[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7484712B2 - Composite member and molding die, manufacturing method of composite member, molding method of glass material, manufacturing method of optical element, manufacturing method of optical system, and manufacturing method of imaging device - Google Patents

Composite member and molding die, manufacturing method of composite member, molding method of glass material, manufacturing method of optical element, manufacturing method of optical system, and manufacturing method of imaging device Download PDF

Info

Publication number
JP7484712B2
JP7484712B2 JP2020527549A JP2020527549A JP7484712B2 JP 7484712 B2 JP7484712 B2 JP 7484712B2 JP 2020527549 A JP2020527549 A JP 2020527549A JP 2020527549 A JP2020527549 A JP 2020527549A JP 7484712 B2 JP7484712 B2 JP 7484712B2
Authority
JP
Japan
Prior art keywords
substrate
glass member
glass
thickness
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020527549A
Other languages
Japanese (ja)
Other versions
JPWO2020004405A1 (en
Inventor
浩司 宮坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2020004405A1 publication Critical patent/JPWO2020004405A1/en
Application granted granted Critical
Publication of JP7484712B2 publication Critical patent/JP7484712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • C03B11/06Construction of plunger or mould
    • C03B11/08Construction of plunger or mould for making solid articles, e.g. lenses

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、ガラス部材と基材とを含む複合部材、複合部材を用いた成形用型、複合部材の製造方法およびガラス材料の成形方法ならびに光学素子、光学系、および撮像装置に関する。The present invention relates to a composite member including a glass member and a substrate, a molding die using the composite member, a method for manufacturing a composite member, a method for molding a glass material, an optical element, an optical system, and an imaging device.

ガラス材料に対してガラスモールドプレス成形(以下、プレス成形という。)を行うための成形用型の形材として、成形中のガラス材料の変形を抑えるために、金属、超硬合金、セラミックなどのヤング率の高い材料が用いられる。しかし、一般に、硬い材質ほど成形用型の加工に時間がかかる。In order to suppress deformation of the glass material during molding, materials with high Young's modulus, such as metals, cemented carbide, and ceramics, are used as the shape material of the mold for glass mold press molding (hereinafter referred to as press molding). However, in general, the harder the material, the longer it takes to process the mold.

成形用型の形材として、ガラスのような加工性がよい材質を用いると、成形用型の加工の時間を短縮できる。ガラスは、エッチング、切削、研磨、プレス成形など様々な加工方法によって多様な形状のガラス加工品に加工可能である。そのようなガラス加工品でUV硬化樹脂のインプリントの型を形成することができる。また、特許文献1には、ガラスを材料とした成形用型を用いてガラス材料に対してプレス成形を行う例が記載されている。If a material with good workability such as glass is used as the shape material of the molding die, the processing time of the molding die can be shortened. Glass can be processed into glass processed products of various shapes by various processing methods such as etching, cutting, polishing, and press molding. Such glass processed products can form a mold for imprinting UV curable resin. Patent Document 1 also describes an example of press molding a glass material using a molding die made of glass.

しかし、ガラスのヤング率は、金属、超硬合金、セラミックなどの部材のヤング率に比べて小さい。したがって、金属、超硬合金、セラミックなどの部材による成形用型を用いる場合に比べて、成形中のガラス材料の変形(所望の形状からの変形)が大きくなる。However, the Young's modulus of glass is smaller than that of metals, cemented carbide, ceramics, etc. Therefore, the deformation of the glass material during molding (deformation from the desired shape) is greater than when a molding die made of metals, cemented carbide, ceramics, etc. is used.

特許文献2には、高速度鋼の基材の上にガラス部材としての結晶化ガラスを配置した成形用型が記載されている。Patent Document 2 describes a molding die in which crystallized glass is disposed as a glass member on a substrate of high speed steel.

特許文献3には、ガラス部材と基材からなる複合部材(ガラス材料プレス成形用型)が記載されている。Patent Document 3 describes a composite member (a mold for press molding a glass material) made of a glass member and a substrate.

なお、非特許文献1には、積層体の反りの評価方法が記載されている。非特許文献2には、BK-7ガラスの互換材であるS-BSL7をガラス材料とし、超硬合金を金型として球面レンズのモールドプレス成形を行った際の、成形された球面レンズの形状の評価に関することが記載されている。Non-Patent Document 1 describes a method for evaluating warpage of a laminate. Non-Patent Document 2 describes evaluation of the shape of a molded spherical lens when mold press molding of a spherical lens is performed using S-BSL7, which is a compatible material of BK-7 glass, as a glass material and a cemented carbide die.

日本国特公平2-1780号公報Japan Patent Publication No. 2-1780 日本国特開2003-26429号公報Japanese Patent Publication No. 2003-26429 日本国特開2002-348130号公報Japanese Patent Publication No. 2002-348130

山科 直利、「特5 銅張り積層板のそりのメカニズム」、討論会講演要旨、合成樹脂工業協会、1985年、第35巻、p.125-128Naotoshi Yamashina, "Special 5: Mechanism of Warping in Copper-Clad Laminates," Abstracts of a Discussion Meeting, Japan Plastics Industry Association, 1985, Vol. 35, pp. 125-128 伊藤 寛明他3名、「ガラスレンズのモールドプレスにおける最適成形条件の評価」、日本機械学会論文集(A編)、2013年11月、第79巻、第807号、p.131-135Hiroaki Ito et al., "Evaluation of Optimal Molding Conditions for Glass Lens Mold Press," Transactions of the Japan Society of Mechanical Engineers (Series A), November 2013, Vol. 79, No. 807, pp. 131-135

ガラス部材と基材を含む成形用型を形成する場合、ガラス部材と基材とを接合するときに、接合の際に発生する熱応力によって成形用型が歪む場合がある。一般に、ガラス材料のプレス成形は、600℃などの高温で行われる。例えば、成形温度より高温の800~1000℃でガラス部材と基材との接合がなされた場合、室温になったときに、大きな熱応力が生じる。熱応力は、ガラス部材の破損の可能性を高める。また、熱応力は、ガラス部材に変形を生じさせる可能性を高める。When forming a molding die including a glass member and a substrate, the molding die may be distorted due to thermal stress generated during bonding of the glass member and the substrate. In general, press molding of glass materials is performed at high temperatures such as 600°C. For example, when the glass member and the substrate are bonded at 800 to 1000°C, which is higher than the molding temperature, large thermal stress occurs when the temperature returns to room temperature. Thermal stress increases the possibility of breakage of the glass member. Thermal stress also increases the possibility of deformation of the glass member.

本発明は、ガラス部材と基材とを含む複合部材に生じる熱変形を緩和することを目的とする。An object of the present invention is to reduce thermal deformation occurring in a composite member including a glass member and a substrate.

本発明による複合部材は、成形部であるガラス部材と、ガラス部材を支持する基材とを含む複合部材であって、ガラス部材の厚さをHm、ガラス部材のヤング率をEm、ガラス部材の線膨張係数をαm、ガラス部材の幅をW、基材の厚さをHs、基材のヤング率をEs、基材の線膨張係数をαsで表して、ガラス部材の反りΔHを下記の式によって定義したときに、ガラス部材の反りが0である温度と室温との温度差ΔTが1000℃の場合のガラス部材の反りΔHが0.004mm未満であることを特徴とする。
ΔH=(1/|K|)-√{(1/K)-(W/2)
(式において、
K=(A×F-B×D)/(A×C-B
A=Es×Hs+Em×Hm
B=(1/2)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
C=(1/3)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
D=ΔT×{Es×αs×Hs+Em×αm×Hm}
F=(ΔT/2)×[Es×αs×Hs+Em×αm×{(Hs+Hm)-Hs}])
The composite member according to the present invention is a composite member including a glass member which is a molded portion, and a substrate supporting the glass member, and is characterized in that, when the thickness of the glass member is Hm, the Young's modulus of the glass member is Em, the linear expansion coefficient of the glass member is αm, the width of the glass member is W, the thickness of the substrate is Hs, the Young's modulus of the substrate is Es, and the linear expansion coefficient of the substrate is αs, and the warpage ΔH of the glass member is defined by the following formula, when the temperature difference ΔT between the temperature at which the warpage of the glass member is 0 and room temperature is 1000° C. is less than 0.004 mm.
ΔH=(1/|K|)-√{(1/K) 2 -(W/2) 2 }
(In the formula,
K = (A x F - B x D) / (A x C - B 2 )
A = Es x Hs + Em x Hm
B = (1/2) x [Es x Hs 2 + Em x {(Hs + Hm) 2 - Hs 2 }]
C = (1/3) x [Es x Hs 3 + Em x {(Hs + Hm) 3 - Hs 3 }]
D = ΔT × {Es × αs × Hs + Em × αm × Hm}
F = (ΔT/2) x [Es x αs x Hs2 + Em x αm x {(Hs + Hm) 2 - Hs2 }]

本発明による成形用型は、互いに対向して設けられた2つの型部材を含む成形用型であって、2つの型部材のうちの少なくとも一方が上記の複合部材であることを特徴とする。The molding die according to the present invention is characterized in that it includes two mold members disposed opposite to each other, and at least one of the two mold members is the above-mentioned composite member.

