従来、切削工具にセンサを取り付け、切削加工時のセンサによる計測結果に基づいて、切削工具における切刃の異常を検出する技術が提案されている。
[本開示が解決しようとする課題]
特許文献1の技術を超えて、切削工具を用いた切削加工の状態をより正確に検出することが可能な技術が望まれる。
本開示は、上述の課題を解決するためになされたもので、その目的は、切削工具を用いた切削加工の状態をより正確に検出することが可能な処理システム、処理装置、処理方法および処理プログラムを提供することである。
[本開示の効果]
切削工具を用いた切削加工の状態をより正確に検出することができる。
[本開示の実施形態の説明]
最初に、本開示の実施形態の内容を列記して説明する。
(1)本開示の実施の形態に係る処理システムは、切削工具と、センサと、処理部とを備え、前記センサは、切削加工時の前記切削工具の負荷に関する状態を示す物理量を計測し、前記処理部は、複数の計測時点における前記センサの計測結果に基づいて、前記計測時点ごとの前記負荷に関するデータを示す複数のプロットを含むグラフを作成し、作成した前記グラフにおいて前記複数のプロットが占める面積に基づいて、前記切削工具を用いた切削加工の状態を検出する。
このように、センサの計測結果に基づいて作成したグラフにおいて複数のプロットが占める面積に基づいて、切削加工の状態を検出する構成により、異常振動が発生することによるプロットの位置の変化を、グラフにおいて複数のプロットが占める面積の変化として検知し、当該面積の変化に基づいて異常振動を検出することができる。また、グラフにおいて複数のプロットが占める面積は、センサの計測結果の標準偏差等と比べて異常振動の振幅変化が反映され易いところ、当該面積を評価値として用いて、異常振動の振幅変化をより高感度で検出することができる。したがって、切削工具を用いた切削加工の状態をより正確に検出することができる。
(2)上記(1)において、前記処理部は、前記プロットのピッチに応じて前記プロットのサイズが設定された前記グラフを作成してもよい。
このような構成により、異常振動の振幅変化が、複数のプロットが占める面積により反映され易いグラフを作成することができる。
(3)上記(2)において、前記処理部は、前記処理システムの運用前に予め取得した前記センサの計測結果に基づく前記データの最大値の5%以上であり、かつ前記データの最大値の20%以下の直径を有する前記プロットを含む前記グラフを作成してもよい。
このような構成により、異常振動が発生していない状態において各プロットが重なる領域を確保することができ、かつ異常振動が発生した場合においてプロットがグラフからはみ出すことなく各プロットの重なりがより確実に解消されるので、複数のプロットが占める面積を評価値として用いて、異常振動をより高感度で検出することができる。
(4)上記(1)から(3)のいずれかにおいて、前記処理部は、前記切削工具または切削対象物が複数回転するのに要する期間における前記複数の計測時点における前記センサの計測結果に基づいて、前記グラフを作成してもよい。
このような構成により、センサの計測結果を取得するためのサンプリング周期を低く抑えながら、グラフの作成に必要な計測結果を取得することができる。
(5)上記(1)から(4)のいずれかにおいて、前記処理部は、前記プロットのサイズが異なる複数の前記グラフを作成してもよい。
このような構成により、解析用のグラフおよび表示用のグラフ等の、用途に応じた複数のグラフを作成することができる。
(6)上記(5)において、前記処理部は、前記複数のグラフのうちの少なくともいずれか1つを選択的に表示する処理を行ってもよい。
このような構成により、たとえば、解析用のグラフを用いて切削加工の状態の検出を行いながら、ユーザが切削加工の状態を認識可能な表示用のグラフを表示することができる。
(7)上記(5)または(6)において、前記処理部は、前記複数のグラフの各々において前記複数のプロットが占める面積に基づいて、前記切削工具を用いた切削加工の状態を検出してもよい。
このような構成により、たとえば、振幅が異なる多様な異常振動をより高感度で検出することができる。
(8)上記(1)から(7)のいずれかにおいて、前記処理部は、前記計測時点と前記データとの対応関係を示す前記複数のプロットを含む時系列の前記グラフを作成してもよい。
このような構成により、時系列のグラフにおいて複数のプロットが占める面積に基づいて、転削加工および旋削加工等の多様な切削加工の状態を検出することができる。
(9)上記(1)から(7)のいずれかにおいて、前記処理システムは、複数の前記センサを備え、前記処理部は、前記複数の計測時点における前記各センサの計測結果に基づいて、前記計測時点ごとの、前記切削工具の回転軸と垂直な平面における2方向の前記負荷に関する前記データの対応関係を示す前記複数のプロットを含む前記グラフを作成してもよい。
このような構成により、時系列のグラフを用いて切削加工の状態を検出する構成と比べて、異常振動の振幅変化をより高感度で検出することができる。
(10)上記(1)から(9)のいずれかにおいて、前記センサは、ひずみセンサまたは加速度センサであってもよい。
このような構成により、センサがひずみセンサである場合、加工精度に影響を与える切削工具の変形をより正確に検知することができる。また、センサが加速度センサである場合、切削工具のより小さい振動を検知することができる。
(11)本開示の実施の形態に係る処理装置は、センサの計測結果であって、切削加工時の切削工具の負荷に関する状態を示す物理量の計測結果を取得する計測結果取得部と、前記計測結果取得部により取得された、複数の計測時点における前記センサの前記計測結果に基づいて、前記計測時点ごとの前記負荷に関するデータを示す複数のプロットを含むグラフを作成する作成部と、前記作成部により作成された前記グラフにおいて前記複数のプロットが占める面積に基づいて、前記切削工具を用いた切削加工の状態を検出する検出部とを備える。
(12)本開示の実施の形態に係る処理方法は、処理装置における処理方法であって、センサの計測結果であって、切削加工時の切削工具の負荷に関する状態を示す物理量の計測結果を取得するステップと、取得した複数の計測時点における前記センサの前記計測結果に基づいて、前記計測時点ごとの前記負荷に関するデータを示す複数のプロットを含むグラフを作成するステップと、作成した前記グラフにおいて前記複数のプロットが占める面積に基づいて、前記切削工具を用いた切削加工の状態を検出するステップとを含む。
このように、センサの計測結果に基づいて作成したグラフにおいて複数のプロットが占める面積に基づいて、切削加工の状態を検出する構成により、異常振動が発生することによるプロットの位置の変化を、グラフにおいて複数のプロットが占める面積の変化として検知し、当該面積の変化に基づいて異常振動を検出することができる。また、グラフにおいて複数のプロットが占める面積は、センサの計測結果の標準偏差等と比べて異常振動の振幅変化が反映され易いところ、当該面積を評価値として用いて、異常振動の振幅変化をより高感度で検出することができる。したがって、切削工具を用いた切削加工の状態をより正確に検出することができる。
(13)本開示の実施の形態に係る処理プログラムは、処理装置において用いられる処理プログラムであって、コンピュータを、センサの計測結果であって、切削加工時の切削工具の負荷に関する状態を示す物理量の計測結果を取得する計測結果取得部と、前記計測結果取得部により取得された、複数の計測時点における前記センサの前記計測結果に基づいて、前記計測時点ごとの前記負荷に関するデータを示す複数のプロットを含むグラフを作成する作成部と、前記作成部により作成された前記グラフにおいて前記複数のプロットが占める面積に基づいて、前記切削工具を用いた切削加工の状態を検出する検出部、として機能させるためのプログラムである。
