[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7480581B2 - Polyester film and its uses - Google Patents

Polyester film and its uses Download PDF

Info

Publication number
JP7480581B2
JP7480581B2 JP2020086715A JP2020086715A JP7480581B2 JP 7480581 B2 JP7480581 B2 JP 7480581B2 JP 2020086715 A JP2020086715 A JP 2020086715A JP 2020086715 A JP2020086715 A JP 2020086715A JP 7480581 B2 JP7480581 B2 JP 7480581B2
Authority
JP
Japan
Prior art keywords
film
polyester film
organic
folding
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020086715A
Other languages
Japanese (ja)
Other versions
JP2020197705A (en
Inventor
正太郎 西尾
究 河合
亮 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Publication of JP2020197705A publication Critical patent/JP2020197705A/en
Priority to JP2024056266A priority Critical patent/JP2024083397A/en
Application granted granted Critical
Publication of JP7480581B2 publication Critical patent/JP7480581B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム、折りたたみ型ディスプレイ、及び携帯端末機器に関し、繰り返し折りたたんでも、フィルムの変形による画像の乱れの起こり難い折りたたみ型ディスプレイ及び携帯端末機器、及び前記の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムに関する。 The present invention relates to a polyester film for protecting an organic EL module of a folding display, a folding display, and a mobile terminal device, and to a folding display and a mobile terminal device that are unlikely to suffer from image distortion due to film deformation even when repeatedly folded, and to a polyester film for protecting an organic EL module of the folding display.

携帯端末機器の薄膜軽量化が進み、スマートフォンに代表される携帯端末機器が広く普及している。携帯端末機器には様々な機能が求められている反面、利便性も求められている。そのため普及している携帯端末機器は、簡単な操作は片手ででき、さらに衣服のポケットなどに収納することが前提であるため6インチ程度の小さな画面サイズとする必要がある。 As mobile terminal devices become thinner and lighter, smartphones and other mobile terminal devices are becoming more and more widespread. While mobile terminal devices are required to have a variety of functions, they are also required to be convenient to use. For this reason, the mobile terminal devices that are currently in widespread use must be able to perform simple operations with one hand, and must have a small screen size of around 6 inches, since they are assumed to be stored in a clothing pocket, etc.

一方、7インチ~10インチの画面サイズであるタブレット端末では、映像コンテンツや音楽のみならず、ビジネス用途、描画用途、読書などが想定され、機能性の高さを有している。しかし、片手での操作はできず、携帯性も劣り、利便性に課題を有する。 On the other hand, tablet devices with screen sizes between 7 and 10 inches are highly functional and are intended for use not only for video content and music, but also for business purposes, drawing, reading, etc. However, they cannot be operated with one hand, are less portable, and have issues with convenience.

これらを達成するため、複数のディスプレイをつなぎ合わせることでコンパクトにする手法が提案されているが(特許文献1参照)、ベゼルの部分が残るため、映像が切れたものとなり、視認性の低下が問題となり普及していない。 To achieve these goals, a method has been proposed to make the display more compact by connecting multiple displays together (see Patent Document 1), but this method has not become widespread due to the remaining bezel, which results in the image being cut off and reduced visibility.

そこで近年、フレキシブルディスプレイ、折りたたみ型ディスプレイを組み込んだ携帯端末が提案されている。この方式であれば、画像が途切れることなく、大画面のディスプレイを搭載した携帯端末機器として利便性よく携帯できる。 In recent years, mobile devices incorporating flexible and foldable displays have been proposed. With this method, the image can be displayed without interruption and the device can be conveniently carried around as a mobile device equipped with a large screen display.

ここで、従来の折りたたみ構造を有しないディスプレイや携帯端末機器については、そのディスプレイの表面はガラスなど可撓性を有しない素材で保護することができたが、折りたたみ型ディスプレイにおいて、折りたたみ部分を介して一面のディスプレイとする場合には、可撓性があり、かつ、表面を保護できるハードコートフィルムなどを使用する必要がある。しかしながら、折りたたみ型ディスプレイでは、一定の折りたたみ部分に当たる箇所が繰り返し折り曲げられるため、当該箇所のフィルムが経時的に変形し、ディスプレイに表示される画像を歪める等の問題があった。また、表面保護フィルムだけでなく、折りたたみ型ディスプレイには、偏光板、位相差板、タッチパネル基材、有機EL(エレクトロルミネッセンス)などの表示セルの基材、背面の保護部材など、様々な部位にフィルムが用いられ、これらのフィルムに対しても繰り返し折りたたみに対する耐久性が求められていた。 Here, in the case of conventional displays and mobile terminal devices that do not have a folding structure, the surface of the display can be protected with a non-flexible material such as glass, but in the case of a folding display, when a folding part is used to create a one-sided display, it is necessary to use a hard coat film that is flexible and can protect the surface. However, in a folding display, the part that corresponds to a certain folding part is repeatedly folded, and there are problems such as the film in that part deforming over time and distorting the image displayed on the display. In addition to the surface protection film, films are used in various parts of the folding display, such as polarizing plates, retardation plates, touch panel substrates, substrates for display cells such as organic EL (electroluminescence), and protective members for the back surface, and durability against repeated folding is also required for these films.

そこで、部分的に膜厚を変える手法も提案されているが(特許文献2参照)、量産性に乏しい問題がある。 A method has been proposed to change the film thickness partially (see Patent Document 2), but this has the problem of poor mass productivity.

また、ポリエステルフィルムの屈曲方向の屈折率を調整する手法も提案されているが(特許文献3参照)、屈曲方向の屈折率を下げるに従ってハードコート塗布時の鉛筆硬度が低下し、ディスプレイの表面保護機能の低下する問題があった。また、一方向の屈折率を下げていくと折れたたみ時の変形は改善していくが、折りたたみ方向の一軸配向性が高まり、折りたたみ部にクラックが発生する、または破断する問題があった。 A method of adjusting the refractive index in the bending direction of the polyester film has also been proposed (see Patent Document 3), but as the refractive index in the bending direction is reduced, the pencil hardness when the hard coat is applied decreases, resulting in a problem of reduced surface protection function for displays. In addition, lowering the refractive index in one direction improves deformation when folded, but increases uniaxial orientation in the folding direction, causing problems with cracks or breakage in the folded area.

特開2010-228391号公報JP 2010-228391 A 特開2016-155124号公報JP 2016-155124 A 国際公開第2018/150940号International Publication No. 2018/150940

本発明は上記のような従来のディスプレイの部材が有する課題を解決しようとするものであって、量産性に優れており、繰り返し折り曲げた後に折りたたみ部分で表示される画像に乱れを生じるおそれがない折りたたみ型ディスプレイと、そのような折りたたみ型ディスプレイを搭載した携帯端末機器を提供できるようにするため、折りたたみ部に折り跡やクラックが発生することのない、折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムを提供しようとするものである。 The present invention seeks to solve the problems associated with conventional display components as described above, and aims to provide a foldable display that is easy to mass-produce and has no risk of image distortion at the fold after repeated folding, as well as a mobile terminal device equipped with such a foldable display, by providing a polyester film for protecting the organic EL module of the foldable display that does not produce creases or cracks at the fold.

即ち、本発明は以下の構成よりなる。
1. 下記条件を満足する折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。
(1)屈曲方向の屈折率が1.590~1.620
(2)折りたたみ部の方向の屈折率が1.670~1.700
(3)厚み方向の屈折率が1.520以下
(4)密度が1.380g/cm以上
(ここで、屈曲方向とは、ポリエステルフィルムを折りたたむ際の折りたたみ部と直交する方向をいう。)
2. 屈曲方向の弾性率が2.7GPa以下、折りたたみ部の方向の弾性率が4.5GPa以上である上記第1に記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。
3. 全光線透過率が85%以上、ヘイズが3%以下、かつ、最大熱収縮率が6%以下である上記第1または第2に記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。
4. 少なくとも片面上に易接着層を有する上記第1~第3のいずれかに記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。
5. 少なくとも片面上に厚みが1~50μmのハードコート層を有する上記第1~第4のいずれかに記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。
6. 上記第1~第5のいずれかに記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムが、有機ELモジュールの保護フィルムとして含まれた折りたたみ型ディスプレイであって、折りたたみ型ディスプレイの折りたたみ部を介して連続した単一の有機ELモジュールの保護フィルムが配されている折りたたみ型ディスプレイ。
7. 上記第6に記載の折りたたみ型ディスプレイを有する携帯端末機器。
That is, the present invention comprises the following:
1. A polyester film for protecting the organic EL module of a folding display that satisfies the following conditions:
(1) The refractive index in the bending direction is 1.590 to 1.620
(2) The refractive index in the direction of the fold is 1.670 to 1.700
(3) A refractive index in the thickness direction is 1.520 or less. (4) A density is 1.380 g/ cm3 or more.
(Here, the bending direction refers to the direction perpendicular to the fold when folding the polyester film.)
2. The polyester film for protecting an organic EL module of a folding display according to claim 1, which has an elastic modulus of 2.7 GPa or less in the bending direction and an elastic modulus of 4.5 GPa or more in the direction of the folding portion.
3. The polyester film for protecting an organic EL module of a folding display according to the above 1 or 2, which has a total light transmittance of 85% or more, a haze of 3% or less, and a maximum heat shrinkage of 6% or less.
4. The polyester film for protecting an organic EL module of a folding display according to any one of claims 1 to 3, having an easy-adhesion layer on at least one surface thereof.
5. The polyester film for protecting an organic EL module of a folding display according to any one of the first to fourth aspects, having a hard coat layer having a thickness of 1 to 50 μm on at least one surface thereof.
6. A folding display including the polyester film for protecting an organic EL module of a folding display according to any one of claims 1 to 5 above as a protective film for an organic EL module, in which the protective film for a single continuous organic EL module is disposed via a folding portion of the folding display.
7. A mobile terminal device having the foldable display according to claim 6.

本発明の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムを用いた折りたたみ型ディスプレイは、量産性を維持しながら、そのポリエステルフィルムが、折りたたみ部にクラックが発生することがなく、繰り返し折りたたんだ後の変形を起こさず、ディスプレイの折りたたみ部分での画像の乱れを生じないものである。前記のようなポリエステルフィルムを用いた折りたたみ型ディスプレイを搭載した携帯端末機器は、美しい画像を提供し、機能性に富み、携帯性等の利便性に優れたものである。 A folding display using the polyester film for protecting the organic EL module of the folding display of the present invention maintains mass productivity, while the polyester film does not crack at the folding portion, does not deform after repeated folding, and does not cause image distortion at the folding portion of the display. A mobile terminal device equipped with a folding display using such a polyester film provides beautiful images, is highly functional, and has excellent convenience such as portability.

本発明における折りたたみ型ディスプレイを折りたたんだ際の屈曲半径を示すための模式図である。FIG. 2 is a schematic diagram showing the bending radius when the foldable display of the present invention is folded. 本発明における折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムの屈曲方向を示すための模式図である。FIG. 2 is a schematic diagram showing the bending direction of a polyester film for protecting an organic EL module of a folding display according to the present invention. 本発明における有機ELモジュールの一例の断面模式図である。FIG. 1 is a schematic cross-sectional view of an example of an organic EL module according to the present invention.

(ディスプレイ)
本発明で言うディスプレイとは、表示装置を全般に指すものであり、ディスプレイの種類としては、LCD、有機ELディスプレイ、無機ELディスプレイ、LED、FEDなどあるが、折曲げ可能な構造を有するLCDや、有機EL、無機ELが好ましい。特に層構成を少なくすることができる有機EL、無機ELが特に好ましく、色域の広い有機ELがさらに好ましい。
(display)
The display in the present invention generally refers to a display device, and the types of displays include LCD, organic EL display, inorganic EL display, LED, FED, etc., but LCD, organic EL, and inorganic EL having a foldable structure are preferred. In particular, organic EL and inorganic EL, which can reduce the layer structure, are particularly preferred, and organic EL, which has a wide color gamut, is even more preferred.

(折りたたみ型ディスプレイ)
折りたたみ型ディスプレイは、連続した1枚のディスプレイが、携帯時は2つ折りなどに折りたたむことができるものである。折りたたむことでサイズを半減させ、携帯性を向上させることができる。折りたたみ型ディスプレイの屈曲半径は5mm以下が好ましく、3mm以下がさらに好ましい。屈曲半径が5mm以下であれば、折りたたんだ状態での薄型化が可能となる。屈曲半径は小さいほど良いと言えるが、屈曲半径が小さいほど折り跡がつきやすくなる。屈曲半径は0.1mm以上が好ましいが、0.5mm以上であってもよく、1mm以上であってもよい。屈曲半径が1mmであっても、携帯時には実用的に十分な薄型化を達成することができる。折りたたんだ際の屈曲半径とは、図1の模式図の符号11の箇所を測定するもので、折りたたんだ際の折りたたみ部分の内側の半径を意味している。なお、後述する表面保護フィルムは、折りたたみ型ディスプレイの折りたたんだ外側に位置していてもよいし、内側に位置していてもよい。
また、折りたたみ型ディスプレイは3つ折り、4つ折りであってもよく、さらに、ローラブルといわれる巻き取り型であってもよく、これらいずれも本発明でいう折りたたみ型ディスプレイの範囲に入るものとする。
(Foldable display)
A folding display is a continuous display that can be folded in half or the like when carried. By folding, the size can be halved, improving portability. The bending radius of the folding display is preferably 5 mm or less, more preferably 3 mm or less. If the bending radius is 5 mm or less, the display can be made thinner when folded. The smaller the bending radius, the better, but the smaller the bending radius, the easier it is to leave creases. The bending radius is preferably 0.1 mm or more, but may be 0.5 mm or more, or may be 1 mm or more. Even if the bending radius is 1 mm, a practically sufficient thinness can be achieved when carried. The bending radius when folded is measured at the location of the symbol 11 in the schematic diagram of FIG. 1, and means the inner radius of the folded part when folded. The surface protective film described later may be located on the outside or inside of the folded display.
Furthermore, the folding display may be folded in three or four, or may be a rollable type, all of which are considered to fall within the scope of the folding display of the present invention.

折りたたみディスプレイ用ポリエステルフィルムは、折りたたみ型ディスプレイの構成部材であればどのような部分に用いられてもよい。以下に、有機ELディスプレイを例として、折りたたみディスプレイの代表的構成と本発明のポリエステルフィルムが用いられうる部分を説明する。なお、以下、本発明の折りたたみディスプレイ用ポリエステルフィルムを単に本発明のポリエステルフィルムという場合がある。 The polyester film for folding displays may be used in any part of a folding display as long as it is a component part of the display. Below, a typical configuration of a folding display and the parts in which the polyester film of the present invention can be used are described using an organic EL display as an example. Hereinafter, the polyester film for folding displays of the present invention may be simply referred to as the polyester film of the present invention.

(折りたたみ型有機ELディスプレイ)
折りたたみ型有機ELディスプレイの必須構成としては、有機ELモジュールであるが、さらに必要に応じて、円偏光板、タッチパネルモジュール、表面保護フィルム、裏面保護フィルムなどが設けられる。
(有機ELモジュール)
有機ELモジュールの一般的な構成は、電極/電子輸送層/発光層/ホール輸送層/透明電極からなる。電極を設け、さらに電子輸送層、発光層、ホール輸送層を設ける基材として、本発明のポリエステルフィルムを用いることができる。特に、透明電極の基材として好ましく用いることができる。この場合、基材フィルムは高い水蒸気や酸素のバリア性が求められるため、本発明のポリエステルフィルムには、金属酸化物層などのバリア層が設けられることが好ましい。バリア性を上げるため、バリア層は複数設けられていてもよく、バリア層が設けられたポリエステルフィルムを複数枚用いても良い。
(Foldable organic EL display)
The essential component of a folding organic EL display is an organic EL module, and further includes a circular polarizing plate, a touch panel module, a front protective film, a back protective film, and the like, as required.
(Organic EL module)
A typical structure of an organic EL module is an electrode/electron transport layer/light-emitting layer/hole transport layer/transparent electrode. The polyester film of the present invention can be used as a substrate on which an electrode is provided and an electron transport layer, a light-emitting layer, and a hole transport layer are further provided. In particular, it can be preferably used as a substrate for a transparent electrode. In this case, since the substrate film is required to have high barrier properties against water vapor and oxygen, it is preferable that the polyester film of the present invention is provided with a barrier layer such as a metal oxide layer. In order to improve the barrier properties, a plurality of barrier layers may be provided, or a plurality of polyester films provided with a barrier layer may be used.