本発明による複合部材の製造方法は、成形部であるガラス部材と、ガラス部材を支持する基材とを接合して複合部材を作製する複合部材の製造方法であって、ガラス部材の厚さをHm、ガラス部材のヤング率をEm、ガラス部材の線膨張係数をαm、ガラス部材の幅をW、基材の厚さをHs、基材のヤング率をEs、基材の線膨張係数をαsで表して、ガラス部材の反りΔHを下記の式によって定義したときに、ガラス部材の反りが0である温度と室温との温度差ΔTが1000℃の場合のガラス部材の反りΔHが0.004mm未満であるように、ガラス部材と基材とを選定し、ガラス部材と基材とを接合することを特徴とする。
ΔH=(1/|K|)-√{(1/K)-(W/2)
(式において、
K=(A×F-B×D)/(A×C-B
A=Es×Hs+Em×Hm
B=(1/2)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
C=(1/3)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
D=ΔT×{Es×αs×Hs+Em×αm×Hm}
F=(ΔT/2)×[Es×αs×Hs+Em×αm×{(Hs+Hm)-Hs}])
The method for manufacturing a composite member according to the present invention is a method for manufacturing a composite member by joining a glass member, which is a formed part, to a substrate supporting the glass member to produce a composite member, and is characterized in that, when the thickness of the glass member is Hm, the Young's modulus of the glass member is Em, the linear expansion coefficient of the glass member is αm, the width of the glass member is W, the thickness of the substrate is Hs, the Young's modulus of the substrate is Es, and the linear expansion coefficient of the substrate is αs, and the warpage ΔH of the glass member is defined by the following formula, the glass member and the substrate are selected and joined together such that when the temperature difference ΔT between the temperature at which the warpage of the glass member is 0 and room temperature is 1000° C., the warpage ΔH of the glass member is less than 0.004 mm.
ΔH=(1/|K|)-√{(1/K) 2 -(W/2) 2 }
(In the formula,
K = (A x F - B x D) / (A x C - B 2 )
A = Es x Hs + Em x Hm
B = (1/2) x [Es x Hs2 + Em x {(Hs + Hm) 2 - Hs2 }]
C = (1/3) x [Es x Hs 3 + Em x {(Hs + Hm) 3 - Hs 3 }]
D = ΔT × {Es × αs × Hs + Em × αm × Hm}
F = (ΔT/2) x [Es x αs x Hs2 + Em x αm x {(Hs + Hm) 2 - Hs2 }]

本発明によるガラス材料の成形方法は、上記の成形用型を用いてガラス材料を成形することを特徴とする。A method for forming a glass material according to the present invention is characterized in that a glass material is formed using the above-mentioned forming mold.

本発明によれば、ガラス部材と基材とを含む複合部材に生じる熱変形を緩和することができる。According to the present invention, it is possible to reduce thermal deformation occurring in a composite member including a glass member and a substrate.

図1は、複合部材の一例である型部材を模式的に示す断面図である。FIG. 1 is a cross-sectional view that typically shows a mold member, which is an example of a composite member. 図2は、型部材の他の例を模式的に示す断面図である。FIG. 2 is a cross-sectional view showing a schematic diagram of another example of a mold member. 図3は、ガラスのヤング率を70GPaとし、ガラスの表面に対して1MPaの圧力をかけた場合の、厚さHmに対する変位量を示す説明図である。FIG. 3 is an explanatory diagram showing the amount of displacement versus thickness Hm when the Young's modulus of glass is set to 70 GPa and a pressure of 1 MPa is applied to the surface of the glass. 図4は、2つの型部材を含む成形用型を模式的に示す断面図である。FIG. 4 is a cross-sectional view that illustrates a molding die that includes two mold members. 図5は、他の成形用型を模式的に示す断面図である。FIG. 5 is a cross-sectional view showing a schematic diagram of another molding die. 図6は、図1に示された型部材を用いてガラス材料が成形される様子を模式的に示す断面図である。FIG. 6 is a cross-sectional view showing a typical state in which a glass material is molded using the mold member shown in FIG. 図7は、成形部の厚さを変えた場合のシミュレーションの結果を示す説明図である。FIG. 7 is an explanatory diagram showing the results of a simulation in which the thickness of the molded portion is changed.

図1は、本発明による複合部材の一例である型部材10を模式的に示す断面図である。型部材10は、成形部11と基材12とを含む。成形部11は、ガラスを材料とするガラス部材である。成形部11は、基材12と接合されている。接合は、例えば、はんだ付けやろう付けなどの他の部材を介した接合である。成形部11と基材12とを高温中でプレスするなどして、分子間力や共有結合などの化学的な結合を利用して直接接合させてもよい。1 is a cross-sectional view showing a mold member 10, which is an example of a composite member according to the present invention. The mold member 10 includes a molded portion 11 and a substrate 12. The molded portion 11 is a glass member made of glass. The molded portion 11 is bonded to the substrate 12. The bonding is performed, for example, by soldering or brazing via another member. The molded portion 11 and the substrate 12 may be directly bonded to each other by pressing them at high temperature, utilizing chemical bonds such as intermolecular forces or covalent bonds.

成形部11と接合される基材12の材料として、金属、超硬合金、セラミックなどのヤング率の高い材料を用いることができる。基材12のヤング率が150GPa以上であることが好ましく、300GPa以上であることがより好ましく、450GPa以上であることがさらに好ましい。
ヤング率の上限は特にないが、一般的に利用できる材料のヤング率の範囲はダイアモンドの1100GPa以下である。
ヤング率の測定は引張試験、圧縮試験、ねじり試験、共振法、超音波パルス法、振子法などを用いることができる。測定方法は例えば下記の規格に記載されている。
JIS R1602:1995 「ファインセラミックスの弾性率試験方法」
JIS R1605:1995 「ファインセラミックスの高温弾性率試験方法」
JIS Z2201:1998 「金属材料引張試験片」
JIS Z2241:2011 「金属材料引張試験方法」
JIS G0567J:2012 「鉄鋼材料及び耐熱合金の高温引張試験方法」
JIS Z2280:1993 「金属材料の高温ヤング率試験方法」
Materials having a high Young's modulus, such as metals, cemented carbide, ceramics, etc., can be used as the material of the substrate 12 to be joined to the molded portion 11. The Young's modulus of the substrate 12 is preferably 150 GPa or more, more preferably 300 GPa or more, and even more preferably 450 GPa or more.
There is no particular upper limit to the Young's modulus, but the range of Young's modulus for commonly available materials is equal to or less than 1100 GPa, which is the value of diamond.
The Young's modulus can be measured by a tensile test, a compression test, a torsion test, a resonance method, an ultrasonic pulse method, a pendulum method, etc. The measurement method is described in, for example, the following standards.
JIS R1602:1995 "Elastic modulus test method for fine ceramics"
JIS R1605:1995 "Test method for high temperature elastic modulus of fine ceramics"
JIS Z2201:1998 "Tensile test piece for metal materials"
JIS Z2241:2011 "Method of tensile testing of metal materials"
JIS G0567J:2012 "High temperature tensile test method for steel materials and heat-resistant alloys"
JIS Z2280:1993 "Method for testing Young's modulus at high temperatures for metallic materials"

図1において、Wは、成形部11の幅を表す。Hsは、基材の厚さを表す。Hmは、成形部11の厚さを表す。Hmとしては、成形部11の表面が凹面の場合は凹部の底における成形部11の厚さを用いることができ、成形部11の表面が凸面の場合は凸部の端における成形部11の厚さを用いることができる。幅Wとして、面内の寸法の最小幅を用いることができる。成形部11の端部がなだらかに基材12に接続するような場合には、幅Wとして、成形部11における高さがHm以下の部分の平均的な幅を用いることができる。成形部11における高さがHm以下の部分の平均的な幅Wは、高さの値をhとして、W=Σ(Δh×W(h))/Hmで求めることができる。ここで、W(h)は高さがhの部分における成形部11の幅を表す。また、成形部11は成形のための曲面を有しているが、その深さをSとする。In FIG. 1, W represents the width of the molded portion 11. Hs represents the thickness of the substrate. Hm represents the thickness of the molded portion 11. When the surface of the molded portion 11 is concave, the thickness of the molded portion 11 at the bottom of the recess can be used as Hm, and when the surface of the molded portion 11 is convex, the thickness of the molded portion 11 at the end of the convex can be used. The minimum width of the in-plane dimension can be used as the width W. When the end of the molded portion 11 is smoothly connected to the substrate 12, the average width of the part of the molded portion 11 whose height is Hm or less can be used as the width W. The average width W of the part of the molded portion 11 whose height is Hm or less can be calculated by W = Σ (Δh × W (h)) / Hm, where h is the height value. Here, W (h) represents the width of the molded portion 11 at the part whose height is h. In addition, the molded portion 11 has a curved surface for molding, and its depth is S.

なお、成形部11の表面に中間膜や保護膜が被覆されてもよい。また、成形部11と基材12との間に、接着層があってもよい。中間膜や保護膜の材料として、チタン、ジルコニウム、ニオブ、ハフニウム、タンタル、クロム、モリブデン、タングステン、ルテニウム、ロジウム、鉄、コバルト、ニッケル、パラジウム、レニウム、オスミウム、イリジウム、銅、銀、金、白金などの金属、貴金属やこれらの合金、酸化物、窒化物、酸窒化物、炭化物を用いることができる。また、シリコン、二酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ素などのシリコン化合物、アモルファスカーボンやダイアモンド状カーボンなどのカーボン、ホウ素化合物を用いることができる。膜は、複数の材料によって複層化されていてもよい。The surface of the molded part 11 may be coated with an intermediate film or a protective film. An adhesive layer may be provided between the molded part 11 and the substrate 12. As the material for the intermediate film or the protective film, metals such as titanium, zirconium, niobium, hafnium, tantalum, chromium, molybdenum, tungsten, ruthenium, rhodium, iron, cobalt, nickel, palladium, rhenium, osmium, iridium, copper, silver, gold, platinum, and other metals, precious metals, and alloys, oxides, nitrides, oxynitrides, and carbides thereof may be used. In addition, silicon compounds such as silicon dioxide, silicon nitride, silicon oxynitride, and silicon carbide, carbon such as amorphous carbon and diamond-like carbon, and boron compounds may be used. The film may be multi-layered with a plurality of materials.

