceeds, the carbon bonds proceed three-dimensionally, and graphitization does not proceed. The second reason is that charcoal has a structure that contains a large number of pores. Charcoal has a porous structure that retains the cell and vascular structures of the raw material wood. Therefore, compared to blast furnace coke, it is thinner, has a smaller specific gravity, and is lower in strength. For the above reasons, in order to increase the strength of charcoal, it is necessary to promote graphitization during the carbonization process and fill the pores to increase the specific gravity.
タール蒸気を炭化処理中の木材に供給することによって、炭化処理中の木炭のグラファイト化を促進するとともに、細孔を埋めて比重を高めることができる。以下で、そのメカニズムの概略を示す。タールは芳香族化合物が多く含まれる液体である。芳香環を多数含む分子は、グラファイトの前駆体を多数含み、グラファイト化を促進する効果を持つ。したがって、グラファイト化を促進するために、タールを他の物質に混合する手法は古くより利用されている。しかしながら、木材に多量に含まれる酸素が、木材に供給したタールの三次元的な反応を促進してしまうために、木炭の強度が期待通りに向上しないことが知られている。また、木材に供給したタールの多くの部分が昇温過程で揮散し散逸してしまう。 Supplying tar vapor to wood during the carbonization process promotes graphitization of the charcoal during the carbonization process, and fills the pores, increasing the specific gravity. The mechanism is outlined below. Tar is a liquid that contains many aromatic compounds. Molecules that contain many aromatic rings contain many graphite precursors and have the effect of promoting graphitization. Therefore, the technique of mixing tar with other substances to promote graphitization has long been used. However, it is known that the strength of the charcoal does not improve as expected because the large amount of oxygen contained in wood promotes the three-dimensional reaction of the tar supplied to the wood. In addition, much of the tar supplied to the wood volatilizes and dissipates during the heating process.
そこで、本実施形態では、木材の炭化が進んだ700℃以上の温度においても継続してタールを供給することで、木材に含まれる酸素の影響を受けずに効果的にグラファイト化を促進することとした。これにより、炭化処理によって得られる木炭の強度が向上される。また、タール自身が木炭の細孔内で炭化することによって、木炭のクラックや細孔が埋められ、比重が増大する効果も得られた。これにより、大幅な強度低下の原因となるクラックが無くなり、木炭の強度が向上し、強度のばらつきが抑制される。特にタール蒸気の濃度が高い条件での実施例においては、木炭のグラファイト化が効率的に進行し、大幅な形状変化を伴う緻密化が確認された。本実施形態においては、所定の見かけ比重以上の木炭を製造することで、強度の高い木炭を得る。仮に、炭化処理によって得られた木炭の見かけ比重が、目標となる見かけ比重を下回っていた場合には、同一の木材を用いて炭化処理を再度行うときに、導入するタールの量を増大させることが効果的である。木炭を製造する装置(例えば、後述するコークス炉の炭化室)内における原料(木材)の設置場所を変更することで、木材と反応するタール分圧を上昇させることも効果的である。これら施策により、木炭の見かけ比重が増大し、木炭の強度も高まる。 Therefore, in this embodiment, tar is continuously supplied even at temperatures of 700°C or higher where the wood has been carbonized, so that graphitization is effectively promoted without being affected by oxygen contained in the wood. This improves the strength of the charcoal obtained by the carbonization process. In addition, the tar itself is carbonized within the pores of the charcoal, which fills the cracks and pores of the charcoal and increases the specific gravity. This eliminates cracks that cause a significant decrease in strength, improves the strength of the charcoal, and suppresses the variation in strength. In particular, in examples under conditions of high tar vapor concentration, the graphitization of the charcoal progressed efficiently, and densification accompanied by a significant change in shape was confirmed. In this embodiment, charcoal with a predetermined apparent specific gravity or more is produced to obtain charcoal with high strength. If the apparent specific gravity of the charcoal obtained by the carbonization process is lower than the target apparent specific gravity, it is effective to increase the amount of tar introduced when performing the carbonization process again using the same wood. It is also effective to change the location of the raw material (wood) in the equipment used to produce charcoal (for example, the carbonization chamber of a coke oven, which will be described later) to increase the partial pressure of the tar that reacts with the wood. These measures increase the apparent specific gravity of the charcoal, and therefore its strength.
炭化処理中に木炭に供給されるタールとして、さまざまなものが利用可能である。様々なランクの石炭の熱分解時に発生するコールタールや、石油の高沸点留分であるアスファルテン、木材の熱分解時に得られる木酢液なども利用可能である。ただし、一般的な木酢液は、大量の水分が含まれており、本実施形態のように、木炭を高炉用コークスの代替として用いる場合には、水蒸気による木炭のガス化と強度低下を引き起こすため好ましくない。さらに、木酢液に含まれる有機物の大部分は、カルボン酸やアルデヒド(酸素原子を含む)などであり、グラファイト化の促進効果は発現されない。したがって、木酢液を利用する場合には、回収方法の工夫により水分や含酸素成分の量を減らしておくことが好ましい。また、タール中の高沸点の成分が多いほど、炭化反応中の木炭への付着量が増大し、木炭の強度向上の効果が大きくなる。したがって、高沸点成分が多いほど好ましい。 Various materials can be used as the tar to be supplied to the charcoal during the carbonization process. Coal tar generated during the thermal decomposition of various ranks of coal, asphaltene, which is a high-boiling fraction of petroleum, and wood vinegar obtained during the thermal decomposition of wood can also be used. However, general wood vinegar contains a large amount of water, and when charcoal is used as a substitute for blast furnace coke as in this embodiment, it is not preferable because it causes gasification of the charcoal by steam and a decrease in strength. Furthermore, most of the organic matter contained in wood vinegar is carboxylic acid or aldehyde (containing oxygen atoms), etc., and does not exhibit the effect of promoting graphitization. Therefore, when wood vinegar is used, it is preferable to reduce the amount of water and oxygen-containing components by devising a recovery method. In addition, the more high-boiling point components in the tar, the more they adhere to the charcoal during the carbonization reaction, and the greater the effect of improving the strength of the charcoal. Therefore, the more high-boiling point components there are, the more preferable it is.
なお、木炭の強度を高めるためには、当然のことながら、炭化処理の雰囲気中に、木炭の強度低下を引き起こすガス種を極力含めないことが重要である。特に800℃以上の高温に達している状態で、水蒸気や二酸化炭素などの酸素を含むガスに曝してしまうと、木炭の一部のガス化が進行し、強度が著しく低下する原因となる。したがって、800℃以上の温度範囲においては、水蒸気や二酸化炭素の濃度を可能な範囲で低減することが好ましい。 In order to increase the strength of charcoal, it is of course important to avoid the inclusion of gas species that cause a decrease in the strength of charcoal in the atmosphere during the carbonization process as much as possible. In particular, when the charcoal is exposed to oxygen-containing gases such as water vapor or carbon dioxide at a high temperature of 800°C or higher, part of the charcoal will gasify, causing a significant decrease in strength. Therefore, in the temperature range of 800°C or higher, it is preferable to reduce the concentration of water vapor and carbon dioxide as much as possible.