このように、センサの計測結果に基づいて作成したグラフにおいて複数のプロットが占める面積に基づいて、切削加工の状態を検出する方法により、異常振動が発生することによるプロットの位置の変化を、グラフにおいて複数のプロットが占める面積の変化として検知し、当該面積の変化に基づいて異常振動を検出することができる。また、グラフにおいて複数のプロットが占める面積は、センサの計測結果の標準偏差等と比べて異常振動の振幅変化が反映され易いところ、当該面積を評価値として用いて、異常振動の振幅変化をより高感度で検出することができる。したがって、切削工具を用いた切削加工の状態をより正確に検出することができる。
このように、センサの計測結果に基づいて作成したグラフにおいて複数のプロットが占める面積に基づいて、切削加工の状態を検出する構成により、異常振動が発生することによるプロットの位置の変化を、グラフにおいて複数のプロットが占める面積の変化として検知し、当該面積の変化に基づいて異常振動を検出することができる。また、グラフにおいて複数のプロットが占める面積は、センサの計測結果の標準偏差等と比べて異常振動の振幅変化が反映され易いところ、当該面積を評価値として用いて、異常振動の振幅変化をより高感度で検出することができる。したがって、切削工具を用いた切削加工の状態をより正確に検出することができる。
以下、本開示の実施の形態について図面を用いて説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。また、以下に記載する実施の形態の少なくとも一部を任意に組み合わせてもよい。
[構成および基本動作]
<処理システム>
図1は、本開示の実施の形態に係る処理システムの構成を示す図である。図1を参照して、処理システム301は、切削工具101と、複数のひずみセンサ20と、処理装置201とを備える。処理装置201は、処理システム301における処理部の一例である。
<切削工具>
切削工具101は、たとえば、フライス盤等の工作機械において使用されるエンドミルであり、金属等からなる切削対象物の転削加工に用いられる。切削工具101は、たとえば刃先交換式のエンドミルである。切削工具101は、アーバ等の工具ホルダ210に保持された状態で使用される。
切削工具101は、シャフト部10と、ハウジング24と、電池22と、無線通信装置23と、刃取付部12とを備える。シャフト部10は、シャンク部11を含む。図1では、ハウジング24を想像線である二点鎖線により示している。
刃取付部12は、切削工具101におけるシャフト部10よりも先端側に設けられる。刃取付部12は、たとえば4つの刃固定部13を含む。各刃固定部13には、チップ14が取り付けられる。なお、刃取付部12は、1つ、2つ、3つまたは5つ以上の刃固定部13を含む構成であってもよい。
チップ14は、たとえばスローアウェイチップである。チップ14は、たとえばネジ止めにより刃固定部13に取り付けられる。なお、チップ14は、ネジ止め以外の手段により刃固定部13に固定されてもよい。また、切削工具101は、刃取付部12の代わりに、シャフト部10と一体となった切刃を備える、いわゆるソリッドエンドミルであってもよい。
工具ホルダ210は、工作機械の主軸220に取り付けられる。主軸220は、柱状であり、工具ホルダ210に回転力を与える。工具ホルダ210は、主軸220の延長線上に配置される柱状の部材である。具体的には、工具ホルダ210の上端部が、主軸220に保持される。また、工具ホルダ210の下端部が、切削工具101のシャンク部11を保持する。
たとえば、ひずみセンサ20は、接着剤または粘着剤を介してシャフト部10の周面に取り付けられる。なお、ひずみセンサ20は、工具ホルダ210の周面に取り付けられてもよい。
ハウジング24は、ひずみセンサ20を格納する。具体的には、ハウジング24は、図示しない底板部および側壁部を含む。ハウジング24は、ひずみセンサ20を下方および側方から覆う。
電池22および無線通信装置23は、ハウジング24に格納される。たとえば、電池22および無線通信装置23は、ハウジング24の底板部または側壁部に固定される。無線通信装置23は、たとえば通信用IC(Integrated Circuit)等の通信回路を含む。電池22は、図示しない電力線を介して、ひずみセンサ20および無線通信装置23と接続されている。電池22は、電力線を介して、ひずみセンサ20および無線通信装置23へ電力を供給する。
たとえば、処理システム301は、3つのひずみセンサ20を備える。なお、処理システム301は、切削工具101におけるチップ14の数よりも少数のひずみセンサ20を備える構成であってもよいし、切削工具101におけるチップ14の数よりも多数のひずみセンサ20を備える構成であってもよい。また、処理システム301は、切削工具101におけるチップ14の数と相関の無い数のひずみセンサ20を備える構成であってもよい。
図2は、本開示の実施の形態に係る切削工具の構成を示す断面図である。図2は、図1におけるII-II線矢視断面図である。図2を参照して、ひずみセンサ20として、ひずみセンサ20A,20B,20Cがシャフト部10に設けられる。ひずみセンサ20Bは、シャフト部10の周方向においてひずみセンサ20Cが設けられた位置から90°ずれた位置に設けられる。ひずみセンサ20Aは、シャフト部10の周方向においてひずみセンサ20Bが設けられた位置から90°ずれた位置に設けられる。ひずみセンサ20A,20Cは、シャフト部10の回転軸17を介して点対称となる位置に設けられる。ひずみセンサ20A,20B,20Cは、たとえば、シャフト部10の回転軸17に沿う方向において、同じ位置に設けられてもよいし、互いに異なる位置に設けられてもよい。
なお、ひずみセンサ20A,20B,20Cは、刃取付部12の位置に関わらず、たとえば上述のようにシャフト部10または工具ホルダ210の周面にそれぞれ設けられればよい。すなわち、ひずみセンサ20A,20B,20Cは、シャフト部10または工具ホルダ210の周面において、刃固定部13から回転軸17に沿った位置に設けられる必要はない。
以下では、説明のため、回転軸17に直交する平面において、回転軸17からひずみセンサ20Aが設けられた位置への方向をX方向と称し、回転軸17からひずみセンサ20Bが設けられた位置への方向をY方向と称する。
ひずみセンサ20は、切削加工時の切削工具101の負荷に関する状態を示す物理量を計測する。より詳細には、ひずみセンサ20は、切削加工時の切削工具101の負荷に関する状態を示す物理量として、シャフト部10のひずみεを計測する。ひずみセンサ20は、ひずみεとして、せん断ひずみを計測する構成であってもよいし、垂直ひずみを計測する構成であってもよいし、せん断ひずみおよび垂直ひずみの両方を計測する構成であってもよい。
ひずみセンサ20は、たとえば、切削加工の開始時刻である時刻tsから終了時刻である時刻teまでの期間においてひずみεを計測し、ひずみεに応じたレベルのアナログ信号を図示しない信号線経由で無線通信装置23へ送信する。