なお、成形部11の表面形状は、断面視で、軸対称な非球面形状に限られず、自由曲面などの形状であってもよい。また、成形部11の表面は、凹面に限られず、凸面であってもよい。The surface shape of the molded portion 11 is not limited to an axially symmetric aspheric shape in a cross-sectional view, and may be a free curved surface, etc. Also, the surface of the molded portion 11 is not limited to a concave surface, and may be a convex surface.

また、図1に示された例では、基材12の縦断面の形状は四角である。しかし、基材12の縦断面の形状は四角に限られない。なお、基材12の横断面の形状は一例として円形である。1, the vertical cross-sectional shape of the substrate 12 is rectangular. However, the vertical cross-sectional shape of the substrate 12 is not limited to a rectangular shape. The horizontal cross-sectional shape of the substrate 12 is, for example, circular.

図2は、型部材の他の例を模式的に示す断面図である。基材12は、図2の(a)に示すように、フランジを有する構造であってもよい。また、基材12は、一部に貫通穴やねじ穴を有するような構造であってもよい。また、図2の(b)に示すように、成形部11の幅と基材12の幅とが異なっていてもよい。図2の(c)に示すように、凹部が設けられた基材12における凹部の中に成形部11が配置されたような構成であってもよい。2 is a cross-sectional view showing another example of a mold member. The substrate 12 may have a flange as shown in FIG. 2(a). The substrate 12 may have a through hole or a screw hole in a part of the substrate. As shown in FIG. 2(b), the width of the molded portion 11 may be different from the width of the substrate 12. As shown in FIG. 2(c), the substrate 12 may have a recess in which the molded portion 11 is disposed.

成形部11に使用されるガラスのひずみ点は400℃以上であることが好ましく、500℃以上であることがより好ましく、600℃以上であることがさらに好ましい。その理由は、多くの光学ガラスの成形温度が400~600℃の範囲内であり、この温度帯において、成形中に十分形状を保持できることが必要であるからである。ひずみ点は、JIS-R3103-2:2001に規定されている方法などで測定可能である。ガラスのひずみ点の上限は特にないが、一般的に利用できる材料として石英ガラスがあり、ひずみ点は1200℃以下となる。The strain point of the glass used in the molding portion 11 is preferably 400°C or higher, more preferably 500°C or higher, and even more preferably 600°C or higher. The reason is that the molding temperature of most optical glasses is within the range of 400 to 600°C, and it is necessary that the shape can be sufficiently maintained during molding in this temperature range. The strain point can be measured by the method specified in JIS-R3103-2:2001, etc. There is no particular upper limit for the strain point of glass, but a commonly available material is quartz glass, which has a strain point of 1200°C or lower.

また、上記のガラスの成形温度で耐久する接合を作るために、600℃以上の温度で接合を形成するのが好ましい。800℃以上の温度で接合を形成するとより好ましい。また、仮に室温に近い温度で反りがない状態で接合できたとしても、ガラスの成形温度まで昇温した際に生じる反りを考慮する必要がある。接合を形成する温度の上限はガラスのひずみ点以下であることが好ましいため上限は1200℃以下とすることができる。In order to create a bond that is durable at the above-mentioned glass forming temperature, it is preferable to form the bond at a temperature of 600° C. or higher. It is more preferable to form the bond at a temperature of 800° C. or higher. Even if the bond can be formed without warping at a temperature close to room temperature, it is necessary to consider warping that occurs when the temperature is raised to the glass forming temperature. The upper limit of the temperature for forming the bond is preferably equal to or lower than the strain point of the glass, and therefore the upper limit can be set to 1200° C. or lower.

次に、成形部11の変形を検討する。Next, the deformation of the molded portion 11 will be considered.

以下、非特許文献1に記載されたk層の積層板の反りの一般式を使用して検討を行う。下記の(1)式において、Eは、各層の弾性率を表す。αは、各層の線膨張係数を表す。Zは、任意の位置に設定可能な基準座標からの各層の界面の厚さ方向の位置を表す。tは、基準温度からの温度差を表す。Kは、温度差tによって生じる積層体の変形の曲率Kを表す。 Hereinafter, the general formula for warpage of a k-layer laminate described in Non-Patent Document 1 will be used for the study. In the following formula (1), E k represents the elastic modulus of each layer. α k represents the linear expansion coefficient of each layer. Z k represents the position of the interface of each layer in the thickness direction from a reference coordinate that can be set at any position. t represents the temperature difference from the reference temperature. K represents the curvature K of the deformation of the laminate caused by the temperature difference t.

K=(A×F-B×D)/(A×C-B
A=Σ{E×(Z-Zk-1)}
B=(1/2)×Σ{E×{Z -Zk-1 }}
C=(1/3)×Σ{E×(Z -Zk-1 )}
D=t×Σ{E×α×(Z-Zk-1
F=(t/2)×Σ{E×α×(Z -Zk-1 )}
・・・(1)
K = (A x F - B x D) / (A x C - B 2 )
A = Σ{E k × (Z k - Z k-1 )}
B = (1/2) × Σ {E k × {Z k 2 -Z k-1 2 }}
C = (1/3) × Σ {E k × (Z k 3 −Z k−1 3 )}
D = t × Σ {E k × α k × (Z k -Z k-1 )}
F = (t/2) × Σ {E k × α k × (Z k 2 -Z k-1 2 )}
... (1)

上記の(1)式を積層体の層数を2とし、曲率Kの円弧によって生じる厚さ方向の変位量(反り)をΔHとすると、ΔHは、下記の(2)式で表される。本実施形態では、2層は、成形部11と基材12とに相当する。In the above formula (1), when the number of layers of the laminate is 2 and the amount of displacement (warping) in the thickness direction caused by the arc of curvature K is ΔH, ΔH is expressed by the following formula (2). In this embodiment, the two layers correspond to the molded portion 11 and the substrate 12.

ΔH=(1/|K|)-√{(1/K)-(W/2)} ・・・(2) ΔH=(1/|K|)-√{(1/K) 2 -(W/2) 2 } (2)

ここで、
K=(A×F-B×D)/(A×C-B
A=Es×Hs+Em×Hm
B=(1/2)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
C=(1/3)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
D=ΔT×{Es×αs×Hs+Em×αm×Hm}
F=(ΔT/2)×[Es×αs×Hs+Em×αm×{(Hs+Hm)-Hs}]
・・・(3)
である。
here,
K = (A x F - B x D) / (A x C - B 2 )
A = Es x Hs + Em x Hm
B = (1/2) x [Es x Hs2 + Em x {(Hs + Hm) 2 - Hs2 }]
C = (1/3) x [Es x Hs 3 + Em x {(Hs + Hm) 3 - Hs 3 }]
D = ΔT × {Es × αs × Hs + Em × αm × Hm}
F = (ΔT/2) × [Es × αs × Hs 2 + Em × αm × {(Hs + Hm) 2 - Hs 2 }]
...(3)
It is.

上記の(3)式において、Emは、成形部11であるガラス部材のヤング率を示す。αmは、成形部11であるガラス部材の線膨張係数を示す。Esは、基材12のヤング率を示す。αsは、基材12の線膨張係数を示す。ΔTは、型部材10を成形するときの温度(成形部11と基材12とを接合するときの接合温度:換言すれば、ガラス部材の反りが0であるときの温度)と室温との差を表す。ここで、室温は20~25℃の範囲の温度とし、以下で断りがない場合、20℃とする。In the above formula (3), Em represents the Young's modulus of the glass member which is the shaped portion 11. αm represents the linear expansion coefficient of the glass member which is the shaped portion 11. Es represents the Young's modulus of the substrate 12. αs represents the linear expansion coefficient of the substrate 12. ΔT represents the difference between the temperature when the mold member 10 is molded (the joining temperature when the shaped portion 11 and the substrate 12 are joined; in other words, the temperature when the warpage of the glass member is 0) and room temperature. Here, room temperature is a temperature in the range of 20 to 25°C, and 20°C unless otherwise specified below.

なお、Es、Emの単位は[MPa]である。Hm、Hsの単位は[mm]である。線膨張係数の単位は[1/℃]である。ΔTの単位は[℃]である。ΔHの単位は[mm]である。
線膨張係数は熱機械分析装置(TMA:thermomechanical analyzer)を用いて計測できる。また、下記のJIS規格による方法を用いてもよい。
JIS Z2285:2003 金属材料の線膨張係数の測定方法
JIS R1618:2002 ファインセラミックスの熱機械分析による熱膨張の測定方法
JIS R3251:1995 低膨張ガラスのレーザー干渉法による線膨張率の測定方法
JIS R3102:1995 ガラスの平均線膨張係数の試験方法
The units of Es and Em are [MPa], Hm and Hs are [mm], the unit of the linear expansion coefficient is [1/°C], the unit of ΔT is [°C], and the unit of ΔH is [mm].
The linear expansion coefficient can be measured using a thermomechanical analyzer (TMA). Alternatively, the following method according to the JIS standard may be used.
JIS Z2285:2003 Measurement method of linear expansion coefficient of metal materials JIS R1618:2002 Measurement method of thermal expansion of fine ceramics by thermomechanical analysis JIS R3251:1995 Measurement method of linear expansion coefficient of low expansion glass by laser interference method JIS R3102:1995 Test method of average linear expansion coefficient of glass

上記の(2)式を用いる場合、ΔT=1000([℃])としたときに、ΔH<0.004を満たすようにW、Hs、Hmが選定されることが好ましい。また、ΔT=1000としたときに、ΔH<0.002を満たすようにW、Hs、Hmが選定されることがより好ましい。ΔT=1000としたときに、ΔH<0.001を満たすようにW、Hs、Hmが選定されることがさらに好ましい。ΔT=1000としたときに、ΔH<0.0005を満たすようにW、Hs、Hmが選定されることが一層好ましい。なお(2)式からわかるようにΔHの下限は0である。When using the above formula (2), it is preferable that W, Hs, and Hm are selected so that ΔH<0.004 is satisfied when ΔT=1000 ([° C.]). It is more preferable that W, Hs, and Hm are selected so that ΔH<0.002 is satisfied when ΔT=1000. It is even more preferable that W, Hs, and Hm are selected so that ΔH<0.001 is satisfied when ΔT=1000. It is even more preferable that W, Hs, and Hm are selected so that ΔH<0.0005 is satisfied when ΔT=1000. As can be seen from formula (2), the lower limit of ΔH is 0.