(炭化処理の概略)
以下で、炭化処理の操業条件の概略を説明する。まず、炭化処理を行う設備は、大気の漏れ込みを十分に抑制でき、10℃/分以下の昇温速度で木材を昇温可能なものが好ましい。また、炭化処理を行う設備は、炭化反応中に木材の充填層全体にタール蒸気を導入可能な吹込み口といった、タール蒸気を供給する部位を備えている。タール蒸気の導入を開始する前に、木材は予め乾燥されていることが好ましく、より好ましくはトレファクション処理により、炭素含有率を高めておくことが好ましい。これらの前処理により、水分の気化に伴う吸熱反応が減少し、炭化処理中の雰囲気の温度制御が容易となり、木炭の生産性が向上する。
(Outline of carbonization process)
The operating conditions of the carbonization process are outlined below. First, the carbonization process equipment is preferably one that can sufficiently suppress the intrusion of air and can heat the wood at a heating rate of 10° C./min or less. The carbonization process equipment is also provided with a portion for supplying tar steam, such as an inlet that can introduce tar steam into the entire packed bed of wood during the carbonization reaction. Before starting the introduction of tar steam, it is preferable that the wood is dried in advance, and more preferably, the carbon content is increased by a torrefaction process. These pretreatments reduce the endothermic reaction associated with the evaporation of moisture, making it easier to control the temperature of the atmosphere during the carbonization process, and improving the productivity of charcoal.
また、上述したように、導入するタール蒸気は、高沸点の成分比率が高いことが好ましいが、この場合には、木材の充填層内の温度が低い状態でタール蒸気の導入を開始したときに、タール蒸気が充填層内で多量に凝結し、閉塞を生じる可能性がある。そこで、充填層内の温度が所定温度以上になってからタール蒸気の導入を開始することが好ましい。具体的には、充填層内の温度が200℃以上になってからタール蒸気の導入を開始することが好ましく、300℃以上となってからタール蒸気の導入を開始することがより好ましい。ここで、木材の充填層内の温度は、炭化処理の雰囲気の温度から把握することができる。 As mentioned above, it is preferable that the tar vapor to be introduced has a high ratio of high boiling point components. In this case, when the introduction of tar vapor is started when the temperature in the packed bed of wood is low, a large amount of tar vapor may condense in the packed bed, causing blockage. Therefore, it is preferable to start the introduction of tar vapor after the temperature in the packed bed reaches a predetermined temperature or higher. Specifically, it is preferable to start the introduction of tar vapor after the temperature in the packed bed reaches 200°C or higher, and it is more preferable to start the introduction of tar vapor after the temperature in the packed bed reaches 300°C or higher. Here, the temperature in the packed bed of wood can be determined from the temperature of the atmosphere during the carbonization process.
上記の条件を満たす具体的な炭化処理としては、コークス炉(炭化室)の上部空間を利用した木炭の製造が挙げられる。まず、予め乾燥、またはトレファクション処理を施した木材を、炭化室の上部空間に装入可能なサイズに切断・破砕したうえで、炭化室に事前に装入された石炭の充填層の上面に装入する。それ以降は、通常通りにコークス炉を操業して石炭の乾留反応を進めることによって、タール成分を含むガスが発生し、木材が装入された上部空間がタール蒸気の雰囲気になり、タール蒸気を供給した木炭の製造が可能となる。ここで、石炭の乾留反応によって発生したガスに含まれるタール成分が、木材に導入されるタール蒸気として用いられる。 A specific example of a carbonization process that satisfies the above conditions is the production of charcoal using the upper space of a coke oven (carbonization chamber). First, wood that has been dried or torrefied in advance is cut and crushed to a size that can be loaded into the upper space of the carbonization chamber, and then loaded onto the top of the packed bed of coal that has already been loaded into the carbonization chamber. After that, the coke oven is operated as usual to promote the carbonization reaction of the coal, which generates gas containing tar components, and the upper space where the wood is loaded becomes an atmosphere of tar vapor, making it possible to produce charcoal supplied with tar vapor. Here, the tar components contained in the gas generated by the carbonization reaction of the coal are used as the tar vapor introduced into the wood.
コークス炉内の昇温速度は遅く、また、石炭の熱分解に伴ってタールが発生して炭化室の上部空間に移動するために、炭化室内の温度が300℃以上となってからタール蒸気が木材の充填層に到達することとなる。このとき、木炭はコークス炉(炭化室)の上部空間に集中的に充填されているため、石炭から発生するタール蒸気とは別に、上部空間へタール蒸気を追加しても構わない。また、炭化室から排出されるガスに木材由来の含酸素成分が含まれるので、木材を装入しなかった場合に比べて、炭化室から排出されるガスの改質反応が容易となる。なお、コークス炉に木材を装入する際には、コークス炉(炭化室)の底部付近に木材を装入することや、木材を石炭と混合して装入することは避けるべきである。既往の研究で示される通り、木材の熱分解時に発生するガス成分が石炭に接触すると、製品コークスの品質を低下させるためである。 The temperature rise rate in the coke oven is slow, and tar is generated by the pyrolysis of coal and moves to the upper space of the carbonization chamber, so the tar vapor reaches the wood layer only after the temperature in the carbonization chamber reaches 300°C or higher. At this time, charcoal is packed intensively in the upper space of the coke oven (carbonization chamber), so tar vapor can be added to the upper space in addition to the tar vapor generated from the coal. In addition, since the gas discharged from the carbonization chamber contains oxygen-containing components derived from wood, the reforming reaction of the gas discharged from the carbonization chamber becomes easier than when wood is not charged. When charging wood into the coke oven, it is important to avoid charging wood near the bottom of the coke oven (carbonization chamber) or mixing wood with coal. This is because, as shown in previous studies, when gas components generated during the pyrolysis of wood come into contact with coal, it reduces the quality of the product coke.