無線通信装置23は、ひずみセンサ20から受信したアナログ信号を所定のサンプリング周期でAD(Analog Digital)変換し、変換後のデジタル値であるセンサ計測値を生成する。より詳細には、無線通信装置23は、ひずみセンサ20Aから受けるひずみεのアナログ信号をAD変換することによりセンサ計測値sxを生成し、ひずみセンサ20Bから受けるひずみεのアナログ信号をAD変換することによりセンサ計測値syを生成し、ひずみセンサ20Cから受けるひずみεのアナログ信号をAD変換することによりセンサ計測値srを生成する。
無線通信装置23は、生成したセンサ計測値sx,sy,srにサンプリングタイミングを示すタイムスタンプを付与し、タイムスタンプが付与されたセンサ計測値sx,sy,srを図示しない記憶部に保存する。無線通信装置23は、たとえば所定周期で、当該記憶部から1または複数組のセンサ計測値sx,sy,srを取得し、取得したセンサ計測値sx,sy,srおよび対応のひずみセンサ20の識別情報を含む無線信号を生成し、生成した無線信号を処理装置201へ送信する。
[処理装置]
図3は、本開示の実施の形態に係る切削システムにおける処理装置の構成を示す図である。図3を参照して、処理装置201は、無線通信部110と、作成部120と、検出部130と、記憶部140とを備える。無線通信部110は、計測結果取得部の一例である。無線通信部110、作成部120および検出部130の一部または全部は、たとえば、1または複数のプロセッサを含む処理回路(Circuitry)により実現される。記憶部140は、たとえば上記処理回路に含まれる不揮発性メモリである。処理装置201は、切削工具101を用いた切削加工の状態を検出する検出処理を行う。
<無線通信部>
無線通信部110は、ひずみセンサ20の計測結果であって、切削加工時の切削工具101の負荷に関する状態を示す物理量の計測結果を取得する。
より詳細には、無線通信部110は、切削工具101における無線通信装置23と無線による通信を行う。無線通信装置23および無線通信部110は、たとえば、IEEE 802.15.4に準拠したZigBee(登録商標)、IEEE 802.15.1に準拠したBluetooth(登録商標)およびIEEE802.15.3aに準拠したUWB(Ultra Wide Band)等の通信プロトコルを用いた無線による通信を行う。なお、無線通信装置23と無線通信部110との間において、上記以外の通信プロトコルが用いられてもよい。
無線通信部110は、切削工具101における無線通信装置23から受信した無線信号からセンサ計測値sx,sy,srおよび識別情報を取得する。そして、無線通信部110は、当該センサ計測値sx,sy,srを当該識別情報に対応付けて記憶部140に保存する。
<作成部>
作成部120は、無線通信部110により取得された、複数の計測時点におけるひずみセンサ20の計測結果に基づいて、計測時点ごとの切削工具101の負荷に関するデータを示す複数のプロットPを含むグラフGを作成する。より詳細には、作成部120は、無線通信部110により記憶部140に保存されたセンサ計測値sx,sy,srに基づいて、グラフGを作成する。グラフGは、後述する検出部130における検出処理に用いられる。
図4は、本開示の実施の形態に係る切削工具を模式的に示す斜視図である。図4を参照して、切削工具101による切削加工を行う際に、回転軸17と垂直な平面であって、チップ14の切刃を通る平面である切削抵抗作用面18内において、切削対象物から当該切刃に荷重、すなわち切削抵抗F[N]が加わる。
たとえば、作成部120は、センサ計測値sx,sy,srに基づいて、切削抵抗作用面18において切削工具101が受けるX方向の切削抵抗Fである切削抵抗Fx、および切削抵抗作用面18において切削工具101が受けるY方向の切削抵抗Fである切削抵抗Fyを算出する。
より詳細には、記憶部140は、センサ計測値sx,sy,srを切削抵抗Fx,Fyに変換するための変換式Fm1を記憶している。たとえば、変換式Fm1は、特許文献2および3等に記載の技術を用いて予め作成される。より詳細には、変換式Fm1は、切削工具101に既知の荷重を加えたときに得られるセンサ計測値sx,sy,srに基づいて予め作成される変換行列である。
作成部120は、記憶部140におけるセンサ計測値sx,sy,srおよび変換式Fm1に基づいて、切削抵抗Fx,Fyを算出する。センサ計測値sx,sy,srおよび切削抵抗Fx,Fyは、負荷に関するデータの一例である。
図5および図6は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフの一例を示す図である。図5および図6は、切削工具101を用いて所定の加工条件Wc1で切削加工を行ったときに作成部120により作成されるグラフGaを示している。グラフGaにおいて、横軸は時間[秒]であり、縦軸は切削抵抗Fx[N]である。図5は、切削工具101のびびり振動が発生していない状態におけるグラフGaを示しており、図6は、切削工具101のびびり振動が発生している状態におけるグラフGaを示している。
図5および図6を参照して、作成部120は、計測時点と、切削抵抗Fxとの対応関係を示す複数のプロットPaを含む時系列のグラフGであるグラフGaを作成する。プロットPaは、プロットPの一例である。たとえば、プロットPaの形状は、円形である。なお、プロットPaの形状は、四角形および三角形等の円形以外の形状であってもよい。また、作成部120は、計測時点と切削抵抗Fyとの対応関係を示すプロットPaを含むグラフGaを作成する構成であってもよいし、計測時点とセンサ計測値sxまたはセンサ計測値syとの対応関係を示すプロットPaを含むグラフGaを作成する構成であってもよい。
図7および図8は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフの一例を示す図である。図7および図8は、切削工具101を用いて加工条件Wc1で切削加工を行ったときに作成部120により作成される切削抵抗Fx,FyのグラフGbを示している。グラフGbにおいて、横軸は切削抵抗Fx[N]であり、縦軸は切削抵抗Fy[N]である。図7は、びびり振動が発生していない状態におけるグラフGbを示しており、図8は、びびり振動が発生している状態におけるグラフGbを示している。
図7および図8を参照して、作成部120は、複数の計測時点における各ひずみセンサ20の計測結果に基づいて、計測時点ごとの、切削抵抗作用面18における切削抵抗Fx,Fyの対応関係を示す複数のプロットPbを含むグラフGであるグラフGbを作成する。プロットPbは、プロットPの一例である。たとえば、プロットPbの形状は、円形である。なお、プロットPbの形状は、四角形および三角形等の円形以外の形状であってもよい。
図9および図10は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフの一例を示す図である。図9および図10は、図7および図8に示すグラフGbと比べて、プロットPbの直径がより大きいグラフGbを示している。
図9および図10を参照して、たとえば、作成部120は、プロットPのサイズが異なる複数のグラフGを作成する。より詳細には、作成部120は、同じセンサ計測値sx,sy,srに基づいて算出した同じ切削抵抗Fx,Fyを用いて、プロットPbの直径がそれぞれ異なる複数のグラフGbを作成する。一例として、作成部120は、同じセンサ計測値sx,sy,srに基づいて算出した同じ切削抵抗Fx,Fyを用いて、プロットPbの直径がそれぞれ異なる2つのグラフGbと、当該2つのグラフGbと比べてプロットPbの直径が小さいグラフGbである表示用グラフGdisを作成する。