なお、上記のような条件でW、Hs、Hmが選定されることが好ましい理由は、後述される。The reason why W, Hs, and Hm are preferably selected under the above conditions will be described later.

本実施形態では、積層体(成形部11と基材12)の層数は2である。したがって、反りは、上記の(2)式および(3)式で評価される。また、はんだ付けやろう付けなどで成形部11と基材12とが接合された場合、成形部11と基材12との間に接着層が介在するが、接着層が成形部11および基材12に比べて十分薄い場合には、接着層の影響は少ないとして上記の(3)式を用いることができる。接着層による影響が無視できないと判断される場合には、すなわち、層数を3とした方がよいと判断される場合には、上記の(3)式ではなく、上記の(1)式を用いてKを計算してもよい。接着層による影響が無視できるか否かは、例えば、上記の(1)式によってKを計算した結果を用いて(2)式により判断される。なお、成形部11の表面に中間膜や保護膜が被覆される場合、中間膜や保護膜による影響が無視できないと判断されるときには、上記の(1)式を用いてKを計算してもよい。In this embodiment, the number of layers of the laminate (molded portion 11 and substrate 12) is 2. Therefore, the warpage is evaluated by the above formulas (2) and (3). In addition, when the molded portion 11 and substrate 12 are joined by soldering, brazing, etc., an adhesive layer is interposed between the molded portion 11 and substrate 12. However, when the adhesive layer is sufficiently thin compared with the molded portion 11 and substrate 12, the above formula (3) can be used as the adhesive layer has little influence. When it is determined that the influence of the adhesive layer cannot be ignored, that is, when it is determined that the number of layers is better to be 3, K may be calculated using the above formula (1) instead of the above formula (3). Whether or not the influence of the adhesive layer can be ignored is determined, for example, by formula (2) using the result of calculating K by the above formula (1). In addition, when an intermediate film or a protective film is coated on the surface of the molded portion 11, when it is determined that the influence of the intermediate film or the protective film cannot be ignored, K may be calculated using the above formula (1).

表1には、いくつかの積層体を対象にして、上記の(2)式を用いて反りを計算した結果が示されている。表1に示すように、ヤング率Esが高い基材12を用い、成形部11の厚さHmを薄くし、成形部11の幅Wの値を小さくする等によって反りΔHの値を小さくすることができる。なお、ΔT=1000とした。Table 1 shows the results of calculating the warpage using the above formula (2) for several laminates. As shown in Table 1, the value of the warpage ΔH can be reduced by using a base material 12 with a high Young's modulus Es, reducing the thickness Hm of the molded portion 11, and reducing the value of the width W of the molded portion 11. Note that ΔT=1000.

Figure 0007484712000001
Figure 0007484712000001

表1を参照すると、成形部11の幅Wは、20mm以下であることが好ましく10mm以下であるとより好ましく5mm以下であるとさらに好ましい。成形部11の幅は0より大きい値であればよい。Referring to Table 1, the width W of the molded portion 11 is preferably 20 mm or less, more preferably 10 mm or less, and further preferably 5 mm or less. The width of the molded portion 11 may be any value greater than 0.

成形部11の線膨張係数αmと基材12の線膨張係数αsとの差を小さくすることも温度変化による膨張差を低減することに寄与する。成形部11の線膨張係数αmと基材12の線膨張係数αsとの差は、3×10-6[1/℃]以下であることが好ましく、2×10-6[1/℃]以下であることがより好ましい。基材12の材料として、アルミナ、窒化ケイ素、炭化ケイ素などのセラミックスや超硬合金を用いると、基材のヤング率を大きくすることができるので好ましいが、それらの材料の線膨張係数は2.5~8.0×10 -6[1/℃]の範囲にある。したがって、成形部11の材料のガラスの線膨張係数も、そのような範囲にあることが好ましい。なお、線膨張係数の差の下限は0である。Reducing the difference between the linear expansion coefficient αm of the molded portion 11 and the linear expansion coefficient αs of the base material 12 also contributes to reducing the expansion difference due to temperature changes. The difference between the linear expansion coefficient αm of the molded portion 11 and the linear expansion coefficient αs of the base material 12 is 3×10-6[1/°C] or less, and-6[1/° C.] or less. It is preferable to use ceramics such as alumina, silicon nitride, silicon carbide, or cemented carbide as the material for the substrate 12, since the Young's modulus of the substrate can be increased. However, the linear expansion coefficient of these materials is 2.5 to 8.0×10 -6[1/° C.]. Therefore, it is preferable that the linear expansion coefficient of the glass material of the molded portion 11 is also in such a range. The lower limit of the difference in linear expansion coefficient is 0.

成形部11の厚さHmは、成形中の変位量が小さいという点からも、薄い方が好ましい。The thickness Hm of the molded portion 11 is preferably thin in order to reduce the amount of displacement during molding.

図3には、ガラスのヤング率を70GPaとし、ガラスの表面に対して1MPaの圧力をかけた場合の、厚さHmに対する厚さ方向の変位量が示されている。FIG. 3 shows the amount of displacement in the thickness direction versus thickness Hm when the Young's modulus of glass is set to 70 GPa and a pressure of 1 MPa is applied to the surface of the glass.

例えば、非球面レンズなどでは100nm以下の形状不良が問題になる場合がある。加圧時の成形部11の厚さ方向の変位量は、100nm以下であるなど、極力抑制されることが好ましい。したがって、表1も参照すると、成形部11の厚さHmは、6mm以下であることが好ましい。3mm以下であるとより好ましい。1mm以下であるとさらに好ましい。0.5mm以下であると一層好ましい。なお、Hmは0より大きい値であればよい。For example, in the case of aspherical lenses, shape defects of 100 nm or less can be problematic. It is preferable that the amount of displacement of the molded portion 11 in the thickness direction during pressure application is suppressed as much as possible, such as to 100 nm or less. Therefore, also referring to Table 1, the thickness Hm of the molded portion 11 is preferably 6 mm or less. It is more preferable that it is 3 mm or less. It is even more preferable that it is 1 mm or less. It is even more preferable that it is 0.5 mm or less. It is sufficient that Hm is a value greater than 0.

以上に説明したパラメータ(W,Hm、および、αm,αs)の好ましい値に基づいて、表1(特に、[4]カラム)および後述する比較例も参照すると、成形部11の反りΔHが0.004mm未満であるという条件が導かれる。基材の厚さHsは0より大きい値であればよい。また、基材が厚すぎると加熱の際に熱容量が大きくなるなどの問題があるため、Hsは100mm以下が好ましく、50mm以下であるとより好ましく、20mm以下であるとより好ましい。Based on the preferred values of the parameters (W, Hm, and αm, αs) described above, and also referring to Table 1 (particularly column [4]) and the comparative examples described later, the condition that the warpage ΔH of the molded portion 11 is less than 0.004 mm is derived. The thickness Hs of the substrate may be any value greater than 0. Furthermore, if the substrate is too thick, problems such as a large heat capacity during heating will occur, so Hs is preferably 100 mm or less, more preferably 50 mm or less, and even more preferably 20 mm or less.

また、成形部11の深さSは、2mm以下が好ましく、1mm以下がより好ましく、0.75mm以下がさらに好ましい。このようにすることで、ガラスの厚さの差による不均一な形状変形を抑制することができる。成形部11の深さSは0より大きければよい。The depth S of the molded portion 11 is preferably 2 mm or less, more preferably 1 mm or less, and even more preferably 0.75 mm or less. In this way, non-uniform deformation due to differences in glass thickness can be suppressed. The depth S of the molded portion 11 may be any value greater than 0.

図4は、互いに対向して設けられる2つの型部材(第1の型部材10a、第2の型部材10b)を含む成形用型を模式的に示す断面図である。図4に示す成形用型は、ガラスを材料とした成形部11aと基材12aとを有する第1の型部材10a、ガラスを材料とした成形部11bと基材12bとを有する第2の型部材10b、第1の型部材10aと第2の型部材10bとを収容するために第1の型部材10aと第2の型部材10bとを囲むように設けられたガイド材21、および内部材22を含む。第1の型部材10aまたは第2の型部材10bが加圧されることによって、ガラス材料23が成形される。Fig. 4 is a cross-sectional view showing a molding die including two mold members (first mold member 10a, second mold member 10b) arranged opposite each other. The molding die shown in Fig. 4 includes a first mold member 10a having a molding part 11a and a base material 12a made of glass, a second mold member 10b having a molding part 11b and a base material 12b made of glass, a guide member 21 provided to surround the first mold member 10a and the second mold member 10b to accommodate the first mold member 10a and the second mold member 10b, and an inner member 22. The first mold member 10a or the second mold member 10b is pressed to mold a glass material 23.