(製品木炭の評価方法)
炭化処理によって得られた木炭の品質評価方法について、以下に説明する。まず、木炭の組成については、石炭やコークスに対して通常実施される手法をそのまま適用可能である。JIS規格に従い、標準の分析方法によって分析すればよい。工業分析によって、水分、灰分、揮発分の定量を行う場合は、JIS M8812に記載の方法を用いればよい。元素分析によって、炭素、水素、硫黄、窒素、リン、酸素の定量を行う場合には、JIS M8813に記載の方法を用いればよい。具体的な測定手順の一例について以下に説明する。
(Method of evaluating charcoal products)
The method for evaluating the quality of charcoal obtained by carbonization is described below. First, the composition of charcoal can be determined by the same method as that usually performed for coal or coke. Standard analysis methods according to JIS standards may be used. When quantifying moisture, ash, and volatile matter by industrial analysis, the method described in JIS M8812 may be used. When quantifying carbon, hydrogen, sulfur, nitrogen, phosphorus, and oxygen by elemental analysis, the method described in JIS M8813 may be used. An example of a specific measurement procedure is described below.
水分の分析には、大気中ないしは調湿された空間で十分に乾燥された気乾試料を用いる。気乾試料1g程度を量り取り、107℃程度で一時間程度乾燥し、デシケーター内部で冷却したうえで重量測定を行う。このとき、乾燥室内の雰囲気は、大気の他、窒素やヘリウムなどが選択可能である。灰分の分析には、気乾試料1gを量り取り、815℃程度にて大気中で灰化させ、得られた灰の重量を測定する。揮発分の分析には、量り取った気乾試料1gを、900℃程度で乾留させ、乾留前後の重量変化分を揮発分とする。 For moisture analysis, an air-dried sample that has been thoroughly dried in the air or in a humidity-controlled space is used. Approximately 1 g of the air-dried sample is weighed out and dried at approximately 107°C for approximately one hour, then cooled in a desiccator before being weighed. At this time, the atmosphere in the drying chamber can be selected from air, nitrogen, helium, etc. For ash analysis, 1 g of the air-dried sample is weighed out and incinerated in the air at approximately 815°C, and the weight of the resulting ash is measured. For volatile matter analysis, 1 g of the weighed air-dried sample is dry-distilled at approximately 900°C, and the change in weight before and after dry-distillation is taken as the volatile matter.
元素分析については、気乾試料0.06gを量り取り、950℃にて分析計(例えば、有機元素分析装置CHN628、LECOジャパン合同会社製)で燃焼させ、排ガスの分析を行い、炭素、水素、窒素の定量を行う。硫黄の定量は、気乾試料0.6gを約1350℃にて酸素気流下で燃焼させ、排ガス中の酸化硫黄を過酸化水素水に吸収させ、NaOHで滴定分析する。リンの定量が必要な場合には、JIS M8813の附属書6に従い、モリブデン青吸光光度法、又はりんバナドモリブデン黄吸光光度法を用いて定量を行う。酸素の量は、全体の質量から、炭素と水素と窒素と硫黄の質量を差し引くことでおおよそ推定可能である。ここで、JIS M8813によれば、酸素の量を算出する上で、灰分や灰中の硫黄成分を考慮することもできる。 For elemental analysis, 0.06 g of air-dried sample is weighed out and burned at 950°C in an analyzer (e.g., Organic Elemental Analyzer CHN628, manufactured by LECO Japan LLC), the exhaust gas is analyzed, and the carbon, hydrogen, and nitrogen are quantified. For sulfur quantification, 0.6 g of air-dried sample is burned at approximately 1350°C in an oxygen stream, the sulfur oxide in the exhaust gas is absorbed in hydrogen peroxide water, and titrated with NaOH. If phosphorus quantification is required, it is quantified using molybdenum blue absorptiometry or vanadomolybdenum yellow absorptiometry in accordance with Annex 6 of JIS M8813. The amount of oxygen can be roughly estimated by subtracting the masses of carbon, hydrogen, nitrogen, and sulfur from the total mass. Here, according to JIS M8813, the ash content and the sulfur components in the ash can also be taken into account when calculating the amount of oxygen.
強度の測定について、石炭やコークスを対象としたJIS規格の分析法(例えば、JIS K2151に規定された落下強度試験や回転強度試験)では、数十キログラムの試験片が必要となってしまい、様々な炭化条件での比較が困難である。したがって、本実施例では、圧壊強度を指標として評価を行った。試験片に上部より荷重をかけ、破壊された時点での荷重を記録し、その荷重値をもとに試験片の寸法を用いて圧壊強度を破壊時の圧力値として計算した。このとき、試験片が直方体ないしはそれに近い形状をしている場合には、破壊時の荷重を底面積で除すことで圧壊強度を計算した。試験片が直方体以外の形状をしている場合には、既往の報告に基づき、圧壊強度から以下の式(1)に従い、間接引張強度として圧壊強度を算出した(Y. Hiramatsu, Y. Oka, H. Kiyama, Rapid Determination of the Tensile Strength of Rocks with Irregular Test Pieces, J. Min. Metall. Inst. Jpn., 932, 1965, 1024-1030.)。 In the strength measurement, JIS standard analysis methods for coal and coke (for example, the drop strength test and rotational strength test specified in JIS K2151) require test pieces weighing several tens of kilograms, making it difficult to compare under various carbonization conditions. Therefore, in this example, the evaluation was performed using the crushing strength as an index. A load was applied to the test piece from above, and the load at the time of destruction was recorded. The crushing strength was calculated as the pressure value at the time of destruction using the load value and the dimensions of the test piece. In this case, if the test piece was a rectangular parallelepiped or a similar shape, the crushing strength was calculated by dividing the load at the time of destruction by the base area. When the test specimen had a shape other than a rectangular parallelepiped, the crushing strength was calculated as the indirect tensile strength from the crushing strength according to the following formula (1) based on previous reports (Y. Hiramatsu, Y. Oka, H. Kiyama, Rapid Determination of the Tensile Strength of Rocks with Irregular Test Pieces, J. Min. Metall. Inst. Jpn., 932, 1965, 1024-1030.).
σt=0.9P/d2 ・・・(1)
ここで、σtは間接引張強度[MPa]、Pは圧壊強度[N]、dは試験片の直径[mm]である。木炭は、上述したように、その年輪に対する相対的な方向によって強度が大きく異なることが知られているため、複数の試験片を用いて、複数の荷重方向に対する強度を調べるべきである。なお、試験片の形状が非常に歪であり、圧壊強度試験を行うことが困難と判断された場合には、その試験片については圧壊試験を実施しなかった。
σt=0.9P/ d2 (1)
Here, σt is the indirect tensile strength [MPa], P is the crushing strength [N], and d is the diameter [mm] of the test piece. As mentioned above, it is known that the strength of charcoal varies greatly depending on the relative direction to its annual rings, so the strength in multiple load directions should be examined using multiple test pieces. Note that if the shape of the test piece was very distorted and it was determined that it was difficult to perform the crushing strength test, the crushing test was not performed on that test piece.