たとえば、作成部120は、作成周期Pgに従う作成タイミングにおいて、時刻(Pg×m)から始まる所定の対象期間Tにおける複数のセンサ計測値sx,sy,srに基づいて、当該対象期間Tにおける計測時点ごとの切削抵抗Fx,Fyを算出する。そして、作成部120は、算出した切削抵抗Fx,Fyを用いてグラフGa,Gbおよび表示用グラフGdisを作成する。ここで、mは正の整数である。なお、作成周期Pgが対象期間Tと同じであることにより、各対象期間Tが連続してもよい。また、作成周期Pgが対象期間Tよりも短いことにより、各対象期間Tが一部重複してもよい。また、作成周期gPが対象期間Tよりも長いことにより、各対象期間Tが間欠的に設けられてもよい。
たとえば、作成部120は、切削工具101が複数回転するのに要する期間における複数の計測時点におけるひずみセンサ20の計測結果に基づいて、グラフGを作成する。ここでは、対象期間Tは、切削工具101が複数回転するのに要する期間である。
作成部120は、作成周期Pgに従う作成タイミングにおいて対象期間TごとにグラフGa,Gbおよび表示用グラフGdisを作成し、作成したグラフGa,Gbおよび表示用グラフGdisを含むグラフ情報を対象期間Tに対応付けて記憶部140に保存する。
なお、作成部120は、切削抵抗Fx,Fyの代わりに、または切削抵抗Fx,Fyに加えて、切削抵抗作用面18内において、X方向の負荷により生じるモーメントMであるモーメントMx、およびY方向の負荷により生じるモーメントMであるモーメントMyを算出する構成であってもよい。
より詳細には、記憶部140は、センサ計測値sx,sy,srをモーメントMx,Myに変換するための変換式Fm2を記憶している。たとえば、変換式Fm2は、特許文献2および3等に記載の技術を用いて予め作成される。より詳細には、変換式Fm2は、切削工具101に既知の荷重を加えたときに得られるセンサ計測値sx,sy,srに基づいて予め作成される変換行列である。
作成部120は、記憶部140におけるセンサ計測値sx,sy,srおよび変換式Fm2に基づいて、モーメントMx,Myを算出する。モーメントMx,Myは、負荷に関するデータの一例である。
作成部120は、計測時点と、算出したモーメントMxとの対応関係を示す複数のプロットPcを含む時系列のグラフGであるグラフGcを作成する。プロットPcは、プロットPの一例である。たとえば、プロットPcの形状は、円形である。なお、プロットPcの形状は、四角形および三角形等の円形以外の形状であってもよい。
図11および図12は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフの他の例を示す図である。図11および図12は、切削工具101を用いて所定の加工条件Wc2で切削加工を行ったときに作成部120により作成されるモーメントMx,MyのグラフGdを示している。グラフGdにおいて、横軸はモーメントMx[Nm]であり、縦軸はモーメントMy[Nm]である。図11は、1回目の切削加工におけるグラフGdを示しており、図12は、150回目の切削加工におけるグラフGdを示している。
図13および図14は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフの他の例を示す図である。図13および図14は、切削工具101を用いて所定の加工条件Wc3で切削加工を行ったときに作成部120により作成されるモーメントMx,MyのグラフGdを示している。図13は、1回目の切削加工におけるグラフGdを示しており、図14は、50回目目の切削加工におけるグラフGdを示している。
図11から図14を参照して、作成部120は、複数の計測時点における各ひずみセンサ20の計測結果に基づいて、計測時点ごとの、切削抵抗作用面18におけるモーメントMx,Myの対応関係を示す複数のプロットPdを含むグラフGであるグラフGdを作成する。プロットPdは、プロットPの一例である。たとえば、プロットPdの形状は、円形である。なお、プロットPdの形状は、四角形および三角形等の円形以外の形状であってもよい。
ここで、再び図5および図6を参照して、びびり振動が発生している状態におけるグラフGaでは、びびり振動が発生していない状態におけるグラフGaと比べて、切削抵抗Fxの絶対値が大きい。これは、びびり振動が発生している状態において、切削対象物への切刃の食いつきおよび離脱によって生じる正常な振動である基本振動に、異常振動であるびびり振動が加わるからである。びびり振動は、基本振動と比べて、周波数が高く、かつ、びびり振動の発生初期において振幅が小さい。また、びびり振動が発生している状態におけるグラフGaでは、びびり振動が発生していない状態におけるグラフGaと比べて、プロットPaが占める面積Agが大きい。これは、びびり振動が発生している状態におけるグラフGaでは、びびり振動が発生していない状態におけるグラフGaと比べて、切削抵抗Fxの取り得る値の範囲が大きいので、複数のプロットPa同士の重なりが少なくなるからである。
また、再び図7から図10を参照して、びびり振動が発生している状態におけるグラフGbでは、びびり振動が発生していない状態におけるグラフGbと比べて、切削抵抗Fx,Fyの絶対値が大きい。これは、びびり振動が発生している状態において、基本振動に異常振動であるびびり振動が加わるからである。また、びびり振動が発生している状態におけるグラフGbでは、びびり振動が発生していない状態におけるグラフGbと比べて、グラフGbにおいてプロットPbが占める面積Agが大きい。これは、びびり振動が発生している状態におけるグラフGbでは、びびり振動が発生していない状態におけるグラフGbと比べて、切削抵抗Fx,Fyの絶対値が大きくなることにより、複数のプロットPbが重なる領域が小さくなるからである。
また、再び図11および図12を参照して、150回目の切削加工におけるグラフGdでは、1回目の切削加工におけるグラフGdと比べて、モーメントMx,Myの絶対値が大きい。これは、150回の切削加工に使用したチップ14を用いる場合、切刃の摩耗により基本振動が大きくなることに加え、基本振動に、切刃の摩耗による異常振動が加わるからである。切刃の摩耗による異常振動は、基本振動と比べて、周波数が高く、かつ振幅が小さい。また、150回目の切削加工におけるグラフGdでは、1回目の切削加工におけるグラフGdと比べて、グラフGdにおいてプロットPdが占める面積Agが大きい。これは、150回目の切削加工におけるグラフGdでは、1回目の切削加工におけるグラフGdと比べて、モーメントMx,Myの絶対値が大きくなることにより、複数のプロットPdが重なる領域が小さくなるからである。
<検出部>
検出部130は、作成部120により作成されたグラフGにおいて複数のプロットPが占める面積Agに基づいて、切削工具101を用いた切削加工の状態を検出する検出処理を行う。
より詳細には、検出部130は、作成部120により対象期間TのグラフGが記憶部140に保存されると、記憶部140から当該グラフGを取得する。検出部130は、取得したグラフGにおいてプロットPが占める領域を黒色とし、当該グラフGにおいてプロットPが存在しない領域を白色とする2値画像を生成する。検出部130は、生成した2値画像における黒色の領域のピクセル数を面積Agとして算出する。
検出部130は、面積Agを算出すると、算出した面積Agを評価値として用いて、検出処理を行う。より詳細には、検出部130は、算出した面積Agと、所定の閾値ThAとを比較し、比較結果に基づいて、異常振動を検出する。閾値ThAは、正常な切削加工が行われている状態において作成部120により作成されるグラフGにおいてプロットPが占める面積Agに基づいて、予め設定される。