(有機ELモジュールの保護フィルム)
有機ELモジュールの非視認側にも保護フィルムが設けられることも好ましい。有機ELモジュールは一般的にはガラス基板に形成される。折りたたみ型ディスプレイなどのフレキシブルディスプレイの場合、ガラス基板は剥離され、その代わりの保護層としてフィルムが設けられる。本発明のポリエステルフィルムはこの有機ELモジュールの保護フィルムとして用いることができる。保護フィルムには傷つき防止のため、ハードコートが塗布されても良い。
(Protective film for organic EL module)
It is also preferable that a protective film is provided on the non-viewing side of the organic EL module. The organic EL module is generally formed on a glass substrate. In the case of a flexible display such as a folding display, the glass substrate is peeled off and a film is provided as a protective layer instead. The polyester film of the present invention can be used as a protective film for this organic EL module. A hard coat may be applied to the protective film to prevent scratches.

図3は、本発明の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムを備えた有機ELモジュール3の一例の模式断面図である。但し、本発明はこれに限定されない。有機ELモジュール3は、背面基板(ポリイミド基板やポリエステル基板など)32に薄膜トランジスタ(TFT)33、有機EL素子34の順に有し、有機EL素子34は封止粘着剤層35で封止される。この有機ELパネルの背面基板32を保護するため、粘着剤31を介して本発明のポリエステルフィルムを保護フィルム30として用いることができる。図示しないが、保護フィルム30は、粘着剤31と少なくとも反対表面にハードコート層を有していてもよい。 Figure 3 is a schematic cross-sectional view of an example of an organic EL module 3 equipped with a polyester film for protecting an organic EL module of a folding display of the present invention. However, the present invention is not limited to this. The organic EL module 3 has a thin film transistor (TFT) 33 and an organic EL element 34 in this order on a rear substrate (such as a polyimide substrate or a polyester substrate) 32, and the organic EL element 34 is sealed with a sealing adhesive layer 35. In order to protect the rear substrate 32 of this organic EL panel, the polyester film of the present invention can be used as a protective film 30 via an adhesive 31. Although not shown, the protective film 30 may have a hard coat layer on at least the surface opposite the adhesive 31.

(タッチパネルモジュール)
携帯端末機器にはタッチパネルを有することが好ましい。有機ELディスプレイを用いた場合、有機ELディスプレイの上部、もしくは有機ELモジュール/円偏光板間にタッチパネルモジュールが配置されていることが好ましい。タッチパネルモジュールはフィルムなどの透明基材とその上に配置された透明電極を有する。本発明のポリエステルフィルムはこの透明基材として用いることができる。タッチパネルの透明基材として用いる場合、ポリエステルフィルムにはハードコート層や屈折率調整層を設けることが好ましい。
(Touch panel module)
It is preferable that the mobile terminal device has a touch panel. When an organic EL display is used, it is preferable that a touch panel module is disposed on the top of the organic EL display or between the organic EL module and the circular polarizer. The touch panel module has a transparent substrate such as a film and a transparent electrode disposed thereon. The polyester film of the present invention can be used as this transparent substrate. When used as a transparent substrate for a touch panel, it is preferable that the polyester film is provided with a hard coat layer or a refractive index adjustment layer.

(円偏光板)
円偏光板は、ディスプレイ内部の部材によって外光が反射され、画質が低下することを抑制する。円偏光板は直線偏光板と位相差板を有する。直線偏光板は偏光子の少なくとも視認側の面に保護フィルムを有する。偏光子の視認側とは反対の面にも保護フィルムを有していてもよく、偏光子に位相差板が直接積層されていてもよい。位相差板はポリカーボネートや環状オレフィンなどの位相差を有する樹脂フィルムや樹脂フィルムに液晶化合物からなる位相差層が設けられたものが用いられる。本発明のポリエステルフィルムは、偏光子保護フィルムや位相差板の樹脂フィルムとして用いることができる。これらの場合、本発明のポリエステルフィルムはポリエステルフィルムの遅相軸方向が偏光子の吸収軸方向と平行または直交となることが好ましい。なお、この平行または直交に対して10度、好ましくは5度までのずれは許容される。
(Circular polarizing plate)
The circular polarizing plate suppresses deterioration of image quality due to reflection of external light by members inside the display. The circular polarizing plate has a linear polarizing plate and a retardation plate. The linear polarizing plate has a protective film on at least the viewing side surface of the polarizer. The polarizer may also have a protective film on the surface opposite to the viewing side, or the retardation plate may be directly laminated on the polarizer. The retardation plate is a resin film having a retardation such as polycarbonate or cyclic olefin, or a resin film provided with a retardation layer made of a liquid crystal compound. The polyester film of the present invention can be used as a polarizer protective film or a resin film for a retardation plate. In these cases, it is preferable that the slow axis direction of the polyester film of the present invention is parallel or perpendicular to the absorption axis direction of the polarizer. Incidentally, a deviation of 10 degrees, preferably 5 degrees, from this parallel or perpendicular direction is allowed.

(表面保護フィルム)
ディスプレイに上部から衝撃が加わると、有機ELモジュールやタッチパネルモジュールの回路が断線するおそれがあるため、多くの場合、表面保護フィルムが設けられている。本発明のポリエステルフィルムはこの表面保護フィルムとして用いられる。表面保護フィルムはディスプレイの最表面に組み込まれたカバーウインドウと呼ばれるものや、使用者自身で貼り合わせ、剥離ができ、交換可能なアフターと呼ばれるものがあるが、いずれであっても本発明のポリエステルフィルムが用いられる。本発明のポリエステルフィルムを表面保護フィルムとして用いる場合、ポリエステルフィルムの少なくとも表面側にはハードコート層が積層されたものであることが好ましい。ハードコート層を視認側にして折りたたみ型ディスプレイの表面に設けられる。なお、ハードコート層は両面に設けられていてもよい。
(Surface protection film)
When an impact is applied to a display from above, the circuit of an organic EL module or a touch panel module may be broken, so a surface protective film is often provided. The polyester film of the present invention is used as this surface protective film. Surface protective films include those called cover windows that are incorporated into the outermost surface of a display, and those called afters that can be attached, peeled off, and replaced by the user himself, but the polyester film of the present invention is used in either case. When the polyester film of the present invention is used as a surface protective film, it is preferable that a hard coat layer is laminated on at least the surface side of the polyester film. The hard coat layer is provided on the surface of a folding display with the hard coat layer on the viewing side. The hard coat layer may be provided on both sides.

また、折りたたみ型ディスプレイとしては上記のすべてに本発明におけるポリエステルフィルムが使用される必要はない。折りたたみ型ディスプレイでは、本発明のポリエステルフィルム以外にも、ポリイミドフィルム、ポリアミドフィルム、ポリアミドイミドフィルム、本発明のポリエステルフィルムではないポリエステルフィルム、ポリカーボネートフィルム、アクリルフィルム、トリアセチルセルロースフィルム、シクロオレフィンポリマーフィルム、ポリフェニレンスルフィドフィルム、ポリメチルペンテンフィルムなど、適宜適性に合わせて用いることができる。 Furthermore, it is not necessary for the polyester film of the present invention to be used in all of the above foldable displays. In addition to the polyester film of the present invention, polyimide films, polyamide films, polyamideimide films, polyester films other than the polyester film of the present invention, polycarbonate films, acrylic films, triacetyl cellulose films, cycloolefin polymer films, polyphenylene sulfide films, polymethylpentene films, and the like can be used in foldable displays as appropriate according to suitability.

以下、本発明における折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムを単に本発明のポリエステルフィルム、あるいは、ポリエステルフィルムと記載することがある。 Hereinafter, the polyester film for protecting the organic EL module of the folding display of the present invention may be simply referred to as the polyester film of the present invention or polyester film.

本発明のポリエステルフィルムは、1種類以上のポリエステル樹脂からなる単層構成のフィルムでもよいし、2種類以上のポリエステルを使用する場合、多層構造フィルムでも良いし、繰り返し構造の超多層積層フィルムでもよい。 The polyester film of the present invention may be a single-layer film made of one or more types of polyester resin, or when two or more types of polyester are used, it may be a multilayer film or an ultra-multilayer laminate film with a repeating structure.

ポリエステルフィルムに使用されるポリエステル樹脂としては、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレート、またはこれらの樹脂の構成成分を主成分とする共重合体からなるポリエステルフィルムが挙げられる。なかでも、力学的性質、耐熱性、透明性、価格などの点から、延伸されたポリエチレンテレフタレートフィルムが特に好ましい。 Examples of polyester resins used in polyester films include polyester films made of polyethylene terephthalate, polybutylene terephthalate, polyethylene-2,6-naphthalate, or copolymers whose main components are the constituent components of these resins. Among these, stretched polyethylene terephthalate films are particularly preferred in terms of mechanical properties, heat resistance, transparency, and price.

ポリエステルフィルムにポリエステルの共重合体を用いる場合、ポリエステルのジカルボン酸成分としては、例えば、アジピン酸、セバシン酸などの脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸などの芳香族ジカルボン酸;トリメリット酸、ピロメリット酸などの多官能カルボン酸が挙げられる。また、グリコール成分としては、例えば、エチレングリコール、ジエチレングリコール、1,4-ブタンジオール、プロピレングリコール、ネオペンチルグリコールなどの脂肪酸グリコール;p-キシレングリコールなどの芳香族グリコール;1,4-シクロヘキサンジメタノールなどの脂環族グリコール;平均分子量が150~20,000のポリエチレングリコールが挙げられる。好ましい共重合体の共重合成分の質量比率は20質量%未満である。20質量%未満の場合には、フィルム強度、透明性、耐熱性が保持されて好ましい。 When a polyester copolymer is used for the polyester film, examples of the dicarboxylic acid component of the polyester include aliphatic dicarboxylic acids such as adipic acid and sebacic acid; aromatic dicarboxylic acids such as terephthalic acid, isophthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid; and polyfunctional carboxylic acids such as trimellitic acid and pyromellitic acid. Examples of the glycol component include fatty acid glycols such as ethylene glycol, diethylene glycol, 1,4-butanediol, propylene glycol, and neopentyl glycol; aromatic glycols such as p-xylene glycol; alicyclic glycols such as 1,4-cyclohexanedimethanol; and polyethylene glycols having an average molecular weight of 150 to 20,000. The mass ratio of the copolymerization components of the preferred copolymer is less than 20% by mass. When it is less than 20% by mass, the film strength, transparency, and heat resistance are maintained, which is preferable.

また、ポリエステルフィルムの製造において、少なくとも1種類以上の樹脂ペレットの極限粘度は、0.50~1.0dl/gの範囲が好ましい。極限粘度が0.50dl/g以上であると、得られたフィルムの耐衝撃性が向上し、外部衝撃によるディスプレイ内部回路の断線が発生しづらく好ましい。一方、極限粘度が1.00dl/g以下であると、溶融流体の濾圧上昇が大きくなり過ぎることなく、フィルム製造を安定的に操業し易く好ましい。 In addition, in the production of polyester films, the intrinsic viscosity of at least one type of resin pellet is preferably in the range of 0.50 to 1.0 dl/g. If the intrinsic viscosity is 0.50 dl/g or more, the impact resistance of the resulting film is improved, and disconnection of the internal circuitry of the display due to external impact is less likely to occur, which is preferable. On the other hand, if the intrinsic viscosity is 1.00 dl/g or less, the filtration pressure of the molten fluid does not increase too much, making it easier to operate the film production stably, which is preferable.

ポリエステルフィルムの厚みは、10~80μmであることが好ましく、25~75μmであることがさらに好ましい。厚みが10μm以上であると鉛筆硬度向上効果と耐衝撃性向上効果が見られ、厚みが80μm以下であると軽量化に有利である他、可撓性、加工性やハンドリング性などに優れる。 The thickness of the polyester film is preferably 10 to 80 μm, and more preferably 25 to 75 μm. A thickness of 10 μm or more improves pencil hardness and impact resistance, while a thickness of 80 μm or less is advantageous for weight reduction and is excellent in flexibility, processability, and handling.

本発明のポリエステルフィルムの表面は、平滑であっても凹凸を有していても良い。有機ELモジュール保護用途であるため、透明性が高いことが好ましく、凹凸由来の光学特性低下は好ましくない。ヘイズとしては、3%以下が好ましく、2%以下がさらに好ましく、1%以下が最も好ましい。ヘイズが3%以下であれば、画像の視認性を向上させることができる。ヘイズの下限は小さいほどよいが、安定した生産の面からは0.1%以上が好ましく、0.3%以上であってもよい。 The surface of the polyester film of the present invention may be smooth or may have irregularities. Since the film is used to protect an organic EL module, high transparency is preferable, and deterioration of optical properties due to irregularities is undesirable. The haze is preferably 3% or less, more preferably 2% or less, and most preferably 1% or less. If the haze is 3% or less, the visibility of the image can be improved. The lower limit of the haze is preferably as small as possible, but from the viewpoint of stable production, 0.1% or more is preferable, and 0.3% or more is also acceptable.

前記のようにヘイズを低下させる目的からはあまりフィルム表面の凹凸は大きくない方がよいが、ハンドリング性の観点から程度な滑り性を与えるために、凹凸を形成する方法としては、表層のポリエステル樹脂層に粒子を配合したり、粒子入りのコート層を製膜途中でコーティングすることで形成することができる。 As mentioned above, in order to reduce haze, it is better for the film surface to not have too much unevenness, but in order to provide a certain degree of slipperiness from the viewpoint of handling, unevenness can be formed by blending particles into the surface polyester resin layer or by coating a coating layer containing particles during film formation.

ポリエステル樹脂層に粒子を配合する方法としては、公知の方法を採用し得る。例えば、ポリエステルを製造する任意の段階において添加することができるが、好ましくはエステル化の段階、またはエステル交換反応終了後、重縮合反応開始前の段階で、エチレングリコールなどに分散させたスラリーとして添加し、重縮合反応を進めてもよい。また、ベント付き混練押出機を用い、エチレングリコールまたは水などに分散させた粒子のスラリーとポリエステル原料とをブレンドする方法、または混練押出機を用い、乾燥させた粒子とポリエステル原料とをブレンドする方法などによって行うことができる。 A known method can be used to blend particles into the polyester resin layer. For example, they can be added at any stage of polyester production, but preferably they can be added as a slurry dispersed in ethylene glycol or the like at the esterification stage, or at a stage after the end of the ester exchange reaction and before the start of the polycondensation reaction, to advance the polycondensation reaction. Alternatively, they can be added by using a vented kneading extruder to blend a slurry of particles dispersed in ethylene glycol or water with the polyester raw material, or by using a kneading extruder to blend dried particles with the polyester raw material.