木炭の見かけ比重は、0.55g/cm3以上であることが好ましい。木炭の見かけ比重は、試験片の質量と寸法を用いて計算することができる。試験片が直方体ないしはそれに近い形状をしている場合には、試験片の質量[g]を測定し、試験片(直方体)を構成する三辺の長さをもとに体積[cm3]を計算して、質量(測定値)を体積(計算値)で除すことにより見かけ比重[g/cm3]を計算することができる。試験片が直方体以外の他の形状である場合には、画像解析により体積を見積ることができる。このとき、体積評価の際にアルキメデス法などを用いることは好ましくない。試験片の表面に存在する細孔が試験片の体積に含まれなくなるため、木炭表面の細孔の有無にかかわらず同程度の密度となってしまうためである。この状態では、木炭の細孔がタール蒸気によって閉塞され、閉気孔が増えた場合には、試験片の体積に含まれる空隙体積が増大し、試験片の密度が低下してしまう。仮に浸漬法(水中浸漬法など)による体積評価を行うのであれば、薄いビニルで試験片を真空パックし、測定を行うことが好ましい。 The apparent specific gravity of the charcoal is preferably 0.55 g/cm 3 or more. The apparent specific gravity of the charcoal can be calculated using the mass and dimensions of the test piece. When the test piece is a rectangular parallelepiped or a shape close to it, the mass [g] of the test piece is measured, the volume [cm 3 ] is calculated based on the lengths of the three sides constituting the test piece (rectangular parallelepiped), and the apparent specific gravity [g/cm 3 ] can be calculated by dividing the mass (measured value) by the volume (calculated value). When the test piece is a shape other than a rectangular parallelepiped, the volume can be estimated by image analysis. In this case, it is not preferable to use the Archimedes method or the like when evaluating the volume. This is because the pores present on the surface of the test piece are not included in the volume of the test piece, so the density will be about the same regardless of the presence or absence of pores on the charcoal surface. In this state, if the pores of the charcoal are blocked by tar vapor and the number of closed pores increases, the void volume included in the volume of the test piece will increase, and the density of the test piece will decrease. If volumetric evaluation is to be performed by an immersion method (such as a water immersion method), it is preferable to vacuum-pack the test piece in thin vinyl and then perform the measurement.
以下、実施例により本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
(試験1:試験片切断)
下記表1に示す樹種の木材を入手し、それらを電動ノコギリで8mm四方のブロックに切断して後述する圧壊強度試験を実施した。各樹種について、試験片を150個以上作成し、十分な量の試験を実施可能とした。なお、いずれの試験片も長手方向、径方向、周方向の3方向に辺を持つ立方体とした。リグナムバイタについては、入手した板の内部で年輪が湾曲していたため、一部の試験片については上記方向とは異なる方向に切断した。なお、下記表1に示す気乾比重の値は、本発明者が入手した木材での実測値であり、同一樹種のすべての木材で同様の値を取るわけではないことは留意すべきである。同じ樹種であっても、生育条件や部位によって気乾比重が大きく変化することが知られている。したがって、入手した木材の物性値を予め調べておくことが大事である。
(Test 1: Test Piece Cutting)
The wood of the tree species shown in Table 1 below was obtained, cut into 8 mm square blocks with an electric saw, and the crushing strength test described below was performed. For each tree species, more than 150 test pieces were prepared to allow a sufficient amount of tests to be performed. All test pieces were cubes with sides in three directions: longitudinal, radial, and circumferential. For Lignum vitae, the annual rings were curved inside the obtained board, so some test pieces were cut in a direction different from the above directions. It should be noted that the air-dry specific gravity values shown in Table 1 below are actual measurements of wood obtained by the inventor, and do not necessarily take the same value for all wood of the same tree species. It is known that the air-dry specific gravity of the same tree species varies greatly depending on the growing conditions and the part. Therefore, it is important to check the physical properties of the wood obtained in advance.
(試験2:炭化試験)
上記試験1にて作成した試験片を用いて、炭化試験を実施した。作成した試験片10個程度を、内径約20mm、外径25.4mmのアルミナ管に入れ、シリカウールで試験片を固定した。アルミナ管を環状炉に設置し、下記表2に示すガス条件1~4でガスを流通させながら、3℃/分の昇温速度で800℃、1000℃、1100℃のいずれかまで昇温し、最高到達温度(800℃、1000℃又は1100℃)で1時間保持した。
(Test 2: Carbonization test)
A carbonization test was carried out using the test pieces prepared in the above test 1. Approximately 10 of the prepared test pieces were placed in an alumina tube with an inner diameter of approximately 20 mm and an outer diameter of 25.4 mm, and the test pieces were fixed with silica wool. The alumina tube was placed in a ring furnace, and while passing gas under gas conditions 1 to 4 shown in Table 2 below, the temperature was raised to 800°C, 1000°C, or 1100°C at a heating rate of 3°C/min, and the maximum temperature (800°C, 1000°C, or 1100°C) was held for 1 hour.
上記表2に示す通り、ガス条件1では、タール蒸気を導入せずに、100Ncm3/分の流量で窒素ガスを流通させた。ガス条件2では、1.7Ncm3/分(ガス条件3,4の基準値)の流量で1-メチルナフタレン(タール蒸気)を流通させるとともに、98.3Ncm3/分の流量で窒素ガスを流通させた。ガス条件3では、3.4Ncm3/分(上記基準値の2倍)の流量で1-メチルナフタレン(タール蒸気)を流通させるとともに、96.6Ncm3/分の流量で窒素ガスを流通させた。ガス条件4では、6.8Ncm3/分(上記基準値の4倍)の流量で1-メチルナフタレン(タール蒸気)を流通させるとともに、93.2Ncm3/分の流量で窒素ガスを流通させた。 As shown in Table 2 above, in gas condition 1, tar vapor was not introduced and nitrogen gas was passed at a flow rate of 100 Ncm 3 /min. In gas condition 2, 1-methylnaphthalene (tar vapor) was passed at a flow rate of 1.7 Ncm 3 /min (reference value for gas conditions 3 and 4), and nitrogen gas was passed at a flow rate of 98.3 Ncm 3 /min. In gas condition 3, 1-methylnaphthalene (tar vapor) was passed at a flow rate of 3.4 Ncm 3 /min (twice the above reference value), and nitrogen gas was passed at a flow rate of 96.6 Ncm 3 /min. In gas condition 4, 1-methylnaphthalene (tar vapor) was passed at a flow rate of 6.8 Ncm 3 /min (four times the above reference value), and nitrogen gas was passed at a flow rate of 93.2 Ncm 3 /min.