図15は、本開示の実施の形態に係る処理装置における検出部による検出処理の一例を示す図である。図15において、横軸は加工回数であり、縦軸は面積Ag[ピクセル]である。
図15を参照して、検出部130は、面積Agを算出するたびに、算出した面積Agと、閾値ThAの一例である閾値ThA1とを比較する。検出部130は、面積Agが閾値ThA1以下である場合、切削工具101を用いた切削加工の状態は正常であると判定する。一方、検出部130は、面積Agが閾値ThA1より大きい場合、切刃の摩耗による異常振動が発生していると判定する。
また、検出部130は、閾値ThA1の代わりに、または閾値ThA1に加えて、閾値ThAの一例である閾値ThA2を用いて検出処理を行ってもよい。より詳細には、検出部130は、面積Agを算出するたびに、算出した面積Agと、閾値ThA2とを比較する。検出部130は、面積Agが閾値ThA2以下である場合、切削工具101を用いた切削加工の状態は正常であると判定する。一方、検出部130は、面積Agが閾値ThA2より大きい場合、異常振動であるびびり振動が発生していると判定する。閾値ThA2は、閾値ThA1と異なる値であってもよいし、同じ値であってもよい。
なお、検出部130は、びびり振動および切刃の摩耗による異常振動に加えて、またはこれらの代わりに、切刃の欠損による異常振動等の、グラフGにおけるプロットPに変化を生じさせ得る他の異常振動を検出してもよい。また、検出部130は、異常振動を検出する代わりに、または異常振動を検出することに加えて、面積Agに基づいて、切削工具101の寿命を判定してもよい。上述したように、切刃の摩耗により、基本振動が大きくなる場合がある。したがって、基本振動が大きくなることに伴う面積Agの変化に基づいて、切削工具101の寿命を判定することができる。
たとえば、検出部130は、プロットPのサイズが異なる複数のグラフGの各々において複数のプロットPが占める面積Agに基づいて、切削工具101を用いた切削加工の状態を検出する。より詳細には、検出部130は、作成部120により同じ切削抵抗Fx,Fyを用いて作成された、プロットPのサイズが異なる複数のグラフGにおいて、プロットPが占める面積Agをそれぞれ算出する。検出部130は、グラフGごとに面積Agを算出すると、算出したグラフGごとの面積Agと、プロットPのサイズに応じて異なる複数の閾値ThAとを比較する。たとえば、検出部130は、グラフGごとに算出した複数の面積Agのうちの少なくともいずれか1つが対応の閾値ThA1より大きい場合、切刃の摩耗による異常振動が発生していると判定する。また、たとえば、グラフGごとに算出した複数の面積Agのうちの少なくともいずれか1つが対応の閾値ThA2より大きい場合、びびり振動が発生していると判定する。
検出部130は、異常振動が発生していると判定した場合、判定結果を処理システム301のユーザに通知する通知処理を行う。たとえば、ユーザは、当該判定結果の通知を受けて、切削工具101を用いた切削加工を停止する。ここで、びびり振動は、発生初期において振幅が小さい一方で、びびり振動の成長により振幅は大きくなり、加工精度および工具寿命に影響を与える場合がある。本開示の実施の形態に係る処理装置201では、発生初期における振幅の小さいびびり振動を検出することができるので、加工精度および工具寿命に影響を与える前に、ユーザに切削加工の停止を促すことができる。
たとえば、検出部130は、プロットPのサイズが異なる複数のグラフGのうちの少なくともいずれか1つを選択的に表示する処理を行う。より詳細には、検出部130は、作成部120により記憶部140にグラフ情報が保存されると、当該グラフ情報に含まれる表示用グラフGdisを図示しないディスプレイに表示する処理を行う。また、検出部130は、ユーザの操作に従い、プロットPのサイズが異なる複数のグラフGのうちの表示用グラフGdis以外のグラフGを図示しないディスプレイに表示する処理を行う。
なお、検出部130は、面積Agの代わりに、または面積Agに加えて、グラフGの全体の領域の面積に対する面積Agの比である面積比Rgを評価値として用いて、検出処理を行う構成であってもよい。より詳細には、検出部130は、グラフGの全体の領域のピクセル数に対する、2値画像における黒色の領域のピクセル数の比を面積比Rgとして算出する。検出部130は、面積比Rgを算出すると、算出した面積比Rgと所定の閾値ThBとを比較し、比較結果に基づいて、異常振動を検出する。閾値ThBは、正常な切削加工が行われている状態において作成部120により作成されるグラフGの全体の領域の面積に対する面積Agの面積比Rgに基づいて、予め設定される。
(シミュレーション結果)
図16から図18は、本開示の実施の形態に係る処理装置による異常振動の検出精度を説明するためのシミュレーション結果を示す図である。図16から図18は、異常振動の周波数を基本振動の周波数の20倍とし、異常振動の振幅を基本振動の振幅のゼロ倍から0.5倍に変化させたときの異常振動の検出精度のシミュレーション結果を示している。図16から図18において、横軸は、基本振動の振幅に対する異常振動の振幅の振幅比である。図16において、縦軸は、振動の振幅の標準偏差Ssd1である。図17において、縦軸は、面積Agである。図17は、切削工具101の負荷に関するデータの最大値が169ピクセルに相当する値であり、かつプロットPの直径が11ピクセルであるグラフGにおける、面積Agのシミュレーション結果を示している。図18において、縦軸は、異常振動の振幅がゼロのときを基準とする評価値の変化率である。図18における破線は、異常振動の振幅がゼロのときを基準とする標準偏差Ssd1の変化率を示している。図18における実線は、異常振動の振幅がゼロのときを基準とする面積Agの変化率を示している。
図16から図18を参照して、異常振動の振幅がゼロのときを基準とする面積Agの変化率は、異常振動の振幅がゼロのときを基準とする標準偏差Ssd1の変化率よりも大きい。したがって、評価値として面積Agを用いることにより、評価値として標準偏差Ssd1を用いた場合と比べて、異常振動の振幅の変化をより高感度で検出することができる。なお、評価値として面積比Rgを用いた場合も同様に、評価値として標準偏差Ssd1を用いた場合と比べて、異常振動の振幅の変化をより高感度で検出することができる。
図19から図21は、本開示の実施の形態に係る処理装置による異常振動の検出精度を説明するためのシミュレーション結果を示す図である。図19から図21は、異常振動の振幅を基本振動の振幅の0.05倍とし、異常振動の周波数を基本振動の周波数の2倍から100倍に変化させたときの異常振動の検出精度のシミュレーション結果を示している。図19から図21において、横軸は、基本振動の周波数に対する異常振動の周波数の周波数比である。図19において、縦軸は、振動の振幅の標準偏差Ssd2である。図20において、縦軸は、面積Agである。図20は、切削工具101の負荷に関するデータの最大値が169ピクセルに相当する値であり、かつプロットPの直径が11ピクセルであるグラフGにおける、面積Agのシミュレーション結果を示している。図21において、縦軸は、異常振動の周波数が基本振動の2倍のときを基準とする評価値の変化率である。図21における破線は、異常振動の周波数が基本振動の2倍のときを基準とする標準偏差Ssd2の変化率を示している。図21における実線は、異常振動の周波数が基本振動の2倍のときを基準とする面積Agの変化率を示している。
