[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7483515B2 - A measuring device for measuring the liquid phase flow conditions - Google Patents

A measuring device for measuring the liquid phase flow conditions Download PDF

Info

Publication number
JP7483515B2
JP7483515B2 JP2020100758A JP2020100758A JP7483515B2 JP 7483515 B2 JP7483515 B2 JP 7483515B2 JP 2020100758 A JP2020100758 A JP 2020100758A JP 2020100758 A JP2020100758 A JP 2020100758A JP 7483515 B2 JP7483515 B2 JP 7483515B2
Authority
JP
Japan
Prior art keywords
flow
liquid phase
wire
wires
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020100758A
Other languages
Japanese (ja)
Other versions
JP2021196194A (en
Inventor
翔多 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2020100758A priority Critical patent/JP7483515B2/en
Publication of JP2021196194A publication Critical patent/JP2021196194A/en
Application granted granted Critical
Publication of JP7483515B2 publication Critical patent/JP7483515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)
  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)

Description

本発明は液相の流況を計測する計測装置に関るものである。さらに詳述すると、本発明は、例えば原子力発電所や化学プラントにおける気体と液体が混合して流れる二相流体を測定対象とする場合に適用して有用な液相の流況を計測する計測装置に関するものである。 The present invention relates to a measuring device that measures the flow conditions of the liquid phase. More specifically, the present invention relates to a measuring device that measures the flow conditions of the liquid phase, which is useful when the measurement target is a two-phase fluid in which gas and liquid flow together, for example in a nuclear power plant or a chemical plant.

原子炉内や化学プラントにおける冷却水や溶液の流況(主に液相内の速度分布や気液の存在率など)を把握することはプラントの設計上肝要である。かかる設計を最適に行うためには、冷却水や溶液の流況を的確に把握することが前提となる。冷却水や溶液の流況を的確に把握するには、流体の流れ方向に直交する断面内のなるべく多くの点における液相と気相の情報を収集する必要がある。 Understanding the flow conditions of cooling water and solutions in nuclear reactors and chemical plants (mainly velocity distribution in the liquid phase and the proportion of gas and liquid, etc.) is essential for plant design. In order to optimize such design, it is necessary to accurately understand the flow conditions of cooling water and solutions. To accurately understand the flow conditions of cooling water and solutions, it is necessary to collect information on the liquid and gas phases at as many points as possible within a cross section perpendicular to the direction of fluid flow.

液相の流れ場の計測には、トレーサー粒子を流れの中に注入してレーザ光で可視化する技術などが一般的である。例えば、流体の断面内の多点における気液二相流中の気液の存在量の時系列情報を得るための計測手法として粒子画像流速測定法(Particle Imaging Velocimetry:以下、PIVと呼ぶ)が知られている(非特許文献1)。かかるPIVは、流体に蛍光粒子を分散させ、流体に蛍光を誘起するレーザを照射し、蛍光粒子が流れに乗って移動する様子をカメラで撮影することで、流体の速度場を計測する手法である。PIVでは、カメラで撮影するため画像分析から気液の存在率も同時に計測することができる。 Measurements of the liquid phase flow field typically involve techniques such as injecting tracer particles into the flow and visualizing it with laser light. For example, particle imaging velocimetry (PIV) is known as a measurement technique for obtaining time series information on the amount of gas and liquid present in a gas-liquid two-phase flow at multiple points within a cross section of the fluid (Non-Patent Document 1). PIV is a technique for measuring the velocity field of a fluid by dispersing fluorescent particles in the fluid, irradiating the fluid with a laser that induces fluorescence, and capturing images of the fluorescent particles moving with the flow using a camera. With PIV, the presence rate of gas and liquid can also be measured simultaneously through image analysis, as the images are captured using a camera.

また、液相中の気泡の流況を計測する手段として、計測対象となる流体が流れる管路の軸直角平面に沿って平行なワイヤ群が互いに交わるように2層配置され、気相(気泡)と液相とではコンダクタンスが違うことを利用して気液二相流の気相側例えば空気の気泡の大きさや流れなどを捉える技術(ワイヤメッシュセンサと呼ばれる)もある(非特許文献2)。例えばX軸に平行なワイヤ群と、Y軸に平行なワイヤ群とを二層配置したものであり、いずれか一方のワイヤ群を送信側のワイヤ(トランスミッター側ワイヤと呼ぶ)と、他方のワイヤ群を受信側のワイヤ(レシーバー側ワイヤと呼ぶ)として、直交するように流路断面に張って配置される。 As a means of measuring the flow conditions of bubbles in the liquid phase, there is also a technology (called a wire mesh sensor) in which parallel wire groups are arranged in two layers so that they intersect along a plane perpendicular to the axis of the pipe through which the fluid to be measured flows, and the difference in conductance between the gas phase (bubbles) and the liquid phase is used to capture the size and flow of air bubbles, for example, on the gas phase side of a gas-liquid two-phase flow (Non-Patent Document 2). For example, a wire group parallel to the X axis and a wire group parallel to the Y axis are arranged in two layers, with one of the wire groups being the transmitting side wires (called the transmitter side wires) and the other wire group being the receiving side wires (called the receiver side wires), stretched across the cross section of the flow path so that they are perpendicular to each other.

Raffel, M. et al. Particle image velocimetry: a practical guide. (Springer, 2007).Raffel, M. et al. Particle image velocimetry: a practical guide. (Springer, 2007). 電力中央研究所報告 報告書番号L10003,ワイヤメッシュセンサの流れ場への影響と適用範囲の評価,平成23年5月発行Report of the Central Research Institute of the Electric Power Industry, Report No. L10003, Evaluation of the influence of wire mesh sensors on the flow field and the scope of application, May 2011

しかしながら、PIVは光学的な視野が確保される場合に限定され、光学的なパス(覗き窓など)を設けることができない原子炉や化学プラントといった高温高圧な条件である圧力容器内を流れる流体の計測には適用できない。さらに、常温温常圧の流体であっても、非透明な管路あるいは容器内に流れる、光学的なパスが設定できない環境下では適用できない。 However, PIV is limited to cases where an optical field of view is ensured, and cannot be applied to measuring fluids flowing inside pressure vessels under high temperature and pressure conditions, such as nuclear reactors or chemical plants, where an optical path (such as a sight glass) cannot be installed. Furthermore, even for fluids at room temperature and pressure, it cannot be applied in environments where the fluid flows inside opaque pipes or vessels and an optical path cannot be established.

また、非特許文献2のワイヤメッシュセンサによっても、気液二相流の中の気相の流れから液相中における気相の存在比率の二次元分布などを計測できるが、気相側の状況(気泡の流れなど)を計測することによって間接的に液相の流況を推定しているにしか過ぎず、液相のみの単相の流体の流況を計測することはできない。 The wire mesh sensor in Non-Patent Document 2 can also measure the two-dimensional distribution of the gas phase abundance ratio in the liquid phase from the gas phase flow in a gas-liquid two-phase flow, but it can only indirectly estimate the liquid phase flow conditions by measuring the gas phase situation (such as the flow of bubbles), and cannot measure the flow conditions of a single-phase fluid consisting of only the liquid phase.

高温高圧な条件下などといった光学的なパスが設定できない環境下では、いずれの計測方法も気液二相流中で液相の流況を直接的に計測することはできない。つまり、液相の流況に関しては直接的に計測することはできずに間接的に気相の流れから液相の流況を推測することしかできない。加えて、気液二相流体の主流の流れ方向と直交する断面内のなるべく多くの点における液相と気相の双方の流況を直接的にリアルタイムに的確に計測する計測装置は存在しない。 In environments where an optical path cannot be established, such as under high temperature and pressure conditions, none of the measurement methods can directly measure the flow conditions of the liquid phase in a gas-liquid two-phase flow. In other words, the flow conditions of the liquid phase cannot be measured directly, and can only be indirectly inferred from the flow of the gas phase. In addition, there is no measurement device that can directly and accurately measure the flow conditions of both the liquid and gas phases in real time at as many points as possible within a cross section perpendicular to the main flow direction of a gas-liquid two-phase fluid.

本発明は、液相の流況を直接的に計測し得る計測装置を提供することを目的とする。 The present invention aims to provide a measuring device that can directly measure the flow conditions of the liquid phase.

かかる目的を達成するための液相の流況を計測する計測装置は、計測対象となる液相を含む流体の主流に対して直交させるように一定間隔を空けて相互に立体交差させて配置される2層のワイヤ群と、前記流体の流路の外側において前記2層のワイヤ群及びその間の前記計測対象となる流体に時間変動する磁場を与える外部磁場付与装置と、前記2層のワイヤ群から出力される各ワイヤの立体交差部分の間に発生する起電力に基づいて前記液相のクロスフローの速度情報を得る演算処理装置とを備え、空間分布として流体中の液相のクロスフローの流速場を直接的に求めるようにしている。 To achieve this objective, a measuring device for measuring the flow conditions of the liquid phase includes a two-layer wire group arranged to cross each other at a fixed interval so as to be perpendicular to the main flow of the fluid containing the liquid phase to be measured, an external magnetic field applying device that applies a time-varying magnetic field to the two-layer wire group and the fluid to be measured between them outside the flow path of the fluid, and a processing device that obtains speed information of the crossflow of the liquid phase based on the electromotive force generated between the crossover parts of each wire output from the two-layer wire group, and is designed to directly obtain the flow velocity field of the crossflow of the liquid phase in the fluid as a spatial distribution.

ここで、外部磁場付与装置は電磁石であり、前記流路に対して直交する方向に少なくとも二対配置して、磁束の向きを周期的に交互に切り替えて与えることで、前記液相のクロスフローの直交する2方向の速度成分に関連する起電力を交互に連続的に取得するようにすることが好ましい。 Here, it is preferable that the external magnetic field applying device is an electromagnet, and at least two pairs are arranged in a direction perpendicular to the flow path, and the direction of the magnetic flux is periodically and alternately switched to apply the magnetic flux, so that electromotive forces associated with the velocity components of the crossflow of the liquid phase in two perpendicular directions are alternately and continuously obtained.

また、2層のワイヤ群の一方をトランスミッター側ワイヤとして、他方をレシーバー側ワイヤとして用い、前記トランスミッター側ワイヤの各ワイヤに任意の信号を各ワイヤに任意の信号を全てのワイヤ間で一定の遅れ時間が生ずるようにずらして送信すると共に、前記レシーバー側ワイヤで前記立体交差部分のワイヤ間の電気伝導率を検出して、前記電気伝導率の変化からインピーダンスが異なる複数種類の物質の存在量に関する情報も同時に得ることが好ましい。 It is also preferable to use one of the two layers of wires as a transmitter side wire and the other as a receiver side wire, and transmit an arbitrary signal to each wire of the transmitter side wire with a lag time so that a certain delay time occurs between all of the wires, and to detect the electrical conductivity between the wires at the intersection with the receiver side wire, and to simultaneously obtain information regarding the amount of multiple types of substances with different impedances from the change in electrical conductivity.

さらに、ワイヤに流す信号はバイポーラ信号であることが好ましい。 Furthermore, it is preferable that the signal sent through the wire is a bipolar signal.

さらに、計測対象となる流体は気液二相流であることが好ましい。 Furthermore, it is preferable that the fluid to be measured is a gas-liquid two-phase flow.

また、本発明にかかる液相の流況を計測する計測方法は、計測対象となる液相を含む流体の主流に対して直交させるように一定間隔を空けて相互に立体交差させて2層のワイヤ群を配置し、前記2層のワイヤ群及びその間の前記計測対象となる流体に時間変動する外部磁場を与え、前記2層のワイヤ群から取得される各ワイヤの立体交差部分の間に発生する起電力から前記液相のクロスフローの速度情報を得るようにしている。 The method for measuring the flow conditions of the liquid phase according to the present invention involves arranging two layers of wire groups so that they cross each other at a fixed interval so as to be perpendicular to the main flow of the fluid containing the liquid phase to be measured, applying a time-varying external magnetic field to the two layers of wire groups and the fluid to be measured between them, and obtaining information on the crossflow speed of the liquid phase from the electromotive force generated between the crossing points of each wire obtained from the two layers of wire groups.

ここで、外部磁場の磁束の向きを直交する2方向に周期的に交互に切り替えて与えることで、液相のクロスフローの直交する2方向の速度成分に関連する起電力を交互に連続的に取得することが好ましい。 Here, it is preferable to alternately and continuously obtain electromotive forces associated with the velocity components of the liquid phase crossflow in two perpendicular directions by periodically alternating the direction of the magnetic flux of the external magnetic field between two perpendicular directions.

また、本発明にかかる液相の流況を計測する計測方法は、2層のワイヤ群の一方をトランスミッター側ワイヤとして、他方をレシーバー側ワイヤとして用い、前記トランスミッター側ワイヤの各ワイヤに任意の信号を全てのワイヤ間で一定の遅れ時間が生ずるようにずらして送信すると共に、前記レシーバー側ワイヤで前記立体交差部分のワイヤ間の電気伝導率を検出して、前記電気伝導率の変化からインピーダンスが異なる複数種類の物質の存在量に関する情報も同時に得ることが好ましい。 In addition, the measurement method for measuring the flow conditions of the liquid phase according to the present invention preferably uses one of a two-layer wire group as a transmitter side wire and the other as a receiver side wire, and transmits an arbitrary signal to each wire of the transmitter side wire with a shift so that a certain delay time occurs between all of the wires, while detecting the electrical conductivity between the wires at the intersection portion with the receiver side wire, and simultaneously obtaining information regarding the amount of multiple types of substances with different impedances from the change in electrical conductivity.

ここで、ワイヤに流す信号はバイポーラ信号であることが好ましい。 Here, it is preferable that the signal sent through the wire is a bipolar signal.

さらに、計測対象となる流体は気液二相流であることが好ましい。 Furthermore, it is preferable that the fluid to be measured is a gas-liquid two-phase flow.

本発明によれば、液相単体であろうと、気液二相流であろうと、計測対象流体の主流の流れ方向に直交する断面内の多くの点における液相の流況をリアルタイムでかつ直接的に的確に計測することができる。 The present invention makes it possible to directly and accurately measure the flow conditions of the liquid phase at many points in a cross section perpendicular to the main flow direction of the fluid being measured in real time, whether it is a single liquid phase or a gas-liquid two-phase flow.

本発明の液相の流況計測装置の一実施形態を示す原理図である。1 is a principle diagram illustrating an embodiment of a liquid-phase flow condition measuring device of the present invention. FIG. 本発明の液相の流況計測装置の原理を説明する図であり、(A)は原理図、(B)は縦ワイヤと横ワイヤとの関係を示す説明図、(C)は磁場パターン2の時のファラデーの電磁誘電法則を示す図、(D)は磁場パターン1の時のファラデーの電磁誘電法則を示す説明図である。1A and 1B are diagrams for explaining the principle of the liquid-phase flow condition measuring device of the present invention, in which (A) is a diagram showing the principle, (B) is an explanatory diagram showing the relationship between vertical wires and horizontal wires, (C) is a diagram showing Faraday's electromagnetic dielectric law when magnetic field pattern 2 is used, and (D) is an explanatory diagram showing Faraday's electromagnetic dielectric law when magnetic field pattern 1 is used. ワイヤメッシュセンサの他の実施例を示す説明図である。FIG. 11 is an explanatory diagram showing another embodiment of the wire mesh sensor. ワイヤメッシュセンサのさらに他の実施例を示す説明図である。FIG. 11 is an explanatory diagram showing still another embodiment of the wire mesh sensor. ワイヤメッシュセンサの入力信号と出力信号と気泡との関係を説明する説明図である。4 is an explanatory diagram illustrating the relationship between the input signal, the output signal, and air bubbles of the wire mesh sensor. FIG.

以下、本発明の構成を図面に示す実施形態に基づいて詳細に説明する。 The configuration of the present invention will be described in detail below based on the embodiment shown in the drawings.

図1に、本発明の液相の流況計測装置の一実施形態を示す。この実施形態にかかる液相流況計測装置は、計測対象となる液相7を含む流体の主流に対して直交させるように一定間隔を空けて相互に立体交差(つまり、主流の流れと直交する同一平面上で交差せずに互いに主流の流れ方向には交わる)させて配置される2層のワイヤ群2,3と、流路1の外側において2層のワイヤ群2,3及びその間の計測対象となる流体7に磁場を与える外部磁場付与装置8と、2層のワイヤ群2,3から出力される各ワイヤ2’,3’の立体交差部分11の間に発生する起電力E(E,E,E,…,E)に基づいて液相7のクロスフローの速度情報を得る演算処理装置9とを備え、空間分布として流体中の液相7のクロスフローの流速場を直接的に求めるようにしている。 1 shows an embodiment of the liquid-phase flow condition measuring device of the present invention. The liquid-phase flow condition measuring device according to this embodiment includes two layers of wire groups 2 and 3 arranged at a constant interval to cross each other at a three-dimensional intersection (i.e., they do not cross on the same plane perpendicular to the main flow but cross each other in the direction of the main flow) so as to be perpendicular to the main flow of the fluid including the liquid phase 7 to be measured, an external magnetic field applying device 8 that applies a magnetic field to the two layers of wire groups 2 and 3 and the fluid 7 to be measured between them outside the flow path 1, and a calculation processing device 9 that obtains velocity information of the cross flow of the liquid phase 7 based on electromotive force E (E 1 , E 2 , E 3 , ..., E n ) generated between three-dimensional intersection parts 11 of the wires 2', 3' output from the two layers of wire groups 2 and 3, and directly obtains the flow velocity field of the cross flow of the liquid phase 7 in the fluid as a spatial distribution.

つまり、計測対象となる液相7を含む流体、つまり液体単独あるいは気液二相流などの液相の主流の流れ方向に一定間隔を空けて配置される2層のワイヤ群2,3から成る格子状のセンサ(以下、このような構造をワイヤメッシュセンサ4と呼ぶ)と、ワイヤメッシュセンサ4の外部から時間変動する磁場(以下、外部磁場と呼ぶ)を印加する外部磁場装置8を備え、ワイヤメッシュセンサ4とその間の計測対象となる流体・液相の流れ場に外部磁場を与え、ワイヤメッシュセンサ4の立体交差部分のワイヤ2’とワイヤ3’との間に発生する誘導起電力E(E,E,E,…,E)を検出して図示していない演算処理装置9で流速を求める。 In other words, the device is equipped with a lattice-shaped sensor (hereinafter such a structure is referred to as a wire mesh sensor 4) consisting of two layers of wire groups 2 and 3 arranged at a regular interval in the mainstream flow direction of the fluid containing the liquid phase 7 to be measured, i.e., liquid alone or a gas-liquid two-phase flow, and an external magnetic field device 8 that applies a time-varying magnetic field (hereinafter referred to as an external magnetic field) from outside the wire mesh sensor 4, and applies an external magnetic field to the wire mesh sensor 4 and the flow field of the fluid/liquid phase to be measured between it, detects the induced electromotive force E ( E1 , E2 , E3 , ..., En ) generated between the wires 2' and 3' at the three-dimensional intersection of the wire mesh sensor 4, and determines the flow velocity with a calculation processing device 9 not shown.

2層のワイヤ群2,3は、例えば図2の原理図においては、X軸に平行なワイヤ群2と、Y軸に平行なワイヤ群3とを計測対象となる流体・液相7の主流12の流れ方向に一定間隔をあけて主流12に対して直交するように張り巡らされ、主流12の流れ方向に向かって立体交差部分(主流の流れと直交する平面上で交差せずに互いに主流の流れ方向に交わる)11が形成されるように交差するように二層に配置されたものである。例えば、本実施形態の場合、計測対象となる流体7が流れる管路1の軸直角平面に沿って平行なワイヤ群2,3が一定間隔を空けて互いに交わるように2層配置されている。 In the principle diagram of FIG. 2, for example, the two-layer wire groups 2 and 3 are arranged in two layers, with the wire group 2 parallel to the X-axis and the wire group 3 parallel to the Y-axis, strung perpendicular to the main stream 12 of the fluid/liquid phase 7 to be measured at regular intervals in the flow direction, and crossing in the direction of the main stream 12 to form a three-dimensional intersection 11 (where the wires cross in the direction of the main stream without crossing on a plane perpendicular to the main stream flow) toward the flow direction of the main stream 12. For example, in the case of this embodiment, the parallel wire groups 2 and 3 are arranged in two layers so that they cross each other at regular intervals along the plane perpendicular to the axis of the pipe 1 through which the fluid 7 to be measured flows.

ここで、ワイヤ2’,3’は、流れを大きく乱さない細い金属ワイヤを用い、適度な間隔で配置することが好ましい。例えば本実施形態の場合には、二相流動への影響を最小に抑えるため、ワイヤ間隔は3.5mm、ワイヤ直径を0.25mmとしているが、これらの値に特に限定されるものでないことは言うまでもない。 Here, it is preferable that wires 2' and 3' are thin metal wires that do not significantly disturb the flow and are arranged at an appropriate interval. For example, in the case of this embodiment, the wire spacing is 3.5 mm and the wire diameter is 0.25 mm to minimize the effect on the two-phase flow, but it goes without saying that these values are not particularly limited.

尚、本実施形態では、2層のワイヤ群2,3は、図1及び図2に示すように、直交するように流路断面に張ったものが一例として挙げられているが、このメッシュ構造に特に限られるものではなく、交差する位置関係(即ち、立体交差部分11が分布される関係)を有しているものであれば良く、例えば図3に示すように斜めに交差するように配置されていても良いし、場合によっては図4に示すように多重の環状のワイヤと放射状に配置されるワイヤとの組み合わせでも良い。 In this embodiment, the two-layer wire groups 2, 3 are shown as an example of wires stretched across the cross section of the flow path so as to intersect at right angles, as shown in Figures 1 and 2. However, this is not particularly limited to a mesh structure, and any wires may be used as long as they have an intersecting positional relationship (i.e., a relationship in which the three-dimensional intersection parts 11 are distributed). For example, they may be arranged to intersect diagonally as shown in Figure 3, or in some cases, a combination of multiple circular wires and radially arranged wires as shown in Figure 4 may be used.

さらに、ワイヤメッシュセンサ4の外側には外部磁界が与えられる外部磁場付与装置8が設けられている。例えば、管路1の外即ちワイヤメッシュ4の外側に、外部磁場を与える電磁石8が配置される。外部磁場としては少なくとも一次独立である2軸方向の磁束を交互に与える(変動させる)必要がある。つまり、2次元平面における速度(2成分)なので、一次独立である磁束が最低2本必要となる。本実施形態の場合には、2組の電磁石が互いに直交するように配置されている。図1に示すような円管流路の場合には、例えば、90°置きに電磁石が配置され、第1の磁場パターン5と第2の磁場パターン6とが交互に印加されるように設けられる。この2組の電磁石の切替タイミングは、特定の周期に限られるものでは無いが、例えば商用周波数(50Hzあるいは60Hz)の周期で交互に磁化されるように設けられている。一次独立である2軸方向の磁束を周期的に連続的に交互に与えることで、同時に2方向の起電力E(E,E,E,…,E)を取得することとなる。これによって、クロスフロー(主流12の流れ方向を鉛直方向としたときに水平方向の流れとなるもの)13のVyとVx成分の起電力E(E,E,E,…,E)が出力できる。 Further, an external magnetic field applying device 8 that applies an external magnetic field is provided outside the wire mesh sensor 4. For example, an electromagnet 8 that applies an external magnetic field is arranged outside the pipeline 1, i.e., outside the wire mesh 4. As the external magnetic field, it is necessary to alternately apply (vary) magnetic flux in at least two linearly independent axial directions. That is, since the velocity (two components) is in a two-dimensional plane, at least two linearly independent magnetic fluxes are required. In the case of this embodiment, two sets of electromagnets are arranged so as to be perpendicular to each other. In the case of a circular pipe flow path as shown in FIG. 1, for example, electromagnets are arranged at 90° intervals, and the first magnetic field pattern 5 and the second magnetic field pattern 6 are arranged so as to be applied alternately. The switching timing of these two sets of electromagnets is not limited to a specific period, but is arranged so as to be alternately magnetized, for example, at a period of a commercial frequency (50 Hz or 60 Hz). By periodically and continuously applying magnetic flux in two linearly independent axial directions alternately, electromotive forces E (E 1 , E 2 , E 3 , ..., E n ) in two directions are obtained at the same time. This makes it possible to output electromotive forces E (E 1 , E 2 , E 3 , . . . , E n ) of the Vy and Vx components of the cross flow (a horizontal flow when the flow direction of the main flow 12 is taken as the vertical direction) 13 .

ここで、一次独立な磁束を3つ以上与えること、即ち3対の電磁石を例えば120°置き(1つの単位の電磁石では60°置き)に管路の周囲に設置するようにしても良いが、その場合、3つ目の磁束は計測原理上は過剰となるので、補助的な役割(計測上の精度向上など)になると想定されるが、これを否定するものでは無い。 Here, it is possible to provide three or more linearly independent magnetic fluxes, i.e., three pairs of electromagnets could be placed around the pipeline, for example, at intervals of 120° (60° for one unit electromagnet); however, in this case, the third magnetic flux would be excessive in terms of the measurement principle, and so it is assumed to play an auxiliary role (such as improving measurement accuracy), but this is not denied.

尚、外部磁場の本数に応じて計測できる速度成分の数は増える。本実施形態の場合、計測する対象である速度は二次元ベクトル量なので、与える磁束は一次独立である必要がある。しかし、2軸方向の磁束は直交する必要は必ずしもない。 The number of velocity components that can be measured increases according to the number of external magnetic fields. In this embodiment, the velocity to be measured is a two-dimensional vector quantity, so the applied magnetic flux must be linearly independent. However, the magnetic flux in the two axial directions does not necessarily need to be orthogonal.

本実施形態にかかる液相流況計測装置によれば、2層のワイヤ群2,3及びその間の計測対象となる流体に時間変動する外部磁場が与えられることで、導体とみなされる液体の動きに伴って磁束の変化を打ち消す方向に誘導起電力E(E,E,E,…,E)が発生する(レンツの法則)。流体が速ければ導体を速く動かすこととなるので誘導起電力E(E,E,E,…,E)が大きくなり、流速がなければ導体の動きを止めたこととなるので誘導起電力E(E,E,E,…,E)は0となる。つまり、誘導起電力E(E,E,E,…,E)の大きさは液相の動く速さ(流速)に比例する。尚、電圧差(起電力E(E,E,E,…,E))は一方のワイヤ群(例えば、レシーバー側ワイヤ2)から取り出される。 According to the liquid-phase flow condition measuring device of this embodiment, a time-varying external magnetic field is applied to the two-layer wire group 2, 3 and the fluid to be measured between them, and an induced electromotive force E (E 1 , E 2 , E 3 , ..., E n ) is generated in a direction that cancels the change in magnetic flux with the movement of the liquid regarded as a conductor (Lenz's law). If the fluid is fast, the conductor is moved quickly, so the induced electromotive force E (E 1 , E 2 , E 3 , ..., E n ) becomes large, and if there is no flow velocity, the movement of the conductor is stopped, so the induced electromotive force E (E 1 , E 2 , E 3 , ..., E n ) becomes 0. In other words, the magnitude of the induced electromotive force E (E 1 , E 2 , E 3 , ..., E n ) is proportional to the speed at which the liquid phase moves (flow velocity). The voltage difference (electromotive force E (E 1 , E 2 , E 3 , . . . , E n )) is taken out from one of the wire groups (for example, the receiver side wire 2).

ここで、流体の速度変化はファラデーの電磁誘導の法則から、式1のように起電力として表される。
E=k×D×B×v (式1)
ただし、Eは誘導起電力、
kはパラメータ(定数)
Dはメッシュの間の間隔
Bは磁束密度
vは液体の流速である。
Here, the change in velocity of the fluid can be expressed as an electromotive force according to Faraday's law of electromagnetic induction, as shown in Equation 1.
E = k × D × B × v (Equation 1)
where E is the induced electromotive force,
k is a parameter (constant)
D is the spacing between the meshes
B is the magnetic flux density
v is the liquid flow velocity.

即ち、本実施形態にかかる液相流況計測装置は、導体とみなされる液体7の動きをワイヤメッシュセンサ4の各立体交差部分11のワイヤ2’,3’間に発生する誘導起電力E(E,E,E,…,E)として検出してから例えばマイコンやパソコンなどの演算処理装置9で上述の式1を演算して液相の流速に換算する計測システムである。 In other words, the liquid phase flow condition measuring device of this embodiment is a measurement system that detects the movement of the liquid 7, which is regarded as a conductor, as induced electromotive force E ( E1 , E2 , E3 , ..., En ) generated between the wires 2', 3' at each three-dimensional intersection portion 11 of the wire mesh sensor 4, and then calculates the above-mentioned equation 1 using an arithmetic processing device 9, such as a microcomputer or a personal computer, to convert it into the liquid phase flow velocity.

以上のように構成された本実施形態の計測装置によれば、外部磁場発生装置8例えば電磁石を作動させて外部磁場を与えることで発生する液体7のクロスフロー13に起因する誘導起電力E(E,E,E,…,E)をワイヤメッシュセンサ4の各立体交差部分11で多点計測することにより、空間分布として液相の中の流速場情報を取得することができる。 According to the measuring device of this embodiment configured as described above, the induced electromotive force E (E1, E2, E3, ..., En ) caused by the crossflow 13 of the liquid 7, which is generated by applying an external magnetic field by operating an external magnetic field generating device 8 , for example an electromagnet, is measured at multiple points at each three-dimensional intersection portion 11 of the wire mesh sensor 4, and flow velocity field information in the liquid phase can be obtained as a spatial distribution.

つまり、2層配置されたワイヤ群2,3の各立体交差部分11は局所的には2つの電極となる。そして、2つの電極間を流れる液体・液相は導体であるため、外部磁場が与えられるとファラデーの法則に従った起電力E(E,E,E,…,E)が発生する。したがって、2層配置されたワイヤ群2,3からは誘導起電力E(E,E,E,…,E)が電圧差となって検出される。ここで、ファラデーの電磁誘導の法則を用いて、外部磁場・磁束を鎖交する液相の流れ(導体の移動と考えられる)の速度に応じて各立体交差部分11のワイヤ2’,3’間にそれぞれ発生する起電力E(E,E,E,…,E)から、液相のクロスフロー13の流速v,vが求められる(図2参照)。2層のワイヤ群2,3の間で形成される各立体交差部分11は二次元的に分布されるため、得られる誘導起電力E(E,E,E,…,E)も多点で計測することとなり、空間分布として液相の中の流速場を取得することができる。これにより、主流12の流れと直交する断面と平行な方向の水平流れ(クロスフロー)の速度場即ちクロスフロー13の速度場・流況に関する情報を取得することができる。 That is, each of the three-dimensional intersections 11 of the wire groups 2 and 3 arranged in two layers locally becomes two electrodes. Since the liquid/liquid phase flowing between the two electrodes is a conductor, when an external magnetic field is applied, an electromotive force E (E 1 , E 2 , E 3 , ..., E n ) is generated according to Faraday's law. Therefore, the induced electromotive force E (E 1 , E 2 , E 3 , ..., E n ) is detected as a voltage difference from the wire groups 2 and 3 arranged in two layers. Here, using Faraday's law of electromagnetic induction, the flow velocities v x and v y of the liquid crossflow 13 can be obtained from the electromotive forces E (E 1 , E 2 , E 3 , ..., E n ) generated between the wires 2 ' and 3 ' of each three-dimensional intersection 11 according to the speed of the liquid flow (considered to be the movement of a conductor) that interlinks with the external magnetic field/magnetic flux (see FIG. 2). Since the intersections 11 formed between the two layers of wire groups 2 and 3 are distributed two-dimensionally, the induced electromotive forces E ( E1 , E2 , E3 , ..., En ) are also measured at multiple points, and the flow velocity field in the liquid phase can be obtained as a spatial distribution. This makes it possible to obtain information on the velocity field of the horizontal flow (cross flow) parallel to the cross section perpendicular to the flow of the main flow 12, i.e., the velocity field and flow conditions of the cross flow 13.

本実施形態の計測方法によれば、光学的パスを必要とせず、不可視環境でも流況を検出可能である。つまり、流体そのものが見えない環境(水や非透明の液体も含まれる)での液相の流況を計測することが可能であることから、光学的なパス(覗き窓など)を設ける必要がないので、原子炉や化学プラントといった高温高圧な条件である圧力容器内を流れる流体の計測は勿論のこと、さらには常温温常圧の流体で非透明な管路あるいは容器内に流れる、光学的なパスが設定できない環境下での液相流況計測への適用が可能である。 The measurement method of this embodiment does not require an optical path and can detect flow conditions even in invisible environments. In other words, since it is possible to measure the liquid phase flow conditions in an environment where the fluid itself is invisible (including water and opaque liquids), there is no need to install an optical path (such as a sight glass), so it can be applied not only to the measurement of fluids flowing inside pressure vessels under high temperature and pressure conditions such as nuclear reactors and chemical plants, but also to the measurement of liquid phase flow conditions in environments where an optical path cannot be set, such as fluids at room temperature and pressure flowing inside opaque pipelines or vessels.

また、上述の実施形態の液相の流況計測装置において、ワイヤメッシュセンサ4のいずれか一方のワイヤ群を送信側のワイヤ群(トランスミッター側ワイヤ群3と呼ぶ)として、また他方のワイヤ群を受信側のワイヤ群(レシーバー側ワイヤ群2と呼ぶ)として用い、例えば図5に示すように、励起電極と呼ばれるトランスミッター側ワイヤ群3の各ワイヤに一定の遅延時間を与えて任意の信号例えば矩形波(パルス信号14)を送出すれば、気泡(気相)10と液相7とではコンダクタンスが異なるので、例えばワイヤメッシュの立体交差部分11のワイヤ2’,3’間に気相(例えば、気泡10)が通過することでワイヤ2’,3’間の電気伝導率が変化することから、レシーバー側ワイヤ群2から取り出される電気信号15にも影響がでる。つまり、レシーバー側ワイヤ群2からは、気泡10の通過に伴って各立体交差部分11におけるワイヤ2’,3’間のインピーダンスが変化することで電圧降下を引き起こして信号波形がなまることから、気相・気泡の情報を取得することができる。これにより、ワイヤ2’,3’が交差する近接点の電気伝導率の変化から気泡の有無の二次元分布換言すれば気液の存在量を高速・高空間分解能で計測できる。即ち、インピーダンスが異なる複数種類の物質の存在量例えば気相と液相との二次元分布計測を実現できる。 In addition, in the liquid phase flow condition measuring device of the above embodiment, one of the wire groups of the wire mesh sensor 4 is used as the transmitting side wire group (referred to as the transmitter side wire group 3) and the other wire group is used as the receiving side wire group (referred to as the receiver side wire group 2). For example, as shown in FIG. 5, if a certain delay time is given to each wire of the transmitter side wire group 3 called an excitation electrode and an arbitrary signal, for example a rectangular wave (pulse signal 14), is sent out, the conductance is different between the bubble (gas phase) 10 and the liquid phase 7. For example, when the gas phase (e.g., the bubble 10) passes between the wires 2', 3' of the three-dimensional intersection portion 11 of the wire mesh, the electrical conductivity between the wires 2', 3' changes, which affects the electrical signal 15 extracted from the receiver side wire group 2. In other words, the impedance between the wires 2', 3' at each three-dimensional intersection portion 11 changes with the passage of the bubble 10, causing a voltage drop and dulling the signal waveform, so that information on the gas phase and bubbles can be obtained from the receiver side wire group 2. This allows the two-dimensional distribution of the presence or absence of bubbles, in other words the amount of gas and liquid present, to be measured at high speed and with high spatial resolution from the change in electrical conductivity at the nearby point where the wires 2' and 3' cross. In other words, it is possible to realize two-dimensional distribution measurement of the amounts of multiple types of substances with different impedances, such as the gas phase and the liquid phase.

具体的には、トランスミッター側ワイヤ群3から例えば矩形波の信号を流すと、レシーバー側ワイヤ群2との立体交差部分11に例えば気泡10が存在すれば電圧降下(波形が歪んで)が起きた信号が検出され、液相7が存在する場合には電圧降下の起きない(波形に歪みのない、綺麗な波形)信号が検出される。 Specifically, when a rectangular wave signal, for example, is sent from the transmitter side wire group 3, if an air bubble 10 is present at the intersection 11 with the receiver side wire group 2, a signal with a voltage drop (distorted waveform) is detected, whereas if a liquid phase 7 is present, a signal without a voltage drop (a clean waveform with no distortion) is detected.

尚、信号の発信側即ちトランスミッター側ワイヤ群3でどのような信号を送出しているかは予め分かるので、アウトプット側即ちレシーバー側ワイヤ群2の信号を見ていれば気相・気泡の情報を取得することができる。 In addition, since it is known in advance what kind of signal is being sent from the signal sending side, i.e., the transmitter side wire group 3, it is possible to obtain information on the gas phase and bubbles by observing the signal from the output side, i.e., the receiver side wire group 2.

同時に、ワイヤメッシュセンサ4を含む流れ場に対し外部磁場を与えることで、ワイヤメッシュセンサ4の各立体交差部分11のワイヤ2’,3’間に起電力E(E,E,E,…,E)が生ずる。液相の流れに起因する誘導起電力E(E,E,E,…,E)を多点で計測することができる。各立体交差部分11の誘導起電力E(E,E,E,…,E)が電圧差としてレシーバー側ワイヤ群2から出力される。 At the same time, by applying an external magnetic field to the flow field including the wire mesh sensor 4, an electromotive force E ( E1 , E2 , E3, ..., En ) is generated between the wires 2', 3' of each three-dimensional intersection 11 of the wire mesh sensor 4. The induced electromotive force E ( E1 , E2 , E3 , ..., En ) caused by the liquid phase flow can be measured at multiple points. The induced electromotive force E ( E1 , E2 , E3 , ..., En ) of each three-dimensional intersection 11 is output from the receiver side wire group 2 as a voltage difference.

本実施形態にかかる計測装置によれば、外部磁場を少なくとも一次独立的に直交する2軸方向に交互に印加しながら、トランスミッター側ワイヤには信号を一定の遅れ時間下に全てのトランスミッター側ワイヤに常時流し続けることで、インピーダンスが異なる複数種類の物質の相を含む流体中の導電性物質相の速度場と導電性物質相と非導電性物質(導電性物質相に比べて非導電性である物質)との存在量、例えば液相の速度場と気液存在量をリアルタイムに同時計測することが可能になる。この場合、レシーバー側ワイヤに流れる信号と起電力E(E,E,E,…,E)とは、重畳した形態で取得される。したがって、レシーバー側ワイヤから出力される信号を適宜分離して処理することで、気液二相流における液相と気相との流況例えば気液の存在量および液相内の速度分布等をリアルタイムで適格に計測し得る。 According to the measurement device of the present embodiment, by continuously applying signals to all transmitter side wires with a certain delay time while applying external magnetic fields alternately in two orthogonal axial directions at least linearly independent, it is possible to simultaneously measure in real time the velocity field of the conductive material phase and the amount of conductive material phase and non-conductive material (material that is non-conductive compared to the conductive material phase ) in a fluid containing multiple types of material phases with different impedances, for example, the velocity field of the liquid phase and the amount of gas and liquid present. In this case, the signal flowing through the receiver side wire and the electromotive force E (E 1 , E 2 , E 3 , ..., E n ) are acquired in a superimposed form. Therefore, by appropriately separating and processing the signal output from the receiver side wire, the flow conditions of the liquid phase and the gas phase in the gas-liquid two-phase flow, for example, the amount of gas and liquid present and the velocity distribution in the liquid phase, can be properly measured in real time.

ここで、トランスミッター側ワイヤ群3に与える信号は、バイポーラ信号であることが好ましい。バイポーラ信号は、1つの波形に正・負で対称な形をもつ信号である。この信号が与えられたとき、例えば気泡が通過したときはおおよそ正・負で対称に信号が小さくなる。一方で、或る方向に液相が流れた場合には、各立体交差部分11のワイヤ2’,3’間に生じる電圧の方向は入力信号の正負に依存しないので、正負に対称ではない信号が受信できる。これらの受信波形の特徴の違いから、気相に起因する信号と液相に起因する信号とを判別することができる。 Here, the signal given to the transmitter side wire group 3 is preferably a bipolar signal. A bipolar signal is a signal that has a single waveform with symmetrical positive and negative shapes. When this signal is given, for example, when an air bubble passes, the signal becomes smaller with approximately positive and negative symmetry. On the other hand, when the liquid phase flows in a certain direction, the direction of the voltage generated between the wires 2', 3' of each intersection 11 does not depend on the positive and negative of the input signal, so a signal that is not symmetrical in positive and negative can be received. From the differences in the characteristics of these received waveforms, it is possible to distinguish between signals caused by the gas phase and signals caused by the liquid phase.

また、コンダクタンスの変化(例えば気泡の通過)に起因する信号と液相の流速の変化に伴う起電力E(E,E,E,…,E)の変化に起因する信号とが重畳した形で信号を取得する際には、信号電圧のレンジが大きく異なると片方の信号が埋もれてしまう可能性が危惧される。その場合には、外部磁場の印加とトランスミッター側ワイヤ群3への信号印加とを回路によって瞬時に交互に切替ることにより、即ち気液存在量計測→液相速度場計測→気液存在量計測→…と交互に切り替えることで、信号が分離された形式で実質的にほぼ同時に計測することも可能である。この場合、外部磁場の印加の時にはトランスミッター側ワイヤ群3に信号は流されないと共に、トランスミッター側ワイヤ群3への信号印加時には外部磁場を与えない。 Furthermore, when acquiring a signal in the form of a superposition of a signal caused by a change in conductance (e.g., the passage of a bubble) and a signal caused by a change in electromotive force E ( E1 , E2 , E3 , ..., En ) accompanying a change in the flow velocity of the liquid phase, there is a concern that one of the signals may be buried if the range of the signal voltages is significantly different. In that case, it is also possible to measure substantially simultaneously in a form in which the signals are separated by instantly alternately switching between the application of an external magnetic field and the application of a signal to the transmitter-side wire group 3 using a circuit, that is, by alternately switching from gas-liquid abundance measurement → liquid-phase velocity field measurement → gas-liquid abundance measurement → ... In this case, no signal flows through the transmitter-side wire group 3 when the external magnetic field is applied, and no external magnetic field is applied when a signal is applied to the transmitter-side wire group 3.

なお、上述の形態は本発明の好適な形態の一例ではあるがこれに限定されるものではなく本発明の要旨を逸脱しない範囲において種々変形実施可能である。例えば、上述の実施形態においては、計測対象となる液体の主流12の流れ方向が上下方向となる場合のクロスフロー13に関する液相内の速度分布及び複数種類の物質の存在量の情報の収集について言及したが、これに特に限定されるものでも無く、ワイヤメッシュセンサ4並びに外部磁場装置8の配置の変更によってスワール流れの速度場、乱流や障害物による流れの変化などの液相の情報が得られるし、また液相の流速に起因する渦や気泡の合体または分裂などの分析にも適用できることは言うまでもない。 The above-mentioned embodiment is an example of a preferred embodiment of the present invention, but is not limited thereto and can be modified in various ways without departing from the gist of the present invention. For example, in the above-mentioned embodiment, the collection of information on the velocity distribution in the liquid phase and the amount of a plurality of types of substances in the crossflow 13 when the flow direction of the main flow 12 of the liquid to be measured is vertical, is mentioned, but this is not particularly limited thereto, and by changing the arrangement of the wire mesh sensor 4 and the external magnetic field device 8, information on the liquid phase such as the velocity field of a swirl flow, and flow changes due to turbulence or obstacles can be obtained, and it goes without saying that it can also be applied to the analysis of vortices and the merging or splitting of bubbles caused by the flow speed of the liquid phase.

また、上述の実施形態では、誘導起電力E(E,E,E,…,E)を主とする計測により、液相または気液二相流体の流況を計測するようにしているので、光学的パスを必要とせず、非透明な容器や管路の内部を流れる流れのクロスフローの速度場を計測するようにしているが、これに特に限られず、オープンな流路や容器内でのスワール流れの速度場などを計測することなども可能であることは言うまでもない。 In addition, in the above-described embodiment, the flow conditions of a liquid phase or a gas-liquid two-phase fluid are measured primarily by measuring the induced electromotive force E ( E1 , E2 , E3 , ..., En ), so that no optical path is required and the crossflow velocity field of a flow flowing inside a non-transparent container or pipeline is measured. However, it goes without saying that this is not particularly limited and it is also possible to measure the velocity field of a swirl flow inside an open flow path or container.

また、ファラデーの電磁誘導の法則を用いて空間分布として液相の中の流速場情報を取得することから、導電性を有する流体であれば、測定対象とすることが可能であり、さらには測定原理にはインピーダンスが異なる複数種類の物質の相例えば気泡の存在は必須ではないことから、つまり、液相のみの単相の流体の液相の流況を計測することが可能である。 In addition, because flow velocity field information in the liquid phase is obtained as a spatial distribution using Faraday's law of electromagnetic induction, any fluid that is conductive can be used as the measurement target.Furthermore, the measurement principle does not require the presence of multiple phases of substances with different impedances, such as air bubbles, meaning that it is possible to measure the liquid phase flow conditions of a single-phase fluid that contains only the liquid phase.

さらには、上述の実施形態においては、外部磁場付与装置として電磁石8を用いた例を挙げて説明しているが、これに特に限られるものではなく、永久磁石を用いて計測対象となる流体に時間変動する磁場を与えるようにしても良い。例えば、図示していないが、真ん中に流路・管路を通すための孔が空いている回転テーブルに流体を横切る磁場を形成するように永久磁石を設置し、あるいは流体を横切る磁場を形成するように着磁された環状永久磁石を設置し、これらを流路の周りで回転させることによって一次独立である少なくとも2軸方向の磁束を交互に与えるようにしても良い。また、流路・管路の周りを回転させるだけでなく、流路・管路の外周面に接する接線と平行な軸周りに永久磁石を回転させて、一次独立である2軸方向の磁束を周期的に連続的に交互に与えるようにしても良い。例えば、90°置きに配置された永久磁石が回転することで、第1の磁場パターン5と第2の磁場パターン6とが交互に印加されるように設けても良い。 In addition, in the above embodiment, an example is described in which an electromagnet 8 is used as an external magnetic field applying device, but this is not particularly limited, and a permanent magnet may be used to apply a time-varying magnetic field to the fluid to be measured. For example, although not shown, a permanent magnet may be installed on a rotating table with a hole in the center for passing a flow path/pipe so as to form a magnetic field across the fluid, or a magnetized ring-shaped permanent magnet may be installed so as to form a magnetic field across the fluid, and these may be rotated around the flow path to alternately apply magnetic flux in at least two linearly independent axial directions. In addition to rotating around the flow path/pipe, a permanent magnet may be rotated around an axis parallel to a tangent to the outer peripheral surface of the flow path/pipe to periodically and continuously apply magnetic flux in two linearly independent axial directions alternately. For example, a first magnetic field pattern 5 and a second magnetic field pattern 6 may be applied alternately by rotating permanent magnets arranged at 90° intervals.

1 流路(管路)
2 一方のワイヤ群(レシーバー側ワイヤ群)
2’ 一方のワイヤ(レシーバー側ワイヤ)
3 他方のワイヤ群(トランスミッター側ワイヤ群)
3’ 他方のワイヤ(トランスミッター側ワイヤ)
4 ワイヤメッシュセンサ
5 第1の磁場パターン
6 第2の磁場パターン
7 計測対象流体である液体・液相
8 外部磁場付与装置(電磁石)
9 演算処理装置
10 気相(気泡)
11 立体交差部分
12 主流
13 クロスフロー
14 トランスミッター側ワイヤ群から送信される信号(パルス信号)
15 レシーバー側ワイヤ群から出力される信号
1. Flow path (pipe)
2. One wire group (receiver side wire group)
2' One wire (receiver wire)
3. The other wire group (transmitter side wire group)
3' The other wire (transmitter side wire)
4 Wire mesh sensor 5 First magnetic field pattern 6 Second magnetic field pattern 7 Liquid/liquid phase as a fluid to be measured 8 External magnetic field application device (electromagnet)
9 Processing device 10 Gas phase (bubbles)
11 Intersection 12 Main flow 13 Cross flow 14 Signal (pulse signal) transmitted from transmitter side wire group
15 Signal output from receiver wire group

Claims (10)

計測対象となる液相を含む流体の主流に対して直交させるように一定間隔を空けて相互に立体交差させて配置される2層のワイヤ群と、
前記流体の流路の外側において前記2層のワイヤ群及びその間の前記計測対象となる流体に時間変動する磁場を与える外部磁場付与装置と、
前記2層のワイヤ群から出力される各ワイヤの立体交差部分の間に発生する起電力に基づいて前記液相のクロスフローの速度情報を得る演算処理装置とを備え、
空間分布として流体中の液相のクロスフローの流速場を直接的に求める
ことを特徴とする液相の流況を計測する計測装置。
Two layers of wires are arranged at regular intervals so as to cross each other at right angles to a main flow of a fluid containing a liquid phase to be measured;
an external magnetic field applying device that applies a time-varying magnetic field to the two layers of wires and the fluid to be measured between them, outside the fluid flow path;
a processor for obtaining speed information of the cross flow of the liquid phase based on electromotive forces generated between crossover portions of each of the wires output from the two layers of wire groups,
A measuring device for measuring the flow conditions of a liquid phase, characterized by directly determining the flow velocity field of the cross flow of the liquid phase in a fluid as a spatial distribution.
前記外部磁場付与装置は電磁石であり、前記流路に対して直交する方向に少なくとも二対配置して、磁束の向きを周期的に交互に切り替えて与えることで、前記液相のクロスフローの直交する2方向の速度成分に関連する起電力を交互に連続的に取得することを特徴とする請求項1記載の液相の流況を計測する計測装置。 The measurement device for measuring the flow conditions of the liquid phase according to claim 1, characterized in that the external magnetic field application device is an electromagnet, and at least two pairs are arranged in a direction perpendicular to the flow path, and the direction of the magnetic flux is periodically alternated to obtain electromotive forces associated with the velocity components of the crossflow of the liquid phase in two perpendicular directions alternately. 前記2層のワイヤ群の一方をトランスミッター側ワイヤとして、他方をレシーバー側ワイヤとして用い、前記トランスミッター側ワイヤの各ワイヤに任意の信号を全てのワイヤ間で一定の遅れ時間が生ずるようにずらして送信すると共に、前記レシーバー側ワイヤで前記立体交差部分のワイヤ間の電気伝導率を検出して、前記電気伝導率の変化からインピーダンスが異なる複数種類の物質の存在量に関する情報も同時に得ることを特徴とする請求項1または2記載の計測装置。 The measuring device according to claim 1 or 2, characterized in that one of the two layers of wires is used as a transmitter side wire and the other is used as a receiver side wire, and an arbitrary signal is transmitted to each wire of the transmitter side wire with a shift so that a certain delay time occurs between all of the wires, and the electrical conductivity between the wires at the intersection part is detected by the receiver side wire, and information regarding the amount of multiple types of substances with different impedances is simultaneously obtained from the change in electrical conductivity. 前記ワイヤに流す信号はバイポーラ信号であることを特徴とする請求項3記載の計測装置。 The measurement device according to claim 3, characterized in that the signal applied to the wire is a bipolar signal. 前記計測対象となる流体は気液二相流であることを特徴とする請求項1から4のいずれか1つに記載の計測装置。 The measurement device according to any one of claims 1 to 4, characterized in that the fluid to be measured is a gas-liquid two-phase flow. 計測対象となる液相を含む流体の主流に対して直交させるように一定間隔を空けて相互に立体交差させて2層のワイヤ群を配置し、
前記2層のワイヤ群及びその間の前記計測対象となる流体に時間変動する外部磁場を与え、
前記2層のワイヤ群から取得される各ワイヤの立体交差部分の間に発生する起電力から前記液相のクロスフローの速度情報を得る
ことを特徴とする液相の流況を計測する計測方法。
Two layers of wires are arranged so that they cross each other at a constant interval and are perpendicular to the main flow of the fluid containing the liquid phase to be measured,
A time-varying external magnetic field is applied to the two layers of wires and the fluid to be measured therebetween;
A method for measuring the flow conditions of a liquid phase, characterized in that velocity information of the crossflow of the liquid phase is obtained from the electromotive force generated between the three-dimensional intersections of each wire from the two layers of wire groups.
前記外部磁場の磁束の向きを直交する2方向に周期的に交互に切り替えて与えることで、前記液相のクロスフローの直交する2方向の速度成分に関連する起電力を交互に連続的に取得することを特徴とする請求項6に記載の液相の流況を計測する計測方法。 The method for measuring the flow conditions of the liquid phase described in claim 6, characterized in that the direction of the magnetic flux of the external magnetic field is periodically alternated between two perpendicular directions, thereby alternately and continuously acquiring electromotive forces associated with the velocity components of the crossflow of the liquid phase in two perpendicular directions. 前記2層のワイヤ群の一方をトランスミッター側ワイヤとして、他方をレシーバー側ワイヤとして用い、前記トランスミッター側ワイヤの各ワイヤに任意の信号を全てのワイヤ間で一定の遅れ時間が生ずるようにずらして送信すると共に、前記レシーバー側ワイヤで前記立体交差部分のワイヤ間の電気伝導率を検出して、前記電気伝導率の変化からインピーダンスが異なる複数種類の物質の存在量に関する情報も同時に得ることを特徴とする請求項6または7記載の液相の流況を計測する計測方法。 A method for measuring a liquid phase flow condition according to claim 6 or 7, characterized in that one of the two layers of wire groups is used as a transmitter side wire and the other is used as a receiver side wire, and an arbitrary signal is transmitted to each wire of the transmitter side wire with a shift so that a certain delay time occurs between all of the wires, and the electrical conductivity between the wires at the intersection part is detected by the receiver side wire, and information regarding the amount of multiple types of substances with different impedances is simultaneously obtained from the change in electrical conductivity. 前記ワイヤに流す信号はバイポーラ信号であることを特徴とする請求項6から8のいずれか1つに記載の液相の流況を計測する計測方法。 A method for measuring the flow condition of a liquid phase according to any one of claims 6 to 8, characterized in that the signal applied to the wire is a bipolar signal. 前記計測対象となる流体は気液二相流であることを特徴とする請求項6から9のいずれか1つに記載の液相の流況を計測する計測方法。 A method for measuring the flow condition of a liquid phase according to any one of claims 6 to 9, characterized in that the fluid to be measured is a gas-liquid two-phase flow.
JP2020100758A 2020-06-10 2020-06-10 A measuring device for measuring the liquid phase flow conditions Active JP7483515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020100758A JP7483515B2 (en) 2020-06-10 2020-06-10 A measuring device for measuring the liquid phase flow conditions

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020100758A JP7483515B2 (en) 2020-06-10 2020-06-10 A measuring device for measuring the liquid phase flow conditions

Publications (2)

Publication Number Publication Date
JP2021196194A JP2021196194A (en) 2021-12-27
JP7483515B2 true JP7483515B2 (en) 2024-05-15

Family

ID=79197958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020100758A Active JP7483515B2 (en) 2020-06-10 2020-06-10 A measuring device for measuring the liquid phase flow conditions

Country Status (1)

Country Link
JP (1) JP7483515B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333237A (en) 2003-05-02 2004-11-25 Univ Nihon Measuring apparatus and measurement method for flow velocity/flow rate of mixed flow
JP2013003052A (en) 2011-06-20 2013-01-07 Central Research Institute Of Electric Power Industry Three-dimensional velocity measuring system
JP2013246124A (en) 2012-05-29 2013-12-09 Central Research Institute Of Electric Power Industry Measurement system of three-dimensional velocity
US20150300851A1 (en) 2012-11-27 2015-10-22 Siemens Aktiengesellschaft Magnetically inductive flow meter
JP2015210187A (en) 2014-04-25 2015-11-24 一般財団法人電力中央研究所 Impedance measurement device and method for manufacturing wire mesh sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004333237A (en) 2003-05-02 2004-11-25 Univ Nihon Measuring apparatus and measurement method for flow velocity/flow rate of mixed flow
JP2013003052A (en) 2011-06-20 2013-01-07 Central Research Institute Of Electric Power Industry Three-dimensional velocity measuring system
JP2013246124A (en) 2012-05-29 2013-12-09 Central Research Institute Of Electric Power Industry Measurement system of three-dimensional velocity
US20150300851A1 (en) 2012-11-27 2015-10-22 Siemens Aktiengesellschaft Magnetically inductive flow meter
JP2015210187A (en) 2014-04-25 2015-11-24 一般財団法人電力中央研究所 Impedance measurement device and method for manufacturing wire mesh sensor

Also Published As

Publication number Publication date
JP2021196194A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
Cha et al. Flow measurement with an electromagnetic flowmeter in two-phase bubbly and slug flow regimes
JP6219961B2 (en) Magnetic flow meter with multiple coils
US8434371B2 (en) Electromagnetic fluid velocity sensor with adjustable electrodes
JP2017015451A (en) Metal detection sensor and method of detecting metal using the same
CN101609066B (en) Electromagnetic sensing imaging system based on screen mesh and method thereof
Carter et al. An instrumentation system using combined sensing strategies for online mass flow rate measurement and particle sizing
Yin et al. Sensitivity formulation including velocity effects for electromagnetic induction systems
JP7483515B2 (en) A measuring device for measuring the liquid phase flow conditions
CN108007500A (en) Resistance chromatographs concentration and velocity measurement sensor system
US5426983A (en) Flow meter
Zhong et al. Aliasing signal separation of oil debris monitoring
Dubovikova et al. Contactless flow measurement in liquid metal using electromagnetic time-of-flight method
DE102015008995B4 (en) Method and device for the non-invasive determination of the flow velocity, the volume flow or the electrical conductivity of a flowing fluid
CN111189881A (en) Two-phase flow grid sensor visualization method based on differential measurement mode
Shi et al. Analytical investigation of an inductive flow sensor with arc-shaped electrodes for water velocity measurement in two-phase flows
WO2009093070A1 (en) Eddy current inspection system and method of eddy current flaw detection
Karamifard et al. Design and simulation of electromagnetic flow meter for circular pipe type
Hoppe et al. Determination of velocity and angular displacement of bubbly flows by means of wire-mesh sensors and correlation analysis
Wiederhold et al. Detection and characterization of elongated bubbles and drops in two-phase flow using magnetic fields
Wang et al. Numerical calibration of a Lorentz force particle analyzer
KR100690053B1 (en) Electromagnetic type velocity profile measurement device of conductive fluid
Vadde et al. A review on non-invasive magnetic and electric field excited methods for flow characterisation of incompressible Newtonian low conductive liquids
CN114019014B (en) Penetrating type magnetic saturation vortex detection device and detection method thereof
JP2013003052A (en) Three-dimensional velocity measuring system
RU2777451C1 (en) Method for determining the flow rate of a liquid or gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240501

R150 Certificate of patent or registration of utility model

Ref document number: 7483515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150