タール蒸気を導入するガス条件2~4では、配管内でのタール蒸気の凝縮を防止するために、タール成分として添加した1-メチルナフタレンの沸点(約240℃)以上の温度である300℃を超えた時点でタール蒸気の導入を開始した。ガス条件1~4のいずれでも、アルミナ管内部に保持した熱電対で試験片付近の温度を測定し、その温度を基準に環状炉の温度を調節した。炭化試験後、10℃/分以下の冷却速度で徐冷し、400℃以下の温度からは放冷した。室温付近まで温度が下がったことを確認し、木炭試験片を回収した。なお、本試験においてタール成分として添加した1-メチルナフタレンは、実際のコークス炉ガス中にもタール成分として含まれていることが確認されている。実際のタールには、1-メチルナフタレンのような二員環化合物以外に、三員環化合物も大量に含まれているが、それらは常温で固体であり取り扱いが難しいため、1-メチルナフタレンを利用した。 In gas conditions 2 to 4, in which tar vapor was introduced, the introduction of tar vapor was started when the temperature exceeded 300°C, which is above the boiling point (approximately 240°C) of 1-methylnaphthalene added as a tar component, in order to prevent condensation of the tar vapor in the piping. In all gas conditions 1 to 4, the temperature near the test piece was measured with a thermocouple held inside the alumina tube, and the temperature of the ring furnace was adjusted based on that temperature. After the carbonization test, the test piece was gradually cooled at a cooling rate of 10°C/min or less, and was allowed to cool when it reached a temperature of 400°C or less. After confirming that the temperature had dropped to near room temperature, the charcoal test piece was collected. It has been confirmed that 1-methylnaphthalene, which was added as a tar component in this test, is also contained as a tar component in actual coke oven gas. In addition to two-membered ring compounds such as 1-methylnaphthalene, actual tar also contains large amounts of three-membered ring compounds, but these are solid at room temperature and difficult to handle, so 1-methylnaphthalene was used.
(試験3:圧壊強度試験)
上記試験2で得られた木炭試験片の圧壊強度試験を実施した。いずれの木炭試験片も、測定の前に写真撮影を行い、長手方向、径方向、周方向の三方向の長さを計測し、体積の計算を行った。続いて、各木炭試験片の重量を測定し、計算した体積で除すことで見かけ比重[g/cm3]を計算した。その後、木炭試験片を二グループに分け、一方のグループを長手方向の圧壊強度の測定に利用し、もう一方のグループを周方向の圧壊強度の測定に利用した。圧壊試験装置として、一軸圧縮試験機(KS-205B(電動式)、関西機器製作所製)を利用した。圧壊強度の測定に用いた木炭試験片は、いずれも直方体に近い形状をしていたので、いずれかの面を下にして圧壊試験装置の試験台に載せた。この時、測定したい方向に荷重がかかる面を選択し、その面が下になるようにした。木炭試験片の上方に設置された圧縮板の下方への動作を開始し、木炭試験片を上から圧縮することによって木炭試験片に対して荷重をかけた。圧縮速度は、1000μm/分以下とし、木炭試験片が破損した時点での荷重を圧壊強度の計算に用いた。
(Test 3: Crushing Strength Test)
A crushing strength test was carried out on the charcoal test pieces obtained in the above test 2. Before the measurement, each charcoal test piece was photographed, and the lengths in the three directions, the longitudinal direction, the radial direction, and the circumferential direction, were measured, and the volume was calculated. Next, the weight of each charcoal test piece was measured, and the apparent specific gravity [g/cm 3 ] was calculated by dividing the weight by the calculated volume. Then, the charcoal test pieces were divided into two groups, one group was used to measure the crushing strength in the longitudinal direction, and the other group was used to measure the crushing strength in the circumferential direction. As the crushing test device, a uniaxial compression tester (KS-205B (electric type), manufactured by Kansai Machinery Manufacturing Co., Ltd.) was used. Since all of the charcoal test pieces used for measuring the crushing strength had a shape close to a rectangular parallelepiped, one of the faces was placed on the test table of the crushing test device with one of the faces facing down. At this time, the face on which the load was applied in the direction to be measured was selected, and the face was placed facing down. The downward movement of the compression plate installed above the charcoal test piece was started, and the charcoal test piece was compressed from above, thereby applying a load to the charcoal test piece. The compression speed was set to 1000 μm/min or less, and the load at which the charcoal test piece broke was used to calculate the crushing strength.
いずれの樹種においても長手方向の圧壊強度が、周方向の圧壊強度よりも高くなった。木炭の強度が最も低かったバルサにおいても、800℃以上での炭化試験においてすべてのガス条件1~4で、長手方向の圧壊強度が8MPaを超えており、十分な強度が確認された。したがって、以降の説明(試験結果1~3)では、圧壊強度が相対的に弱い周方向の圧壊強度のみに着目する。なお、上記表2の「ガス条件4:タール4倍」で試験を実施した際には、多くの木炭試験片が大きく変形し、圧壊強度の測定も体積の計算も困難であった。この理由は、木炭試験片が大量のタール蒸気に暴露されたことで、グラファイト化が過度に進行したためと考えられる。変形が進んだ木炭試験片は、いずれも「ガス条件1:タール無」の場合よりも高い荷重に耐えたが、上述の都合により圧壊強度の計算ができなかった。 For all wood species, the longitudinal crushing strength was higher than the circumferential crushing strength. Even for balsa, which had the lowest charcoal strength, the longitudinal crushing strength exceeded 8 MPa in all gas conditions 1 to 4 in the carbonization test at 800°C or higher, confirming sufficient strength. Therefore, in the following explanations (test results 1 to 3), we will focus only on the circumferential crushing strength, which is relatively weak. Note that when the test was conducted under "Gas condition 4: 4 times tar" in Table 2 above, many of the charcoal test pieces were significantly deformed, making it difficult to measure the crushing strength and calculate the volume. This is thought to be because the charcoal test pieces were exposed to a large amount of tar vapor, which caused excessive graphitization. All of the deformed charcoal test pieces withstood a higher load than the "Gas condition 1: no tar" case, but due to the above reasons, it was not possible to calculate the crushing strength.