図19から図21を参照して、異常振動の周波数が基本振動の2倍のときを基準とする面積Agの変化率は、異常振動の周波数が基本振動の2倍のときを基準とする標準偏差Ssd2の変化率よりも大きい。したがって、評価値として面積Agを用いることにより、評価値として標準偏差Ssd2を用いた場合と比べて、異常振動の周波数の変化をより高感度で検出することができる。なお、評価値として面積比Rgを用いた場合も同様に、評価値として標準偏差Ssd2を用いた場合と比べて、異常振動の周波数の変化をより高感度で検出することができる。
図22から図24は、本開示の実施の形態に係る処理装置による異常振動の検出精度を説明するためのシミュレーション結果を示す図である。図22から図24において、横軸は半径方向切り込み量[mm]である。図22において、縦軸は、切削抵抗Fx,Fyの標準偏差である。図23において、縦軸は、面積Agである。図23は、切削工具101の負荷に関するデータの最大値が175ピクセルに相当する値であり、かつプロットPの直径が11ピクセルであるグラフGにおける、面積Agのシミュレーション結果を示している。図24において、縦軸は、評価値の変化率である。図22および図23における破線は、切削抵抗Fx,Fyによる基本振動のみが発生しているときの評価値のシミュレーション結果を示している。図22および図23における実線は、基本振動に、振幅が基本振動の最大値の5%であり、かつ周波数が基本振動の40倍の異常振動が加わったときの評価値のシミュレーション結果を示している。図24における破線は、異常振動が加わることによる切削抵抗Fx,Fyの標準偏差の変化率を示している。図24における実線は、異常振動が加わることによる面積Agの変化率を示している。
図22および図24を参照して、切削抵抗Fx,Fyの標準偏差は、半径方向切り込み量が9mm以上である場合、異常振動が加わることによる標準偏差の変化率が大きいので、評価値として切削抵抗Fx,Fyの標準偏差を用いることにより異常振動を検出することができる。一方、切削抵抗Fx,Fyの標準偏差は、半径方向切り込み量が9mm未満である場合、異常振動が加わることによる標準偏差の変化率は小さく、1に近い値であるので、評価値として切削抵抗Fx,Fyの標準偏差を用いた場合、異常振動を検出することは困難である。
図23および図24を参照して、これに対して、面積Agは、半径方向切り込み量に関わらず、異常振動が加わることによる標準偏差の変化率が大きい。具体的には、面積Agは、振幅が基本振動の最大値の5%の異常振動が発生することにより、12%以上上昇する。したがって、半径方向切り込み量に関わらず、評価値として面積Agを用いることにより異常振動を検出することができる。なお、面積比Rgは、面積Agと同様に、異常振動が加わることによる標準偏差の変化率が大きいので、評価値として面積比Rgを用いることにより異常振動を検出することができる。
(プロットPのサイズおよびピッチPT)
図25は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフの模式図である。図25は、異常振動が発生していない状態におけるグラフGを示している。図25を参照して、たとえば、作成部120は、センサ計測値sx,sy,srに基づいて、半径Rの円C1の周上に配置される複数のプロットPを含むグラフGを作成する。
図26は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフにおけるプロットの位置関係を示す模式図である。図26は、図25において隣接する2つのプロットの位置関係を示している。図26を参照して、作成部120は、異常振動が発生していない状態すなわち基本振動のみが発生している状態において、少なくとも一部のプロットPが他のプロットPと重なって配置されるグラフGを作成する。ここで、プロットPの直径をdとし、プロットPは一定のピッチPTで配置されるものとする。
図27は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフにおけるプロットの位置関係を示す模式図である。図27は、異常振動が発生している状態におけるプロットPの位置関係を示している。図27を参照して、異常振動が発生することにより隣接する2つのプロットPのいずれか一方の位置が円C1の径方向に沿って変化した場合、当該2つのプロットPの重なる領域が小さくなるので、グラフGにおいてプロットPが占める面積Agは大きくなる。したがって、面積Agを評価値として用いることにより、異常振動の発生を検出することができる。
図28から図30は、本開示の実施の形態に係る処理装置により作成されるグラフに含まれるプロットのピッチと検出精度との関係を説明するためのシミュレーション結果を示す図である。図28から図30において、横軸は、円C1の直径Dに対するピッチPTの比率Prt_pt[%]であり、縦軸は、異常振動の振幅がゼロのときを基準とする面積Agの変化率CRgである。図28から図30における実線は、円C1の直径Dの4%を標準偏差とする正規分布のランダムな異常振動が発生している状態における変化率CRgを示している。図28から図30における破線は、円C1の直径Dの12%を標準偏差とする正規分布のランダムな異常振動が発生している状態における変化率CRgを示している。図28から図30における一点鎖線は、円C1の直径Dの20%を標準偏差とする正規分布のランダムな異常振動が発生している状態における変化率CRgを示している。
図28は、円C1の直径Dに対するプロットPの直径dの比率Prt_dが40%である場合における、比率Prt_ptと変化率CRgとの関係を示している。図29は、円C1の直径Dに対するプロットPの直径dの比率Prt_dが10%である場合における、比率Prt_ptと変化率CRgとの関係を示している。図30は、円C1の直径Dに対するプロットPの直径dの比率Prt_dが5%である場合における、比率Prt_ptと変化率CRgとの関係を示している。
図28から図30を参照して、プロットPの直径dが小さいほど、ピッチPTの比率Prt_ptが小さい領域において変化率CRgが大きい。したがって、プロットPの直径dをより小さい値に設定し、かつプロットPのピッチPTをより小さい値に設定することにより、異常振動をより高感度で検出することができる。ただし、ピッチPTが小さいほど、検出処理に必要なプロットPの数が多くなる。
一方、プロットPの直径dが大きいほど、比率Prt_ptの増加に対する変化率CRgの低下率が小さい。したがって、プロットPの直径dをより大きい値に設定した場合、異常振動を検出するためのピッチPTの設定の自由度が大きい。そのため、ピッチPTをより大きい値に設定することにより、検出処理に必要なプロットPの数を抑えながら、異常振動を検出することができる。
たとえば、作成部120は、プロットPのピッチPTに応じてプロットPのサイズが設定されたグラフGを作成する。より詳細には、作成部120は、予め、切削工具101を用いて切削加工を行ったときに発生する基本振動の大きさを取得する。次に、作成部120は、基本振動の大きさに対する比率として表される、切削工具101を用いて切削加工を行ったときに発生し得る異常振動の大きさを取得する。次に、作成部120は、たとえば図28から図30のシミュレーション結果に基づいて、発生し得る異常振動を検出可能な、ピッチPTの比率Prt_ptと、直径dの比率Prt_dとを決定する。なお、作成部120は、ピッチPTの比率Prt_ptを決定する代わりに、加工条件等に基づいて予め設定されたピッチPTの比率Prt_ptを取得してもよい。