なお、第1の型部材10aも第2の型部材10bも、上述した好ましい値のパラメータに基づいて作製された部材である。しかし、2つの型部材のうちの一方が上述した好ましい値のパラメータに基づいて作製された部材であってもよい。また、2つの型部材のうちの一方が上述した複合部材(すなわち、成形部であるガラス部材と、前記ガラス部材を支持する基材とを含む複合部材)以外の型部材であってもよい。例えば、2つの型部材のうちの一方の型部材は、単一部材によって構成されたものでもよいし、基材に対してガラス材料以外の材料による成形部を含む複合部材でもよい。そのような単一材料による型部材やガラス材料以外の成形部として、金属、超硬合金、セラミックなどを使用することができる。また、対向する型部材における成形部の表面形状は、それぞれ自由に設計できる。すなわち、それぞれの成形部の表面形状は、断面視で、軸対称な非球面形状に限られず、凹状や凸状や波状の自由曲面などの形状や平坦であってもよい。また、対向する型部材同士で同じ表面形状でなくてよく、例えば、一方の成形部の表面形状が凹状の曲面形状で、他方の成形部の表面形状が凸状や平坦状であってもよい。なお、対向する型部材同士の成形部の表面形状の組み合わせは、この限りではない。また、2つの対向する型部材のうちの一方が上述した複合部材でない場合において、該型部材に含まれる成形部の表面に、上述した中間膜や保護膜が被覆されてもよい。または、該型部材に含まれる成形部の表面に、離型剤を塗布するなどの離型処理が施されていてもよい。Both the first mold member 10a and the second mold member 10b are members produced based on the parameters of the preferred values described above. However, one of the two mold members may be a member produced based on the parameters of the preferred values described above. Also, one of the two mold members may be a mold member other than the composite member described above (i.e., a composite member including a glass member as a molded part and a substrate supporting the glass member). For example, one of the two mold members may be a single member, or a composite member including a molded part made of a material other than a glass material with respect to the substrate. As such a mold member made of a single material or a molded part made of a material other than a glass material, metal, cemented carbide, ceramic, etc. can be used. Also, the surface shapes of the molded parts in the opposing mold members can be freely designed. That is, the surface shape of each molded part is not limited to an axially symmetric aspheric shape in a cross-sectional view, and may be a concave, convex, wavy free-form surface shape, or flat. Also, the opposing mold members do not have to have the same surface shape, and for example, the surface shape of one molded part may be a concave curved shape, and the surface shape of the other molded part may be a convex or flat shape. However, the combination of the surface shapes of the molded parts of the opposing mold members is not limited to this. In addition, when one of the two opposing mold members is not the above-mentioned composite member, the surface of the molded part included in the mold member may be covered with the above-mentioned intermediate film or protective film. Alternatively, the surface of the molded part included in the mold member may be subjected to a release treatment such as applying a release agent.

内部材22は、例えばリング状の構造である。内部材22は、成形時のガラス材料23の外形を決めるために用いられる。外形を決める必要がない場合には、内部材22はなくてもよい。The inner member 22 has, for example, a ring-shaped structure. The inner member 22 is used to determine the outer shape of the glass material 23 during molding. If it is not necessary to determine the outer shape, the inner member 22 may be omitted.

ガイド材21や内部材22として、ガラス、金属、セラミックス、超硬合金などの部材を使用することができる。また、第1の型部材10a、第2の型部材10b、内部材22、ガイド材21の各線膨張係数を、それぞれ、α10a、α10b、α22、α21とした場合、α10a≧α10b≧α21、または、α22≧α21であってもよい。そのような場合には、熱膨張時に部材間の隙間を狭くすることができ、例えば、第1の型部材10aと第2の型部材10bとの間の偏心を抑制することができる。The guide material 21 and the inner material 22 can be made of glass, metal, ceramics, cemented carbide, or other materials. In addition, when the linear expansion coefficients of the first mold member 10a, the second mold member 10b, the inner material 22, and the guide material 21 are α10a, α10b, α22, and α21, respectively, α10a≧α10b≧α21 or α22≧α21 may be satisfied. In such a case, the gap between the members can be narrowed during thermal expansion, and for example, eccentricity between the first mold member 10a and the second mold member 10b can be suppressed.

また、図4には、ガイド材21の内部に1組の第1の型部材10aと第2の型部材10bとが配置された構成の成形用型が例示されているが、成形用型は、そのような構造に限られない。例えば、ガイド材21に複数の貫通穴が設けられ、複数組の第1の型部材10aと第2の型部材10bとが配置されるように構成されてもよい。4 illustrates a molding die having a configuration in which a pair of the first mold member 10a and the second mold member 10b are arranged inside the guide member 21, but the molding die is not limited to such a structure. For example, the molding die may be configured such that a plurality of through holes are provided in the guide member 21 and a plurality of pairs of the first mold member 10a and the second mold member 10b are arranged therein.

図5は、他の成形用型を模式的に示す断面図である。図5に示す成形用型は、ガラスを材料とする成形部11cと基材12cとを有する第1の型部材10c(複合部材)、ガラスを材料とする成形部11dと基材12dとを有する第2の型部材10d(複合部材)、ガイド材31、内部材32、およびピン部材33を含む。第1の型部材10cまたは第2の型部材10dが加圧されることによって、ガラス材料23が成形される。Fig. 5 is a cross-sectional view showing another molding die. The molding die shown in Fig. 5 includes a first mold member 10c (composite member) having a molding part 11c and a base material 12c made of glass, a second mold member 10d (composite member) having a molding part 11d and a base material 12d made of glass, a guide member 31, an inner member 32, and a pin member 33. The first mold member 10c or the second mold member 10d is pressurized to mold a glass material 23.

図5に示す例では、第1の型部材10cおよび第2の型部材10dは、それぞれ、ガラスを材料とする複数の成形部11c,11dを有している。また、第1の型部材10cおよび第2の型部材10dには、ピン部材33を通すための貫通穴が設けられている。ピン部材33によって、第1の型部材10cおよび第2の型部材10dの回転が抑制される。ピン部材33を通すための貫通穴は、複数設けられていてもよい。複数の貫通穴が設けられる場合には、複数のピン部材33を設置できる、2つ以上のピン部材33によって、第1の型部材10cおよび第2の型部材10dの回転が抑制される。よって、ガイド材31はなくてもよい。In the example shown in FIG. 5, the first mold member 10c and the second mold member 10d each have a plurality of molding parts 11c, 11d made of glass. In addition, the first mold member 10c and the second mold member 10d are provided with through holes for passing the pin members 33. The pin members 33 suppress the rotation of the first mold member 10c and the second mold member 10d. A plurality of through holes for passing the pin members 33 may be provided. When a plurality of through holes are provided, a plurality of pin members 33 can be installed, and the rotation of the first mold member 10c and the second mold member 10d is suppressed by two or more pin members 33. Therefore, the guide material 31 may not be required.

第1の型部材10cも第2の型部材10dも、上述した好ましい値のパラメータに基づいて作製された部材である。しかし、2つの型部材のうちの一方が上述した好ましい値のパラメータに基づいて作製された部材であってもよい。例えば、図5に示された構成について、各成形部の幅、厚さを用いて上記の(2)式の計算を行ったときに、ΔT=1000としたときに、ΔH<0.004であることが好ましく、ΔT=1000としたときに、ΔH<0.002であるとより好ましく、ΔT=1000としたときに、ΔH<0.001であるとさらに好ましく、ΔT=1000としたときに、ΔH<0.0005であると一層好ましい。なお、図4の例とは1つの型部材に含まれる成形部の数が異なるだけで、本例においても、2つの型部材のうちの一方が上述した複合部材以外の型部材(例えば、上述したような単一材料による型部材や基材に対してガラス材料以外の材料による成形部を含む複合部材)であってもよい点は図4の例と同様である。なお(2)式からわかるようにΔHの下限は0である。Both the first mold member 10c and the second mold member 10d are members produced based on the parameters of the preferred values described above. However, one of the two mold members may be a member produced based on the parameters of the preferred values described above. For example, when the formula (2) is calculated using the width and thickness of each molded portion for the configuration shown in FIG. 5, it is preferable that ΔH<0.004 when ΔT=1000, more preferably ΔH<0.002 when ΔT=1000, even more preferably ΔH<0.001 when ΔT=1000, and even more preferably ΔH<0.0005 when ΔT=1000. Note that the number of molded portions included in one mold member is different from the example of FIG. 4, and in this example, one of the two mold members may be a mold member other than the composite member described above (for example, a composite member including a molded portion made of a material other than a glass material for a mold member made of a single material or a base material as described above), as in the example of FIG. 4. Note that, as can be seen from the formula (2), the lower limit of ΔH is 0.

内部材32は、例えば、複数の貫通穴が設けられた板状に形成されている。内部材32は、成形時のガラス材料23の外形を決めるために用いることができる。ガラス材料23の外形を決める必要がない場合、内部材32はなくてもよい。The inner member 32 is formed, for example, in a plate shape with a plurality of through holes. The inner member 32 can be used to determine the outer shape of the glass material 23 during molding. If it is not necessary to determine the outer shape of the glass material 23, the inner member 32 may be omitted.

ガイド材31、内部材32やピン部材33として、ガラス、金属、セラミックス、超硬合金などの部材を使用することができる。また、第1の型部材10c、第2の型部材10d、内部材32、ガイド材31、ピン部材33の各線膨張係数をα10c、α10d、α32、α31、α33とした場合、α10c≧α10d≧α31、または、α33≧α10c≧α10d、または、α32≧α31、または、α33≧α32であってもよい。Materials such as glass, metal, ceramics, and cemented carbide can be used as the guide material 31, the inner member 32, and the pin member 33. In addition, when the linear expansion coefficients of the first mold member 10c, the second mold member 10d, the inner member 32, the guide material 31, and the pin member 33 are α10c, α10d, α32, α31, and α33, α10c ≧ α10d ≧ α31, or α33 ≧ α10c ≧ α10d, or α32 ≧ α31, or α33 ≧ α32 may be satisfied.