(試験4:Weibull分布を用いた統計処理)
上記試験3において、さまざまな樹種、炭化温度、炭化雰囲気における試験結果が得られたが、木材は不均一な材料であり、不可避的にばらつきが生じる。そこで、統計処理を施して試験結果を解析し、後述する各パラメーターが木炭の圧壊強度に与える影響を評価した。先行研究を踏まえ、木炭の圧壊強度が見かけ比重に強く依存すると仮定し、見かけ比重と圧壊強度との関係を評価した。統計モデルには物質の強度をよく説明するWeibull分布を用い、最尤推定を用いてパラメーターの決定を行った。Weibullの式を以下の式(2)に示す。
(Test 4: Statistical processing using Weibull distribution)
In the above test 3, test results were obtained for various tree species, carbonization temperatures, and carbonization atmospheres, but wood is a non-uniform material, and unavoidable variations occur. Therefore, statistical processing was performed to analyze the test results, and the effect of each parameter described below on the crushing strength of charcoal was evaluated. Based on previous research, we assumed that the crushing strength of charcoal is strongly dependent on the apparent specific gravity, and evaluated the relationship between the apparent specific gravity and the crushing strength. For the statistical model, the Weibull distribution, which well describes the strength of materials, was used, and the parameters were determined using maximum likelihood estimation. The Weibull formula is shown in the following formula (2).
f(y;λ,k)=k/λ×(x/λ)k-1×exp(-(x/λ)k)
・・・(2)
ここで、yは圧壊強度[MPa]であり0以上の値、λとkはいずれも見かけ比重xに依存する関数であり、それぞれ以下の式(3),(4)に示される。
f(y; λ, k) = k/λ × (x/λ) k - 1 × exp(-(x/λ) k)
... (2)
Here, y is the crushing strength [MPa] and is a value of 0 or more, and λ and k are both functions that depend on the apparent specific gravity x, and are represented by the following formulas (3) and (4), respectively.
λ=a1×x+a2×x2 ・・・(3)
k=b1+b2×x ・・・(4)
ここで、a1、a2、b1、b2は、炭化温度、炭化雰囲気ごとに決定されるパラメーターである。なお、合計四つのパラメーターa1、a2、b1、b2を選択した理由は、Akaike Information Criterion(AIC)でパラメーターの組み合わせを複数比較したところ、上記の組み合わせが最適と結論されたことによる。上記表2に示す各ガス条件1~3にて得られた木炭試験片の強度について解析を行い、得られたパラメーターa1、a2、b1、b2を下記表3に示す。
λ = a1 x + a2 x2 ... (3)
k = b1 + b2 × x ... (4)
Here, a1 , a2 , b1 , and b2 are parameters determined for each carbonization temperature and carbonization atmosphere. The reason for selecting a total of four parameters a1 , a2 , b1 , and b2 is that when multiple combinations of parameters were compared using Akaike Information Criterion (AIC), it was concluded that the above combinations were optimal. The strength of the charcoal test pieces obtained under each of the gas conditions 1 to 3 shown in Table 2 above was analyzed, and the obtained parameters a1 , a2 , b1 , and b2 are shown in Table 3 below.
(試験結果1:炭化温度800℃)
図1~図3には、炭化試験の最高到達温度が800℃である場合における、見かけ比重[g/cm3]と圧壊強度(周方向)[MPa]との関係(上記試験4の統計処理の結果)を示す。ここで、図1は上記表2のガス条件1での試験結果であり、図2は上記表2のガス条件2での試験結果であり、図3は上記表2のガス条件3での試験結果である。炭化試験時にタール蒸気を導入しなかった場合に比べ(図1)、炭化試験時にタール蒸気を導入した場合(図2、3)には、同一の見かけ比重における圧壊強度のばらつきが小さく抑えられ、特に低圧壊強度でのばらつきが小さく抑えられていることが分かる。また、タール蒸気の流量が多いガス条件3(図3)では、タール蒸気の流量が少ないガス条件2(図2)に比べて、各見かけ比重でピークを示す圧壊強度が高くなっている。図1~図3に示す試験結果に基づいて、ガス条件1~3のそれぞれにおいて、圧壊強度8MPa以上の木炭が得られる確率が、各見かけ比重でどのように変化するかを評価した結果を下記表4に示す。
(Test result 1: Carbonization temperature 800°C)
1 to 3 show the relationship between apparent specific gravity [g/cm 3 ] and crushing strength (circumferential direction) [MPa] (results of statistical processing of the above test 4) when the maximum temperature reached in the carbonization test is 800° C. Here, FIG. 1 shows the test results under gas condition 1 in Table 2 above, FIG. 2 shows the test results under gas condition 2 in Table 2 above, and FIG. 3 shows the test results under gas condition 3 in Table 2 above. It can be seen that, compared to the case where tar vapor was not introduced during the carbonization test (FIG. 1), when tar vapor was introduced during the carbonization test (FIGS. 2 and 3), the variation in crushing strength at the same apparent specific gravity was kept small, and particularly the variation at low crushing strength was kept small. Moreover, under gas condition 3 (FIG. 3) where the flow rate of tar vapor is high, the crushing strength showing a peak at each apparent specific gravity is higher than under gas condition 2 (FIG. 2) where the flow rate of tar vapor is low. Based on the test results shown in Figures 1 to 3, an evaluation was conducted to see how the probability of obtaining charcoal with a crushing strength of 8 MPa or more changes with each apparent specific gravity under each of the gas conditions 1 to 3. The results are shown in Table 4 below.
上記表4の結果から明らかなように、タール蒸気を炭化雰囲気に導入することによって、タール蒸気を炭化雰囲気に導入しない場合と比べて、圧壊強度8MPa以上の木炭の発生確率が向上することになり、800℃で炭化試験した際の木炭強度のばらつきが抑制される。また、見かけ比重0.7g/cm3以下の低密度の木炭においても8MPa以上の圧壊強度を持つ木炭が得られる確率が飛躍的に増大する。具体的には、見かけ比重0.55g/cm3の木炭においても、過半数が8MPa以上の圧壊強度を持つ木炭となる。なお、気乾比重0.68g/cm3の木材であるウォールナット(上記表1参照)を原料とした木炭については、過半数が8MPa以上の圧壊強度を持つことを確認した。これは、この木炭が、高炉での利用も可能な水準の強度を持っていることを意味している。 As is clear from the results of Table 4 above, by introducing tar vapor into the carbonization atmosphere, the probability of generating charcoal with a crushing strength of 8 MPa or more is improved compared to the case where tar vapor is not introduced into the carbonization atmosphere, and the variation in charcoal strength during carbonization tests at 800°C is suppressed. In addition, the probability of obtaining charcoal with a crushing strength of 8 MPa or more is dramatically increased even for low-density charcoal with an apparent specific gravity of 0.7 g/cm3 or less . Specifically, even for charcoal with an apparent specific gravity of 0.55 g/ cm3 , the majority of charcoal has a crushing strength of 8 MPa or more. It was confirmed that the majority of charcoal made from walnut (see Table 1 above), a wood with an air-dry specific gravity of 0.68 g/ cm3 , has a crushing strength of 8 MPa or more. This means that this charcoal has a level of strength that can be used in blast furnaces.