たとえば、作成部120は、処理システム301の運用前に予め取得したひずみセンサ20の計測結果に基づくデータの最大値の5%以上であり、かつデータの最大値の20%以下の直径dを有するプロットPを含むグラフGを作成する。より詳細には、作成部120は、異常振動が発生していない状態において、たとえば半径Rの円C1の周上に配置される複数のプロットPを含むグラフGを生成し、円C1の直径Dに対するプロットPの直径dの比率Prt_dを、5%以上であり、かつ20%以下の数値範囲において設定する。このような数値範囲内の比率Prt_dを設定することにより、異常振動が発生していない状態において各プロットPが重なる領域を確保することができ、かつ異常振動が発生した場合においてプロットPがグラフGからはみ出すことなく各プロットPの重なりがより確実に解消されるので、面積Ag等の評価値を用いて異常振動をより高感度で検出することができる。
[動作の流れ]
図31は、本開示の実施の形態に係る処理装置がセンサ計測値を取得する際の動作手順の一例を定めたフローチャートである。
図31を参照して、まず、処理装置201は、切削加工の開始後、切削工具101における無線通信装置23からの無線信号を待ち受け(ステップS11でNO)、無線信号を受信すると(ステップS11でYES)、受信した無線信号からセンサ計測値sx,sy,srおよび識別情報を取得する(ステップS12)。
次に、処理装置201は、取得したセンサ計測値sx,sy,srおよび識別情報を記憶部140に保存し(ステップS13)、切削工具101における無線通信装置23からの新たな無線信号を待ち受ける(ステップS11でNO)。
図32は、本開示の実施の形態に係る処理装置が検出処理を行う際の動作手順の一例を定めたフローチャートである。
図32を参照して、まず、処理装置201は、作成周期Pgに従う作成タイミングを待ち受け(ステップS21でNO)、作成タイミングが到来すると(ステップS21でYES)、対象期間Tにおける複数のセンサ計測値sx,sy,srに基づいて、対象期間Tにおける計測時点ごとの切削抵抗Fx,Fyを算出する。なお、処理装置201は、切削抵抗Fx,Fyの代わりに、または切削抵抗Fx,Fyに加えて、モーメントMx,Myを算出してもよい(ステップS22)。
次に、処理装置201は、算出した切削抵抗Fx,Fyを用いてグラフGを作成する(ステップS23)。
次に、処理装置201は、作成したグラフGのうちの表示用グラフGdisを図示しないディスプレイに表示する処理を行う(ステップS24)。
次に、処理装置201は、作成したグラフGにおいて複数のプロットPが占める面積Agを算出する(ステップS25)。
次に、処理装置201は、算出した面積Agを評価値として用いて、検出処理を行う。より詳細には、処理装置201は、面積Agと閾値ThAとを比較し、比較結果に基づいて、異常振動を検出する(ステップS26)。
次に、処理装置201は、切刃の摩耗による異常振動またはびびり振動が発生していると判定した場合、判定結果を処理システム301のユーザに通知する通知処理を行う(ステップS27)。
次に、処理装置201は、新たな生成タイミングを待ち受ける(ステップS21でNO)。
なお、本開示の実施の形態に係る処理システム301は、ひずみセンサ20を備える構成であるとしたが、これに限定するものではない。処理システム301は、ひずみセンサ20の代わりに、加速度センサを備える構成であってもよい。当該加速度センサは、切削加工時の切削工具101の負荷に関する状態を示す物理量として、シャフト部10の振動における加速度を計測する。この場合、処理装置201における作成部120は、加速度センサによる計測結果に基づいて、グラフGを作成する。ひずみセンサ20は、加速度センサと比べて、加工精度に影響を与える切削工具101の変形を検知することができる。一方、加速度センサは、ひずみセンサ20と比べて、切削工具101のより小さい振動を検知することができる。
また、本開示の実施の形態に係る処理装置201では、作成部120は、プロットPのピッチPTに応じてプロットPのサイズが設定されたグラフGを作成する構成であるとしたが、これに限定するものではない。作成部120は、ピッチPTに関わらず設定されたサイズを有するプロットPを含むグラフGを作成する構成であってもよい。
また、本開示の実施の形態に係る処理装置201では、作成部120は、円C1の直径Dに対するプロットPの直径dの比率Prt_dを、5%以上であり、かつ20%以下の数値範囲において設定する構成であるとしたが、これに限定するものではない。作成部120は、比率Prt_dを、当該数値範囲外の値に設定する構成であってもよい。
また、本開示の実施の形態に係る処理装置201では、作成部120は、切削工具101が複数回転するのに要する期間における複数の計測時点におけるひずみセンサ20の計測結果に基づいて、グラフGを作成する構成であるとしたが、これに限定するものではない。作成部120は、切削工具101が1回転するのに要する期間における複数の計測時点におけるひずみセンサ20の計測結果に基づいて、グラフGを作成する構成であってもよい。
また、本開示の実施の形態に係る処理装置201では、作成部120は、同じセンサ計測値sx,sy,srに基づいて算出した同じ切削抵抗Fx,Fyを用いて、プロットPbの直径がそれぞれ異なる複数のグラフGbを作成する構成であるとしたが、これに限定するものではない。作成部120は、同じセンサ計測値sx,sy,srに基づいて算出した同じ切削抵抗Fx,Fyを用いて、1つのみのグラフGを作成する構成であってもよい。
また、本開示の実施の形態に係る処理装置201では、検出部130は、作成部120により記憶部140にグラフ情報が保存されると、当該グラフ情報に含まれる表示用グラフGdisを図示しないディスプレイに表示する処理を行う構成であるとしたが、これに限定するものではない。検出部130は、表示用グラフGdis等のグラフGを表示する処理を行わない構成であってもよい。
また、本開示の実施の形態に係る処理装置201では、検出部130は、プロットPのサイズが異なる複数のグラフGの各々において複数のプロットPが占める面積Agに基づいて、切削工具101を用いた切削加工の状態を検出する構成であるとしたが、これに限定するものではない。検出部130は、1つのグラフGにおいて複数のプロットPが占める面積Agに基づいて、切削工具101を用いた切削加工の状態を検出する構成であってもよい。
また、本開示の実施の形態に係る処理装置201では、作成部120は、時系列のグラフGa,Gcと、グラフGb,Gdとを作成する構成であるとしたが、これに限定するものではない。作成部120は、グラフGa,Gcを作成する一方で、グラフGb,Gdの作成を行わない構成であってもよい。また、作成部120は、グラフGb,Gdを作成する一方で、グラフGa,Gcの作成を行わない構成であってもよい。
また、本開示の実施の形態に係る処理システム301は、転削加工に用いられる切削工具101を備える構成であるとしたが、これに限定するものではない。処理システム301は、切削工具101の代わりに、創成工具加工に用いられる創成工具を備える構成であってもよい。
図33は、本開示の実施の形態の変形例に係る処理システムの構成を示す図である。図33を参照して、処理システム302は、処理システム301と比べて、切削工具101の代わりに切削工具102を備える。切削工具102は、切削対象物WKの旋削加工に用いられる。たとえば、切削対象物WKは、外周面に溝を有する円柱形状の金属である。切削工具102には、チップ14sが取り付けられる。切削工具102は、回転する切削対象物WKの外周面の断続加工を行う。