なかでも、ポリエステル原料の一部となるモノマー液中に凝集体無機粒子を均質分散させた後、濾過したものを、エステル化反応前、エステル化反応中またはエステル化反応後のポリエステル原料の残部に添加する方法が好ましい。この方法によると、モノマー液が低粘度であるので、粒子の均質分散やスラリーの高精度な濾過が容易に行えると共に、原料の残部に添加する際に、粒子の分散性が良好で、新たな凝集体も発生しにくい。かかる観点より、特に、エステル化反応前の低温状態の原料の残部に添加することが好ましい。 Among these, a method in which aggregate inorganic particles are homogeneously dispersed in a monomer liquid that becomes part of the polyester raw material, and then the filtered product is added to the remainder of the polyester raw material before, during, or after the esterification reaction is preferred. With this method, the monomer liquid has a low viscosity, so that homogeneous dispersion of the particles and highly accurate filtration of the slurry can be easily performed, and when added to the remainder of the raw material, the particles have good dispersibility and new aggregates are unlikely to be generated. From this perspective, it is particularly preferred to add the monomer liquid to the remainder of the raw material at a low temperature before the esterification reaction.

また、予め粒子を含有するポリエステルを得た後、そのペレットと粒子を含有しないペレットとを混練押出しなどする方法(マスターバッチ法)により、さらにフィルム表面の突起数を少なくすることができる。 In addition, after obtaining polyester containing particles in advance, the number of protrusions on the film surface can be further reduced by a method such as kneading and extruding the pellets with pellets that do not contain particles (masterbatch method).

また、ポリエステルフィルムは、全光線透過率の好ましい範囲を維持する範囲内で、各種の添加剤を含有していてもよい。添加剤としては、例えば、帯電防止剤、UV吸収剤、安定剤が挙げられる。 The polyester film may also contain various additives within a range that maintains the preferred range of total light transmittance. Examples of additives include antistatic agents, UV absorbers, and stabilizers.

ポリエステルフィルムの全光線透過率は、85%以上が好ましく、87%以上がさらに好ましい。85%以上の透過率があれば、視認性を十分に確保することができる。ポリエステルフィルムの全光線透過率は高いほどよいと言えるが、安定した生産の面からは99%以下が好ましく、97%以下であってもよい。 The total light transmittance of the polyester film is preferably 85% or more, and more preferably 87% or more. A transmittance of 85% or more ensures sufficient visibility. It can be said that the higher the total light transmittance of the polyester film, the better, but from the standpoint of stable production, a total light transmittance of 99% or less is preferable, and 97% or less is also acceptable.

ポリエステルフィルムの150℃30分熱処理後の最大熱収縮率は、6%以下が好ましく、5%以下がさらに好ましい。6%以下の熱収縮率あれば、有機ELモジュール貼り付け後のカールやうねりといった平面不良を抑制することができる。熱収縮率は低いほどよいと言えるが、-1%以上であることが好ましく、0%以上であることが好ましい。ここでのマイナスは加熱後に膨張したことを意味し、-1%以上であると、平面不良を起こすこそれがなく好ましい。 The maximum heat shrinkage rate of the polyester film after heat treatment at 150°C for 30 minutes is preferably 6% or less, and more preferably 5% or less. A heat shrinkage rate of 6% or less can suppress flatness defects such as curling and waviness after application of the organic EL module. The lower the heat shrinkage rate, the better, but it is preferably -1% or more, and more preferably 0% or more. Here, a negative number means that the film expanded after heating, and a value of -1% or more is preferable as it is less likely to cause flatness defects.

本発明のポリエステルフィルムは、ハードコート層を積層した後に、そのハードコートフィルムについて十分な鉛筆硬度を与えることができる。従来のポリエステルフィルムが、ハードコート層を積層した後、ハードコートフィルムの鉛筆硬度の鉛筆硬度評価において、フィルムが厚み方向に変形してしまうことが原因で鉛筆硬度が低下してしまっていたと考えられる。本発明においては、後述のダイナミック超微小硬度計によるフィルム厚み方向の試験力除荷後の押し込み深さを特定の範囲にすることにより、ハードコートフィルムの鉛筆硬度評価において、高い硬度を達成することができる。フィルム厚み方向の試験力除荷後の押し込み深さは1.5μm以下であることが好ましく、1.4μm以下であることがより好ましく、1.3μm以下であることが更に好ましい。試験力除荷後の押し込み深さ(負荷をかけた最終的な変形量)が1.5μm以下であると、ハードコート層を積層後のハードコートフィルムの鉛筆硬度評価において、フィルムが厚み方向に変形しづらく鉛筆硬度を高くすることができる。ハードコートフィルムの鉛筆硬度を高くすることができると、ディスプレイ表面に傷、凹みが発生しづらくなり、ディスプレイの視認性が向上する。試験力除荷後の押し込み深さは低いほど良いと言えるが、安定した生産や効果が飽和してくるという点で、0.3μm以上が好ましく、さらには、0.5μm以上が好ましい。 The polyester film of the present invention can provide a sufficient pencil hardness to the hard coat film after laminating the hard coat layer. It is considered that the pencil hardness of the conventional polyester film is reduced in the pencil hardness evaluation of the hard coat film after laminating the hard coat layer because the film is deformed in the thickness direction. In the present invention, by setting the indentation depth after unloading the test force in the film thickness direction by the dynamic ultra-micro hardness meter described later to a specific range, a high hardness can be achieved in the pencil hardness evaluation of the hard coat film. The indentation depth after unloading the test force in the film thickness direction is preferably 1.5 μm or less, more preferably 1.4 μm or less, and even more preferably 1.3 μm or less. If the indentation depth after unloading the test force (final deformation amount under load) is 1.5 μm or less, the film is less likely to deform in the thickness direction in the pencil hardness evaluation of the hard coat film after laminating the hard coat layer, and the pencil hardness can be increased. If the pencil hardness of the hard coat film can be increased, scratches and dents are less likely to occur on the display surface, and the visibility of the display is improved. The lower the indentation depth after the test force is removed, the better, but in terms of stable production and saturation of the effect, a depth of 0.3 μm or more is preferable, and even more preferably 0.5 μm or more.

試験力除荷後の押し込み深さを低減するためには、厚み方向の屈折率を1.520以下に調節することが効果的である。屈折率を1.520以下にする手段としては、後述するが他の物性、屈曲方向や折りたたみ方向の屈折率を好ましい範囲に制御できる範囲内で、屈曲方向や折りたたみ方向の延伸倍率を高く調節することや、屈曲方向や折りたたみ方向の延伸温度を低く設定すること、熱固定温度を高く設定することなどの条件設定を例示できる。 In order to reduce the indentation depth after the test force is removed, it is effective to adjust the refractive index in the thickness direction to 1.520 or less. As a means of making the refractive index 1.520 or less, examples of conditions that can be set include adjusting the stretch ratio in the bending direction or folding direction to a high value, setting the stretching temperature in the bending direction or folding direction to a low value, and setting the heat setting temperature to a high value, within a range in which other physical properties and the refractive index in the bending direction or folding direction can be controlled to a preferred range, as described below.

本発明の折りたたみ型ディスプレイ用ポリエステルフィルムは、折りたたみ時の折れ痕やクラックや破断が発生しない、かつ、ディスプレイの中立面を調整することができる。さらに、外部の衝撃から有機ELパネルを保護することができる。中立面とは、折りたたんだ際に内側が圧縮応力、外側が引張応力がかかるがその間の応力がかからない面のことをいう。折りたたみディスプレイにおいては、一般的に有機EL層に中立面を設計する。中立面は各層の弾性率と厚みによって調整することができる。よって、ポリエステルフィルムの屈曲方向の弾性率は2.7GPa以下が好ましく、2.6GPa以下であることがより好ましく、2.5GPa以下であることが更に好ましい。屈曲方向の弾性率を低減することで、屈曲性が良くなると言えるが、中立面の調整のため1.8GPa以上が好ましい。折りたたみ方向の弾性率は4.5GPa以上が好ましく、4.6GPa以上であることがより好ましく、4.7GPa以上であることが更に好ましい。折りたたみ方向の弾性率を高くすることで、ディスプレイ作成時にディスプレイ表面の平面性を保つことができる。また、外部の衝撃から有機ELを保護することができる。折りたたみ方向の弾性率は高い程好ましいが、製膜性の観点から8.0GPa以下が好ましい。 The polyester film for folding displays of the present invention does not cause creases, cracks, or breaks when folded, and can adjust the neutral plane of the display. Furthermore, it can protect the organic EL panel from external impact. The neutral plane refers to a surface where the inside is subjected to compressive stress and the outside is subjected to tensile stress when folded, but no stress is applied between them. In folding displays, a neutral plane is generally designed in the organic EL layer. The neutral plane can be adjusted by the elastic modulus and thickness of each layer. Therefore, the elastic modulus of the polyester film in the bending direction is preferably 2.7 GPa or less, more preferably 2.6 GPa or less, and even more preferably 2.5 GPa or less. It can be said that the bending property is improved by reducing the elastic modulus in the bending direction, but 1.8 GPa or more is preferable for adjusting the neutral plane. The elastic modulus in the folding direction is preferably 4.5 GPa or more, more preferably 4.6 GPa or more, and even more preferably 4.7 GPa or more. By increasing the elastic modulus in the folding direction, the flatness of the display surface can be maintained when the display is created. In addition, the organic EL can be protected from external impact. The higher the elastic modulus in the folding direction, the better, but from the viewpoint of film-forming properties, a modulus of 8.0 GPa or less is preferable.

本発明のポリエステルフィルムの表面に、粘着層やハードコート層などを形成する樹脂との密着性を向上させるための処理を行うことができる。 The surface of the polyester film of the present invention can be treated to improve adhesion with the resin that forms the adhesive layer, hard coat layer, etc.

表面処理による方法としては、例えば、サンドブラスト処理、溶剤処理等による凹凸化処理や、コロナ放電処理、電子線照射処理、プラズマ処理、オゾン・紫外線照射処理、火炎処理、クロム酸処理、熱風処理等の酸化処理等が挙げられ、特に限定なく使用できる。 Surface treatment methods include, for example, roughening treatment using sandblasting or solvent treatment, and oxidation treatments such as corona discharge treatment, electron beam irradiation treatment, plasma treatment, ozone or ultraviolet irradiation treatment, flame treatment, chromic acid treatment, and hot air treatment, and can be used without any particular limitations.

また、易接着層などの接着性向上層により、密着性を向上させることもできる。易接着層としては、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリエーテル樹脂など特に限定なく使用でき、一般的なコーティング手法、好ましくはいわゆるインラインコート処方により形成できる。 In addition, adhesion can be improved by using an adhesion-improving layer such as an easy-adhesion layer. The easy-adhesion layer can be made of any resin, including acrylic resin, polyester resin, polyurethane resin, and polyether resin, and can be formed by a general coating method, preferably a so-called in-line coating method.

上述のポリエステルフィルムは、例えば、ポリエステル原料の一部となるモノマー液中に無機粒子を均質分散させて濾過した後、ポリエステル原料の残部に添加してポリエステルの重合を行う重合工程と、そのポリエステルをフィルターを介してシート状に溶融押し出し、これを冷却後、延伸して、基材フィルムを形成するフィルム形成工程を経て、製造することができる。 The polyester film described above can be manufactured, for example, through a polymerization process in which inorganic particles are homogeneously dispersed in a monomer liquid that becomes part of the polyester raw material, filtered, and then added to the remainder of the polyester raw material to polymerize the polyester, and a film formation process in which the polyester is melt-extruded through a filter into a sheet, which is cooled and stretched to form a base film.

次に、2軸延伸ポリエステルフィルムの製造方法について、ポリエチレンテレフタレート(以下、PETと記す場合がある)のペレットを基材フィルムの原料とした例について詳しく説明するが、これらに限定されるものではない。また、単層構成、多層構成など層数を限定するものではない。 Next, a method for producing a biaxially stretched polyester film will be described in detail using an example in which pellets of polyethylene terephthalate (hereinafter sometimes referred to as PET) are used as the raw material for the base film, but the present invention is not limited to this example. In addition, the number of layers is not limited to a single layer or multilayer structure.

PETのペレットを所定の割合で混合、乾燥した後、公知の溶融積層用押出機に供給し、スリット状のダイからシート状に押し出し、キャスティングロール上で冷却固化させて、未延伸フィルムを形成する。単層の場合は1台の押し出し機でよいが、多層構成のフィ
ルムを製造する場合には、2台以上の押出機、2層以上のマニホールドまたは合流ブロック(例えば、角型合流部を有する合流ブロック)を用いて、各最外層を構成する複数のフィルム層を積層し、口金から2層以上のシートを押し出し、キャスティングロールで冷却して未延伸フィルムを形成することができる。
After mixing and drying PET pellets in a predetermined ratio, the mixture is fed to a known melt lamination extruder, extruded from a slit die into a sheet, and cooled and solidified on a casting roll to form an unstretched film. In the case of a single layer, one extruder is sufficient, but in the case of producing a multi-layered film, two or more extruders, two or more manifolds or merging blocks (e.g., merging blocks having a rectangular merging portion) are used to laminate multiple film layers constituting each outermost layer, and a sheet of two or more layers is extruded from a die and cooled on a casting roll to form an unstretched film.

この場合、溶融押出しの際、溶融樹脂が約280℃程度に保たれた任意の場所で、樹脂中に含まれる異物を除去するために高精度濾過を行うことが好ましい。溶融樹脂の高精度濾過に用いられる濾材は、特に限定されないが、ステンレス焼結体の濾材は、Si、Ti、Sb、Ge、Cuを主成分とする凝集物および高融点有機物の除去性能に優れるため好ましい。 In this case, it is preferable to perform high-precision filtration to remove foreign matter contained in the resin at any location where the molten resin is kept at about 280°C during melt extrusion. There are no particular limitations on the filter material used for high-precision filtration of the molten resin, but sintered stainless steel filter material is preferable because it has excellent performance in removing aggregates and high-melting-point organic matter whose main components are Si, Ti, Sb, Ge, and Cu.

さらに、濾材の濾過粒子サイズ(初期濾過効率95%)は、20μm以下が好ましく、特に15μm以下が好ましい。濾材の濾過粒子サイズ(初期濾過効率95%)が20μmを超えると、20μm以上の大きさの異物が十分除去できない。濾材の濾過粒子サイズ(初期濾過効率95%)が20μm以下の濾材を用いて溶融樹脂の高精度濾過を行うことにより、生産性が低下する場合があるが、粗大粒子による突起の少ないフィルムを得る上で好ましい。 Furthermore, the filtration particle size of the filter medium (initial filtration efficiency 95%) is preferably 20 μm or less, and particularly preferably 15 μm or less. If the filtration particle size of the filter medium (initial filtration efficiency 95%) exceeds 20 μm, foreign matter of a size of 20 μm or more cannot be sufficiently removed. Although the productivity may decrease by performing high-precision filtration of molten resin using a filter medium with a filtration particle size (initial filtration efficiency 95%) of 20 μm or less, this is preferable in terms of obtaining a film with fewer protrusions due to coarse particles.

(屈曲方向の屈折率について)
本発明において、ポリエステルフィルムの長手方向(機械流れ方向)及び幅方向の少なくともいずれか一方向の屈折率は1.590~1.620であることが好ましく、更に好ましくは、1.591~1.600である。そして、ポリエステルフィルムの屈曲方向の屈折率が1.590~1.620であることが好ましく、1.591~1.600であることがより好ましい。ここで、屈曲方向とは、図2のポリエステルフィルム(符号2)上の符号22に示すように、折りたたみ型ディスプレイの用途において想定される折りたたみ部(符号21)と直交する方向を指している。長手方向及び幅方向の少なくともいずれか一方向の屈折率が1.590~1.620であると、繰り返し折りたたんだ際の変形が少なく、折りたたみ型ディスプレイの画質を低下させるおそれがなく好ましい。屈折率は1.591~1.600であることがより好ましい。もちろん、その方向は前記の屈曲方向であることが好ましい。1.590以上であると後述の屈曲試験後に折りたたみ部方向にクラックが入るおそれがなく、もちろん破断も起こらないため、ディスプレイの視認性を良好に保つことができる。ポリエステルフィルムの屈折率は、延伸倍率、延伸温度を調節することで効果的に調節することができる。また、屈折率の調整のために延伸方向の緩和工程、多段延伸を用いても良い。多段延伸を行う場合には、1段目の延伸倍率よりも2段目以降の延伸倍率を高くすることが好ましい。
(Refractive index in bending direction)
In the present invention, the refractive index of at least one of the longitudinal direction (machine flow direction) and the width direction of the polyester film is preferably 1.590 to 1.620, more preferably 1.591 to 1.600. The refractive index of the bending direction of the polyester film is preferably 1.590 to 1.620, more preferably 1.591 to 1.600. Here, the bending direction refers to the direction perpendicular to the folding part (reference number 21) assumed in the use of a folding display, as shown by reference number 22 on the polyester film (reference number 2) in FIG. 2. If the refractive index of at least one of the longitudinal direction and the width direction is 1.590 to 1.620, there is little deformation when repeatedly folded, and there is no risk of degrading the image quality of the folding display, which is preferable. The refractive index is more preferably 1.591 to 1.600. Of course, the direction is preferably the bending direction. If the refractive index is 1.590 or more, there is no risk of cracks occurring in the folded portion direction after the bending test described below, and of course no breakage occurs, so that the visibility of the display can be maintained good. The refractive index of the polyester film can be effectively adjusted by adjusting the stretching ratio and stretching temperature. In addition, a relaxation process in the stretching direction and multi-stage stretching may be used to adjust the refractive index. When multi-stage stretching is performed, it is preferable to make the stretching ratios in the second and subsequent stages higher than the stretching ratio in the first stage.

ポリエステルフィルムの長手方向(機械流れ方向)及び幅方向の少なくともいずれか一方向の屈折率を上記範囲で制御すること、より好ましくは、屈曲方向の屈折率を上記範囲で制御することで、折りたたみ時に折りたたみの内側にかかる圧縮応力による疲労を低減することができる。圧縮応力による疲労は主に結晶部において起こると考えられており、屈曲方向に結晶が少ないほうが疲労しにくい。したがって、屈折率を下げることにより屈曲方向の配向結晶量が低減され、圧縮疲労を抑制されていると考えられる。 By controlling the refractive index in at least one of the longitudinal direction (machine flow direction) and width direction of the polyester film within the above range, and more preferably by controlling the refractive index in the bending direction within the above range, fatigue due to compressive stress applied to the inside of the fold when folded can be reduced. It is believed that fatigue due to compressive stress occurs mainly in crystalline parts, and fatigue is less likely to occur when there are fewer crystals in the bending direction. Therefore, it is believed that lowering the refractive index reduces the amount of oriented crystals in the bending direction, suppressing compressive fatigue.

また、折りたたみ時に折りたたみの外側にかかる引張応力によって生じるクリープ現象を屈折率の低減で抑えることができる。引張応力による疲労は主に非晶部において起こると考えられており、繰り返しかかる応力による分子鎖の引き揃えが発生し変形が生じる。屈曲方向に並んでいる分子鎖が少ないほうが引き揃えによる変形が少ないと推測できる。また、非晶部が少ない方が引張による疲労は抑制できるため、結晶化度すなわち密度が高い方が好ましい。 In addition, the creep phenomenon caused by tensile stress applied to the outside of the fold when it is folded can be suppressed by reducing the refractive index. Fatigue due to tensile stress is thought to occur mainly in the amorphous part, and the repeated application of stress causes the molecular chains to align, resulting in deformation. It can be assumed that the fewer the molecular chains aligned in the bending direction, the less deformation due to alignment. Furthermore, since fatigue due to tension can be suppressed with fewer amorphous parts, a higher degree of crystallinity, i.e. a higher density, is preferable.

本発明においては、未延伸ポリエステルシートを長手方向(機械流れ方向)及び幅方向の少なくともいずれか一方向の延伸倍率を1.2~2.0倍とすることが好ましく、1.7~2.0倍がさらに好ましい。そして、当該延伸方向は前記の屈曲方向であることが好ましい。延伸倍率が1.2倍以上であるとハードコート塗工時などの後加工での変形が無いため好ましく、延伸倍率が2.0倍以下であるとフィルムの厚みムラが生じないため好ましい。延伸温度としては、75~120℃が好ましく、75~105℃が更に好ましい。なお延伸時の加熱方法は、熱風加熱方式、ロール加熱方式、赤外加熱方式など従来公知の手段を採用することができる。延伸温度を75~120℃にすることで、上記延伸倍率での延伸による大きな厚みムラを防ぐことができる。また、前記のように大きな厚みムラを生じない範囲でなるべく低温で延伸することで、厚み方向の屈折率を低下させることができる。 In the present invention, the stretching ratio of the unstretched polyester sheet in at least one of the longitudinal direction (machine flow direction) and the width direction is preferably 1.2 to 2.0 times, more preferably 1.7 to 2.0 times. The stretching direction is preferably the bending direction. A stretching ratio of 1.2 times or more is preferable because there is no deformation during post-processing such as hard coat coating, and a stretching ratio of 2.0 times or less is preferable because thickness unevenness of the film does not occur. The stretching temperature is preferably 75 to 120°C, more preferably 75 to 105°C. The heating method during stretching can be a conventionally known method such as hot air heating, roll heating, and infrared heating. By setting the stretching temperature at 75 to 120°C, it is possible to prevent significant thickness unevenness due to stretching at the above stretching ratio. In addition, by stretching at a temperature as low as possible within a range that does not cause significant thickness unevenness as described above, the refractive index in the thickness direction can be reduced.

(折りたたみ部の方向の屈折率について)
上記のポリエステルフィルムの屈折率が1.590~1.620である方向と直交する方向の屈折率は、1.670~1.700であることが好ましい。即ち、屈曲方向と直交する方向(折りたたみ部の方向)の屈折率が1.670~1.700であることが好ましい。1.670~1.700にすることで屈曲方向に折りたたんだ際の変形を少なくすることができる。1.700以下にすることで折りたたみ部の方向にクラックが入ったり、破断することを抑制することができる。1.670以上にすることで屈曲方向の屈曲性を向上させること、表面硬度を向上させることができる。1.680~1.695がより好ましい。屈曲方向と直交する方向の屈折率を調整する方法として、延伸倍率、延伸予熱温度、延伸温度、多段延伸、フィルム弛緩が挙げられる。延伸倍率は4.0~6.0倍であることが好ましく、より好ましくは、4.4~6.0である。また、屈曲方向と直交する方向の延伸予熱温度は70~110℃であることが好ましい。屈曲方向と直交する方向に多段延伸する場合、1段目より2段目以降の延伸倍率を高くする方が好ましい。フィルム弛緩は機械流れ方向(長手方向)、垂直方向(幅方向)に何れにおいても1~10%行っても良い。
(Refractive index in the direction of the fold)
The refractive index of the polyester film in the direction perpendicular to the direction in which the refractive index is 1.590 to 1.620 is preferably 1.670 to 1.700. That is, the refractive index in the direction perpendicular to the bending direction (direction of the folded portion) is preferably 1.670 to 1.700. By making it 1.670 to 1.700, deformation when folded in the bending direction can be reduced. By making it 1.700 or less, cracks and breaks in the direction of the folded portion can be suppressed. By making it 1.670 or more, the flexibility in the bending direction can be improved and the surface hardness can be improved. 1.680 to 1.695 is more preferable. Methods for adjusting the refractive index in the direction perpendicular to the bending direction include the stretching ratio, stretching preheating temperature, stretching temperature, multi-stage stretching, and film relaxation. The stretching ratio is preferably 4.0 to 6.0 times, more preferably 4.4 to 6.0 times. In addition, the stretching preheating temperature in the direction perpendicular to the bending direction is preferably 70 to 110°C. When multi-stage stretching is performed in a direction perpendicular to the bending direction, it is preferable to set the stretch ratio in the second stage and thereafter higher than that in the first stage. The film may be relaxed by 1 to 10% in either the machine flow direction (longitudinal direction) or the perpendicular direction (width direction).

(厚みの方向の屈折率について)
厚み方向の屈折率は1.520以下であることが好ましい。1.520以下にすることで、屈曲方向の屈折率を低く設計しても、フィルム表面の硬度の低下を抑制することができ、屈曲性と表面硬度の両立を実現することができるためである。1.520以下にすることで厚み方向の試験力除荷後の押し込み深さが低減し、フィルム表面の硬度、特にハードコート層積層後のハードコートフィルムの鉛筆硬度を向上することができる。より好ましくは1.515以下、更に好ましくは1.510以下、特に好ましくは1.505以下、最も好ましくは1.500以下である。厚み方向の屈折率は低いことが好ましいが、安定した生産の面で1.3以上が好ましく、さらには1.4以上であってもよい。特に好ましくは1.410以上である。上記範囲は屈曲方向と折りたたみ方向に延伸倍率を両方に増加させていくことで達成できると言えるが、屈曲方向と幅方向の屈折率を好ましい範囲に制御した上で、厚み方向の屈折率を制御するためには、製膜工程の各工程条件のバランスを確認しながら条件設定することが好ましい。
(Refractive index in the thickness direction)
The refractive index in the thickness direction is preferably 1.520 or less. By setting the refractive index to 1.520 or less, even if the refractive index in the bending direction is designed to be low, the decrease in hardness of the film surface can be suppressed, and both flexibility and surface hardness can be achieved. By setting the refractive index to 1.520 or less, the indentation depth after unloading the test force in the thickness direction is reduced, and the hardness of the film surface, particularly the pencil hardness of the hard coat film after lamination of the hard coat layer, can be improved. More preferably, it is 1.515 or less, even more preferably 1.510 or less, particularly preferably 1.505 or less, and most preferably 1.500 or less. The refractive index in the thickness direction is preferably low, but in terms of stable production, it is preferably 1.3 or more, and may even be 1.4 or more. Particularly preferably, it is 1.410 or more. It can be said that the above range can be achieved by increasing the stretch ratio in both the bending direction and the folding direction, but in order to control the refractive index in the thickness direction after controlling the refractive index in the bending direction and the width direction to a preferred range, it is preferable to set the conditions while checking the balance of the process conditions of each film formation process.

厚み方向の屈折率を前記範囲に制御する方法は、屈曲方向の延伸予熱温度、延伸温度、延伸倍率、折りたたみ部の方向の延伸予熱温度、延伸温度、多段延伸、高倍率延伸、または熱固定の温度設定がある。屈曲方向の延伸予熱温度は70℃~110℃が好ましい。屈曲方向の延伸温度は75~120℃が好ましい。屈曲方向の延伸倍率は1.2~2.0倍が好ましく、更に好ましくは1.7~2.0倍である。延伸温度を低くし、低延伸倍率で延伸することで屈曲方向の屈曲性を維持したまま、厚み方向の屈折率を効果的に下げることができる。折りたたみ部方向の延伸予熱温度も75℃~110℃が好ましい。延伸温度は75~120℃が好ましい。折りたたみ部の延伸倍率は4.0~6.0倍が好ましく、4.4~6.0倍がより好ましい。屈曲方向の屈折率を維持または低減しながら、厚み方向の屈折率を効果的に低減することができる。高倍率延伸する方法として、多段延伸を用いても良い。その場合には、1段目の延伸倍率より、2段目の延伸倍率を高くすることが効果的に屈折率を制御でき好ましい。また、結晶化工程後に再度延伸する方式を用いても良い。延伸初期から後半にかけて延伸速度を早くする加速延伸を用いても良い。
熱固定温度は180~240℃が好ましい。熱固定を行うことで延伸方向への配向結晶化が進み、厚み方向の屈折率を下げることができる。
厚み方向の屈折率を下げることでフィルム表面の硬度が向上する理由は必ずしも明確ではないが、分子鎖内のベンゼン環等の芳香族が面方向に配向し、厚み方向にかかる応力による変形を抑制する効果があると考えられる。
The method of controlling the refractive index in the thickness direction to the above range includes the stretching preheating temperature, stretching temperature, stretching ratio in the bending direction, the stretching preheating temperature, stretching temperature, multi-stage stretching, high-ratio stretching, or heat fixing temperature setting in the folding direction. The stretching preheating temperature in the bending direction is preferably 70°C to 110°C. The stretching temperature in the bending direction is preferably 75°C to 120°C. The stretching ratio in the bending direction is preferably 1.2 to 2.0 times, more preferably 1.7 to 2.0 times. By lowering the stretching temperature and stretching at a low stretching ratio, the refractive index in the thickness direction can be effectively reduced while maintaining the flexibility in the bending direction. The stretching preheating temperature in the folding direction is also preferably 75°C to 110°C. The stretching temperature is preferably 75°C to 120°C. The stretching ratio in the folding portion is preferably 4.0 to 6.0 times, more preferably 4.4 to 6.0 times. The refractive index in the thickness direction can be effectively reduced while maintaining or reducing the refractive index in the bending direction. As a method of high-ratio stretching, multi-stage stretching may be used. In this case, it is preferable to set the stretching ratio in the second stage higher than that in the first stage, since the refractive index can be effectively controlled. In addition, a method of stretching again after the crystallization step may be used. Accelerated stretching, in which the stretching speed is increased from the initial stage to the latter stage of stretching, may be used.
The heat setting temperature is preferably 180 to 240° C. By carrying out heat setting, oriented crystallization in the stretching direction advances, and the refractive index in the thickness direction can be reduced.
The reason why lowering the refractive index in the thickness direction improves the hardness of the film surface is not entirely clear, but it is thought that aromatic groups such as benzene rings in the molecular chain are oriented in the plane direction, which has the effect of suppressing deformation due to stress applied in the thickness direction.

(ポリエステルフィルムの密度について)
ポリエステルフィルムの密度は1.380g/cm以上であることが好ましい。1.383g/cm以上であることがより好ましい。1.380g/cm以上にすることで屈曲性を向上させること、フィルム表面硬度、特に、ハードコート層を積層した後のハードコートフィルムの鉛筆硬度を向上させることができる。密度は高いほど好ましく、フィルム中の粒子の有無等によっても多少左右されるが、1.40g/cm以下であることが好ましい。製膜時の熱固定温度を180~240℃に設定することで結晶化を進行させ密度を効果的に増大させることができる。
(Regarding density of polyester film)
The density of the polyester film is preferably 1.380 g/ cm3 or more. More preferably, it is 1.383 g/ cm3 or more. By making it 1.380 g/cm3 or more , it is possible to improve the flexibility and the film surface hardness, particularly the pencil hardness of the hard coat film after laminating the hard coat layer. The higher the density, the more preferable it is, and although it depends somewhat on the presence or absence of particles in the film, it is preferable that it is 1.40 g/ cm3 or less. By setting the heat setting temperature during film formation to 180 to 240°C, crystallization can be promoted and the density can be effectively increased.

ポリエステルフィルムの屈曲方向は、長手方向(機械流れ方向)に対応させることが好ましい。こうすることで、2軸延伸目で屈曲方向の屈折率を下げやすく屈曲性を向上させやすい。即ち、未延伸ポリエステルシートを長手方向に1.2~2.0倍、より好ましくは1.7~2.0倍の延伸倍率で延伸することが好ましいポリエステルフィルムを得られる。そして、幅方向には、4.0~6.0倍、より好ましくは4.4~6.0倍の延伸倍率で延伸することが好ましい態様であると言える。 The bending direction of the polyester film is preferably set to correspond to the longitudinal direction (machine flow direction). This makes it easier to lower the refractive index in the bending direction during biaxial stretching and improve flexibility. That is, a polyester film is obtained by stretching an unstretched polyester sheet in the longitudinal direction at a stretch ratio of 1.2 to 2.0 times, more preferably 1.7 to 2.0 times. And, in the width direction, it can be said that a preferred embodiment is to stretch it at a stretch ratio of 4.0 to 6.0 times, more preferably 4.4 to 6.0 times.

また、本発明においては、ポリエステルフィルムに
(1)屈曲方向の屈折率が1.590~1.620
(2)折りたたみ部の方向の屈折率が1.670~1.700
(3)厚み方向の屈折率が1.520以下
(4)密度が1.380g/cm以上
の4つの特性を同時に具備させることが特に好ましい態様と言えるが、上述の好ましい製造条件の範囲内での組合せであっても、例えば、屈曲方向の延伸倍率が1.4倍以下、折りたたみ部の方向の延伸倍率が4.4倍未満であり、かつ、熱固定温度が220℃以下の組合せであるような、各々の好ましい製造条件範囲の中において最善とは言えない条件の組合せの場合、必ずしも上記の4つの特性を同時に満足するものが得られない場合が起こり得る。この場合には、屈曲方向の延伸倍率延伸倍率を1.7倍以上に高めたり、折りたたみ部の方向の延伸倍率が4.4倍以上に高めたり、熱固定温度を230℃程度に高めたり、あるいは屈曲方向及び/又は折りたたみ部の方向の延伸温度を低くするなど、いずれかの条件の微調整またはそれらの組合せによって、上記の4つの特性を同時に満足させることができる。
In the present invention, the polyester film has (1) a refractive index in the bending direction of 1.590 to 1.620.
(2) The refractive index in the direction of the fold is 1.670 to 1.700
Although it is particularly preferable to simultaneously have the four characteristics (3) a refractive index in the thickness direction of 1.520 or less and (4) a density of 1.380 g/ cm3 or more, even if the combination is within the range of the above-mentioned preferable manufacturing conditions, in the case of a combination of conditions that is not the best within each preferable manufacturing condition range, such as a combination of a stretch ratio in the bending direction of 1.4 times or less, a stretch ratio in the folding direction of less than 4.4 times, and a heat setting temperature of 220 ° C or less, it may not necessarily be possible to simultaneously satisfy the above four characteristics. In this case, the above four characteristics can be simultaneously satisfied by fine-tuning any of the conditions or a combination thereof, such as increasing the stretch ratio in the bending direction to 1.7 times or more, increasing the stretch ratio in the folding direction to 4.4 times or more, increasing the heat setting temperature to about 230 ° C, or lowering the stretching temperature in the bending direction and/or the folding direction.

製膜性やフィルム強度や熱寸法安定や外観不良などを調整するために、延伸、緩和、熱固定、表面処理など何れの製膜方式を取っても良いが、フィルムの屈折率と密度を上記の好ましい範囲に制御することが本発明において特に好ましい態様と言える。屈折率と密度を好ましい範囲に制御することで、従来フィルムより優れた耐屈曲性と表面硬度、特にハードコート層を積層した後のハードコートフィルムの高い鉛筆硬度が得られる、折りたたみ型ディスプレイに適したポリエステルフィルムを提供することができる。 In order to adjust the film formability, film strength, thermal dimensional stability, and appearance defects, any film forming method such as stretching, relaxation, heat setting, and surface treatment may be used, but it can be said that a particularly preferred embodiment of the present invention is to control the refractive index and density of the film within the above-mentioned preferred ranges. By controlling the refractive index and density within the preferred ranges, it is possible to provide a polyester film suitable for folding displays, which has superior flex resistance and surface hardness compared to conventional films, and in particular, the hard coat film after laminating a hard coat layer has a high pencil hardness.

具体的には、例えば、PETのペレットを十分に真空乾燥した後、押出し機に供給し、約280℃でシート状に溶融押し出し、冷却固化させて、未延伸PETシートを形成する。得られた未延伸シートを75~120℃に加熱したロールで長手方向に1.2~2.0倍、より好ましくは1.7~2.0倍に延伸して、一軸配向PETフィルムを得る。さらに、フィルムの端部をクリップで把持して、75~120℃に加熱された熱風ゾーンに導き、乾燥後、幅方向に4.0~6.0倍、より好ましくは4.4~6.0倍に延伸する。引き続き、180~240℃の熱処理ゾーンに導き、1~60秒間の熱処理を行うことができる。この熱処理工程中で、必要に応じて、幅方向または長手方向に0~10%の弛緩処理を施してもよい。 Specifically, for example, PET pellets are thoroughly vacuum dried, then fed to an extruder, melt-extruded into a sheet at about 280°C, and cooled and solidified to form an unstretched PET sheet. The unstretched sheet obtained is stretched 1.2 to 2.0 times, more preferably 1.7 to 2.0 times, in the longitudinal direction with a roll heated to 75 to 120°C to obtain a uniaxially oriented PET film. The film is then held at its ends with clips and guided to a hot air zone heated to 75 to 120°C, where it is dried and then stretched 4.0 to 6.0 times, more preferably 4.4 to 6.0 times, in the transverse direction. It can then be guided to a heat treatment zone at 180 to 240°C, where it is heat-treated for 1 to 60 seconds. During this heat treatment process, a relaxation treatment of 0 to 10% may be performed in the transverse or longitudinal direction, if necessary.

ポリエステルフィルムの極限粘度は、0.50~1.0dl/gの範囲が好ましい。極限粘度が0.50dl/g以上であると、耐衝撃性が向上し、外部衝撃によるディスプレイ内部回路の断線が発生しづらく好ましい。一方、極限粘度が1.00dl/g以下であると、溶融流体の濾圧上昇が大きくなり過ぎることなく、フィルム製造が安定し好ましい。 The intrinsic viscosity of the polyester film is preferably in the range of 0.50 to 1.0 dl/g. If the intrinsic viscosity is 0.50 dl/g or more, the impact resistance is improved and disconnection of the internal circuit of the display due to external impact is less likely to occur, which is preferable. On the other hand, if the intrinsic viscosity is 1.00 dl/g or less, the increase in filtration pressure of the molten fluid does not become too large, and film production is stable, which is preferable.

(易接着層)
本発明において、ポリエステルフィルムとハードコート層などとの接着性を向上させるため、ポリエステルフィルムに易接着層を積層することも好ましい。易接着層は、易接着層形成のための塗布液を未延伸又は縦方向の1軸延伸フィルムの片面または両面に塗布した後、必要に応じて熱処理乾燥し、さらに延伸されていない少なくとも一方向に延伸して得ることができる。二軸延伸後にも熱処理することができる。最終的な易接着層の塗布量は、0.005~0.20g/mに管理することが好ましい。塗布量が0.005g/m以上であると、接着性が得られて好ましい。一方、塗布量が0.20g/m以下であると、耐ブロッキング性が得られて好ましい。
(Easy-adhesion layer)
In the present invention, in order to improve the adhesion between the polyester film and the hard coat layer, it is also preferable to laminate an easy-adhesion layer on the polyester film. The easy-adhesion layer can be obtained by applying a coating liquid for forming the easy-adhesion layer to one or both sides of an unstretched or uniaxially stretched film in the longitudinal direction, heat-treating and drying as necessary, and then stretching at least one direction that is not stretched. Heat treatment can also be performed after biaxial stretching. The final coating amount of the easy-adhesion layer is preferably controlled to 0.005 to 0.20 g/m 2. If the coating amount is 0.005 g/m 2 or more, adhesion can be obtained, which is preferable. On the other hand, if the coating amount is 0.20 g/m 2 or less, blocking resistance can be obtained, which is preferable.

易接着層の積層に用いられる塗布液に含有させる樹脂としては、例えばポリエステル系樹脂、ポリエーテルポリウレタン系樹脂、ポリエステルポリウレタン樹脂、ポリカーボネートポリウレタン樹脂、アクリル樹脂等、特に限定なく使用できる。易接着層形成用塗布液に含有させる架橋剤としては、メラミン化合物、イソシアネート化合物、オキサゾリン化合物、エポキシ化合物、カルボジイミド化合物などが挙げられる。それぞれ2種以上を混合して使用することもできる。これらはインラインコートの性質上、水系塗布液によって塗工されることが好ましく、前記の樹脂や架橋剤は水溶性又は水分散性の樹脂や化合物であることが好ましい。 The resin contained in the coating liquid used for laminating the easy-adhesion layer can be, for example, a polyester resin, a polyether polyurethane resin, a polyester polyurethane resin, a polycarbonate polyurethane resin, an acrylic resin, etc., and can be used without any particular limitation. The crosslinking agent contained in the coating liquid for forming the easy-adhesion layer can be, for example, a melamine compound, an isocyanate compound, an oxazoline compound, an epoxy compound, a carbodiimide compound, etc. Two or more types of each can also be mixed and used. Due to the nature of in-line coating, it is preferable that these are applied using a water-based coating liquid, and the resin or crosslinking agent is preferably a water-soluble or water-dispersible resin or compound.

易接着層には易滑性を付与するために粒子を添加することが好ましい。微粒子の平均粒径は2μm以下であることが好ましい。粒子の平均粒径が2μmを超えると、粒子が易接着層から脱落しやすくなる。易接着層に含有させる粒子としては、例えば、酸化チタン、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、シリカ、アルミナ、タルク、カオリン、クレー、リン酸カルシウム、雲母、ヘクトライト、ジルコニア、酸化タングステン、フッ化リチウム、フッ化カルシウム等の無機粒子や、スチレン系、アクリル系、メラミン系、ベンゾグアナミン系、シリコーン系等の有機ポリマー系粒子等が挙げられる。これらは、単独で易接着層に添加されてもよく、2種以上を組合せて添加することもできる。 It is preferable to add particles to the easy-adhesion layer to give it easy slipperiness. The average particle size of the fine particles is preferably 2 μm or less. If the average particle size of the particles exceeds 2 μm, the particles will be easily removed from the easy-adhesion layer. Examples of particles to be contained in the easy-adhesion layer include inorganic particles such as titanium oxide, barium sulfate, calcium carbonate, calcium sulfate, silica, alumina, talc, kaolin, clay, calcium phosphate, mica, hectorite, zirconia, tungsten oxide, lithium fluoride, and calcium fluoride, and organic polymer particles such as styrene-based, acrylic-based, melamine-based, benzoguanamine-based, and silicone-based particles. These may be added to the easy-adhesion layer alone, or two or more types may be added in combination.

また、塗布液を塗布する方法としては、上記の塗布層と同様に公知の方法を用いることができる。例えば、リバースロール・コート法、グラビア・コート法、キス・コート法、ロールブラッシュ法、スプレーコート法、エアナイフコート法、ワイヤーバーコート法、パイプドクター法、などが挙げられ、これらの方法を単独であるいは組み合わせて行うことができる。 As for the method of applying the coating liquid, a known method can be used, similar to the coating layer described above. For example, reverse roll coating, gravure coating, kiss coating, roll brushing, spray coating, air knife coating, wire bar coating, and pipe doctoring can be used alone or in combination.

(ハードコート層)
本発明のポリエステルフィルムや積層フィルムを有機ELの保護フィルムとして用いる場合は、その少なくとも一方の表面にハードコート層を有していることが好ましい。ハードコート層は、ポリエステルフィルム上のディスプレイ表面側に位置させてディスプレイにおいて用いられることも好ましい。ハードコート層を形成する樹脂としては、アクリル系、シロキサン系、無機ハイブリッド系、ウレタンアクリレート系、ポリエステルアクリレート系、エポキシ系など特に限定なく使用できる。また、2種類以上の材料を混合して用いることもできるし、無機フィラーや有機フィラーなどの粒子を添加することもできる。
(Hard Coat Layer)
When the polyester film or laminated film of the present invention is used as a protective film for an organic EL display, it is preferable that the polyester film or laminated film has a hard coat layer on at least one surface. It is also preferable that the hard coat layer is positioned on the display surface side of the polyester film and used in a display. The resin for forming the hard coat layer can be any of acrylic, siloxane, inorganic hybrid, urethane acrylate, polyester acrylate, and epoxy resins, without any particular limitation. Two or more kinds of materials can be mixed and used, or particles such as inorganic filler or organic filler can be added.

(ハードコート層の膜厚)
ハードコート層の膜厚としては、1~50μmが好ましい。1μm以上であると十分に硬化し、鉛筆硬度が高くなり好ましい。また厚みを50μm以下にすることで、ハードコートの硬化収縮によるカールを抑制し、フィルムのハンドリング性を向上させることができる。
(Thickness of hard coat layer)
The thickness of the hard coat layer is preferably 1 to 50 μm. If the thickness is 1 μm or more, it is preferable because it is sufficiently cured and has a high pencil hardness. Furthermore, if the thickness is 50 μm or less, curling due to cure shrinkage of the hard coat can be suppressed, and the handling properties of the film can be improved.

(塗布方法)
ハードコート層の塗布方法としては、マイヤーバー、グラビアコーター、ダイコーター、ナイフコーターなど特に限定なく使用でき、粘度、膜厚に応じて適宜選択できる。
(Application method)
The hard coat layer can be applied by any method including, but not limited to, a Mayer bar, a gravure coater, a die coater, a knife coater, etc., and can be appropriately selected depending on the viscosity and film thickness.

(硬化条件)
ハードコート層の硬化方法としては、紫外線、電子線などのエネルギー線や、熱による硬化方法など使用でき、フィルムへのダメージを軽減させるために、紫外線や電子線などによる硬化方法が好ましい。
(Curing conditions)
The hard coat layer can be cured by energy rays such as ultraviolet rays and electron beams, or by heat, and is preferably cured by ultraviolet rays or electron beams in order to reduce damage to the film.

(鉛筆硬度)
ハードコート層の鉛筆硬度としては、3H以上が好ましく、4H以上が更に好ましい。3H以上の鉛筆硬度があれば、容易に傷がつくことはなく、視認性を低下させない。一般にハードコート層の鉛筆硬度は高い方が好ましいが9H以下で構わず、8H以下でも構わず、6H以下でも実用上は問題なく使用できる。
(Pencil hardness)
The pencil hardness of the hard coat layer is preferably 3H or more, more preferably 4H or more. If the hard coat layer has a pencil hardness of 3H or more, it is not easily scratched and does not reduce visibility. In general, the pencil hardness of the hard coat layer is preferably high, but it may be 9H or less, 8H or less, or even 6H or less can be used without any practical problems.

(ハードコート層の特性)
本発明におけるハードコート層は、上述のような表面の鉛筆硬度を高めてディスプレイの保護をする目的に使用できるものであり、透過率が高いことが好ましい。ハードコートフィルムの透過率としては、87%以上が好ましく、88%以上がさらに好ましい。透過率が87%以上あれば、十分な視認性が得られる。ハードコートフィルムの全光線透過率は、一般的に高いほど好ましいが、安定した生産の面から99%以下が好ましく、97%以下であってもよい。また、ハードコートフィルムのヘイズは、一般的に低いことが好ましく、3%以下が好ましい。ハードコートフィルムのヘイズは2%以下がより好ましく、1%以下が最も好ましい。ヘイズが3%以下であれば、画像の視認性を向上させることができる。ヘイズは一般的には低いほどよいが、安定した生産の面から0.1%以上が好ましく、0.3%以上であってもよい。
(Characteristics of the hard coat layer)
The hard coat layer in the present invention can be used for the purpose of protecting a display by increasing the pencil hardness of the surface as described above, and preferably has a high transmittance. The transmittance of the hard coat film is preferably 87% or more, more preferably 88% or more. If the transmittance is 87% or more, sufficient visibility can be obtained. The total light transmittance of the hard coat film is generally preferably as high as possible, but from the viewpoint of stable production, it is preferably 99% or less, and may be 97% or less. In addition, the haze of the hard coat film is generally preferably low, and preferably 3% or less. The haze of the hard coat film is more preferably 2% or less, and most preferably 1% or less. If the haze is 3% or less, the visibility of the image can be improved. The lower the haze, the better, but from the viewpoint of stable production, it is preferably 0.1% or more, and may be 0.3% or more.

ハードコート層には、さらに、他の機能が付加されたものであってもよい。例えば、上記のような一定の鉛筆硬度を有する防眩層、防眩性反射防止層、反射防止層、低反射層および帯電防止層などの機能性が付加されたハードコート層も本発明おいては好ましく適用される。 The hard coat layer may further have other functions added thereto. For example, hard coat layers with added functionality such as an antiglare layer having a certain pencil hardness as described above, an antiglare antireflection layer, an antireflection layer, a low reflection layer, and an antistatic layer are also preferably used in the present invention.

またタッチパネルモジュールの基材フィルムとして用いられる場合にもハードコート層が設けられていても良い。タッチパネルモジュールの透明電極層として例えばITO層が用いられる場合には、電極パターンを見えにくくするため、基材フィルムと透明電極層の間に鬱せ津率調整層が設けられることが好ましい。この場合、ハードコート層自体が屈折率調整層を兼ねていてもよく、さらに別途屈折率調整を積層してもよい。 A hard coat layer may also be provided when used as a substrate film for a touch panel module. When an ITO layer is used as the transparent electrode layer of a touch panel module, for example, a refractive index adjustment layer is preferably provided between the substrate film and the transparent electrode layer to make the electrode pattern less visible. In this case, the hard coat layer itself may also serve as a refractive index adjustment layer, or a separate refractive index adjustment layer may be laminated on top of it.

次に、本発明について実施例および比較例を用いて説明する。まず、本発明で実施した特性値の評価方法を下記に示す。 Next, the present invention will be described using examples and comparative examples. First, the evaluation methods for the characteristic values implemented in the present invention are shown below.

(1)極限粘度
フィルムまたはポリエステル樹脂を粉砕して乾燥した後、フェノール/テトラクロロエタン=60/40(質量比)の混合溶媒に溶解した。この溶液に遠心分離処理を施して無機粒子を取り除いた後に、ウベローデ粘度計を用いて、30℃で0.4(g/dl)の濃度の溶液の流下時間及び溶媒のみの流下時間を測定し、それらの時間比率から、Hugginsの式を用い、Hugginsの定数が0.38であると仮定して極限粘度を算出した。
(1) Intrinsic Viscosity After pulverizing and drying the film or polyester resin, it was dissolved in a mixed solvent of phenol/tetrachloroethane = 60/40 (mass ratio). After the solution was subjected to a centrifugal separation process to remove inorganic particles, the flow time of the solution with a concentration of 0.4 (g/dl) at 30 ° C. and the flow time of the solvent alone were measured using an Ubbelohde viscometer, and the intrinsic viscosity was calculated from the time ratio using the Huggins formula and assuming that the Huggins constant was 0.38.

(2)ポリエステルフィルムサンプルの耐屈曲性(屈曲半径1.5mm)
幅方向20mm×流れ方向110mmの大きさのポリエステルフィルムサンプルを用意する。無負荷U字伸縮試験機(ユアサシステム機器社製、DLDMLH-FS)を用いて、屈曲半径1.5mmに設定し、1回/秒の速度で、20万回屈曲させた。その際、サンプルは長辺側両端部10mmの位置を固定して、屈曲する部位は20mm×90mmとした。ここで、図1は、折りたたみ型ディスプレイを折りたたんだ際の屈曲半径を示すための模式図であり、その折りたたんだ態様の内側表面にポリエステルフィルムが配されている場合を考慮して、図1の符号11の個所を1.5mmに設定したものとしてモデル的に屈曲試験をしている。屈曲処理終了後、サンプルの屈曲内側を下にして平面に置き、目視による観察を行った。
○ :サンプルにクラック及び変形を確認できない。
× :サンプルにクラックまたは折跡があり、水平に置いた際、浮き上がり最大高さが5mm以上。
(2) Bending resistance of polyester film sample (bending radius 1.5 mm)
A polyester film sample with a size of 20 mm in the width direction x 110 mm in the flow direction is prepared. Using a no-load U-shaped stretch tester (Yuasa System Co., Ltd., DLDMLH-FS), the bending radius is set to 1.5 mm, and the sample is bent 200,000 times at a speed of 1 time/second. At that time, the sample is fixed at a position 10 mm from both ends of the long side, and the bending portion is 20 mm x 90 mm. Here, FIG. 1 is a schematic diagram for showing the bending radius when a folding display is folded, and considering the case where a polyester film is arranged on the inner surface of the folded state, a bending test is performed as a model with the portion indicated by the symbol 11 in FIG. 1 set to 1.5 mm. After the bending process, the sample was placed on a flat surface with the inner side of the bend facing down, and visual observation was performed.
◯: No cracks or deformations were observed in the sample.
×: The sample had a crack or crease, and when placed horizontally, the maximum lift was 5 mm or more.

(3)ポリエステルフィルムサンプルの耐屈曲性(屈曲半径0.5mm)
上記屈曲試験と同様の方法で、屈曲半径0.5mmに設定し1回/秒の速度で20万回屈曲させた。ここで、図1は、折りたたみ型ディスプレイを折りたたんだ際の屈曲半径を示すための模式図であり、その折りたたんだ態様の内側表面にポリエステルフィルムが配されている場合を考慮して、図1の符号11の個所を0.5mmを設定したものとしてモデル的に屈曲試験をしている。屈曲部の外側のフィルム表面をデジタルマイクロスコープ(HIROX社製RH8800)の700倍で観察し、シワ(クラック)の有無を観察した。上記の屈曲半径1.5mmの耐屈曲性目視テストとは別に、屈曲半径を0.5mmに小さくした本テストを行うことで、ハードコート層や他の部材が積層又は貼着された、折りたたみ型ディスプレイの実際の使用状態に近い状態での評価することを企図している。前記屈曲半径1.5mmによる目視観察とは別に、目視では検出しにくい微細な欠点である、破断しやすいまたはクラックが入りやすい欠点を検出するためのテストである。
○ :屈曲外側のフィルム表面に欠陥がない。
× :破断した、または屈曲外側のフィルム表面にシワ(クラック)が確認できる。
(3) Bending resistance of polyester film sample (bending radius 0.5 mm)
In the same manner as in the bending test, the bending radius was set to 0.5 mm and the display was bent 200,000 times at a speed of 1 time/second. Here, FIG. 1 is a schematic diagram showing the bending radius when the folding display is folded, and considering the case where a polyester film is arranged on the inner surface of the folded state, a bending test was performed as a model with the point 11 in FIG. 1 set to 0.5 mm. The film surface on the outside of the bent part was observed at 700 times magnification with a digital microscope (HIROX RH8800) to observe the presence or absence of wrinkles (cracks). In addition to the above-mentioned bending resistance visual test with a bending radius of 1.5 mm, this test was performed with the bending radius reduced to 0.5 mm, with the intention of evaluating the display in a state close to the actual use state of the folding display in which a hard coat layer or other members are laminated or attached. In addition to the visual observation with the bending radius of 1.5 mm, this test is for detecting defects that are difficult to detect by visual inspection, such as defects that are prone to breakage or cracking.
◯: No defects on the film surface on the outer side of the bend.
×: Broken or wrinkles (cracks) were observed on the film surface on the outer side of the bend.

(4)屈折率
JIS K 7142:2014「プラスチックの屈折率測定方法(A法)」に準拠して、アッベ屈折率計(アタゴ社製、NAR-4T、測定波長589nm)を用いて、長手方向の屈折率、幅方向の屈折率、厚み方向の屈折率を求めた。
(4) Refractive index In accordance with JIS K 7142:2014 “Measurement of refractive index of plastics (Method A)”, the refractive index in the longitudinal direction, the refractive index in the width direction, and the refractive index in the thickness direction were determined using an Abbe refractometer (manufactured by Atago Co., Ltd., NAR-4T, measurement wavelength 589 nm).

(5)鉛筆硬度
ハードコートフィルムの鉛筆硬度をサンプルとして、JIS K 5600-5-4:1999に準拠し、荷重750g、速度1.0mm/sで測定した。本発明においては3H以上を合格とした。
(5) Pencil Hardness The pencil hardness of the hard coat film sample was measured at a load of 750 g and a speed of 1.0 mm/s in accordance with JIS K 5600-5-4: 1999. In the present invention, a hardness of 3H or more was considered to be acceptable.

(6)全光線透過率、ヘイズ
ヘイズメーター(日本電色工業社製、NDH5000)を用いて測定した。
(6) Total Light Transmittance and Haze: Measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., NDH5000).

(7)密度
JIS K 7112:1999準拠の方法(密度勾配管法)に従って密度を測定した。(単位:g/cm)。
(7) Density The density was measured according to the method (density gradient tube method) in accordance with JIS K 7112:1999 (unit: g/cm 3 ).

(8)試験力除荷後の押し込み深さ
試料を約2cm角に切り取り、マイクロカバーガラス18×18mm(マツナミガラス社製)上に、測定面の反対面を接着剤(セメダイン(登録商標)ハイスーパー30)にて固定した。貼着固定後、12時間以上室温で放置し、その後、ダイナミック超微小硬度計「DUH-211」(島津製作所製)を用いて、次の条件で、試験力除荷後の押し込み深さ(μm)を測定した。
≪測定条件≫
試験モード :負荷-除荷試験
使用圧子 :稜間角115度、三角錐圧子
圧子弾性率:1.140×10N/mm
圧子ポアソン比:0.07
試験力 :50mN
負荷速度 :4.44mN/sec
負荷保持時間 :2sec
除荷保持時間 :0sec
(8) Indentation depth after removing the test force The sample was cut into a square of about 2 cm, and the surface opposite to the measurement surface was fixed on a micro cover glass 18 x 18 mm (manufactured by Matsunami Glass Co., Ltd.) with an adhesive (Cemedine (registered trademark) High Super 30). After being attached and fixed, the sample was left at room temperature for 12 hours or more, and then the indentation depth (μm) after removing the test force was measured under the following conditions using a dynamic ultra-microhardness tester "DUH-211" (manufactured by Shimadzu Corporation).
<Measurement conditions>
Test mode: Load-unload test
Indenter used: triangular pyramid indenter with 115 degree edge angle
Indenter elastic modulus: 1.140 x 106 N/ mm2
Indenter Poisson's ratio: 0.07
Test force: 50 mN
Load speed: 4.44 mN/sec
Load holding time: 2 sec
Unloading holding time: 0 sec

(9)最大熱収縮率
試料フィルムをタテ10mm×ヨコ250mmにカットし、長辺を測定したい方向に合わせて、200mm間隔で印をつけ、5gの一定張力下で印の間隔Aを測った。続いて、試料フィルムを無荷重で150℃の雰囲気のオーブン中で30分間放置した後、オーブンから取り出し室温まで冷却した。その後、5gの一定張力下で印の間隔Bを求め、下記式により熱収縮率(%)を求めた。なお、上記熱収縮率は試料フィルムの幅方向に3等分した位置で測定し、3点の平均値を熱収縮率(%)とする
熱収縮率(%)=[(A-B)×100]/A
屈曲方向と折りたたみ方向の双方向についてそれぞれ別個に試料フィルムのタテ、ヨコが異なるようにカットして測定し、測定値が大きい方向のデータを最大熱収縮率(%)とする。
(9) Maximum heat shrinkage rate A sample film was cut to 10 mm vertical x 250 mm horizontal, and marks were made at 200 mm intervals along the long side in the direction to be measured, and the distance A between the marks was measured under a constant tension of 5 g. The sample film was then left in an oven in an atmosphere of 150°C for 30 minutes without load, and then removed from the oven and cooled to room temperature. The distance B between the marks was then measured under a constant tension of 5 g, and the heat shrinkage rate (%) was calculated using the following formula. The heat shrinkage rate was measured at three equal positions in the width direction of the sample film, and the average value of the three points was taken as the heat shrinkage rate (%). Heat shrinkage rate (%) = [(A - B) x 100] / A
The sample film is cut so that the length and width of the sample film are different in both the bending direction and the folding direction, and measurements are taken. The data in the direction where the measured value is larger is regarded as the maximum heat shrinkage rate (%).

(10)弾性率(ヤング率(単位:GPa))
JIS K7127に準拠してポリエステルフィルムの屈曲方向および折りたたみ方向
の弾性率を23℃にて測定した。
(10) Elastic modulus (Young's modulus (unit: GPa))
The elastic modulus of the polyester film in the bending direction and the folding direction was measured at 23° C. in accordance with JIS K7127.

(ポリエチレンテレフタレートペレット(a)の調製) エステル化反応装置として、攪拌装置、分縮器、原料仕込口および生成物取り出し口を有する3段の完全混合槽よりなる連続エステル化反応装置を用い、TPAを2トン/hrとし、EGをTPA1モルに対して2モルとし、三酸化アンチモンを生成PETに対してSb原子が160ppmとなる量とし、これらのスラリーをエステル化反応装置の第1エステル化反応缶に連続供給し、常圧にて平均滞留時間4時間で、255℃で反応させた。次いで、上記第1エステル化反応缶内の反応生成物を連続的に系外に取り出して第2エステル化反応缶に供給し、第2エステル化反応缶内に第1エステル化反応缶から留去されるEGを生成ポリマー(生成PET)に対し8質量%供給し、さらに、生成PETに対してMg原子が65ppmとなる量の酢酸マグネシウムを含むEG溶液と、生成PETに対してP原子が20ppmのとなる量のTMPAを含むEG溶液を添加し、常圧にて平均滞留時間1.5時間で、260℃で反応させた。次いで、上記第2エステル化反応缶内の反応生成物を連続的に系外に取り出して第3エステル化反応缶に供給し、さらに生成PETに対してP原子が20ppmとなる量のTMPAを含むEG溶液を添加し、常圧にて平均滞留時間0.5時間で、260℃で反応させた。上記第3エステル化反応缶内で生成したエステル化反応生成物を3段の連続重縮合反応装置に連続的に供給して重縮合を行い、さらに、ステンレス焼結体の濾材(公称濾過精度5μm粒子90%カット)で濾過し、極限粘度0.62dl/gのポリエチレンテレフタレートペレット(a)を得た。 (Preparation of polyethylene terephthalate pellets (a)) A continuous esterification reaction apparatus consisting of a three-stage complete mixing tank having an agitator, a partial condenser, a raw material inlet, and a product outlet was used as the esterification reaction apparatus. TPA was set to 2 tons/hr, EG to 2 moles per mole of TPA, and antimony trioxide to an amount such that the Sb atoms in the produced PET were 160 ppm. These slurries were continuously supplied to the first esterification reaction vessel of the esterification reaction apparatus and reacted at normal pressure with an average residence time of 4 hours at 255°C. Next, the reaction product in the first esterification reactor was continuously taken out of the system and fed to a second esterification reactor, EG distilled off from the first esterification reactor was fed into the second esterification reactor in an amount of 8% by mass relative to the produced polymer (produced PET), and further an EG solution containing magnesium acetate in an amount such that the produced PET had 65 ppm Mg atoms and an EG solution containing TMPA in an amount such that the produced PET had 20 ppm P atoms were added, and reacted at normal pressure for an average residence time of 1.5 hours at 260° C. Next, the reaction product in the second esterification reactor was continuously taken out of the system and fed to a third esterification reactor, and further an EG solution containing TMPA in an amount such that the produced PET had 20 ppm P atoms were added, and reacted at normal pressure for an average residence time of 0.5 hours at 260° C. The esterification reaction product produced in the third esterification reactor was continuously fed to a three-stage continuous polycondensation reactor to carry out polycondensation, and was then filtered through a stainless steel sintered filter medium (nominal filtration accuracy: 90% cut of 5 μm particles) to obtain polyethylene terephthalate pellets (a) with an intrinsic viscosity of 0.62 dl/g.

(ポリエチレンテレフタレートペレット(b)の調製)
ポリエチレンテレフタレートペレット(a)の製造工程について、第3エステル化反応の滞留時間を調節した他は同様の方法にて極限粘度を0.580dl/gに調整し、ポリエチレンテレフタレートペレット(b)を得た。
(Preparation of polyethylene terephthalate pellets (b))
Polyethylene terephthalate pellets (b) were obtained by adjusting the intrinsic viscosity to 0.580 dl/g in the same manner as in the production process of polyethylene terephthalate pellets (a) except that the residence time of the third esterification reaction was adjusted.

(ポリエチレンテレフタレートペレット(c)の調製)
ポリエチレンテレフタレートペレット(a)を、回転型真空重合装置を用い、0.5mmHgの減圧下、220℃で時間を変えて固相重合を行い、極限粘度0.75dl/gのポリエチレンテレフタレートペレット(c)を作成した。
(Preparation of polyethylene terephthalate pellets (c))
The polyethylene terephthalate pellets (a) were subjected to solid-phase polymerization at 220° C. for various times under a reduced pressure of 0.5 mmHg using a rotary vacuum polymerization apparatus to prepare polyethylene terephthalate pellets (c) having an intrinsic viscosity of 0.75 dl/g.

(ウレタン樹脂の重合)
撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、1,3-ビス(イソシアネートメチル)シクロヘキサン72.96質量部、ジメチロールプロピオン酸12.60質量部、ネオペンチルグリコール11.74質量部、数平均分子量2000のポリカーボネートジオール112.70質量部、及び溶剤としてアセトニトリル85.00質量部、N-メチルピロリドン5.00質量部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン9.03質量部を添加し、ポリウレタンプレポリマーD溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450gを添加して、25℃に調整して、2000min-1で攪拌混合しながら、イソシアネート基末端プレポリマーを添加して水分散した。その後、減圧下で、アセトニトリルおよび水の一部を除去することにより、固形分35質量%の水溶性ポリウレタン樹脂(A)を調製した。
(Polymerization of urethane resin)
A four-neck flask equipped with a stirrer, a Dimroth condenser, a nitrogen inlet tube, a silica gel drying tube, and a thermometer was charged with 72.96 parts by mass of 1,3-bis(isocyanate methyl)cyclohexane, 12.60 parts by mass of dimethylolpropionic acid, 11.74 parts by mass of neopentyl glycol, 112.70 parts by mass of polycarbonate diol having a number average molecular weight of 2000, and 85.00 parts by mass of acetonitrile and 5.00 parts by mass of N-methylpyrrolidone as a solvent, and stirred at 75°C for 3 hours under a nitrogen atmosphere, and it was confirmed that the reaction liquid reached a predetermined amine equivalent. Next, the reaction liquid was cooled to 40°C, and then 9.03 parts by mass of triethylamine was added to obtain a polyurethane prepolymer D solution. Next, 450 g of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, and the temperature was adjusted to 25°C. While stirring and mixing at 2000 min-1, an isocyanate group-terminated prepolymer was added and dispersed in water. Thereafter, acetonitrile and a portion of the water were removed under reduced pressure to prepare a water-soluble polyurethane resin (A) having a solids content of 35% by mass.

(水溶性カルボジイミド化合物の重合)
温度計、窒素ガス導入管、還流冷却器、滴下ロート、および攪拌機を備えたフラスコにイソホロンジイソシアネート200質量部、カルボジイミド化触媒の3-メチル-1-フェニル-2-ホスホレン-1-オキシド4質量部を投入し、窒素雰囲気下、180℃において10時間撹拌し、イソシアネート末端イソホロンカルボジイミド(重合度=5)を得た。次いで、得られたカルボジイミド111.2g、ポリエチレングリコールモノメチルエーテル(分子量400)80gを100℃で24時間反応させた。これに水を50℃で徐々に加え、固形分40質量%の黄色透明な水溶性カルボジイミド化合物(B)を得た。
(Polymerization of Water-Soluble Carbodiimide Compounds)
200 parts by mass of isophorone diisocyanate and 4 parts by mass of 3-methyl-1-phenyl-2-phospholene-1-oxide as a carbodiimide catalyst were placed in a flask equipped with a thermometer, a nitrogen gas inlet tube, a reflux condenser, a dropping funnel, and a stirrer, and the mixture was stirred for 10 hours at 180°C under a nitrogen atmosphere to obtain isocyanate-terminated isophorone carbodiimide (degree of polymerization = 5). Next, 111.2 g of the obtained carbodiimide and 80 g of polyethylene glycol monomethyl ether (molecular weight 400) were reacted at 100°C for 24 hours. Water was gradually added thereto at 50°C to obtain a yellow, transparent, water-soluble carbodiimide compound (B) with a solid content of 40% by mass.

(易接着層形成用塗布液の調製)
下記の塗剤を混合し、塗布液を作成した。
水 16.97質量部
イソプロパノール 21.96質量部
ポリウレタン樹脂(A) 3.27質量部
水溶性カルボジイミド化合物(B) 1.22質量部
粒子 0.51質量部
(平均粒径40nmのシリカゾル、固形分濃度40質量%)
界面活性剤 0.05質量部
(シリコーン系、固形分濃度100質量%)
(Preparation of Coating Solution for Forming Adhesion Layer)
The following coating materials were mixed to prepare a coating solution.
Water 16.97 parts by weight Isopropanol 21.96 parts by weight Polyurethane resin (A) 3.27 parts by weight Water-soluble carbodiimide compound (B) 1.22 parts by weight Particles 0.51 parts by weight (Silica sol with an average particle size of 40 nm, solid content concentration 40% by weight)
Surfactant: 0.05 parts by weight (silicone-based, solid content concentration: 100% by weight)

(ハードコート塗布液aの調製)
ハードコート材料(JSR社製、オプスター(登録商標)Z7503、濃度75%)100質量部に、レベリング剤(ビックケミージャパン社製、BYK307、濃度100%)0.1質量部を添加し、メチルエチルケトンで希釈して固形分濃度40質量%のハードコート塗布液aを調製した。
(Preparation of hard coat coating solution a)
To 100 parts by mass of a hard coat material (Opstar (registered trademark) Z7503, concentration 75%, manufactured by JSR Corporation), 0.1 parts by mass of a leveling agent (BYK307, concentration 100%, manufactured by BYK Japan K.K.) was added, and the mixture was diluted with methyl ethyl ketone to prepare a hard coat coating solution a having a solid content concentration of 40% by mass.

(ハードコート塗布液bの調製)
ペンタエリスリトールトリアクリレート(新中村化学工業社製、A-TMM-3、固形分濃度100%)95質量部、光重合開始剤(BASFジャパン社製、イルガキュア(登録商標)907、固形分濃度100%)5質量部、レベリング剤(ビックケミージャパン社製、BYK307、固形分濃度100%)0.1質量部を混合し、トルエン/MEK=1/1の溶媒で希釈して、濃度40質量%のハードコート塗布液bを調製した。
(Preparation of hard coat coating solution b)
95 parts by mass of pentaerythritol triacrylate (A-TMM-3, manufactured by Shin-Nakamura Chemical Co., Ltd., solid content concentration 100%), 5 parts by mass of a photopolymerization initiator (Irgacure (registered trademark) 907, manufactured by BASF Japan, solid content concentration 100%), and 0.1 parts by mass of a leveling agent (BYK307, manufactured by BYK Japan, solid content concentration 100%) were mixed and diluted with a solvent of toluene/MEK=1/1 to prepare a hard coat coating solution b with a concentration of 40% by mass.

(実施例1)
ポリエチレンテレフタレートのペレット(a)を押出機に供給し、285℃で融解した。このポリマーを、ステンレス焼結体の濾材(公称濾過精度10μm粒子95%カット)で濾過し、口金よりシート状にして押し出した後、静電印加キャスト法を用いて表面温度30℃のキャスティングドラムに接触させ冷却固化し、未延伸フィルムを作った。この未延伸フィルムを加熱ロールを用いて75℃に均一加熱し、非接触ヒーターで85℃に加熱して1.4倍のロール延伸(縦延伸)を行った。得られた一軸延伸フィルムに上記の易接着層形成用塗布液をロールコート法で両面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.06g/m2になるように調整した。その後、テンターに導き105℃で予熱後、95℃で4.0倍に横延伸し、幅固定して230℃で5秒間の熱固定を施し、さらに180℃で幅方向に4%緩和させることにより、厚み50μmポリエチレンテレフタレートフィルムを得た。評価結果を表1に示す。
Example 1
Pellets (a) of polyethylene terephthalate were fed to an extruder and melted at 285°C. The polymer was filtered through a stainless steel sintered filter medium (nominal filtration accuracy 10 μm particles 95% cut), extruded from a die in the form of a sheet, and then contacted with a casting drum with a surface temperature of 30°C using an electrostatic casting method to cool and solidify, producing an unstretched film. The unstretched film was uniformly heated to 75°C using a heating roll, heated to 85°C using a non-contact heater, and roll-stretched (longitudinal stretching) 1.4 times. The above-mentioned easy-adhesion layer forming coating liquid was applied to both sides of the obtained uniaxially stretched film by a roll coating method, and then dried at 80°C for 20 seconds. The coating amount after the final (biaxial stretching) drying was adjusted to 0.06 g/ m2 . The film was then introduced into a tenter, preheated at 105° C., transversely stretched 4.0 times at 95° C., fixed in width, heat-set at 230° C. for 5 seconds, and further relaxed in the width direction by 4% at 180° C. to obtain a polyethylene terephthalate film with a thickness of 50 μm. The evaluation results are shown in Table 1.

(実施例2~3)
表1に記載の長手方向の延伸倍率に変更した他は実施例1と同様にしてポリエステルフィルムを得た。
(Examples 2 to 3)
A polyester film was obtained in the same manner as in Example 1, except that the stretching ratio in the longitudinal direction was changed to the value shown in Table 1.

(実施例4)
幅方向の延伸倍率を4.4倍に、熱固定温度を220℃に変更した他は実施例1と同様にしてポリエステルフィルムを得た。
Example 4
A polyester film was obtained in the same manner as in Example 1, except that the stretching ratio in the transverse direction was changed to 4.4 times and the heat setting temperature was changed to 220°C.

(実施例5~6)
表1に記載のように長手方向の延伸倍率に変更した他は実施例4と同様にしてポリエステルフィルムを得た。
(Examples 5 to 6)
Polyester films were obtained in the same manner as in Example 4, except that the stretching ratio in the longitudinal direction was changed as shown in Table 1.

(実施例7)
幅方向の延伸倍率を5.5倍に、熱固定温度を190℃に変更した他は実施例1と同様にしてポリエステルフィルムを得た。
(Example 7)
A polyester film was obtained in the same manner as in Example 1, except that the stretching ratio in the transverse direction was changed to 5.5 times and the heat setting temperature was changed to 190°C.

(実施例8~9)
表1に記載のように長手方向の延伸倍率に変更した他は実施例7と同様にしてポリエステルフィルムを得た。
(Examples 8 to 9)
Polyester films were obtained in the same manner as in Example 7, except that the stretching ratio in the longitudinal direction was changed as shown in Table 1.

(実施例10)
実施例5の製造工程において、長手方向に延伸した後に100℃で10%の弛緩熱処理を施した他は実施例5と同様にして、ポリエステルフィルムを得た。
Example 10
A polyester film was obtained in the same manner as in Example 5, except that in the production process of Example 5, after the film was stretched in the longitudinal direction, a 10% relaxation heat treatment was carried out at 100° C.

(実施例11)
実施例5の製造工程において、熱固定後に200℃でクリップを開放し、長手方向、幅方向に弛緩熱処理した他は実施例5と同様にして、ポリエステルフィルムを得た。長手方向は弛緩率が3%になるようテンター速度と巻き取りロール速度を調整した。幅方向の弛緩はフリー状態とした。
(Example 11)
In the manufacturing process of Example 5, the clips were released at 200° C. after heat setting, and a relaxation heat treatment was performed in the longitudinal and width directions, but the same procedure was followed to obtain a polyester film. The tenter speed and the take-up roll speed were adjusted so that the relaxation rate in the longitudinal direction was 3%. The relaxation in the width direction was left in a free state.

(実施例12)
長手方向延伸時の温度を75℃に変更し、熱固定温度を220℃に変更した他は実施例1と同様にしてポリエステルフィルムを得た。
Example 12
A polyester film was obtained in the same manner as in Example 1, except that the temperature during longitudinal stretching was changed to 75°C and the heat setting temperature was changed to 220°C.

(実施例13)
長手方向延伸時の温度を75℃に変更し、延伸倍率1.2倍に変更して延伸した後、幅方向に延伸倍率5.0倍に変更して延伸した他は実施例1と同様にしてポリエステルフィルムを得た。
(Example 13)
A polyester film was obtained in the same manner as in Example 1, except that the temperature during longitudinal stretching was changed to 75° C., the stretching ratio was changed to 1.2 times, and then the stretching ratio was changed to 5.0 times in the width direction.

(実施例14)
実施例3の長手方向の延伸を2段延伸とし、その1段目の延伸倍率を1.2倍とし、2段目の延伸倍率を1.67倍とした他は実施例3と同様にしてポリエステルフィルムを得た。トータルでの長手方向の延伸倍率は約2.0倍である。
(Example 14)
A polyester film was obtained in the same manner as in Example 3, except that the longitudinal stretching was performed in two stages, with the first stage stretching ratio being 1.2 times and the second stage stretching ratio being 1.67 times. The total longitudinal stretching ratio was about 2.0 times.

(実施例15)
幅方向延伸時の予熱温度を95℃に変更し、熱固定温度を190℃に変更した他は実施例5と同様にしてポリエステルフィルムを得た。
(Example 15)
A polyester film was obtained in the same manner as in Example 5, except that the preheating temperature during widthwise stretching was changed to 95°C and the heat setting temperature was changed to 190°C.

(実施例16)
実施例2の幅方向の延伸を2段延伸とし、その1段目の延伸倍率を1.5倍とし、2段
目の延伸倍率を4.0倍とし、熱固定温度を190℃に変更した他は実施例2と同様にしてポリエステルフィルムを得た。トータルの幅方向の延伸倍率は6.0倍である。
(Example 16)
A polyester film was obtained in the same manner as in Example 2, except that the stretching in the width direction was changed to two-stage stretching, the stretching ratio in the first stage was 1.5 times, the stretching ratio in the second stage was 4.0 times, and the heat setting temperature was changed to 190° C. The total stretching ratio in the width direction was 6.0 times.

(実施例17~18)
表1に記載のように厚みを変更した他は実施例2と同様にしてポリエステルフィルムを得た。
(Examples 17 to 18)
A polyester film was obtained in the same manner as in Example 2, except that the thickness was changed as shown in Table 1.

(実施例19)
実施例1の製造工程において幅方向の弛緩熱処理を行わなかった他は実施例1と同様にしてポリエステルフィルムを得た。
(Example 19)
A polyester film was obtained in the same manner as in Example 1, except that the relaxation heat treatment in the width direction was not carried out in the production process of Example 1.

(実施例20)
実施例1と同様に未延伸フィルムを作成後、未延伸フィルムをテンターで75℃で予熱し、85℃で1.4倍に横延伸した。得られた一軸延伸フィルムに上記の易接着層形成用塗布液をロールコート法で両面に塗布した後、80℃で20秒間乾燥した。なお、最終(二軸延伸後)の乾燥後の塗布量が0.06g/m2になるように調整した。加熱ロールを用いて105℃に均一加熱し、非接触ヒーターで95℃に加熱し.4.0倍にロール延伸(縦延伸)を行った。幅固定して230℃で5秒間の熱固定を施し、厚み50μmポリエチレンテレフタレートフィルムを得た。
(Example 20)
After preparing an unstretched film in the same manner as in Example 1, the unstretched film was preheated at 75°C in a tenter and stretched transversely at 85°C to 1.4 times. The above-mentioned coating liquid for forming an easy-adhesion layer was applied to both sides of the obtained uniaxially stretched film by roll coating, and then dried at 80°C for 20 seconds. The coating amount after the final (biaxial stretching) drying was adjusted to 0.06 g/ m2 . The film was uniformly heated to 105°C using a heating roll, and heated to 95°C with a non-contact heater. Roll stretching (longitudinal stretching) was performed to 4.0 times. The width was fixed and heat setting was performed at 230°C for 5 seconds to obtain a polyethylene terephthalate film with a thickness of 50 μm.

(比較例1)
長手方向の延伸を行わずに、幅方向のみ延伸し横1軸延伸とした他は実施例1と同様にしてポリエステルフィルムを得た。
(Comparative Example 1)
A polyester film was obtained in the same manner as in Example 1, except that the film was not stretched in the longitudinal direction but was stretched only in the width direction, that is, uniaxially stretched in the transverse direction.

(比較例2)
長手方向の延伸を行わずに、幅方向のみ延伸し横1軸延伸とした他は実施例7と同様にしてポリエステルフィルムを得た。
(Comparative Example 2)
A polyester film was obtained in the same manner as in Example 7, except that the film was not stretched in the longitudinal direction but was stretched only in the width direction, that is, uniaxially stretched in the transverse direction.

(比較例3~7)
熱固定温度を220℃に変更し、表1記載のPETペレット、厚みとした他は実施例1と同様にしてポリエステルフィルムを得た。
比較例3~7は、前記の通り実施例1よりも熱固定温度が低く、長手方向、幅方向の延伸倍率が好ましい条件範囲の中では最善とは言えない各条件水準の組合せであり、表1に記載したように厚み方向の屈折率が増加し、試験力除荷後の押し込み深さが大きく、ハードコート層積層後の鉛筆硬度が各実施例に比較して小さくなった。
(Comparative Examples 3 to 7)
A polyester film was obtained in the same manner as in Example 1, except that the heat setting temperature was changed to 220° C., and the PET pellets and thickness were as shown in Table 1.
As described above, Comparative Examples 3 to 7 have a lower heat setting temperature than Example 1, and the combination of each condition level of the longitudinal and transverse stretching ratios is not the best within the preferable condition range. As shown in Table 1, the refractive index in the thickness direction is increased, the indentation depth after the test force is removed is large, and the pencil hardness after the hard coat layer is laminated is smaller than that of each Example.

(比較例8)
長手方向の延伸倍率を2.7倍に変更し、熱固定温度を220℃に変更した他は実施例1と同様にしてポリエステルフィルムを得た。
(Comparative Example 8)
A polyester film was obtained in the same manner as in Example 1, except that the stretching ratio in the longitudinal direction was changed to 2.7 times and the heat setting temperature was changed to 220°C.

(比較例9)
長手方向の延伸倍率を3.4倍に変更した他は実施例1と同様にしてポリエステルフィルムを得た。
(Comparative Example 9)
A polyester film was obtained in the same manner as in Example 1, except that the stretching ratio in the longitudinal direction was changed to 3.4 times.

(比較例10)
熱固定温度を100℃に変更した他は実施例4と同様にしてポリエステルフィルムを得た。
(Comparative Example 10)
A polyester film was obtained in the same manner as in Example 4, except that the heat setting temperature was changed to 100°C.

(比較例11)
長手方向の延伸温度を130℃に変更した他は実施例13と同様にしてポリエステルフィルムを得た。
(Comparative Example 11)
A polyester film was obtained in the same manner as in Example 13, except that the longitudinal stretching temperature was changed to 130°C.

(比較例12)
幅方向予熱温度を120℃に変更した他は実施例1と同様にしてポリエステルフィルムを得た。
(Comparative Example 12)
A polyester film was obtained in the same manner as in Example 1, except that the preheating temperature in the width direction was changed to 120°C.

上記の作製したフィルムの一方の面にマイヤーバーを用いて、ハードコート塗布液aを乾燥後の膜厚が5μmになるように塗布し、80℃で1分間乾燥させた後、紫外線を照射し(積算光量200mJ/cm)、ハードコートフィルムを得た。 Using a Mayer bar, hard coat coating solution a was applied to one side of the film prepared above so that the film would have a dry thickness of 5 μm, and the film was dried at 80° C. for 1 minute, and then irradiated with ultraviolet light (cumulative light amount 200 mJ/cm 2 ) to obtain a hard coat film.

(実施例21)
また、実施例1と同様に積層フィルムを得た後、ハードコート塗布液aに替えてハードコート塗布液bを前記と同様に塗布したハードコートフィルムを得た。
(Example 21)
Further, after a laminated film was obtained in the same manner as in Example 1, the hard coat coating solution b was applied in place of the hard coat coating solution a in the same manner as above to obtain a hard coat film.

そのハードコートフィルムを、25μm厚の粘着層を介して有機ELモジュールに貼合し、図1における屈曲半径に相当する半径が3mmの全体の中央部で二つ折りにできるスマートフォンタイプの折りたたみ型ディスプレイを作成した。各実施例のハードコートフィルムを用いたものは、中央部で二つ折りに折りたたんで携帯できるスマートフォンとして動作及び視認性を満足するものであった。外力によって表示に欠陥が起きることはなかった。一方、各比較例のハードコートフィルムを使用した折りたたみ型ディスプレイは、使用頻度が増えるに従って、ディスプレイの折りたたみ部で画像の歪を生じてきたように感じ、あまり好ましいものではなかった。また、外力によって有機ELパネルが破損し、正しく表示できないものもあった。 The hard coat film was attached to an organic EL module via a 25 μm thick adhesive layer to create a smartphone-type foldable display that can be folded in half at the center with a radius of 3 mm, which corresponds to the bending radius in Figure 1. The hard coat films of each example were used to satisfy the operation and visibility of a smartphone that can be folded in half at the center and carried around. No defects in the display were caused by external forces. On the other hand, the foldable displays using the hard coat films of each comparative example seemed to cause image distortion at the folding part of the display as the frequency of use increased, which was not very preferable. In addition, the organic EL panel was damaged by external forces in some cases, preventing correct display.

本発明の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムを用いた折りたたみ型ディスプレイは、量産性を維持しながら、有機ELモジュールの保護用途に用いられたポリエステルフィルムが繰り返し折りたたまれた後の変形を起こさないため、ディスプレイの折りたたみ部分での画像の乱れを生じることがない。特に本発明のポリエステルフィルムを有機ELモジュールの保護フィルムとして使用した折りたたみ型ディスプレイを搭載した携帯端末機器は、美しい画像を提供し、機能性に富み、携帯性等の利便性に優れたものである。 A folding display using the polyester film for protecting the organic EL module of the folding display of the present invention maintains mass productivity, and the polyester film used to protect the organic EL module does not deform after repeated folding, so there is no distortion of the image at the folded part of the display. In particular, a mobile terminal device equipped with a folding display using the polyester film of the present invention as a protective film for the organic EL module provides beautiful images, is highly functional, and has excellent convenience such as portability.

1 : 折りたたみ型ディスプレイ
11: 屈曲半径
2 : 折りたたみ型ディスプレイの表面保護フィルム用ポリエステルフィルム
21: 折りたたみ部
22: 屈曲方向(折りたたみ部と直交する方向)
3 : 有機ELモジュール
30: 保護フィルム
31: 粘着剤
32: 背面基板
33: 薄膜トランジスタ
34: 有機EL素子
35: 封止粘着剤層
1: Folding display 11: Bend radius 2: Polyester film for surface protection film of folding display 21: Folding portion 22: Bend direction (direction perpendicular to the folding portion)
3: Organic EL module 30: Protective film 31: Adhesive 32: Rear substrate 33: Thin film transistor 34: Organic EL element 35: Sealing adhesive layer

Claims (6)

下記条件を満足する折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。
(1)屈曲方向の屈折率が1.590~1.620
(2)折りたたみ部の方向の屈折率が1.670~1.700
(3)厚み方向の屈折率が1.520以下
(4)密度が1.380g/cm以上
(5)ポリエステルフィルムが二軸延伸ポリエチレンテレフタレートフィルム
(ここで、屈曲方向とは、ポリエステルフィルムを折りたたむ際の折りたたみ部と直交する方向をいう。)
A polyester film for protecting the organic EL module of a folding display that satisfies the following conditions.
(1) The refractive index in the bending direction is 1.590 to 1.620
(2) The refractive index in the direction of the fold is 1.670 to 1.700
(3) A refractive index in the thickness direction is 1.520 or less. (4) A density is 1.380 g/ cm3 or more.
(5) The polyester film is a biaxially oriented polyethylene terephthalate film.
(Here, the bending direction refers to the direction perpendicular to the fold when folding the polyester film.)
屈曲方向のヤング率が2.7GPa以下、折りたたみ部の方向のヤング率が4.5GPa以上である請求項1に記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。 2. The polyester film for protecting an organic EL module of a folding display according to claim 1, wherein the polyester film has a Young 's modulus in the bending direction of 2.7 GPa or less and a Young 's modulus in the direction of the folding portion of 4.5 GPa or more. 全光線透過率が85%以上、ヘイズが3%以下、かつ、最大熱収縮率が6%以下である請求項1または2に記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。 The polyester film for protecting an organic EL module of a folding display according to claim 1 or 2, which has a total light transmittance of 85% or more, a haze of 3% or less, and a maximum heat shrinkage rate of 6% or less. 少なくとも片面上に易接着層を有する請求項1~3のいずれかに記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。 The polyester film for protecting an organic EL module of a folding display according to any one of claims 1 to 3, which has an easy-adhesion layer on at least one side. 少なくとも片面上に厚みが1~50μmのハードコート層を有する請求項1~4のいずれかに記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルム。 The polyester film for protecting an organic EL module of a folding display according to any one of claims 1 to 4, which has a hard coat layer having a thickness of 1 to 50 μm on at least one side. 請求項1~5のいずれかに記載の折りたたみ型ディスプレイの有機ELモジュール保護用ポリエステルフィルムが、有機ELモジュールの保護フィルムとして含まれた折りたたみ型ディスプレイであって、折りたたみ型ディスプレイの折りたたみ部を介して連続した単一の有機ELモジュールの保護フィルムが配されている折りたたみ型ディスプレイ。 A folding display in which the polyester film for protecting an organic EL module of a folding display according to any one of claims 1 to 5 is included as a protective film for the organic EL module, and a protective film for a single continuous organic EL module is arranged through the folding part of the folding display.
JP2020086715A 2019-05-28 2020-05-18 Polyester film and its uses Active JP7480581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024056266A JP2024083397A (en) 2019-05-28 2024-03-29 Polyester film, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019099162 2019-05-28
JP2019099162 2019-05-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024056266A Division JP2024083397A (en) 2019-05-28 2024-03-29 Polyester film, and use thereof

Publications (2)

Publication Number Publication Date
JP2020197705A JP2020197705A (en) 2020-12-10
JP7480581B2 true JP7480581B2 (en) 2024-05-10

Family

ID=73648004

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020086715A Active JP7480581B2 (en) 2019-05-28 2020-05-18 Polyester film and its uses
JP2024056266A Pending JP2024083397A (en) 2019-05-28 2024-03-29 Polyester film, and use thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024056266A Pending JP2024083397A (en) 2019-05-28 2024-03-29 Polyester film, and use thereof

Country Status (1)

Country Link
JP (2) JP7480581B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7338887B2 (en) * 2021-08-27 2023-09-05 株式会社Joled Display device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121819A (en) 2001-10-09 2003-04-23 Teijin Dupont Films Japan Ltd Oriented polyester film for liquid crystal display plate
JP2012214726A (en) 2011-03-28 2012-11-08 Fujifilm Corp Polyester film, gas barrier film, backsheet for solar cell, organic device, and solar cell module
JP2015030157A (en) 2013-08-01 2015-02-16 凸版印刷株式会社 Manufacturing method of transparent conductive laminate
JP2015184664A (en) 2014-03-26 2015-10-22 富士フイルム株式会社 Polyester resin film, method for producing polyester resin film, polarizing plate, image display device, hard coat film, sensor film for touch panels, glass scattering prevention film and touch panel
JP2016157110A (en) 2015-02-25 2016-09-01 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Foldable hard coat film and display having the same
JP2017067819A (en) 2015-09-28 2017-04-06 東レ株式会社 Optical polyester film and polarizing plate using the same, and transparent conductive film
JP2018124367A (en) 2017-01-31 2018-08-09 東レ株式会社 Film for organic electroluminescence display device sand laminate sheet
WO2018150940A1 (en) 2017-02-20 2018-08-23 東洋紡株式会社 Polyester film and applications thereof
WO2018190179A1 (en) 2017-04-10 2018-10-18 大日本印刷株式会社 Polyimide film, layered product, surface material for display
JP2019008026A (en) 2017-06-21 2019-01-17 東洋紡株式会社 Liquid crystal display device
JP2020523633A (en) 2017-06-09 2020-08-06 コーニング インコーポレイテッド Bendable laminated article including anisotropic layer

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003121819A (en) 2001-10-09 2003-04-23 Teijin Dupont Films Japan Ltd Oriented polyester film for liquid crystal display plate
JP2012214726A (en) 2011-03-28 2012-11-08 Fujifilm Corp Polyester film, gas barrier film, backsheet for solar cell, organic device, and solar cell module
JP2015030157A (en) 2013-08-01 2015-02-16 凸版印刷株式会社 Manufacturing method of transparent conductive laminate
JP2015184664A (en) 2014-03-26 2015-10-22 富士フイルム株式会社 Polyester resin film, method for producing polyester resin film, polarizing plate, image display device, hard coat film, sensor film for touch panels, glass scattering prevention film and touch panel
JP2016157110A (en) 2015-02-25 2016-09-01 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. Foldable hard coat film and display having the same
JP2017067819A (en) 2015-09-28 2017-04-06 東レ株式会社 Optical polyester film and polarizing plate using the same, and transparent conductive film
JP2018124367A (en) 2017-01-31 2018-08-09 東レ株式会社 Film for organic electroluminescence display device sand laminate sheet
WO2018150940A1 (en) 2017-02-20 2018-08-23 東洋紡株式会社 Polyester film and applications thereof
WO2018190179A1 (en) 2017-04-10 2018-10-18 大日本印刷株式会社 Polyimide film, layered product, surface material for display
JP2020523633A (en) 2017-06-09 2020-08-06 コーニング インコーポレイテッド Bendable laminated article including anisotropic layer
JP2019008026A (en) 2017-06-21 2019-01-17 東洋紡株式会社 Liquid crystal display device

Also Published As

Publication number Publication date
JP2020197705A (en) 2020-12-10
JP2024083397A (en) 2024-06-21

Similar Documents

Publication Publication Date Title
JP7502722B2 (en) Foldable displays and mobile terminal devices
JP7180375B2 (en) Polyester film and its uses
CN113924331B (en) Polyester film, laminated film and use thereof
JP7435448B2 (en) Laminated film and its uses
WO2020162119A1 (en) Polyester film and use thereof
JP6940004B2 (en) Folding display
JP7533216B2 (en) Polyester film and its uses
WO2021182191A1 (en) Polyester film and use thereof
JP7447994B2 (en) Polyester film and its uses
JP7574546B2 (en) Polyester film and its uses
JP2024083397A (en) Polyester film, and use thereof
JP2024155957A (en) Laminated film and its applications
JP7574545B2 (en) Hard coat film and its applications
WO2024058057A1 (en) Polyester film and use thereof
WO2024058058A1 (en) Polyester film and use thereof
WO2024058059A1 (en) Polyester film and use thereof
JP2024129056A (en) Polyester film and its uses
TWI857066B (en) Polyester film, laminated film, and use thereof
JP2023032119A (en) Folding-type display

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240408

R150 Certificate of patent or registration of utility model

Ref document number: 7480581

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150