(試験結果2:炭化温度1000℃)
図4~図6には、炭化試験の最高到達温度が1000℃である場合における、見かけ比重[g/cm3]と圧壊強度(周方向)[MPa]との関係(上記試験4の統計処理の結果)を示す。ここで、図4は上記表2のガス条件1での試験結果であり、図5は上記表2のガス条件2での試験結果であり、図6は上記表2のガス条件3での試験結果である。
(Test result 2: Carbonization temperature 1000°C)
4 to 6 show the relationship between apparent specific gravity [g/cm 3 ] and crushing strength (circumferential direction) [MPa] (the results of statistical processing of the above test 4) when the maximum temperature reached in the carbonization test was 1000° C. Here, FIG. 4 shows the test results under gas condition 1 in Table 2 above, FIG. 5 shows the test results under gas condition 2 in Table 2 above, and FIG. 6 shows the test results under gas condition 3 in Table 2 above.
炭化試験時にタール蒸気を導入しなかった場合(図4)と、炭化試験時にタール蒸気を導入した場合(図5、図6)とを比較すると、タール蒸気の導入によって同一の見かけ比重における圧壊強度のばらつきが若干抑制されていることが分かるが、上記試験結果1(800℃)のときほどの顕著なばらつきの抑制は見られなかった。この理由は、炭化試験の最高到達温度が1000℃であるときにおいては、タール蒸気が無い場合においても、炭化反応が十分に進行したためと考えられる。したがって、炭化試験の最高到達温度が1000℃であるときにおいては、タール蒸気の導入の有無によらず、同一の見かけ比重の木炭であれば、同程度の圧壊強度が得られると考えられる。一方で、同一の樹種の木炭試験片について、タール蒸気の複数の濃度で比較すると、タール蒸気の濃度が上昇するに従って、見かけ比重と圧壊強度が上昇する傾向が見られた。この結果を下記表5に示す。下記表5は、各樹種について、各ガス条件1~3で作成した10個程度の木炭試験片の平均の見かけ比重と、周方向の圧壊強度の平均値とを比較したものである。 Comparing the case where tar vapor was not introduced during the carbonization test (Figure 4) with the case where tar vapor was introduced during the carbonization test (Figures 5 and 6), it can be seen that the introduction of tar vapor slightly suppressed the variation in the crushing strength at the same apparent specific gravity, but the suppression of variation was not as significant as in Test Result 1 (800°C) above. The reason for this is thought to be that when the maximum temperature reached in the carbonization test was 1000°C, the carbonization reaction proceeded sufficiently even in the absence of tar vapor. Therefore, when the maximum temperature reached in the carbonization test was 1000°C, it is thought that the same level of crushing strength can be obtained for charcoal with the same apparent specific gravity, regardless of whether tar vapor was introduced or not. On the other hand, when charcoal test pieces of the same tree species were compared at multiple concentrations of tar vapor, a tendency was observed in which the apparent specific gravity and crushing strength increased as the concentration of tar vapor increased. The results are shown in Table 5 below. Table 5 below compares the average apparent specific gravity and average circumferential crushing strength of approximately 10 charcoal test pieces made for each wood species under each gas condition 1 to 3.
上記表5の結果によれば、ヒノキ、アメリカンチェリー、ウォールナットのいずれの結果も、ガス条件1で得られた木炭の見かけ比重に比べて、ガス条件2やガス条件3で得られた木炭の見かけ比重が増大していることが分かり、それに伴って、圧壊強度も増大している。白樫については、他の三つの樹種(ヒノキ、アメリカンチェリー、ウォールナット)に比べて、見かけ比重や圧壊強度の増大幅が小さくなっているが、これは、もともと見かけ比重が大きい木炭であるため、タール蒸気の導入によって木炭の一部の細孔が埋まったことによる効果があまり顕著に見えなかったためと考えられる。 The results in Table 5 above show that for all of the results for cypress, American cherry, and walnut, the apparent specific gravity of the charcoal obtained under gas conditions 2 and 3 is higher than the apparent specific gravity of the charcoal obtained under gas condition 1, and the crushing strength also increases accordingly. For white oak, the increase in apparent specific gravity and crushing strength is smaller than for the other three tree species (cypress, American cherry, and walnut), but this is thought to be because the charcoal has a high apparent specific gravity to begin with, and the effect of some of the charcoal's pores being filled by the introduction of tar vapor was not very noticeable.
タール蒸気の導入によって、アメリカンチェリーのように炭化試験前の気乾比重が0.55g/cm3とあまり大きくない木材でも、炭化試験後の見かけ比重(ガス条件3)が0.50g/cm3を超え、圧壊強度も8MPaを上回ることが確認された。また、上記表5の結果によれば、炭化試験後の見かけ比重が0.48g/cm3を超えると、圧壊強度の平均値が8MPaを超えることが確認された。また、炭化試験前の気乾比重が0.55g/cm3を超える木材を原料とすることで、タール蒸気を導入したガス条件2,3では、圧壊強度の平均値が8MPaを超える木炭が得られていることも分かる。これは、この木炭が、高炉での利用も可能な水準の強度を持っていることを意味している。 It was confirmed that the introduction of tar steam caused the apparent specific gravity (gas condition 3) after the carbonization test to exceed 0.50 g/cm 3 and the crushing strength to exceed 8 MPa, even for wood such as American cherry, whose air-dry specific gravity before the carbonization test was not very high at 0.55 g/cm 3. Also, according to the results of Table 5 above, it was confirmed that when the apparent specific gravity after the carbonization test exceeded 0.48 g/cm 3 , the average crushing strength exceeded 8 MPa. It was also found that, by using wood whose air-dry specific gravity before the carbonization test exceeded 0.55 g/cm 3 as the raw material, charcoal with an average crushing strength exceeding 8 MPa was obtained under gas conditions 2 and 3 in which tar steam was introduced. This means that this charcoal has a level of strength that can be used in a blast furnace.
(試験結果3:炭化温度1100℃)
図7及び図8には、炭化試験の最高到達温度が1100℃である場合における、見かけ比重[g/cm3]と圧壊強度(周方向)[MPa]との関係(上記試験4の統計処理の結果)を示す。ここで、図7は上記表2のガス条件1での試験結果であり、図8は上記表2のガス条件2での試験結果である。炭化試験時にタール蒸気を導入しなかった場合に比べ(図7)、炭化試験時にタール蒸気を導入した場合(図8)には、同一の見かけ比重でピークを示す圧壊強度が高くなっていることが分かる。図7及び図8に示す試験結果に基づいて、ガス条件1,2のそれぞれにおいて、圧壊強度8MPa以上の木炭が得られる確率が、各見かけ比重でどのように変化するかを評価した結果を下記表6に示す。
(Test result 3: Carbonization temperature 1100°C)
7 and 8 show the relationship between apparent specific gravity [g/ cm3 ] and crushing strength (circumferential direction) [MPa] (results of statistical processing of the above test 4) when the maximum temperature reached in the carbonization test is 1100°C. Here, FIG. 7 shows the test results under gas condition 1 in Table 2 above, and FIG. 8 shows the test results under gas condition 2 in Table 2 above. It can be seen that the crushing strength, which peaks at the same apparent specific gravity, is higher when tar vapor is introduced during the carbonization test (FIG. 8) compared to when tar vapor is not introduced during the carbonization test (FIG. 7). Based on the test results shown in FIG. 7 and FIG. 8, an evaluation was conducted to see how the probability of obtaining charcoal with a crushing strength of 8 MPa or more changes with each apparent specific gravity under gas conditions 1 and 2, respectively, and the results are shown in Table 6 below.