処理装置201における無線通信部110は、切削工具102における無線通信装置23から受信した無線信号からセンサ計測値sx,sy,srおよび識別情報を取得する。そして、無線通信部110は、当該センサ計測値sx,sy,srを当該識別情報に対応付けて記憶部140に保存する。
図34および図35は、本開示の実施の形態に係る処理装置における作成部により作成されるグラフの一例を示す図である。図34および図35は、切削工具103を用いて所定の加工条件Wc4で切削加工を行ったときに作成部120により作成されるグラフGeを示している。グラフGeにおいて、横軸は時間[秒]であり、縦軸はひずみε[με]である。ひずみεは、切削抵抗Fと相関がある。図34は、切削工具102のびびり振動が発生していない状態におけるグラフGeを示しており、図35は、切削工具102のびびり振動が発生している状態におけるグラフGeを示している。
図34および図35を参照して、作成部120は、計測時点と、ひずみεとの対応関係を示す複数のプロットPeを含む時系列のグラフGであるグラフGeを作成する。プロットPeは、プロットPの一例である。たとえば、プロットPeの形状は、円形である。なお、プロットPeの形状は、四角形および三角形等の円形以外の形状であってもよい。たとえば、作成部120は、切削対象物WKが複数回転するのに要する期間における複数の計測時点におけるひずみセンサ20の計測結果に基づいて、グラフGeを作成する。
ここで、びびり振動が発生している状態におけるグラフGeでは、びびり振動が発生していない状態におけるグラフGeと比べて、ひずみεの絶対値が大きい。これは、びびり振動が発生している状態において、切削対象物への切刃の食いつきおよび離脱によって生じる正常な振動である基本振動に、異常振動であるびびり振動が加わるからである。びびり振動は、基本振動と比べて、周波数が高く、かつ、びびり振動の発生初期において振幅が小さい。また、びびり振動が発生している状態におけるグラフGeでは、びびり振動が発生していない状態におけるグラフGeと比べて、プロットPeが占める面積Agが大きい。これは、びびり振動が発生している状態におけるグラフGeでは、びびり振動が発生していない状態におけるグラフGeと比べて、ひずみεの取り得る値の範囲が大きいので、複数のプロットPe同士の重なりが少なくなるからである。
検出部130は、作成部120により対象期間TのグラフGeが記憶部140に保存されると、記憶部140から当該グラフGeを取得する。検出部130は、取得したグラフGeにおいてプロットPeが占める領域を黒色とし、当該グラフGeにおいてプロットPeが存在しない領域を白色とする2値画像を生成する。検出部130は、生成した2値画像における黒色の領域のピクセル数を面積Agとして算出する。検出部130は、面積Agを算出すると、算出した面積Agを評価値として用いて、検出処理を行う。
ところで、切削工具を用いた切削加工の状態をより正確に検出することが可能な技術が望まれる。より詳細には、一般的に異常振動よりも正常な振動の方が大きく、センサの計測結果の標準偏差には異常振動の大きさが反映され難いので、標準偏差を評価値として用いて切削加工の状態を検出することは容易ではない。また、フーリエ変換を用いて異常振動の振動成分を抽出する場合、高いサンプリング周波数の処理装置が必要となる。また、グラフの包絡線を解析する手法では、異常振動を検出することは困難である。
これに対して、本開示の実施の形態に係る処理システム301は、切削工具と、ひずみセンサ20と、処理装置201とを備え、ひずみセンサ20は、切削加工時の切削工具101の負荷に関する状態を示す物理量を計測し、処理装置201は、複数の計測時点におけるひずみセンサ20の計測結果に基づいて、計測時点ごとの負荷に関するデータを示す複数のプロットPを含むグラフGを作成し、作成したGグラフにおいて複数のプロットPが占める面積に基づいて、切削工具101を用いた切削加工の状態を検出する。
このように、ひずみセンサ20の計測結果に基づいて作成したグラフGにおいて複数のプロットPが占める面積Agに基づいて、切削加工の状態を検出する構成により、異常振動が発生することによるプロットPの位置の変化を、グラフGにおいて複数のプロットPが占める面積Agの変化として検知し、当該面積Agの変化に基づいて異常振動を検出することができる。また、グラフGにおいて複数のプロットPが占める面積Agは、ひずみセンサ20の計測結果の標準偏差等と比べて異常振動の振幅変化が反映され易いところ、当該面積Agを評価値として用いて、異常振動の振幅変化をより高感度で検出することができる。したがって、切削工具101を用いた切削加工の状態をより正確に検出することができる。
上記実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
上述の実施形態の各処理(各機能)は、1または複数のプロセッサを含む処理回路(Circuitry)により実現される。上記処理回路は、上記1または複数のプロセッサに加え、1または複数のメモリ、各種アナログ回路、各種デジタル回路が組み合わされた集積回路等で構成されてもよい。上記1または複数のメモリは、上記各処理を上記1または複数のプロセッサに実行させるプログラム(命令)を格納する。上記1または複数のプロセッサは、上記1または複数のメモリから読み出した上記プログラムに従い上記各処理を実行してもよいし、予め上記各処理を実行するように設計された論理回路に従って上記各処理を実行してもよい。上記プロセッサは、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、およびASIC(Application Specific Integrated Circuit)等、コンピュータの制御に適合する種々のプロセッサであってよい。なお、物理的に分離した上記複数のプロセッサが互いに協働して上記各処理を実行してもよい。たとえば、物理的に分離した複数のコンピュータのそれぞれに搭載された上記プロセッサがLAN(Local Area Network)、WAN (Wide Area Network)、およびインターネット等のネットワークを介して互いに協働して上記各処理を実行してもよい。上記プログラムは、外部のサーバ装置等から上記ネットワークを介して上記メモリにインストールされても構わないし、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disk Read Only Memory)、および半導体メモリ等の記録媒体に格納された状態で流通し、上記記録媒体から上記メモリにインストールされても構わない。
以上の説明は、以下に付記する特徴を含む。
[付記1]
切削工具と、
センサと、
処理部とを備え、
前記センサは、切削加工時の前記切削工具の負荷に関する状態を示す物理量を計測し、
前記処理部は、複数の計測時点における前記センサの計測結果に基づいて、前記計測時点ごとの前記負荷に関するデータを示す複数のプロットを含むグラフを作成し、作成した前記グラフにおいて前記複数のプロットが占める面積に基づいて、前記切削工具を用いた切削加工の状態を検出する検出処理を行い、
前記処理部は、前記検出処理において、前記切削工具における切刃の摩耗による異常振動の検出、びびり振動の検出、前記切刃の欠損による異常振動の検出、および前記切削工具の寿命の判定、のうちの少なくともいずれか1つを実行する、処理システム。