次に、図1に示された型部材10または図5に示された成形用型を例にして、型部材10または第1の型部材10c(もしくは、第2の型部材10d)の製造方法を説明する。Next, a method for manufacturing the mold member 10 or the first mold member 10c (or the second mold member 10d) will be described using the mold member 10 shown in FIG. 1 or the molding die shown in FIG. 5 as an example.

例えば、成形部11または成形部11c(もしくは、成形部11d)の外形に相当する形状の金型を用意する。そのような金型を使用して成形部11または成形部11c(もしくは、成形部11d)を作製する。For example, a mold having a shape corresponding to the outer shape of the molded portion 11 or the molded portion 11c (or the molded portion 11d) is prepared. The molded portion 11 or the molded portion 11c (or the molded portion 11d) is produced using such a mold.

また、基材12または基材12c(もしくは、基材12d)を用意する。成形部11または成形部11c(もしくは、成形部11d)の厚さHmおよび幅Wと、成形部11または成形部11c(もしくは、成形部11d)の材料のパラメータ(ヤング率および線膨張係数)と、基材12または基材12c(もしくは、基材12d)の材料のパラメータとは、上記の(2)式を用いて算出されるΔHが0.004mm以下になるように選定されている。なお、ΔTは1000℃とする。また、基材12または基材12c(もしくは、基材12d)として、例えば、ひずみ点が600℃以上のガラス部材を使用する。Also, the substrate 12 or substrate 12c (or substrate 12d) is prepared. The thickness Hm and width W of the molded portion 11 or molded portion 11c (or molded portion 11d), the parameters of the material of the molded portion 11 or molded portion 11c (or molded portion 11d) (Young's modulus and linear expansion coefficient), and the parameters of the material of the substrate 12 or substrate 12c (or substrate 12d) are selected so that ΔH calculated using the above formula (2) is 0.004 mm or less. Note that ΔT is 1000° C. Also, for example, a glass member with a strain point of 600° C. or more is used as the substrate 12 or substrate 12c (or substrate 12d).

次いで、高温環境下(例えば、800℃)で、成形部11または成形部11c(もしくは、成形部11d)と、基材12または基材12c(もしくは、基材12d)とを接合する。接合方法は、既に述べたとおりである。なお、高温環境は、ガラス材料23の成形を行うときの温度以上の温度環境である。Next, in a high-temperature environment (e.g., 800° C.), the molded portion 11 or the molded portion 11c (or the molded portion 11d) is bonded to the base material 12 or the base material 12c (or the base material 12d). The bonding method is as described above. The high-temperature environment is a temperature environment equal to or higher than the temperature at which the glass material 23 is molded.

なお、本実施形態では、ガラス材料23の成形を行う型部材を例にしたが、型部材の用途はガラス成形に限られない。型部材を、熱硬化樹脂、UV硬化樹脂などの樹脂材料の成形用型として用いることもできる。また、高温環境下で成形部11の作製および成形部11と基材12との接合を同時に行ってもよい。In this embodiment, the mold member for molding the glass material 23 is taken as an example, but the use of the mold member is not limited to glass molding. The mold member can also be used as a mold for molding resin materials such as thermosetting resin and UV curing resin. In addition, the production of the molded portion 11 and the bonding of the molded portion 11 and the base material 12 may be performed simultaneously in a high temperature environment.

次に、本実施形態の成形用型を用いたガラス材料の成形方法の一例を説明する。ここでは、図4に示された成形用型を用いる場合を例にする。Next, an example of a method for molding a glass material using the molding die of this embodiment will be described, taking as an example a case in which the molding die shown in FIG.

ガラス材料23を、第2の型部材10bに載置する。その後、第1の型部材10aを所定位置まで下降させる。次いで、複合部材(第1の型部材10a、および第2の型部材10b)をプレス成形時の温度(例えば、600℃)にまで加熱し、第1の型部材10aを加圧する。その後、複合部材および成形されたガラス材料23を徐冷して、第1の型部材10aを上昇させ、成形されたガラス材料23を取り出す。The glass material 23 is placed on the second mold member 10b. Then, the first mold member 10a is lowered to a predetermined position. Next, the composite member (the first mold member 10a and the second mold member 10b) is heated to a temperature during press molding (e.g., 600°C), and the first mold member 10a is pressed. Then, the composite member and the molded glass material 23 are slowly cooled, the first mold member 10a is raised, and the molded glass material 23 is taken out.

なお、第1の型部材10aを下降させるのではなく、第2の型部材10bを上昇させるようにしてもよい。また、図4に示された成形用型を用いる場合について説明したが、図5に示された成形用型を用いる場合にも、同様の方法でガラス材料23が成形される。It is to be noted that, instead of lowering the first mold member 10a, the second mold member 10b may be raised. Also, although the case where the molding die shown in Fig. 4 is used has been described, the glass material 23 is molded in a similar manner when the molding die shown in Fig. 5 is used.

(実施例)
以下、図1に示された型部材10を用いる実施例を説明する。本実施例では、成形部11は、ヤング率が80GPa、線膨張係数が3.2×10-6[1/℃]のガラス部材である。成形部11の厚さHmは0.13mmである。成形部11の幅Wは2.3mmである。成形部11の表面形状は、曲率半径が1.13mmの球面である。球面の深さSは0.37mmである。
(Example)
An example using the mold member 10 shown in Fig. 1 will be described below. In this example, the molded portion 11 is a glass member with a Young's modulus of 80 GPa and a linear expansion coefficient of 3.2 x 10-6 [1/°C]. The thickness Hm of the molded portion 11 is 0.13 mm. The width W of the molded portion 11 is 2.3 mm. The surface shape of the molded portion 11 is a sphere with a radius of curvature of 1.13 mm. The depth S of the sphere is 0.37 mm.

基材12は、ヤング率が600GPa、線膨張係数が5.5×10-6[1/℃]の超硬合金である。基材12の厚さHsは、5mmである。 The substrate 12 is made of a cemented carbide having a Young's modulus of 600 GPa and a linear expansion coefficient of 5.5×10 −6 [1/° C.]. The substrate 12 has a thickness Hs of 5 mm.

上記の(2)式を用いて、ΔT=1000の場合のΔHを計算すると、ΔH=8nmであった。When ΔH was calculated using the above formula (2) when ΔT=1000, it was found to be ΔH=8 nm.

図6は、図1に示された型部材を用いてガラス材料23が成形される様子を模式的に示す断面図である。図6の(a)には、型部材として、ガラスを材料とした成形部11fと基材12fとを有する第2の型部材10fが示されている。対向する型部材として、ガラスを材料とした成形部11eと基材12eとを有する第1の型部材10eが示されている。なお、成形部11eの表面形状は、曲率半径が1.76mmの球面が近似形状となる非球面であり、外側に向かって凸形状である。図6の(b)に示すように、ガラス成形品24が得られる。6 is a cross-sectional view showing a state where a glass material 23 is molded using the mold member shown in FIG. 1. In FIG. 6(a), a second mold member 10f having a molded portion 11f and a base material 12f made of glass is shown as a mold member. In FIG. 6(b), a first mold member 10e having a molded portion 11e and a base material 12e made of glass is shown as an opposing mold member. The surface shape of the molded portion 11e is an aspheric surface that is approximated by a sphere with a radius of curvature of 1.76 mm, and is convex toward the outside. As shown in FIG. 6(b), a glass molded product 24 is obtained.

ガラス材料23としてS-BSL7を用い、図6に示す型部材を用いてガラス材料23を成形することを模擬する有限要素法による計算を実施した。なお、非特許文献2を参照して、有限要素法の計算に用いる剛性率のProny係数および緩和時間を、表2に示すように設定した。また、ガラスのポアソン比を0.205とした。Using S-BSL7 as the glass material 23, calculations were carried out using the finite element method to simulate molding of the glass material 23 using the mold members shown in Fig. 6. With reference to Non-Patent Document 2, the Prony coefficient of rigidity and relaxation time used in the calculations using the finite element method were set as shown in Table 2. The Poisson's ratio of the glass was set to 0.205.

Figure 0007484712000002
Figure 0007484712000002

有限要素法による模擬成形の後、成形後の成形部11fの厚さ方向の変位量を計算した。有限要素法による計算でも、変位量の平均値は8nmと十分小さいことが確認された。After the simulation molding using the finite element method, the amount of displacement in the thickness direction of the molded portion 11f after molding was calculated. It was confirmed that the average amount of displacement was 8 nm, which was sufficiently small, even when calculated using the finite element method.

さらに、成形部11fの長さ(厚さ)を変えた場合のシミュレーションを行った。図7に、シミュレーション結果が示されている。図7に示すように、成形部11fが薄くなるにつれて変位量が小さくなることが確認された。Furthermore, a simulation was performed in which the length (thickness) of the molded portion 11f was changed. The simulation results are shown in Fig. 7. As shown in Fig. 7, it was confirmed that the amount of displacement decreased as the molded portion 11f became thinner.

(比較例)
図1に示された型部材10を用いる比較例を説明する。成形部11は、ヤング率が70GPa、線膨張係数が4.0×10-6[1/℃]のガラス部材である。基材12は、ヤング率が500GPa、線膨張係数が5.5×10-6[1/℃]の超硬合金である。基材12の厚さHsは10mmである。成形部11の厚さHmは10mmである。成形部11の幅Wは20mmである。なお、それらのパラメータの値は、表1における[4]カラムに記載された値に相当する。
Comparative Example
A comparative example using the mold member 10 shown in FIG. 1 will be described. The molded portion 11 is a glass member having a Young's modulus of 70 GPa and a linear expansion coefficient of 4.0×10 −6 [1/° C.]. The base material 12 is a cemented carbide having a Young's modulus of 500 GPa and a linear expansion coefficient of 5.5×10 −6 [1/° C.]. The thickness Hs of the base material 12 is 10 mm. The thickness Hm of the molded portion 11 is 10 mm. The width W of the molded portion 11 is 20 mm. The values of these parameters correspond to the values listed in column [4] in Table 1.

上記の(2)式を用いてΔT=1000の場合のΔHを計算すると、ΔH=0.0042mmであった。そのような値では、接合による型部材の形状変形が大きくなるので、型部材としての使用に適するとはいえないと考えられる。When ΔH is calculated using the above formula (2) when ΔT is 1000, it is found to be ΔH = 0.0042 mm. With such a value, the shape deformation of the mold member due to joining becomes large, and it is considered that this value is not suitable for use as a mold member.

本実施形態のガラス材料23の成形方法で成形された光学素子はガラスレンズであるが、これに限定されず透光性の材料、例えば透光性の樹脂からなるレンズであってもよい。また、ガラスレンズの形状は限定されず、非球面でも球面でも平坦でもよい。The optical element molded by the molding method of the glass material 23 of this embodiment is a glass lens, but is not limited thereto and may be a lens made of a light-transmitting material, for example, a light-transmitting resin. Furthermore, the shape of the glass lens is not limited, and may be aspherical, spherical, or flat.

光学素子は、種々の光学系に適用(例えば、組込)可能である。The optical element can be applied (eg, incorporated) into a variety of optical systems.

光学系として、例えば、上記の光学素子と共働するレンズ、反射防止フィルムやバンドパスフィルタなどの光学フィルタ、カバーガラス、絞り等がある。ただし、それらは一例であって、上記の光学素子の適用対象はそれらに限られない。The optical system may include, for example, lenses that cooperate with the above optical elements, optical filters such as anti-reflection films and bandpass filters, cover glass, apertures, etc. However, these are merely examples, and the application of the above optical elements is not limited to these.

また、上記の光学素子は、カメラなどの撮像装置に適用されることが想定される。It is also envisioned that the above optical element will be applied to an imaging device such as a camera.

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
本出願は、2018年6月29日出願の日本特許出願2018-125019に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2018-125019 filed on June 29, 2018, the contents of which are incorporated herein by reference.

10 型部材
11 成形部
12 基材
10a,10c,10e 第1の型部材
10b,10d,10f 第2の型部材
11a,11c,11e 第1の成形部
11b,11d,11f 第2の基材
12a,12c,12e 第1の成形部
12b,12d,12f 第2の基材
21 ガイド材
22 内部材
23 ガラス材料
31 ガイド材
32 内部材
33 ピン部材
REFERENCE SIGNS LIST 10 Mold member 11 Molding portion 12 Base material 10a, 10c, 10e First mold member 10b, 10d, 10f Second mold member 11a, 11c, 11e First molding portion 11b, 11d, 11f Second base material 12a, 12c, 12e First molding portion 12b, 12d, 12f Second base material 21 Guide member 22 Internal member 23 Glass material 31 Guide member 32 Internal member 33 Pin member

Claims (15)

成形部であるガラス部材と、前記ガラス部材を支持する基材とを含む複合部材であって、
前記ガラス部材の表面は凹面または凸面であり、
前記基材の縦断面において、前記ガラス部材と前記基材との接合面と、前記基材における前記接合面に対向する反対側の面とは平行であり(但し、前記接合面および前記反対側の面は、前記基材が貫通孔及び/又はねじ穴を有する場合は、前記貫通孔及び/又は前記ねじ穴により形成される面を除く)、
前記基材は、前記接合面と前記反対側の面との距離が、基材における厚さ方向の距離の中で最大であり、
前記ガラス部材の厚さをHm、前記ガラス部材のヤング率をEm、前記ガラス部材の線膨張係数をαm、前記ガラス部材の幅をW、前記基材の厚さをHs、前記基材のヤング率をEs、前記基材の線膨張係数をαsで表して、前記ガラス部材の反りΔHを下記の式によって定義したときに、
前記ガラス部材の反りが0である温度と室温との温度差ΔTが1000℃の場合の前記ガラス部材の反りΔHが0.004mm未満である、複合部材。
ΔH=(1/|K|)-√{(1/K)-(W/2)
(式において、
K=(A×F-B×D)/(A×C-B
A=Es×Hs+Em×Hm
B=(1/2)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
C=(1/3)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
D=ΔT×{Es×αs×Hs+Em×αm×Hm}
F=(ΔT/2)×[Es×αs×Hs+Em×αm×{(Hs+Hm)-Hs}])
ここで、前記ガラス部材の厚さHmは、前記ガラス部材の表面が凹面の場合は凹部の底における前記ガラス部材の厚さであり、前記ガラス部材の表面が凸面の場合は凸部の端における成形部の厚さであり、
前記ガラス部材の幅Wは、前記接合面の面内の寸法の最小幅であり、
前記基材の厚さHsは、前記基材における、前記接合面と前記反対側の面との距離である(但し、前記接合面および前記反対側の面は、前記基材が貫通孔及び/又はねじ穴を有する場合は、前記貫通孔及び/又は前記ねじ穴により形成される面を除く)。
A composite member including a glass member that is a molded portion and a substrate that supports the glass member,
the surface of the glass member is concave or convex;
In a longitudinal cross section of the substrate, a joining surface between the glass member and the substrate and an opposite surface of the substrate facing the joining surface are parallel to each other (however, in a case where the substrate has a through hole and/or a screw hole, the joining surface and the opposite surface exclude a surface formed by the through hole and/or the screw hole).
the base material has a maximum distance between the joining surface and the opposite surface in a thickness direction of the base material,
When the thickness of the glass member is represented by Hm, the Young's modulus of the glass member is represented by Em, the linear expansion coefficient of the glass member is represented by αm, the width of the glass member is represented by W, the thickness of the substrate is represented by Hs, the Young's modulus of the substrate is represented by Es, and the linear expansion coefficient of the substrate is represented by αs, and the warp ΔH of the glass member is defined by the following formula:
A composite member, wherein when a temperature difference ΔT between a temperature at which the warp of the glass member is 0 and room temperature is 1000° C., the warp ΔH of the glass member is less than 0.004 mm.
ΔH=(1/|K|)-√{(1/K) 2 -(W/2) 2 }
(In the formula,
K = (A x F - B x D) / (A x C - B 2 )
A = Es x Hs + Em x Hm
B = (1/2) x [Es x Hs 2 + Em x {(Hs + Hm) 2 - Hs 2 }]
C = (1/3) x [Es x Hs 3 + Em x {(Hs + Hm) 3 - Hs 3 }]
D = ΔT × {Es × αs × Hs + Em × αm × Hm}
F = (ΔT/2) x [Es x αs x Hs2 + Em x αm x {(Hs + Hm) 2 - Hs2 }]
Here, the thickness Hm of the glass member is the thickness of the glass member at the bottom of the recess when the surface of the glass member is concave, and is the thickness of the shaped portion at the end of the convex portion when the surface of the glass member is convex,
The width W of the glass member is the minimum width of the in-plane dimension of the joining surface,
The thickness Hs of the substrate is the distance between the joining surface and the opposite surface of the substrate (however, if the substrate has a through hole and/or a screw hole, the joining surface and the opposite surface exclude the surfaces formed by the through hole and/or the screw hole).
前記ガラス部材の厚さHmが6mm以下である、
請求項1に記載の複合部材。
The thickness Hm of the glass member is 6 mm or less.
The composite member according to claim 1 .
前記ガラス部材の厚さHmが1mm以下である、
請求項2に記載の複合部材。
The thickness Hm of the glass member is 1 mm or less.
The composite member according to claim 2.
前記ガラス部材の厚さHmが0.5mm以下である、
請求項3に記載の複合部材。
The thickness Hm of the glass member is 0.5 mm or less.
The composite member according to claim 3.
前記基材のヤング率Esが150GPa以上である、
請求項1~4のうちのいずれか一項に記載の複合部材。
The Young's modulus Es of the substrate is 150 GPa or more;
A composite member according to any one of claims 1 to 4.
前記ガラス部材の線膨張係数αmと前記基材の線膨張係数αsとの差が3×10-6(1/℃)以下である、
請求項1~5のうちのいずれか一項に記載の複合部材。
a difference between the linear expansion coefficient αm of the glass member and the linear expansion coefficient αs of the base material is 3×10 −6 (1/° C.) or less;
A composite member according to any one of claims 1 to 5.
互いに対向して設けられた2つの型部材を含む成形用型であって、
前記2つの型部材のうちの少なくとも一方は、請求項1~6のうちのいずれか一項に記載の複合部材である、
成形用型。
A molding die including two mold members disposed opposite each other,
At least one of the two mold members is a composite member according to any one of claims 1 to 6.
Mould for forming.
前記2つの型部材を収容するガイド材を備える、
請求項7に記載の成形用型。
A guide member is provided to accommodate the two mold members.
The mold according to claim 7.
前記複合部材が、1つの前記基材に接合された複数の前記ガラス部材を含む、
請求項7または8に記載の成形用型。
The composite member includes a plurality of the glass members bonded to one of the substrates.
The molding die according to claim 7 or 8.
成形部であるガラス部材と、前記ガラス部材を支持する基材とを接合して複合部材を作製する複合部材の製造方法であって、
前記ガラス部材の表面は凹面または凸面であり、
前記基材の縦断面において、前記ガラス部材と前記基材との接合面と、前記基材における前記接合面に対向する反対側の面とは平行であり(但し、前記接合面および前記反対側の面は、前記基材が貫通孔及び/又はねじ穴を有する場合は、前記貫通孔及び/又は前記ねじ穴により形成される面を除く)、
前記基材は、前記接合面と前記反対側の面との距離が、基材における厚さ方向の距離の中で最大であり、
前記ガラス部材の厚さをHm、前記ガラス部材のヤング率をEm、前記ガラス部材の線膨張係数をαm、前記ガラス部材の幅をW、前記基材の厚さをHs、前記基材のヤング率をEs、前記基材の線膨張係数をαsで表して、前記ガラス部材の反りΔHを下記の式によって定義したときに、前記ガラス部材の反りが0である温度と室温との温度差ΔTが1000℃の場合の前記ガラス部材の反りΔHが0.004mm未満であるように、前記ガラス部材と前記基材とを選定し、
前記ガラス部材と前記基材とを接合する、
複合部材の製造方法。
ΔH=(1/|K|)-√{(1/K)-(W/2)
(式において、
K=(A×F-B×D)/(A×C-B
A=Es×Hs+Em×Hm
B=(1/2)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
C=(1/3)×[Es×Hs+Em×{(Hs+Hm)-Hs}]
D=ΔT×{Es×αs×Hs+Em×αm×Hm}
F=(ΔT/2)×[Es×αs×Hs+Em×αm×{(Hs+Hm)-Hs}])
ここで、前記ガラス部材の厚さHmは、前記ガラス部材の表面が凹面の場合は凹部の底における前記ガラス部材の厚さであり、前記ガラス部材の表面が凸面の場合は凸部の端における成形部の厚さであり、
前記ガラス部材の幅Wは、前記接合面の面内の寸法の最小幅であり、
前記基材の厚さHsは、前記基材における、前記接合面と前記反対側の面との距離である(但し、前記接合面および前記反対側の面は、前記基材が貫通孔及び/又はねじ穴を有する場合は、前記貫通孔及び/又は前記ねじ穴により形成される面を除く)。
A method for producing a composite member, comprising bonding a glass member, which is a formed portion, to a substrate supporting the glass member, the method comprising the steps of:
the surface of the glass member is concave or convex;
In a longitudinal cross section of the substrate, a joining surface between the glass member and the substrate and an opposite surface of the substrate facing the joining surface are parallel to each other (however, in a case where the substrate has a through hole and/or a screw hole, the joining surface and the opposite surface exclude a surface formed by the through hole and/or the screw hole).
the base material has a maximum distance between the joining surface and the opposite surface in a thickness direction of the base material,
the thickness of the glass member is Hm, the Young's modulus of the glass member is Em, the linear expansion coefficient of the glass member is αm, the width of the glass member is W, the thickness of the substrate is Hs, the Young's modulus of the substrate is Es, and the linear expansion coefficient of the substrate is αs; when a warp ΔH of the glass member is defined by the following formula, the glass member and the substrate are selected such that when a temperature difference ΔT between a temperature at which the warp of the glass member is zero and room temperature is 1000° C., the warp ΔH of the glass member is less than 0.004 mm;
bonding the glass member and the base material;
A method for manufacturing a composite component.
ΔH=(1/|K|)-√{(1/K) 2 -(W/2) 2 }
(In the formula,
K = (A x F - B x D) / (A x C - B 2 )
A = Es x Hs + Em x Hm
B = (1/2) x [Es x Hs2 + Em x {(Hs + Hm) 2 - Hs2 }]
C = (1/3) x [Es x Hs 3 + Em x {(Hs + Hm) 3 - Hs 3 }]
D = ΔT × {Es × αs × Hs + Em × αm × Hm}
F = (ΔT/2) x [Es x αs x Hs2 + Em x αm x {(Hs + Hm) 2 - Hs2 }]
Here, the thickness Hm of the glass member is the thickness of the glass member at the bottom of the recess when the surface of the glass member is concave, and is the thickness of the shaped portion at the end of the convex portion when the surface of the glass member is convex,
The width W of the glass member is the minimum width of the in-plane dimension of the joining surface,
The thickness Hs of the substrate is the distance between the joining surface and the opposite surface of the substrate (however, if the substrate has a through hole and/or a screw hole, the joining surface and the opposite surface exclude the surfaces formed by the through hole and/or the screw hole).
前記ガラス部材のひずみ点が600℃以上である、
請求項10に記載の複合部材の製造方法。
The strain point of the glass member is 600° C. or higher.
A method for producing a composite member according to claim 10.
請求項7~9のうちのいずれか一項に記載の成形用型を用いてガラス材料を成形する、
ガラス材料の成形方法。
A glass material is molded using the molding die according to any one of claims 7 to 9.
A method for forming glass materials.
請求項7~9のうちのいずれか一項に記載の成形用型を用いてガラス材料を成形して光学素子を製造する、光学素子の製造方法。 A method for manufacturing an optical element, comprising molding a glass material using the molding die according to any one of claims 7 to 9 to produce an optical element. 請求項7~9のうちのいずれか一項に記載の成形用型を用いてガラス材料を成形して光学素子を得、前記光学素子を用いて光学系を製造する、光学系の製造方法。 A method for manufacturing an optical system, comprising: molding a glass material using a molding die according to any one of claims 7 to 9 to obtain an optical element; and manufacturing an optical system using the optical element. 請求項7~9のうちのいずれか一項に記載の成形用型を用いてガラス材料を成形して光学素子を得、前記光学素子を用いて撮像装置を製造する、撮像装置の製造方法。 A method for manufacturing an imaging device, comprising: forming a glass material using a molding die according to any one of claims 7 to 9 to obtain an optical element; and manufacturing an imaging device using the optical element.
JP2020527549A 2018-06-29 2019-06-25 Composite member and molding die, manufacturing method of composite member, molding method of glass material, manufacturing method of optical element, manufacturing method of optical system, and manufacturing method of imaging device Active JP7484712B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018125019 2018-06-29
JP2018125019 2018-06-29
PCT/JP2019/025206 WO2020004405A1 (en) 2018-06-29 2019-06-25 Composite member, forming mold, composite member manufacture method, glass material forming method, and optical element, optical system and imaging device

Publications (2)

Publication Number Publication Date
JPWO2020004405A1 JPWO2020004405A1 (en) 2021-08-02
JP7484712B2 true JP7484712B2 (en) 2024-05-16

Family

ID=68986684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020527549A Active JP7484712B2 (en) 2018-06-29 2019-06-25 Composite member and molding die, manufacturing method of composite member, molding method of glass material, manufacturing method of optical element, manufacturing method of optical system, and manufacturing method of imaging device

Country Status (3)

Country Link
JP (1) JP7484712B2 (en)
TW (1) TW202005920A (en)
WO (1) WO2020004405A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240052015A1 (en) 2020-12-23 2024-02-15 Quell Therapeutics Limited Inducible signalling protein
GB202117298D0 (en) 2021-11-30 2022-01-12 Quell Therapeutics Ltd Signalling protein
CN118434761A (en) 2021-12-22 2024-08-02 圭尔医疗有限公司 Constitutive cytokine receptor
GB202217541D0 (en) 2022-11-24 2023-01-11 Quell Therapeutics Ltd Recombinant receptor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126258A (en) 2003-10-22 2005-05-19 Matsushita Electric Ind Co Ltd Mold for molding optical element

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004083352A (en) * 2002-08-28 2004-03-18 Matsushita Electric Ind Co Ltd Glass forming mold
JP2007125780A (en) * 2005-11-02 2007-05-24 Olympus Corp Mold, method for producing mold, and method for molding thermoplastic material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005126258A (en) 2003-10-22 2005-05-19 Matsushita Electric Ind Co Ltd Mold for molding optical element

Also Published As

Publication number Publication date
WO2020004405A1 (en) 2020-01-02
TW202005920A (en) 2020-02-01
JPWO2020004405A1 (en) 2021-08-02

Similar Documents

Publication Publication Date Title
JP7484712B2 (en) Composite member and molding die, manufacturing method of composite member, molding method of glass material, manufacturing method of optical element, manufacturing method of optical system, and manufacturing method of imaging device
KR102262440B1 (en) Methods of manufacturing glass articles using anisothermal temperature profiles
TWI639565B (en) Process and apparatus for forming shaped glass articles
JP2007148401A (en) Axial symmetric glass lens
JPWO2009142238A1 (en) Sintered body, manufacturing method thereof, and optical component
JP2009020169A (en) Manufacturing method for focus spring for supporting camera lens
JP2006044265A (en) Ceramic mold
JP5143694B2 (en) Mold apparatus and method for producing molded body using the same
JP4650514B2 (en) Optical element molding method
JP2008105894A (en) Forming die, intermediate member and method of manufacturing substrate
WO2008035521A1 (en) Method for manufacturing mold for molding optical element
KR102709949B1 (en) Manufacturing method of double-faced non-spherical lens by non-isothermal molding process
JPWO2009016992A1 (en) Mold and optical element manufacturing method
JP2022548702A (en) Three-dimensionally deformed thin glass
JP4744352B2 (en) Method for manufacturing composite optical element
JP4373257B2 (en) Optical element molding die, method for manufacturing the same, and optical element
JP4994405B2 (en) Method for determining quality of release film of press mold and method for manufacturing optical element
JP2004059368A (en) Molding die and method of manufacturing molding die
JP4445834B2 (en) Optical element molding apparatus and molding method
JP2003063832A (en) Mold for forming optical element
JP2007137724A (en) Glass-made mold
JP2009062225A (en) Glass optical element and method for manufacturing glass optical element
JP2003048723A (en) Press forming method and press formed equipment
JP3109219B2 (en) Glass optical element molding die and method of manufacturing the same
KR20220079146A (en) Manufacturing method of double-faced non-spherical lens by non-isothermal molding process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240415

R150 Certificate of patent or registration of utility model

Ref document number: 7484712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150