上記表6の結果から明らかなように、タール蒸気を炭化雰囲気に導入することによって、最高到達温度1100℃で炭化試験した際の木炭の圧壊強度が向上し、見かけ比重0.45g/cm3の低密度の木炭においても過半数の木炭(ガス条件2)が8MPa以上の圧壊強度となる。なお、炭化試験前の気乾比重が0.55g/cm3の木材であるアメリカンチェリーを原料とした木炭については、過半数が8MPa以上の圧壊強度を持つことを確認した。 As is clear from the results in Table 6 above, by introducing tar vapor into the carbonization atmosphere, the crushing strength of charcoal is improved when carbonization tests are conducted at a maximum temperature of 1100°C, and even for low-density charcoal with an apparent specific gravity of 0.45 g/ cm3 , the majority of charcoal (gas condition 2) has a crushing strength of 8 MPa or more. It was confirmed that the majority of charcoal made from American cherry, a wood with an air-dry specific gravity of 0.55 g/ cm3 before the carbonization test, had a crushing strength of 8 MPa or more.
Claims (9)
コークス炉炭化室に充填された石炭の充填層の上面に前記木材を充填し、前記タール蒸気として、前記石炭の乾留によって発生するガスに含まれるタール成分を用いることを特徴とする木炭の製造方法。 While supplying tar vapor to the wood, the wood is heated to a temperature of 700° C. or more and 1200° C. or less (excluding 700° C.) to carbonize the wood,
A method for producing charcoal, comprising filling the wood on top of a packed bed of coal filled in a carbonization chamber of a coke oven, and using tar components contained in a gas generated by carbonization of the coal as the tar vapor.
前記木炭は、高炉用コークスの代替物として用いられることを特徴とする木炭の製造方法。 While supplying tar vapor to the wood, the wood is heated to a temperature of 700° C. or more and 1200° C. or less (excluding 700° C.) to carbonize the wood,
A method for producing charcoal , characterized in that the charcoal is used as a substitute for blast furnace coke.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020035977A JP7485904B2 (en) | 2020-03-03 | 2020-03-03 | How charcoal is made |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020035977A JP7485904B2 (en) | 2020-03-03 | 2020-03-03 | How charcoal is made |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021138807A JP2021138807A (en) | 2021-09-16 |
JP7485904B2 true JP7485904B2 (en) | 2024-05-17 |
Family
ID=77667981
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020035977A Active JP7485904B2 (en) | 2020-03-03 | 2020-03-03 | How charcoal is made |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7485904B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008025929A (en) | 2006-07-21 | 2008-02-07 | Nippon Steel Engineering Co Ltd | Waste melting method |
JP2010254749A (en) | 2009-04-22 | 2010-11-11 | Jfe Steel Corp | Method for producing biomass charcoal and apparatus for producing biomass charcoal used in the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2540628B2 (en) * | 1989-03-10 | 1996-10-09 | 三菱重工業株式会社 | Charcoal manufacturing method |
-
2020
- 2020-03-03 JP JP2020035977A patent/JP7485904B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008025929A (en) | 2006-07-21 | 2008-02-07 | Nippon Steel Engineering Co Ltd | Waste melting method |
JP2010254749A (en) | 2009-04-22 | 2010-11-11 | Jfe Steel Corp | Method for producing biomass charcoal and apparatus for producing biomass charcoal used in the same |
Also Published As
Publication number | Publication date |
---|---|
JP2021138807A (en) | 2021-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Manouchehrinejad et al. | Torrefaction after pelletization (TAP): Analysis of torrefied pellet quality and co-products | |
Riva et al. | Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke | |
Assis et al. | Factors affecting the mechanics of carbonized wood: literature review | |
Uemura et al. | Torrefaction of oil palm kernel shell in the presence of oxygen and carbon dioxide | |
Dacres et al. | Pyrolysis kinetics of biomasses pretreated by gas-pressurized torrefaction | |
Bergström et al. | Effects of raw material particle size distribution on the characteristics of Scots pine sawdust fuel pellets | |
Riva et al. | On the self-heating behavior of upgraded biochar pellets blended with pyrolysis oil: Effects of process parameters | |
Huang et al. | Microwave torrefaction of leucaena to produce biochar with high fuel ratio and energy return on investment | |
Surup et al. | Characterization of renewable reductants and charcoal-based pellets for the use in ferroalloy industries | |
Bartocci et al. | Biocarbon pellet production: Optimization of pelletizing process | |
Koveria et al. | Metallurgical coke production with biomass additives. Part 1. A review of existing practices | |
Pyshyev et al. | State of the art in the production of charcoal: A review | |
Florentino-Madiedo et al. | Effect of sawdust addition on coking pressure produced by two low vol bituminous coals | |
Hwang et al. | Analysis of carbonization behavior of hydrochar produced by hydrothermal carbonization of lignin and development of a prediction model for carbonization degree using near-infrared spectroscopy | |
Nguyen et al. | Pressurized hot water treatment of sugar maple and yellow birch wood particles for high quality fuel pellet production | |
JP7485904B2 (en) | How charcoal is made | |
Tran et al. | Simultaneously boosting the mass and fixed-carbon yields of charcoal from forest residue via atmospheric carbonization | |
Ju et al. | Characteristics of carbonized biomass produced in a manufacturing process of wood charcoal briquettes using an open hearth kiln | |
Alonso et al. | A kinetic study on simultaneously boosting the mass and fixed-carbon yield of charcoal production via atmospheric carbonization | |
Banta et al. | Parametric study of rice husk torrefaction for the development of sustainable solid fuel | |
Ramos-Carmona et al. | Physicochemical characterization of torrefied wood biomass under air as oxidizing atmosphere | |
Ahmad et al. | Carbonization of coconut shell biomass in a downdraft reactor: effect of temperature on the charcoal properties | |
Yustanti et al. | The effect of wood tar and molasses composition on calorific value and compressive strength in bio-coke briquetting | |
Wang et al. | Investigation of gasification reactivity and properties of biocarbon at high temperature in a mixture of CO/CO2 | |
Koskela et al. | Evolution of biocarbon strength and structure during gasification in CO2 containing gas atmosphere |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221104 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230628 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230825 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20231107 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240202 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20240209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240415 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7485904 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |