[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7447512B2 - bonded structure - Google Patents

bonded structure Download PDF

Info

Publication number
JP7447512B2
JP7447512B2 JP2020013900A JP2020013900A JP7447512B2 JP 7447512 B2 JP7447512 B2 JP 7447512B2 JP 2020013900 A JP2020013900 A JP 2020013900A JP 2020013900 A JP2020013900 A JP 2020013900A JP 7447512 B2 JP7447512 B2 JP 7447512B2
Authority
JP
Japan
Prior art keywords
protrusions
protrusion
bonded structure
carbon fibers
perforations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020013900A
Other languages
Japanese (ja)
Other versions
JP2021120196A (en
Inventor
卓唯 李
和義 西川
渉 神岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp filed Critical Omron Corp
Priority to JP2020013900A priority Critical patent/JP7447512B2/en
Publication of JP2021120196A publication Critical patent/JP2021120196A/en
Application granted granted Critical
Publication of JP7447512B2 publication Critical patent/JP7447512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)
  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Description

本発明は炭素繊維複合樹脂と金属との接合構造体に関する。 The present invention relates to a bonded structure of carbon fiber composite resin and metal.

熱可塑性炭素繊維複合樹脂(CFRTP)はアルミ合金等の金属に代替し得る剛性を有し、また炭素繊維を含むために軽量であることから、航空機および自動車の構造材料、スポーツ用品などに使用されている。CFRTPは、熱可塑性であるため射出成形機で成形できる。そのため、CFRTPは、従来の熱硬化性炭素繊維複合樹脂と比較して、生産性の向上、形状自由度の向上が実現できる。 Thermoplastic carbon fiber composite resin (CFRTP) has a rigidity that can replace metals such as aluminum alloy, and is lightweight because it contains carbon fiber, so it is used as a structural material for aircraft and automobiles, sports equipment, etc. ing. Since CFRTP is thermoplastic, it can be molded using an injection molding machine. Therefore, compared to conventional thermosetting carbon fiber composite resins, CFRTP can achieve improved productivity and increased degree of freedom in shape.

CFRTPでは材料強度が足りない部位においては、一部金属が使用される。その場合、CFRTPと金属との接合が要求される。 In CFRTP, metal is used in some areas where the material strength is insufficient. In that case, bonding between CFRTP and metal is required.

接合方法としては一般的に、接着剤を用いる方法が挙げられる。しかしながら、材料の熱膨張差から生じるせん断応力に耐えるためには、用いることのできる接着剤は弾性接着剤に限定される。一方で、弾性接着剤は、膨潤性および分解性を示すため、接合の維持が困難となり得る。したがって、接着剤を介さずに接合させる手段が望まれていた。 The bonding method generally includes a method using an adhesive. However, in order to withstand shear stresses resulting from differential thermal expansion of the materials, the adhesives that can be used are limited to elastic adhesives. On the other hand, elastic adhesives exhibit swelling and degradability, which can make it difficult to maintain a bond. Therefore, a means for joining without using an adhesive has been desired.

例えば特許文献1では、アルミニウム合金形状物の表面が特定の径の超微細凹部に覆われ、かつ、アミン系分子が化学吸着している状態にする工程と、前記アルミニウム合金形状物を射出成形金型にインサートし、特定の樹脂または樹脂組成物を射出して射出接合物を作製する工程と、熱プレス金型に前記射出接合物を装填し、その上に特定のマトリックス樹脂を含むFRTPプリプレグまたはFRTP成形物を積層して装填する工程と、前記樹脂同士の熱融着を行う熱プレス工程とを有する、金属とFRTPの複合体の製造方法が開示されている。 For example, Patent Document 1 discloses a process in which the surface of an aluminum alloy shape is covered with ultra-fine recesses of a specific diameter and amine molecules are chemically adsorbed, and the aluminum alloy shape is injection molded. A process of inserting into a mold and injecting a specific resin or resin composition to produce an injection bonded product, loading the injection bonded product into a heat press mold, and placing an FRTP prepreg or FRTP prepreg containing a specific matrix resin thereon. A method for producing a composite of metal and FRTP is disclosed, which includes a step of stacking and loading FRTP molded products and a hot pressing step of heat-sealing the resins together.

また、特許文献2では1パルスが複数のサブパルスで構成された、周期が15ns以下のレーザを第一部材の表面に照射することにより、開口を有する穿孔部を形成する工程と、前記穿孔に第二部材を充填して固化させる工程とを備える、接合構造体の製造方法が開示されている。 Further, Patent Document 2 discloses a step of forming a perforated portion having an opening by irradiating the surface of a first member with a laser beam having a period of 15 ns or less, in which one pulse is composed of a plurality of sub-pulses, and a step of forming a perforated portion in the perforation. Disclosed is a method for manufacturing a joined structure, which includes a step of filling and solidifying two members.

加えて非特許文献1では、超音波接合によりCFRTPと金属との機械的な接合を実現したことが記載されている。 In addition, Non-Patent Document 1 describes that mechanical bonding between CFRTP and metal was achieved by ultrasonic bonding.

特開2016-60051号公報Japanese Patent Application Publication No. 2016-60051 特開2016-43382号公報Japanese Patent Application Publication No. 2016-43382

Balle et al., Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer joints, Materialwissenschaft und Werkstofftechnik, Vol. 38, Issue 11, p. 934-938, 2007Balle et al., Ultrasonic spot welding of aluminum sheet/carbon fiber reinforced polymer joints, Materialwissenschaft und Werkstofftechnik, Vol. 38, Issue 11, p. 934-938, 2007

特許文献1に記載の複合体の製造方法は、金属部と樹脂部との固着力が強く、また量産した場合でも製品安定性を確保できるとされている。 The method for manufacturing a composite described in Patent Document 1 is said to have strong adhesion between the metal part and the resin part, and to ensure product stability even when mass-produced.

しかしながら、特許文献1に記載の発明では、金属の表面に粗面を形成する際、粗面の凹凸の形状を制御できない。したがって、その後のNMT(Nano Molding Tech.)による接着処理を経ても、接合面は制御されていない不規則な表面形状を有することになる。これにより、接合時のアンカー効果にバラつきが生じることになる。そのため、実際の商品に即した複雑な接合形状に加工した場合、接合面には応力が集中する点が多数発生し、成型後の熱収縮応力、および、冷熱衝撃試験による繰り返しの応力振幅によって、当該応力が集中する点において剥離が発生する可能性がある。 However, in the invention described in Patent Document 1, when forming a rough surface on a metal surface, the shape of the unevenness of the rough surface cannot be controlled. Therefore, even after the subsequent bonding process using NMT (Nano Molding Tech.), the bonded surface will have an uncontrolled and irregular surface shape. This causes variations in the anchor effect during bonding. Therefore, when processed into a complex joint shape that matches the actual product, there will be many points where stress is concentrated on the joint surface, and due to heat shrinkage stress after molding and repeated stress amplitude due to thermal shock tests, Peeling may occur at points where the stress is concentrated.

特許文献2に記載の接合構造体の製造方法は、樹脂と穿孔との間に生じるアンカー効果を利用することで、より強固な金属と樹脂との接合が実現できるとされている。しかしながら、樹脂として熱可塑性炭素繊維複合樹脂を用いた場合、通常は炭素繊維が十分に解繊されていないため、炭素繊維と穿孔との絡み合い効果が生じず、接合部における接合強度の観点から改善の余地があった。 The method for manufacturing a bonded structure described in Patent Document 2 is said to be able to achieve stronger bonding between metal and resin by utilizing the anchor effect that occurs between the resin and the perforations. However, when thermoplastic carbon fiber composite resin is used as the resin, the carbon fibers are usually not sufficiently defibrated, so the entanglement effect between the carbon fibers and the perforations does not occur, which improves the joint strength at the joint. There was room for.

また、加工方法がサブパルスレーザに限定され、穿孔の形状も限定されているため加工性の観点からも改善の余地があった。 Furthermore, since the processing method is limited to sub-pulse laser and the shape of the perforation is also limited, there is room for improvement from the viewpoint of processability.

また、非特許文献1に記載の接合体はCFRTPと金属を超音波接合によって直接接合することによって得られるが、せん断強度において改善の余地があった。 Further, although the bonded body described in Non-Patent Document 1 is obtained by directly bonding CFRTP and metal by ultrasonic bonding, there is room for improvement in shear strength.

本発明は、一側面では、このような実情を鑑みてなされたものであり、その目的は高い接合強度と冷熱衝撃耐性を有する接合構造体を提供することである。 One aspect of the present invention has been made in view of these circumstances, and an object thereof is to provide a bonded structure having high bonding strength and thermal shock resistance.

本発明は上述した課題を解決するために、以下の構成を採用する。 In order to solve the above-mentioned problems, the present invention employs the following configuration.

すなわち、本発明の一側面に係る接合構造体は、表面に突起および穿孔の少なくともいずれか一方が形成された金属加工物である第一部材と、熱可塑性樹脂と当該熱可塑性樹脂中に解繊された状態で分散された炭素繊維とを含み、前記突起および前記穿孔の少なくともいずれか一方を介して前記第一部材と接合された、第二部材と、を備える。 That is, a bonded structure according to one aspect of the present invention includes a first member that is a metal workpiece having at least one of protrusions and perforations formed on the surface, a thermoplastic resin, and a defibrated structure in the thermoplastic resin. a second member including carbon fibers dispersed in a dispersed state and joined to the first member via at least one of the protrusion and the perforation.

上記構成によれば、第一部材の金属加工物の突起が第二部材の熱可塑性樹脂に食い込むこと、または第一部材の金属加工物の穿孔に第二部材の熱可塑性樹脂が充填されることにより、第一部材と第二部材とが接合する。加えて、第二部材に含まれる解繊された炭素繊維が第一部材の金属加工物の突起または穿孔と絡み合う。これにより、接合部では炭素繊維によるフィラー効果と、突起または穿孔に対するアンカー効果が生じる。したがって、応力が印加された場合でも、第一部材と第二部材との間で強固な接合を維持できる。さらに第一部材に多数の突起または穿孔が形成され、第二部材の炭素繊維が解繊されていることにより、接合部におけるせん断応力を分散し、応力集中を抑制できる。このため、前記接合構造体は、繰り返しの冷熱衝撃に耐性を有する。したがって、先行技術と比べ、本発明の一側面ではより強固に接合し、且つ冷熱衝撃耐性が高い接合構造体を得られる。 According to the above configuration, the projections of the metal workpiece of the first member bite into the thermoplastic resin of the second member, or the thermoplastic resin of the second member is filled into the holes of the metal workpiece of the first member. As a result, the first member and the second member are joined. In addition, the defibrated carbon fibers contained in the second member become intertwined with the protrusions or perforations of the metalwork in the first member. This results in a filler effect by the carbon fibers and an anchoring effect for the protrusions or perforations at the joint. Therefore, even when stress is applied, a strong bond can be maintained between the first member and the second member. Further, by forming a large number of protrusions or perforations in the first member and defibrating the carbon fibers in the second member, shear stress at the joint can be dispersed and stress concentration can be suppressed. Therefore, the bonded structure has resistance to repeated thermal shocks. Therefore, in one aspect of the present invention, compared to the prior art, it is possible to obtain a bonded structure that is more firmly bonded and has high thermal shock resistance.

本明細書において「解繊された状態」とは、凝集した束ではなく、単独で存在する炭素繊維が含まれる状態を意味する。必ずしも全ての炭素繊維が単独で存在していなくてもよい。単独で存在する炭素繊維の割合は、後述の解繊率として規定され得る。また本明細書において炭素繊維が突起または穿孔と「絡み合う」とは、炭素繊維の少なくとも一部が突起の間または穿孔の中に挿入されることを意味する。 As used herein, the term "defibrated state" refers to a state in which carbon fibers are present singly, rather than in aggregated bundles. All carbon fibers do not necessarily have to exist alone. The proportion of carbon fibers present alone can be defined as the defibration rate, which will be described later. Also, in this specification, the carbon fibers are "entangled" with the protrusions or perforations, which means that at least a portion of the carbon fibers are inserted between the protrusions or into the perforations.

上記一側面に係る接合構造体において、炭素繊維の下記式から導かれる解繊率は、50%以上であってもよい。当該構成により、突起または穿孔と絡み合う炭素繊維の割合が増加する。したがって、より強固に接合した接合構造体を得られる。
解繊率(%)=(単独で存在する炭素繊維の本数)/(炭素繊維の総本数)×100
上記一側面に係る接合構造体において、前記突起の間隔は、5~150μmであってもよい。当該構成によればアンカー効果が発揮されやすい。本明細書において、「突起の間隔」とは、突起の先端側から見て、突起の輪郭線を等距離拡大させた時、隣接する他の突起の輪郭線と最初に接する距離を意味する。また本明細書において、「突起の先端」とは、突起が突出している側から平面を接近させた場合に最初に当該平面に接する突起の部位を意味する。
In the bonded structure according to the above one aspect, the defibration rate of the carbon fibers derived from the following formula may be 50% or more. This configuration increases the proportion of carbon fibers intertwined with protrusions or perforations. Therefore, a bonded structure that is more firmly bonded can be obtained.
Defibration rate (%) = (number of carbon fibers existing alone) / (total number of carbon fibers) x 100
In the bonded structure according to the one aspect, the distance between the protrusions may be 5 to 150 μm. According to this configuration, the anchor effect is likely to be exhibited. As used herein, the term "interval between protrusions" refers to the distance at which the protrusion first contacts the outline of another adjacent protrusion when the protrusion's outline is enlarged by an equal distance when viewed from the tip side of the protrusion. Furthermore, in this specification, the term "tip of a protrusion" refers to the part of the protrusion that first comes into contact with a plane when the plane is approached from the side from which the protrusion protrudes.

上記一側面に係る接合構造体において、前記突起の幅は10~200μmであってもよい。当該構成によればアンカー効果が発揮されやすい。本明細書において、「突起の幅」とは突起の先端側から見た突起輪郭線の最大フェレ径を意味する。 In the bonded structure according to the one aspect, the protrusion may have a width of 10 to 200 μm. According to this configuration, the anchor effect is likely to be exhibited. In this specification, the term "width of the protrusion" means the maximum Feret diameter of the protrusion contour line viewed from the tip side of the protrusion.

上記一側面に係る接合構造体において、前記突起の高さは15μm以上であってもよい。当該構成によればアンカー効果が発揮されやすい。本明細書において、「突起の高さ」とは、突起の先端から基部までの距離を意味する。 In the bonded structure according to the above one aspect, the height of the protrusion may be 15 μm or more. According to this configuration, the anchor effect is likely to be exhibited. As used herein, "height of a protrusion" means the distance from the tip to the base of the protrusion.

上記一側面に係る接合構造体において、前記穿孔の開口径は、5μm以上150μm以下であってもよい。当該構成によれば、接合構造体の接合強度が向上する。本明細書において、「穿孔の開口径」とは、穿孔の開口部における最小フェレ径を意味する。また本明細書において、「穿孔の開口部」とは、穿孔が開口している側から平面を接近させた場合に最初に当該平面に接する金属加工物表面の非金属部位、すなわち金属が存在しない部位を意味する。 In the bonded structure according to the one aspect, the opening diameter of the perforation may be 5 μm or more and 150 μm or less. According to this configuration, the bonding strength of the bonded structure is improved. In this specification, the "opening diameter of a perforation" means the minimum Feret diameter at the opening of a perforation. In addition, in this specification, the "opening of a perforation" refers to a non-metallic part of the surface of a metal workpiece that first comes into contact with a plane when the plane is approached from the side where the perforation is open, that is, there is no metal. It means a part.

上記一側面に係る接合構造体において、前記穿孔の深さは、15μm以上であってもよい。当該構成によれば、接合構造体の接合強度が向上する。本明細書において、「穿孔の深さ」とは、穿孔の開口部から底部までの距離を意味する。 In the bonded structure according to the one aspect, the depth of the perforation may be 15 μm or more. According to this configuration, the bonding strength of the bonded structure is improved. As used herein, "perforation depth" means the distance from the opening to the bottom of the perforation.

上記一側面に係る接合構造体の製造方法は、金属材料の表面に突起および穿孔の少なくともいずれか一方を形成して第一部材を得る工程と、内部帰還型スクリューによって熱可塑性樹脂中に炭素繊維を解繊された状態で分散させて第二部材を得る工程、すなわち高せん断加工により第二部材を得る工程と、前記第一部材と前記第二部材とを接合する工程と、を含む。当該製造方法によれば、炭素繊維が解繊された状態で第二部材に含まれるため、接合強度が向上する。 The method for manufacturing a bonded structure according to the above aspect includes a step of forming at least one of protrusions and perforations on the surface of a metal material to obtain a first member, and a step of forming carbon fibers in a thermoplastic resin using an internal feedback screw. The method includes the steps of obtaining a second member by dispersing the fibers in a defibrated state, that is, obtaining the second member by high shear processing, and joining the first member and the second member. According to the manufacturing method, since the carbon fibers are included in the second member in a defibrated state, the bonding strength is improved.

本発明の一態様によれば、高い接合強度と冷熱衝撃耐性を有する接合構造体を提供できる。 According to one aspect of the present invention, a bonded structure having high bonding strength and thermal shock resistance can be provided.

図1は、実施形態に係る接合構造体の断面の一例を模式的に例示する。FIG. 1 schematically illustrates an example of a cross section of a bonded structure according to an embodiment. 図2は、実施形態に係る突起を形成するためのレーザ照射の方法を模式的に表す。FIG. 2 schematically represents a laser irradiation method for forming protrusions according to the embodiment. 図3は、実施例に係る第一部材のレーザ加工部を模式的に表す。FIG. 3 schematically represents the laser processing portion of the first member according to the example. 図4は、実施例に係る引張試験の方法を模式的に表す。FIG. 4 schematically represents the tensile test method according to the example. 図5は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 5 schematically represents an example of the protrusion of the first member according to the embodiment. 図6は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 6 schematically represents an example of the protrusion of the first member according to the embodiment. 図7は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 7 schematically represents an example of the protrusion of the first member according to the embodiment. 図8は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 8 schematically represents an example of the protrusion of the first member according to the embodiment. 図9は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 9 schematically represents an example of the protrusion of the first member according to the embodiment. 図10は、実施形態に係る第一部材の穿孔の一例を模式的に表す。FIG. 10 schematically represents an example of perforation of the first member according to the embodiment. 図11は、実施形態に係る第一部際の穿孔の一例を模式的に表す。FIG. 11 schematically represents an example of perforation near the first part according to the embodiment. 図12は、実施形態に係る第一部材の突起の配列の一例を模式的に表す。FIG. 12 schematically represents an example of the arrangement of the protrusions of the first member according to the embodiment. 図13は、実施形態に係る第一部材の突起の配列の一例を模式的に表す。FIG. 13 schematically represents an example of the arrangement of the protrusions of the first member according to the embodiment. 図14は、実施形態に係る第一部材の突起の配列の一例を模式的に表す。FIG. 14 schematically represents an example of the arrangement of the protrusions of the first member according to the embodiment. 図15は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 15 schematically represents an example of the protrusion of the first member according to the embodiment. 図16は、実施形態に係る第一部材の突起の一例を模式的に表す。FIG. 16 schematically represents an example of the protrusion of the first member according to the embodiment. 図17は、実施形態に係る第一部材の穿孔の一例を模式的に表す。FIG. 17 schematically represents an example of perforation of the first member according to the embodiment. 図18は、実施形態に係る第一部材の穿孔の一例を模式的に表す。FIG. 18 schematically represents an example of perforation of the first member according to the embodiment.

以下、本発明の一側面に係る実施の形態(以下、「本実施形態」とも表記する)を、図面に基づいて説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment (hereinafter also referred to as "this embodiment") according to one aspect of the present invention will be described below based on the drawings.

§1適用例
まず、図1を用いて本発明の一態様に係る接合構造体の概要を説明する。図1は、一態様に係る接合構造体の断面の一例を模式的に例示する。
§1 Application Example First, an overview of a joined structure according to one embodiment of the present invention will be described using FIG. 1. FIG. 1 schematically illustrates an example of a cross section of a bonded structure according to one embodiment.

図1では二種類の接合構造体101および102が例示されている。まず接合構造体101について説明する。接合構造体101は、表面に突起3が形成された金属加工物である第一部材1と、前記突起3を介して第一部材1と接合している、炭素繊維5と熱可塑性樹脂とを含む第二部材2と、を備える。 In FIG. 1, two types of joining structures 101 and 102 are illustrated. First, the bonded structure 101 will be explained. The bonded structure 101 includes a first member 1 which is a metal workpiece having protrusions 3 formed on its surface, and carbon fibers 5 and thermoplastic resin which are bonded to the first member 1 via the protrusions 3. and a second member 2 containing the second member 2.

接合構造体101において、第二部材2の熱可塑性樹脂は、第一部材1に形成された突起3を包み込むように固化し、加えて第二部材2に含まれる炭素繊維5と前記突起3とが絡み合って接合しているため、物理的に強固なアンカー効果が得られる。そのため、高い接合強度を示す接合構造体を提供することができる。 In the bonded structure 101, the thermoplastic resin of the second member 2 solidifies so as to wrap around the projections 3 formed on the first member 1, and in addition, the carbon fibers 5 included in the second member 2 and the projections 3 are solidified. Because they are intertwined and bonded, a physically strong anchor effect can be obtained. Therefore, a bonded structure exhibiting high bonding strength can be provided.

次に、接合構造体102について説明する。接合構造体102は、表面に穿孔4が形成された金属加工物である第一部材1と、前記穿孔4を介して第一部材1と接合している、炭素繊維5と熱可塑性樹脂とを含む第二部材2と、を備える。 Next, the bonded structure 102 will be explained. The bonded structure 102 includes a first member 1, which is a metal workpiece with perforations 4 formed on its surface, and carbon fibers 5 and thermoplastic resin, which are joined to the first member 1 via the perforations 4. and a second member 2 containing the second member 2.

接合構造体102において、第二部材2の熱可塑性樹脂は、第一部材1に形成された穿孔4に充填されるように固化し、加えて第二部材2に含まれる炭素繊維5の少なくとも一部が前記穿孔4に挿入されるため、物理的に強固なアンカー効果が得られる。その結果、高い接合強度を示す接合構造体を提供することができる。 In the bonded structure 102, the thermoplastic resin of the second member 2 is solidified so as to fill the perforations 4 formed in the first member 1, and in addition, at least one of the carbon fibers 5 contained in the second member 2 is solidified. Since the part is inserted into the perforation 4, a physically strong anchor effect can be obtained. As a result, a bonded structure exhibiting high bonding strength can be provided.

また、これらの接合構造体において、炭素繊維は解繊された状態で熱可塑性樹脂中に分散されている。炭素繊維は一般に十分に解繊されていない。炭素繊維が解繊されず束の状態で存在する場合、炭素繊維自体は高い剛性を備えるため、炭素繊維の束が前記突起あるいは前記穿孔による第一部材と第二部材の接合を阻害し得る。炭素繊維を解繊することにより、炭素繊維は前記突起あるいは穿孔と十分に絡み合い、接合構造体の接合強度が向上する。 Furthermore, in these bonded structures, the carbon fibers are dispersed in the thermoplastic resin in a defibrated state. Carbon fibers are generally not fully defibrated. When the carbon fibers are not defibrated and are present in a bundle, the carbon fibers themselves have high rigidity, so the bundle of carbon fibers may inhibit the joining of the first member and the second member by the protrusion or the perforation. By defibrating the carbon fibers, the carbon fibers are sufficiently entangled with the protrusions or perforations, and the bonding strength of the bonded structure is improved.

§2構成例
<第一部材>
第一部材は金属加工物であり、突起もしくは穿孔、またはその両方が形成されている。金属加工物の材料としては、例えば、鉄系金属、ステンレス系金属、銅系金属、アルミ系金属、マグネシウム系金属、および、それらの合金等が挙げられる。また、金属加工物は、金属成型体であってもよく、亜鉛ダイカスト、アルミダイカスト、粉末冶金等であってもよい。
§2 Configuration example <First member>
The first member is a metal workpiece and has protrusions and/or perforations formed therein. Examples of the material for the metal workpiece include iron-based metals, stainless steel-based metals, copper-based metals, aluminum-based metals, magnesium-based metals, and alloys thereof. Further, the metal workpiece may be a metal molded body, zinc die casting, aluminum die casting, powder metallurgy, or the like.

<突起>
突起は、第一部材の表面に形成される。第一部材が突起を備えることで、第二部材との間に、前記突起を介したアンカー効果が得られる。また、第二部材が炭素繊維を含有することで、前記突起との間に絡み合い効果が得られる。したがって、接合強度が向上する。
<Protrusion>
The protrusion is formed on the surface of the first member. By providing the first member with the protrusion, an anchor effect can be obtained between the first member and the second member via the protrusion. Moreover, since the second member contains carbon fiber, an intertwining effect can be obtained between the second member and the protrusion. Therefore, the bonding strength is improved.

前記突起は、第一部材と一体的に形成されていることが好ましい。すなわち、第一部材とは別の部材として形成された突起を第一部材の表面に付着させるのではないことが好ましい。これにより、第一部材に対して突起を付着させる場合に比べて接合強度が向上する。 Preferably, the protrusion is formed integrally with the first member. That is, it is preferable that the protrusion formed as a separate member from the first member is not attached to the surface of the first member. This improves the bonding strength compared to the case where the protrusion is attached to the first member.

前記突起は整列していることが好ましい。本明細書において、「整列した突起」とは、規則的に配置された突起を意味する。これにより、接合構造体全体の強度が安定する。 Preferably, the protrusions are aligned. As used herein, "aligned protrusions" means regularly arranged protrusions. This stabilizes the strength of the entire bonded structure.

前記突起の間隔は、5μm以上、150μm以下であることが好ましく、より好ましくは20μm以上、100μm以下である。突起の間隔が5μm以上であれば、炭素繊維が突起に絡み合い易く、接合性が向上する。また、150μm以下であれば、単位面積当たりの突起の数が増加し、アンカー効果および絡み合い効果が向上する。 The distance between the protrusions is preferably 5 μm or more and 150 μm or less, more preferably 20 μm or more and 100 μm or less. If the distance between the protrusions is 5 μm or more, the carbon fibers are likely to become entangled with the protrusions, improving bondability. Moreover, if it is 150 μm or less, the number of protrusions per unit area increases, and the anchoring effect and intertwining effect are improved.

前記突起の幅は、10μm以上、200μm以下であることが好ましく、より好ましくは10μm以上、100μm以下である。突起の幅が10μm以上であれば、突起形成が容易である。また突起の幅が200μm以下であれば、単位面積当たりの突起の数が増加し、アンカー効果および絡み合い効果が向上する。 The width of the protrusion is preferably 10 μm or more and 200 μm or less, more preferably 10 μm or more and 100 μm or less. If the width of the protrusion is 10 μm or more, it is easy to form the protrusion. Further, if the width of the protrusions is 200 μm or less, the number of protrusions per unit area increases, and the anchoring effect and intertwining effect are improved.

前記突起の高さは、15μm以上であることが好ましく、より好ましくは20μm以上である。突起の高さが15μm以上であればアンカー効果および絡み合い効果が向上する。突起の高さの上限は特に限定されないが、300μm以下であれば、加工時間が短く済むため好ましい。 The height of the protrusion is preferably 15 μm or more, more preferably 20 μm or more. If the height of the protrusions is 15 μm or more, the anchor effect and entanglement effect will be improved. Although the upper limit of the height of the protrusion is not particularly limited, it is preferable that it is 300 μm or less because the processing time can be shortened.

前記突起の形状は特に限定されない。例えば、突起は、高さ方向に垂直な断面の径が一定であってもよく、高さ方向に垂直な断面の径が突起の先端から基部に向かって拡大する領域および縮小する領域の少なくともいずれか一方を有していてもよい。特に突起が、高さ方向に垂直な断面の径が突起の先端から基部に向かって縮小する領域を有している場合、垂直引きはがし強度に優れる。また、突起の先端の形状も特に限定されず、分岐していてもよい。 The shape of the protrusion is not particularly limited. For example, the protrusion may have a constant diameter in a cross section perpendicular to the height direction, and at least one region in which the diameter in a cross section perpendicular to the height direction increases or decreases from the tip to the base of the protrusion. It may have one or the other. In particular, when the protrusion has a region in which the diameter of a cross section perpendicular to the height direction decreases from the tip of the protrusion toward the base, the protrusion has excellent vertical peel strength. Further, the shape of the tip of the protrusion is not particularly limited, and may be branched.

図5~図9および図15~16は突起の一例を模式的に例示する。図5に示す突起3は、高さ方向に垂直な断面の径が、突起の先端から基部に向かって拡大する領域21に次いで、縮小する領域22を備える。図6に示す突起3は、高さ方向に垂直な断面の径が、突起の先端から基部に向かって縮小する領域22に次いで、拡大する領域21を備える。また、図7に示す突起3は、高さ方向に垂直な断面の径が突起の先端から基部まで縮小する領域22のみを備える。図8に示す突起3は、高さ方向に垂直な断面の径が突起の先端から基部まで拡大する領域21のみを備える。図9に示す突起3は、高さ方向に垂直な断面の径が突起の先端から基部まで一定である。図15に示す突起3は、突起の先端側が分岐している。なお、この場合の突起の間隔とは、図15に示す矢印31の部分を意味し、突起の先端側に存在する分岐の間隔は含まない。図16に示す突起3は、突起先端の分岐が基部まで達している。なお、分岐の間隔が5μm未満であれば、分岐全体を一つの突起であるとみなしてよい。すなわち、この場合の突起の間隔とは、図16に示す矢印31の部分を意味し、分岐の間隔は含まない。また複数の形状の突起を部分的に使い分けてもよい。すなわち、例えば図5に示す形状と図6に示す形状とが併存してもよい。 5 to 9 and 15 to 16 schematically illustrate examples of protrusions. The projection 3 shown in FIG. 5 includes a region 21 in which the diameter of a cross section perpendicular to the height direction increases from the tip of the projection toward the base, and then a region 22 that decreases. The projection 3 shown in FIG. 6 includes a region 21 in which the diameter of a cross section perpendicular to the height direction decreases from the tip to the base of the projection, followed by a region 21 that increases. Further, the projection 3 shown in FIG. 7 includes only a region 22 in which the diameter of a cross section perpendicular to the height direction decreases from the tip to the base of the projection. The projection 3 shown in FIG. 8 includes only a region 21 in which the diameter of a cross section perpendicular to the height direction increases from the tip to the base of the projection. The projection 3 shown in FIG. 9 has a constant diameter in a cross section perpendicular to the height direction from the tip to the base of the projection. The protrusion 3 shown in FIG. 15 has a branched tip side. Note that the interval between the protrusions in this case means the part indicated by the arrow 31 shown in FIG. 15, and does not include the interval between the branches present on the tip side of the protrusions. In the protrusion 3 shown in FIG. 16, the branch at the tip of the protrusion reaches the base. Note that if the interval between the branches is less than 5 μm, the entire branch may be regarded as one protrusion. That is, the interval between the protrusions in this case means the part indicated by the arrow 31 shown in FIG. 16, and does not include the interval between the branches. Further, protrusions of a plurality of shapes may be used partially. That is, for example, the shape shown in FIG. 5 and the shape shown in FIG. 6 may coexist.

上述のように一つの大きな突起に複数の小さな分岐が設けられていてもよい。また分岐が基部まで達しているために、複数の突起が密着しているように見える態様であってもよい。しかし、前記突起は独立していることが好ましい。本明細書において、「独立した突起」とは、突起の先端から見た場合に、突起の輪郭線が重畳または接しておらず、突起同士の境界線が明確であることを意味する。つまり、突起1個あたり、ただ1つの先端とただ1つの基部とを有することが好ましい。これにより、接合に寄与する突起3と炭素繊維5の数を最大化することができるため、第二部材に含有される熱可塑性樹脂とのアンカー効果および炭素繊維との絡み合い効果が向上し、接合性が向上する。 As mentioned above, one large protrusion may be provided with a plurality of small branches. Furthermore, since the branches reach the base, a plurality of protrusions may appear to be in close contact with each other. However, it is preferred that the protrusions are independent. As used herein, "independent protrusions" means that when viewed from the tips of the protrusions, the outlines of the protrusions do not overlap or touch, and the boundaries between the protrusions are clear. That is, it is preferable to have only one tip and only one base per protrusion. This makes it possible to maximize the number of protrusions 3 and carbon fibers 5 that contribute to bonding, thereby improving the anchoring effect with the thermoplastic resin contained in the second member and the entanglement effect with carbon fibers, thereby improving the bonding effect. Improves sex.

前記突起の配列は特に限定されない。図12~図14は突起の配列の一例を模式的に例示する。図12~14では便宜的に、突起の先端を繋いだ形状を太線で示している。突起の先端側から見た突起の配列は、例えば図12のように四角形状であってもよく、図13のように三角形状であってもよく、図14のように六角形状であってもよい。 The arrangement of the protrusions is not particularly limited. FIGS. 12 to 14 schematically illustrate an example of an arrangement of protrusions. For convenience, in FIGS. 12 to 14, the shapes in which the tips of the protrusions are connected are shown by thick lines. The arrangement of the protrusions viewed from the tip side of the protrusions may be, for example, square as shown in FIG. 12, triangular as shown in FIG. 13, or hexagonal as shown in FIG. good.

本明細書において、突起の配列が「四角形状」であるとは、突起の配列が格子型であることを意味する。本明細書において突起の配列が「三角形状」であるとは、突起の配列が最密配置されていることを意味する。また、本明細書において突起の配列が「六角形状」であるとは、突起の配列が亀甲形状であることを意味する。また複数の種類の配列を部分的に使い分けてもよい。すなわち、例えば図12に示す配列と図13に示す配列とが併存してもよい。 In this specification, the expression that the projections are arranged in a "square shape" means that the projections are arranged in a lattice shape. In this specification, the expression that the protrusions are arranged in a "triangular shape" means that the protrusions are arranged in a close-packed arrangement. Furthermore, in this specification, the expression that the protrusions are arranged in a "hexagonal shape" means that the protrusions are arranged in a hexagonal shape. Furthermore, a plurality of types of arrays may be partially used. That is, for example, the arrangement shown in FIG. 12 and the arrangement shown in FIG. 13 may coexist.

<穿孔>
穿孔は、第一部材の表面に形成される。第一部材に穿孔が形成されていることで、第二部材との間に、前記穿孔を介したアンカー効果が得られる。また、第二部材が炭素繊維を含有することで、前記穿孔との間に絡み合い効果が得られる。したがって、接合強度が向上する。
<Perforation>
Perforations are formed in the surface of the first member. By forming the perforations in the first member, an anchor effect can be obtained between the first member and the second member through the perforations. Moreover, since the second member contains carbon fiber, an intertwining effect can be obtained between the second member and the perforation. Therefore, the bonding strength is improved.

図10は、実施形態に係る第一部材の穿孔の一例を模式的に例示する。図10に示すように、第一部材1は、互いに独立している穿孔を備えていることが好ましい。つまり、穿孔が形成された表面に垂直な方向から見た場合に、穿孔の開口部が重畳しておらず、穿孔同士の境界線が明確であることが好ましい。前記穿孔は、連続する溝とは異なる。穿孔が独立していれば、接合に寄与する穿孔4と炭素繊維5の数を最大化することができ、第二部材に含有される熱可塑性樹脂とのアンカー効果および炭素繊維5との絡み合い効果が向上し、接合性が向上する。 FIG. 10 schematically illustrates an example of perforation of the first member according to the embodiment. As shown in FIG. 10, the first member 1 is preferably provided with mutually independent perforations. That is, when viewed from a direction perpendicular to the surface on which the perforations are formed, it is preferable that the openings of the perforations do not overlap and that the boundaries between the perforations are clear. The perforations differ from continuous grooves. If the perforations are independent, the number of perforations 4 and carbon fibers 5 that contribute to bonding can be maximized, and the anchor effect with the thermoplastic resin contained in the second member and the entanglement effect with the carbon fibers 5 can be maximized. and bonding properties are improved.

前記穿孔の開口径は5~150μmが好ましく、より好ましくは10~100μmが好ましい。開口径が5μm以上であれば炭素繊維との絡み合い効果が向上する。また開口径が150μm以下であれば単位面積当たりの穿孔数が増加し、アンカー効果と絡み合い効果が向上する。 The opening diameter of the perforation is preferably 5 to 150 μm, more preferably 10 to 100 μm. If the opening diameter is 5 μm or more, the effect of entanglement with carbon fibers will be improved. Further, if the opening diameter is 150 μm or less, the number of perforations per unit area increases, and the anchor effect and entanglement effect are improved.

前記穿孔の深さは15μm以上であることが好ましく、より好ましくは20μm以上である。深さが15μm以上であると、穿孔におけるアンカー効果と絡み合い効果が向上し、その結果、全体の接合強度が向上する。穿孔の深さの上限は特に限定されないが、300μm以下であれば、加工時間が短く済むため好ましい。 The depth of the perforation is preferably 15 μm or more, more preferably 20 μm or more. When the depth is 15 μm or more, the anchor effect and entanglement effect in the perforation are improved, and as a result, the overall bonding strength is improved. Although the upper limit of the depth of the perforation is not particularly limited, it is preferable that it is 300 μm or less because the machining time can be shortened.

また前記穿孔は整列していることが好ましい。本明細書において、「整列した穿孔」とは、規則的に配置された穿孔を意味する。これにより、接合構造体全体の強度が安定する。穿孔の配列は特に限定されず、前記突起と同様の配列が使用できる。また前記突起と同様に、複数の種類の配列を併存させることも可能である。加えて、開口径の異なる穿孔を併存させてもよい。 It is also preferable that the perforations are aligned. As used herein, "aligned perforations" means perforations that are regularly arranged. This stabilizes the strength of the entire bonded structure. The arrangement of the perforations is not particularly limited, and the same arrangement as the projections can be used. Further, similar to the above-mentioned protrusions, it is also possible to have a plurality of types of arrangements coexisting. In addition, perforations with different opening diameters may coexist.

穿孔の形状は特に限定されない。例えば、穿孔は、深さ方向に垂直な断面の径が一定であってもよく、深さ方向に垂直な断面の径が開口部から底部に向かって拡大する領域および縮小する領域の少なくともいずれか一方を有していてもよい。 The shape of the perforation is not particularly limited. For example, the perforation may have a constant diameter in a cross section perpendicular to the depth direction, and at least one of an area where the diameter of the cross section perpendicular to the depth expands from the opening toward the bottom and an area where the diameter decreases. It may have one or the other.

図10~11および17~18は穿孔の一例を模式的に例示する。例えば図10に示すように穿孔の深さ方向に垂直な断面の径が縮小する領域に次いで、拡大する領域を備える形状であってもよい。図11に示す穿孔内部の径がほぼ一定であってもよい。図17に示す、穿孔の内部に複数の小さな穿孔を備える形状であってもよく、図18に示す複数の穿孔が重畳する形状であってもよい。ただし、穿孔が重畳しているよりは、上述のように穿孔が独立していることがより好ましい。また複数の形状の穿孔を部分的に使い分けてもよい。すなわち、例えば図10に示す形状と図11に示す形状とが併存してもよい。 Figures 10-11 and 17-18 schematically illustrate an example of perforation. For example, as shown in FIG. 10, the shape may include a region where the diameter of the cross section perpendicular to the depth direction of the borehole decreases, followed by a region where the diameter increases. The diameter inside the perforation shown in FIG. 11 may be substantially constant. The shape shown in FIG. 17 may include a plurality of small perforations inside the perforation, or the shape shown in FIG. 18 may include a plurality of overlapping perforations. However, it is more preferable for the perforations to be independent as described above rather than for the perforations to overlap. Further, a plurality of shapes of perforations may be used selectively. That is, for example, the shape shown in FIG. 10 and the shape shown in FIG. 11 may coexist.

<第二部材>
第二部材は熱可塑性樹脂と炭素繊維とを含む。第二部材は炭素繊維複合樹脂を含むとも言える。
<Second member>
The second member includes thermoplastic resin and carbon fiber. It can also be said that the second member includes carbon fiber composite resin.

熱可塑性樹脂の材料としては、PVC(ポリ塩化ビニル)、PS(ポリスチレン)、AS(アクリロニトリル・スチレン)、ABS(アクリロニトリル・ブタジエン・スチレン)、PMMA(ポリメチルメタクリレート)、PE(ポリエチレン)、PP(ポリプロピレン)、PC(ポリカーボネート)、m-PPE(変性ポリフェニレンエーテル)、PA6(ポリアミド6)、PA66(ポリアミド66)、POM(ポリアセタール)、PET(ポリエチレンテレフタレート)、PBT(ポリブチレンテレフタレート)、PSF(ポリサルホン)、PAR(ポリアリレート)、PEI(ポリエーテルイミド)、PPS(ポリフェニレンサルファイド)、PES(ポリエーテルサルホン)、PEEK(ポリエーテルエーテルケトン)、PAI(ポリアミドイミド)、LCP(液晶ポリマー)、PVDC(ポリ塩化ビニリデン)、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、および、PVDF(ポリフッ化ビニリデン)が挙げられる。また、熱可塑性樹脂は、TPE(熱可塑性エラストマ)であってもよく、TPEの一例としては、TPO(オレフィン系)、TPS(スチレン系)、TPEE(エステル系)、TPU(ウレタン系)、TPA(ナイロン系)、および、TPVC(塩化ビニル系)が挙げられる。材料強度の観点から、上記の中でも結晶性を有する熱可塑性樹脂が好ましい。 Thermoplastic resin materials include PVC (polyvinyl chloride), PS (polystyrene), AS (acrylonitrile styrene), ABS (acrylonitrile butadiene styrene), PMMA (polymethyl methacrylate), PE (polyethylene), PP ( polypropylene), PC (polycarbonate), m-PPE (modified polyphenylene ether), PA6 (polyamide 6), PA66 (polyamide 66), POM (polyacetal), PET (polyethylene terephthalate), PBT (polybutylene terephthalate), PSF (polysulfone) ), PAR (polyarylate), PEI (polyetherimide), PPS (polyphenylene sulfide), PES (polyether sulfone), PEEK (polyetheretherketone), PAI (polyamideimide), LCP (liquid crystal polymer), PVDC (polyvinylidene chloride), PTFE (polytetrafluoroethylene), PCTFE (polychlorotrifluoroethylene), and PVDF (polyvinylidene fluoride). Further, the thermoplastic resin may be TPE (thermoplastic elastomer), and examples of TPE include TPO (olefin type), TPS (styrene type), TPEE (ester type), TPU (urethane type), and TPA. (nylon type) and TPVC (vinyl chloride type). From the viewpoint of material strength, thermoplastic resins having crystallinity are preferred among the above.

前記第二部材は、上述の効果を損なわない範囲で、必要に応じて前記熱可塑性樹脂と前記炭素繊維以外の添加剤を含んでいてもよい。添加剤の一例としては、前記炭素繊維と前記熱可塑性樹脂との親和性を高めるためのサイジング剤、分散剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、滑剤、結晶核材、可塑剤、染料、顔料、カーボンナノチューブ等が挙げられる。 The second member may contain additives other than the thermoplastic resin and the carbon fibers, as necessary, within a range that does not impair the above-mentioned effects. Examples of additives include a sizing agent, a dispersant, an antioxidant, an ultraviolet absorber, an antistatic agent, a flame retardant, a lubricant, a crystal nucleating agent, to improve the affinity between the carbon fiber and the thermoplastic resin, Examples include plasticizers, dyes, pigments, carbon nanotubes, and the like.

前記第二部材の材料強度を向上させる目的で、結晶核材として、層状ケイ酸塩を用いることが好ましい。層状ケイ酸塩は、Siを4個の酸素が囲んだ四面体が、3つの頂点を隣の四面体と共有することにより、2次元的に拡がった構造単位(四面体シート)を形成している層状構造をもったケイ酸塩の一群である。また、Siの一部がAlに置換されていてもよい。前記ケイ酸塩の一例としては、マイカ、雲母、タルク、カオリン、モンモリロナイト等が挙げられる。また、Siに加えてMg、Alなどを6個の酸素またはOHが囲んだ八面体の2次元的なつながりである八面体シートも結晶核剤となる。前記八面体シートは層面に平行な劈開が完全であり、一般に板状又は薄片状の形態である。前記八面体シートは化学的には、Si以外にAl、Mg、Fe、アルカリなどを含有する含水ケイ酸塩である。いずれも市販品を利用することができる。 In order to improve the material strength of the second member, it is preferable to use a layered silicate as the crystal nucleus material. In layered silicates, a tetrahedron in which Si is surrounded by four oxygen atoms forms a two-dimensionally expanded structural unit (tetrahedral sheet) by sharing three vertices with the neighboring tetrahedron. A group of silicates with a layered structure. Further, a part of Si may be replaced with Al. Examples of the silicates include mica, mica, talc, kaolin, montmorillonite, and the like. Further, an octahedral sheet, which is a two-dimensional connection of octahedrons in which Mg, Al, etc. are surrounded by six oxygens or OH in addition to Si, also serves as a crystal nucleating agent. The octahedral sheet has complete cleavage parallel to the layer plane, and is generally in the form of a plate or a flake. Chemically, the octahedral sheet is a hydrous silicate containing Al, Mg, Fe, alkali, etc. in addition to Si. Commercially available products can be used for both.

<炭素繊維>
炭素繊維は第二部材に強度を付与する充填剤である。炭素繊維は、例えば有機高分子繊維を800℃以上、3000℃以下の段階的加熱処理により繊維形状を保ったまま炭化させるか、または紡糸したピッチを熱処理することによって得られる。有機高分子繊維の一例としては、セルロース系、ポリアクリロニトリル系が挙げられる。また、炭素繊維は市販品を用いてもよい。炭素繊維は、新品材でもよく、再生材でもよい。再生材としては、炭素繊維強化プラスチック(CFRP)から、樹脂成分を分離し、炭素繊維を回収する熱分解法、または化学溶解法、もしくは超臨界流体法で再生された炭素繊維を用いてもよい。
<Carbon fiber>
The carbon fiber is a filler that provides strength to the second member. Carbon fibers can be obtained, for example, by carbonizing organic polymer fibers while maintaining the fiber shape through a stepwise heat treatment at 800° C. or higher and 3000° C. or lower, or by heat treating spun pitch. Examples of organic polymer fibers include cellulose fibers and polyacrylonitrile fibers. Furthermore, commercially available carbon fibers may be used. The carbon fiber may be a new material or a recycled material. As the recycled material, carbon fibers that are recycled from carbon fiber reinforced plastic (CFRP) by a pyrolysis method that separates the resin component and recovers carbon fibers, a chemical dissolution method, or a supercritical fluid method may be used. .

前記炭素繊維は前記熱可塑性樹脂に応じて、適宜選択することができる。以下に限定されないが、炭素繊維の一例としては、SIGRAFIL C C6-4.0/240-T190(SGLカーボン製)、SIGRAFIL C C6-4.0/240-T130(SGLカーボン製)、HT C413(東邦テナックス製)、IM C702(東邦テナックス製)、TR06NE(三菱レーヨン製)、MR06NE(三菱レーヨン製)等が挙げられる。 The carbon fiber can be appropriately selected depending on the thermoplastic resin. Examples of carbon fibers include, but are not limited to, SIGRAFIL C C6-4.0/240-T190 (manufactured by SGL Carbon), SIGRAFIL C C6-4.0/240-T130 (manufactured by SGL Carbon), and HT C413 (manufactured by SGL Carbon). (manufactured by Toho Tenax), IM C702 (manufactured by Toho Tenax), TR06NE (manufactured by Mitsubishi Rayon), and MR06NE (manufactured by Mitsubishi Rayon).

前記第二部材中の、前記熱可塑性樹脂と前記炭素繊維との重量比(炭素繊維:熱可塑性樹脂)は、好ましくは10:90~60:40であり、より好ましくは20:80~40:60である。炭素繊維の比率が10重量%以上であれば、前記第二部材の機械強度が向上する。炭素繊維の比率が60重量%以下であれば、溶融混錬工程で炭素繊維と熱可塑性樹脂との混合ムラが小さくなるため、前記第二部材の機械強度が向上する。 The weight ratio of the thermoplastic resin to the carbon fiber (carbon fiber:thermoplastic resin) in the second member is preferably 10:90 to 60:40, more preferably 20:80 to 40: It is 60. If the proportion of carbon fiber is 10% by weight or more, the mechanical strength of the second member will improve. If the ratio of carbon fibers is 60% by weight or less, uneven mixing of carbon fibers and thermoplastic resin during the melt-kneading process will be reduced, so that the mechanical strength of the second member will be improved.

前記炭素繊維の繊維長は、特に制限されるものではないが、熱可塑性樹脂中への分散性の観点からは、50mm以下が好ましく、炭素繊維の樹脂中への分散性の観点から、より好ましくは5mm以下である。また、前記複合樹脂の機械強度(引張強度または曲げ強度)の観点からは0.1mm以上が好ましい。なお、炭素繊維の繊維長は一定である必要はなく、バラつきがあってもよい。その場合、前記記載の好ましい範囲外の繊維長を有する炭素繊維が含まれていてもよい。 The fiber length of the carbon fiber is not particularly limited, but from the viewpoint of dispersibility in the thermoplastic resin, it is preferably 50 mm or less, and from the viewpoint of the dispersibility of the carbon fiber in the resin, it is more preferable. is 5 mm or less. Further, from the viewpoint of mechanical strength (tensile strength or bending strength) of the composite resin, the thickness is preferably 0.1 mm or more. Note that the fiber length of the carbon fibers does not need to be constant and may vary. In that case, carbon fibers having a fiber length outside the preferred range described above may be included.

前記炭素繊維の解繊率は下記式から求められ、好ましくは50%以上であり、より好ましくは80%以上である。解繊率が50%以上であると、前記突起あるいは前記穿孔と絡み合う炭素繊維が増加し、接合構造体の接合強度が向上する。
解繊率(%)=(単独で存在する炭素繊維の本数)/(炭素繊維の本数)×100
解繊率の上限は特に限定されず、100%であってもよい。
The fibrillation rate of the carbon fiber is determined from the following formula, and is preferably 50% or more, more preferably 80% or more. When the defibration rate is 50% or more, the number of carbon fibers intertwined with the projections or the perforations increases, and the bonding strength of the bonded structure improves.
Defibration rate (%) = (number of carbon fibers existing alone) / (number of carbon fibers) x 100
The upper limit of the defibration rate is not particularly limited, and may be 100%.

<接合構造体の製造方法>
前記接合構造体は、例えば金属材料の表面に突起および穿孔の少なくともいずれか一方を形成して第一部材を得る工程と、内部帰還型スクリューによって熱可塑性樹脂中に炭素繊維を解繊された状態で分散させて第二部材を得る工程と、前記第一部材と前記第二部材とを接合する工程と、を含む製造方法によって得られる。
<Method for manufacturing bonded structure>
The bonded structure includes, for example, a step of forming at least one of protrusions and perforations on the surface of a metal material to obtain a first member, and a state in which carbon fibers are defibrated in a thermoplastic resin by an internal feedback screw. The second member is obtained by dispersing the second member, and the second member is joined to the first member.

第一部材の突起または穿孔の形成方法は特に限定されず、レーザ加工または化学エッチング、放電加工、超精密金型、微細切削加工等によって行ってもよい。 The method for forming the protrusions or perforations in the first member is not particularly limited, and may be performed by laser processing, chemical etching, electric discharge machining, ultra-precision molding, fine cutting, or the like.

突起または穿孔の形成に用いるレーザは例えばファイバレーザ、YAGレーザ、YVO4レーザ、半導体レーザ、炭酸ガスレーザ、エキシマレーザ等が挙げられる。突起の先端から基部に向かって外周部の径が縮小する領域を有する突起を形成する場合はパルスレーザが適しており、それ以外の場合は連続波レーザでもよい。パルスレーザとしては、サブパルスレーザがより好ましい。 Examples of lasers used to form the protrusions or perforations include fiber lasers, YAG lasers, YVO4 lasers, semiconductor lasers, carbon dioxide lasers, and excimer lasers. A pulsed laser is suitable when forming a protrusion having a region where the diameter of the outer circumference decreases from the tip of the protrusion toward the base, and a continuous wave laser may be used in other cases. As the pulse laser, a sub-pulse laser is more preferable.

図2は、実施形態に係る突起を形成するためのレーザ照射の方法を模式的に表す。前記金属材料に対して、図2に示すレーザ照射部11が一部重畳するようにレーザ加工することで、レーザ非照射部13が独立した突起となる。図2では、レーザ照射部が重畳する領域をレーザ照射重畳部12として示している。 FIG. 2 schematically represents a laser irradiation method for forming protrusions according to the embodiment. By laser processing the metal material so that the laser irradiation part 11 shown in FIG. 2 partially overlaps with the metal material, the non-laser irradiation part 13 becomes an independent protrusion. In FIG. 2, a region where the laser irradiation parts overlap is shown as a laser irradiation superimposition part 12.

第二部材は、例えば以下のように作製される。まず、熱可塑性樹脂に炭素繊維を添加して混練する。ここで、せん断条件下で混練することにより、炭素繊維が解繊された状態で分散させることができる。通常の二軸押出機を用いてもよいが、好ましくは内部帰還型スクリューを有する高せん断加工機を用いて混練する。 The second member is produced, for example, as follows. First, carbon fibers are added to a thermoplastic resin and kneaded. Here, by kneading under shear conditions, the carbon fibers can be dispersed in a defibrated state. Although an ordinary twin-screw extruder may be used, preferably a high shear processing machine having an internal feedback screw is used for kneading.

内部帰還型スクリューはシリンダ内に設けられる。以下の1、2が繰り返されることにより、熱可塑性樹脂と炭素繊維とを含む溶融樹脂組成物が混練される。
1.スクリューの回転によって溶融樹脂組成物がシリンダの前部に押し出される。
2.スクリューの軸方向に設けられた通路を通って前記溶融樹脂組成物がシリンダの後部に戻る。
An internal return screw is provided within the cylinder. By repeating steps 1 and 2 below, a molten resin composition containing a thermoplastic resin and carbon fibers is kneaded.
1. Rotation of the screw forces the molten resin composition to the front of the cylinder.
2. The molten resin composition returns to the rear of the cylinder through a passage provided in the axial direction of the screw.

これにより、溶融樹脂組成物の内部に強いせん断流動場および伸長場が発生するため、炭素繊維の解繊が促進される。内部帰還型スクリューの回転数は200rpm以上、3000rpm以下であることが好ましい。また、せん断速度は300/s以上、4500/s以下であることが好ましい。溶融樹脂組成物を循環させる時間は、10秒以上、8分以下であることが好ましい。 This generates a strong shear flow field and elongation field inside the molten resin composition, thereby promoting fibrillation of the carbon fibers. The rotation speed of the internal feedback screw is preferably 200 rpm or more and 3000 rpm or less. Moreover, it is preferable that the shear rate is 300/s or more and 4500/s or less. The time for circulating the molten resin composition is preferably 10 seconds or more and 8 minutes or less.

その後、得られた溶融樹脂組成物を成形することで、第二部材を得られる。成形には一般の射出成形方法を用いることができる。 Thereafter, the second member can be obtained by molding the obtained molten resin composition. A general injection molding method can be used for molding.

第一部材と第二部材とを接合する方法としては、レーザ接合、射出成形接合、超音波溶着、熱プレス溶着、IH加熱、3Dプリンタ積層等が挙げられる。 Examples of the method for joining the first member and the second member include laser joining, injection molding joining, ultrasonic welding, hot press welding, IH heating, and 3D printer lamination.

レーザ接合は、例えば以下のように行われる。第一部材の加工部に、第二部材を押圧しながらレーザを照射して、熱により第二部材を溶融させる。レーザは第一部材側から照射する。その後、レーザ照射を停止すると、冷却されて第二部材に含まれる炭素繊維と、突起あるいは穿孔とが絡み合った状態で、第二部材が固化することで、第一部材と第二部材が接合した接合構造体が得られる。 Laser bonding is performed, for example, as follows. The processed portion of the first member is irradiated with a laser while pressing the second member, and the second member is melted by heat. The laser is irradiated from the first member side. After that, when the laser irradiation is stopped, the second member is cooled and solidified with the carbon fibers contained in the second member intertwined with the protrusions or perforations, and the first member and the second member are joined. A bonded structure is obtained.

レーザ接合を行う場合、第一部材のレーザ吸収効率を向上させる目的で、第一部材のレーザ照射面を同種のレーザマーカで粗加工してもよい。また、金属のレーザ吸収効率を向上させる方法は前記レーザマーカに限らず、サンドペーパーによる粗加工、または黒体スプレー等を行ってもよい。 When performing laser bonding, the laser irradiation surface of the first member may be rough-processed using the same type of laser marker in order to improve the laser absorption efficiency of the first member. Furthermore, the method for improving the laser absorption efficiency of metal is not limited to the laser marker described above, but may also include rough processing with sandpaper, black body spraying, etc.

射出成形接合は、例えば電動射出成形機を用いて行われる。具体的には、第一部材を前記成形機に設置した金型内にインサートし、当該金型内に溶融した樹脂を充填することにより、第二部材を成形し、接合構造体を得られる。 Injection molding joining is performed using, for example, an electric injection molding machine. Specifically, the first member is inserted into a mold installed in the molding machine, and the mold is filled with molten resin to mold the second member and obtain a bonded structure.

超音波溶着は、第一部材と第二部材とを接合部を介して重ね合わせ、超音波溶着用の機器に設置することにより行われる。超音波溶着用のホーンを介して超音波溶着させ、接合構造体を得る。 Ultrasonic welding is performed by overlapping a first member and a second member via a joint, and installing them in an ultrasonic welding device. Ultrasonic welding is performed via an ultrasonic welding horn to obtain a bonded structure.

熱プレス接着は、第一部材と第二部材とを接合部を介して重ね合わせ、熱プレス用の機器、あるいは金型に設置することにより行われる。第二部材側から熱と圧力をかけて接合させ、接合構造体を得る。 Hot press adhesion is performed by overlapping the first member and the second member via the joint, and installing them in a hot press device or a mold. Heat and pressure are applied from the second member side to join them to obtain a joined structure.

本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to the following Examples.

〔炭素繊維解繊率の評価〕
第二部材に用いた炭素繊維複合樹脂を、炭素繊維を含まない同種の熱可塑性樹脂とともに溶融混錬することにより10倍~30倍に希釈した。具体的には、ラボプラストミル(株式会社東洋精機製作所製)を用いて、前記炭素繊維複合樹脂および熱可塑性樹脂の混合物を熱可塑性樹脂の溶融温度以上に加熱しながら、回転速度を数十rpm程度に設定して混錬することで希釈した。回転速度をこのように制御することにより、樹脂に対するせん断応力を抑制し、炭素繊維の解繊状態が変化しないようにした。希釈した樹脂から、加熱プレス機を用いて、サイズ50mm×50mm、厚み約0.2mmのシートサンプルを作製した。前記シートサンプルの任意の3点をΦ5mmの視野にて光学顕微鏡で観察し、単独で存在する炭素繊維の本数および2本以上の束で存在する炭素繊維の本数を数えた。そして、上述の式から解繊率を求めた。解繊率は、前記3点から得られた平均値として表した。なお、前記平均値は1の位を四捨五入して、10%ごとで表した。
[Evaluation of carbon fiber defibration rate]
The carbon fiber composite resin used for the second member was diluted 10 to 30 times by melting and kneading it with a thermoplastic resin of the same type that does not contain carbon fibers. Specifically, using a Laboplast Mill (manufactured by Toyo Seiki Seisakusho Co., Ltd.), the mixture of the carbon fiber composite resin and thermoplastic resin was heated to a temperature higher than the melting temperature of the thermoplastic resin, while the rotation speed was set to several tens of rpm. It was diluted by kneading at a certain level. By controlling the rotational speed in this manner, shear stress on the resin was suppressed and the fibrillated state of the carbon fibers did not change. A sheet sample with a size of 50 mm x 50 mm and a thickness of about 0.2 mm was produced from the diluted resin using a hot press machine. Three arbitrary points on the sheet sample were observed with an optical microscope in a field of Φ5 mm, and the number of individual carbon fibers and the number of carbon fibers present in a bundle of two or more were counted. Then, the defibration rate was determined from the above formula. The defibration rate was expressed as the average value obtained from the three points. In addition, the said average value was rounded off to the nearest 1 and expressed in 10% increments.

〔接合評価方法〕
図4は実施例に係る引張試験の方法を模式的に表す。接合評価に用いた接合構造体は、第一部材の長手方向と第二部材の長手方向とが平行になるように接合することによって得た。冷熱衝撃試験機(エスペック社製)を用いて接合構造体に対して、低温と高温とで処理を行う冷熱衝撃試験を行った。温度条件は、低温側は-40℃で30分、高温側は70℃で30分を1サイクルとした。サイクル回数は5サイクル、50サイクルまたは1000サイクルとした。冷熱衝撃試験後、電気機械式万能試験機5900(インストロン社製)を用いて、接合構造体をせん断方向(図4に示す矢印方向)に引っ張った。引張速度は1mm/minで行った。接合性は試験後の破壊面および破壊部を観測し、破壊の状態によって評価を行った。評価は以下のように決定した。冷熱衝撃5サイクル後に接合界面が剥離した場合×、すなわち冷熱衝撃に耐えることができず不合格だと判断した。5サイクル後は樹脂材料のみが破壊されたが、50サイクル後は接合界面の剥離と樹脂材料の破壊とが混在している場合を〇とし、比較的温和な使用環境で用いられる機器、例えば家庭用電気機器等に適用できるレベルだと判断した。50サイクル後は樹脂材料のみが破壊されたが、1000サイクル後は接合界面の剥離と樹脂材料の破壊とが混在している場合を◎とし、室外環境で用いられ、且つ比較的長寿命が要求される機器、例えば輸送機器等に適用できるレベルだと判断した。1000サイクル後は樹脂材料のみが破壊された場合を◎◎とし、低温および高温の両方にさらされる、厳しい使用環境でも長寿命が要求される機器、例えば産業機器等に適用できるレベルだと判断した。
[Joining evaluation method]
FIG. 4 schematically represents the tensile test method according to the example. The bonded structure used for the bonding evaluation was obtained by bonding the first member so that the longitudinal direction of the first member and the second member were parallel to each other. A thermal shock test was conducted on the bonded structure using a thermal shock tester (manufactured by ESPEC), in which the bonded structure was subjected to treatment at low and high temperatures. Regarding the temperature conditions, one cycle was set at -40°C for 30 minutes on the low temperature side and 30 minutes at 70°C on the high temperature side. The number of cycles was 5 cycles, 50 cycles, or 1000 cycles. After the thermal shock test, the bonded structure was pulled in the shear direction (in the direction of the arrow shown in FIG. 4) using an electromechanical universal testing machine 5900 (manufactured by Instron). The tensile speed was 1 mm/min. Bondability was evaluated by observing the fractured surface and fractured part after the test, and based on the state of fracture. The evaluation was determined as follows. If the bonding interface peeled off after 5 cycles of thermal shock, it was judged as a failure because it could not withstand the thermal shock. After 5 cycles, only the resin material was destroyed, but after 50 cycles, there was a mixture of peeling of the bonding interface and destruction of the resin material. It was determined that the level is applicable to electrical equipment, etc. After 50 cycles, only the resin material was destroyed, but after 1000 cycles, a mixture of peeling of the bonding interface and destruction of the resin material is rated ◎, and it is used in an outdoor environment and requires a relatively long life. It has been determined that the level is applicable to equipment that will be used, such as transportation equipment. A case where only the resin material is destroyed after 1000 cycles is rated ◎◎, and it is judged that the level can be applied to equipment that is exposed to both low and high temperatures and is required to have a long life even in harsh usage environments, such as industrial equipment. .

〔実施例1〕
金属材料であるSUS316(100mm×20mm、厚さ0.5mm)に対して、ファイバーレーザマーカMX-Z2000H(オムロン製)を用いて赤外線レーザを照射することにより突起を形成し、第一部材を作製した。
[Example 1]
A first member was produced by forming protrusions on SUS316 (100 mm x 20 mm, thickness 0.5 mm), which is a metal material, by irradiating it with an infrared laser using a fiber laser marker MX-Z2000H (manufactured by OMRON). .

図3は第一部材のレーザ加工部6を模式的に表す。レーザ加工部6を第一部材1の長手方向の一方の端部に形成した。突起形成時のレーザ照射条件は、出力:6W、周波数:10kHz、走査回数:30回、サブパルス:20本、走査速度:1060mm/sとし、突起の間隔が20μm、幅が50μmになるよう走査軌道を適宜調整した。 FIG. 3 schematically represents the laser processing section 6 of the first member. A laser processing section 6 was formed at one end of the first member 1 in the longitudinal direction. The laser irradiation conditions for forming protrusions were: output: 6 W, frequency: 10 kHz, number of scans: 30 times, sub-pulses: 20, scanning speed: 1060 mm/s, and the scanning trajectory was set so that the interval between protrusions was 20 μm and the width was 50 μm. was adjusted accordingly.

突起の形状は図6に示す形であり、突起の配列は図13に示す形であった。また、突起を形成した面の反対側を同種のレーザで粗加工した。 The shape of the projections was as shown in FIG. 6, and the arrangement of the projections was as shown in FIG. 13. In addition, the opposite side to the surface on which the protrusions were formed was rough-processed using the same type of laser.

次に、PBT樹脂に炭素繊維を70:30(重量比)となるように添加した。全自動高せん断成形装置(NHSS2-28、ニイガタマシンテクノ製)を用いて高せん断加工を行った。前記装置は、可塑化部と高せん断加工部を備えている。 Next, carbon fiber was added to the PBT resin at a ratio of 70:30 (weight ratio). High shear processing was performed using a fully automatic high shear forming device (NHSS2-28, manufactured by Niigata Machine Techno). The apparatus includes a plasticizing section and a high shear processing section.

まず、可塑化部にPBT樹脂(ノバデュラン5010L、三菱エンジニアリングプラスチックス製)および炭素繊維(SIGRAFIL C C6-4.0/240-T130、SGLカーボン製)を添加した。当該可塑化部にて、シングルスクリューによって、PBT樹脂と炭素繊維とを溶融混錬し、樹脂組成物を得た。溶融混錬の条件は、シリンダ温度:250℃、スクリュー回転数:20rpmとした。 First, PBT resin (Novaduran 5010L, manufactured by Mitsubishi Engineering Plastics) and carbon fiber (SIGRAFIL C C6-4.0/240-T130, manufactured by SGL Carbon) were added to the plasticized part. In the plasticizing section, PBT resin and carbon fiber were melt-kneaded using a single screw to obtain a resin composition. The conditions for melting and kneading were cylinder temperature: 250° C. and screw rotation speed: 20 rpm.

得られた樹脂組成物を、バルブゲートを介して高せん断加工部に供給した。前記樹脂組成物を内部帰還型スクリューによって循環させることにより、解繊した炭素繊維が熱可塑性樹脂中に分散している、炭素繊維複合樹脂を得た。高せん断加工部では、シリンダ温度260℃、スクリュー回転数500rpm、滞留時間:約45sec。 The obtained resin composition was supplied to a high shear processing section via a valve gate. By circulating the resin composition using an internal feedback screw, a carbon fiber composite resin in which defibrated carbon fibers were dispersed in a thermoplastic resin was obtained. In the high shear processing section, the cylinder temperature was 260°C, the screw rotation speed was 500 rpm, and the residence time was about 45 seconds.

得られた炭素繊維複合樹脂を、一般の射出成形手法に準じて100mm×25mm×厚み2.0mmの成形体とすることにより、第二部材を得た。 A second member was obtained by molding the obtained carbon fiber composite resin into a molded article measuring 100 mm x 25 mm x 2.0 mm in thickness according to a general injection molding method.

第一部材に第二部材を図4に示す、長手方向の端部を接合する形で重ね合わせ、接合用の治具に設置した。次に第一部材の加工面の反対側を、LDレーザ(イエナオプティック社製)を用い、赤外線レーザを繰り返し照射して加熱した。レーザ照射条件は以下の通りである;出力:24W、波長:808nm、レーザスポット径:2mm、走査回数:10回。第一部材の伝熱により、第二部材の表面を溶融させ、第一部材と第二部材とを加圧することで接合構造体を得た。加圧はシリンダCQ2Φ20(SMC社製)を接合構造体に対して垂直に配置して行った。加圧条件はシリンダのエア圧0.3MPaで行った。 The second member was superimposed on the first member so that the longitudinal ends were joined as shown in FIG. 4, and the two members were placed in a joining jig. Next, the opposite side of the processed surface of the first member was heated by repeatedly irradiating it with an infrared laser using an LD laser (manufactured by Jenoptik). The laser irradiation conditions were as follows; output: 24 W, wavelength: 808 nm, laser spot diameter: 2 mm, number of scans: 10 times. The surface of the second member was melted by the heat transfer of the first member, and a bonded structure was obtained by pressurizing the first member and the second member. Pressurization was performed by arranging a cylinder CQ2Φ20 (manufactured by SMC) perpendicular to the bonded structure. The pressurization conditions were a cylinder air pressure of 0.3 MPa.

〔実施例2〕
第一部材の突起を形成するためのレーザ照射条件のうち出力を3Wとし、第一部材の加工形状を図10に示す形状の穿孔とし、穿孔配列を図13に示す形としたこと以外は実施例1と同様に接合構造体を得た。穿孔の開口径は20μm、穿孔の深さは50μmであった。
[Example 2]
Among the laser irradiation conditions for forming the protrusions on the first member, the output was 3 W, the processing shape of the first member was the drilling shape shown in FIG. 10, and the drilling arrangement was the shape shown in FIG. 13. A bonded structure was obtained in the same manner as in Example 1. The opening diameter of the perforation was 20 μm, and the depth of the perforation was 50 μm.

〔実施例3〕
高せん断加工条件をスクリュー回転数300rpm、滞留時間約30secとして、炭素繊維の解繊率を50%としたこと以外は実施例1と同様に接合構造体を得た。
[Example 3]
A bonded structure was obtained in the same manner as in Example 1, except that the high shear processing conditions were a screw rotation speed of 300 rpm, a residence time of about 30 seconds, and a fibrillation rate of carbon fibers of 50%.

〔実施例4〕
高せん断加工条件をスクリュー回転数300rpm、滞留時間約30secとして、炭素繊維の解繊率を50%としたこと以外は実施例2と同様に接合構造体を得た。
[Example 4]
A bonded structure was obtained in the same manner as in Example 2, except that the high shear processing conditions were a screw rotation speed of 300 rpm, a residence time of about 30 seconds, and a fibrillation rate of carbon fibers of 50%.

〔比較例1〕
高せん断加工を行わず、炭素繊維の解繊率を0%としたこと以外は実施例1と同様に接合構造体を得た。
[Comparative example 1]
A bonded structure was obtained in the same manner as in Example 1, except that high shear processing was not performed and the fibrillation rate of the carbon fibers was set to 0%.

〔比較例2〕
高せん断加工を行わず、炭素繊維の解繊率を0%としたこと以外は実施例2と同様に接合構造体を得た。
[Comparative example 2]
A bonded structure was obtained in the same manner as in Example 2, except that high shear processing was not performed and the fibrillation rate of the carbon fibers was set to 0%.

実施例1~4、比較例1~2の試験結果を表1に示す。 The test results of Examples 1 to 4 and Comparative Examples 1 to 2 are shown in Table 1.

Figure 0007447512000001
Figure 0007447512000001

表1より、炭素繊維が解繊している実施例1~4は、全く解繊していない比較例1および2と比較して、より強い冷熱衝撃耐性と接合を示すことがわかった。 From Table 1, it was found that Examples 1 to 4 in which the carbon fibers were defibrated showed stronger thermal shock resistance and bonding compared to Comparative Examples 1 and 2 in which the carbon fibers were not defibrated at all.

〔実施例5〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起配列を図12に示す形に、突起形状が図5に示す形になるようレーザ走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:380mm/s、走査回数:20回、サブパルス:20本。
[Example 5]
The laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the laser scanning trajectory was appropriately adjusted so that the protrusion arrangement was as shown in FIG. 12 and the protrusion shape was as shown in FIG. A bonded structure was obtained in the same manner as in Example 1 except for this. Output: 3W, frequency: 10kHz, scanning speed: 380mm/s, number of scans: 20 times, sub-pulses: 20.

〔実施例6〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起形状が図7に示す形になるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:900mm/s、走査回数:30回、サブパルス:20本。
[Example 6]
Welding was performed in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was appropriately adjusted so that the protrusion shape was as shown in FIG. I got a structure. Output: 6W, frequency: 10kHz, scanning speed: 900mm/s, number of scans: 30 times, sub-pulses: 20.

〔実施例7〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起配列を図12に示す形に、突起形状を図8に示す形になるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:700mm/s、走査回数:20回、サブパルス:20本。
[Example 7]
The laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was appropriately adjusted so that the protrusion arrangement was as shown in FIG. 12 and the protrusion shape was as shown in FIG. 8. A bonded structure was obtained in the same manner as in Example 1 except for this. Output: 6W, frequency: 10kHz, scanning speed: 700mm/s, number of scans: 20 times, sub-pulses: 20.

〔実施例8〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起配列を図12に示す形に、突起形状が図9に示す形になるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:1W、周波数:10kHz、走査速度:380mm/s、走査回数:20回、サブパルス:20本。
[Example 8]
The laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was appropriately adjusted so that the protrusion arrangement was as shown in FIG. 12 and the protrusion shape was as shown in FIG. 9. A bonded structure was obtained in the same manner as in Example 1 except for this. Output: 1W, frequency: 10kHz, scanning speed: 380mm/s, number of scans: 20 times, sub-pulses: 20.

〔実施例9〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、穿孔配列を図13に示す形に、穿孔形状が図11に示す形になるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:1060mm/s、走査回数:20回、サブパルス:5本。
[Example 9]
The laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was appropriately adjusted so that the perforation arrangement was as shown in FIG. 13 and the perforation shape was as shown in FIG. 11. A bonded structure was obtained in the same manner as in Example 1 except for this. Output: 3W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 20 times, sub-pulse: 5.

〔比較例3〕
第一部材に加工を行わなかったこと以外は実施例1と同様に、接合構造体を得た。
[Comparative example 3]
A joined structure was obtained in the same manner as in Example 1 except that the first member was not processed.

実施例5~9および比較例3の結果を表2に示す。 The results of Examples 5 to 9 and Comparative Example 3 are shown in Table 2.

Figure 0007447512000002
Figure 0007447512000002

表2より、突起または穿孔を備える実施例5~9は、どちらも備えない比較例3と比較して、より強い冷熱衝撃耐性と接合を示すことがわかった。 From Table 2, it was found that Examples 5 to 9, which had protrusions or perforations, showed stronger thermal shock resistance and bonding compared to Comparative Example 3, which did not have either.

〔実施例10〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1200mm/s、走査回数:40回、サブパルス:20本。
[Example 10]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1200mm/s, number of scans: 40 times, sub-pulses: 20.

〔実施例11〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1060mm/s、走査回数:40回、サブパルス:20本。
[Example 11]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 40 times, sub-pulses: 20.

〔実施例12〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:600mm/s、走査回数:30回、サブパルス:20本。
[Example 12]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 600mm/s, number of scans: 30 times, sub-pulses: 20.

〔実施例13〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起の間隔が約100μmになるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1040mm/s、走査回数:40回、サブパルス:20本。
[Example 13]
The bonded structure was fabricated in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was appropriately adjusted so that the interval between the protrusions was approximately 100 μm. I got it. Output: 6W, frequency: 10kHz, scanning speed: 1040mm/s, number of scans: 40 times, sub-pulses: 20.

〔実施例14〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起の間隔が約150μmになるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1040mm/s、走査回数:30回、サブパルス:20本。
[Example 14]
The bonded structure was fabricated in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was appropriately adjusted so that the interval between the protrusions was approximately 150 μm. I got it. Output: 6W, frequency: 10kHz, scanning speed: 1040mm/s, number of scans: 30 times, sub-pulses: 20.

実施例1および10~14の試験結果を表3に示す。 The test results of Examples 1 and 10 to 14 are shown in Table 3.

Figure 0007447512000003
Figure 0007447512000003

表3より、突起の間隔が5~150μmである実施例10~14は、いずれも良好な冷熱衝撃耐性と強い接合を示す。特に突起の間隔が10~100μmである場合により良好な耐性と接合を示し、さらに突起の間隔が20~50μmの場合に最も強い耐性と接合を示すことが分かった。 From Table 3, Examples 10 to 14 in which the distance between the protrusions is 5 to 150 μm all exhibit good thermal shock resistance and strong bonding. In particular, it was found that better resistance and bonding were exhibited when the spacing between the protrusions was 10 to 100 μm, and the strongest resistance and bonding were exhibited when the spacing between the protrusions was 20 to 50 μm.

〔実施例15〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:380mm/s、走査回数:40回、サブパルス:20本。
[Example 15]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 380mm/s, number of scans: 40 times, sub-pulses: 20.

〔実施例16〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:520mm/s、走査回数:30回、サブパルス:20本。
[Example 16]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 520mm/s, number of scans: 30 times, sub-pulses: 20.

〔実施例17〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起の幅が約100μmになるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1040mm/s、走査回数:40回、サブパルス:20本。
[Example 17]
The bonded structure was fabricated in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was appropriately adjusted so that the width of the protrusions was approximately 100 μm. I got it. Output: 6W, frequency: 10kHz, scanning speed: 1040mm/s, number of scans: 40 times, sub-pulses: 20.

〔実施例18〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更し、突起の幅が約200μmになるよう、走査軌道を適宜調整したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1040mm/s、走査回数:40回、サブパルス:20本。
[Example 18]
The bonded structure was fabricated in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions on the first member were changed as follows, and the scanning trajectory was adjusted appropriately so that the width of the protrusions was approximately 200 μm. I got it. Output: 6W, frequency: 10kHz, scanning speed: 1040mm/s, number of scans: 40 times, sub-pulses: 20.

実施例1および15~18の試験結果を表4に示す。 The test results of Examples 1 and 15 to 18 are shown in Table 4.

Figure 0007447512000004
Figure 0007447512000004

表4より、突起の幅が10~200μmである実施例15~18は、いずれも良好な冷熱衝撃耐性と接合を示す。特に突起の幅が10~100μmである場合により良好な耐性と接合を示し、さらに突起の幅が20~50μmの場合に最も強い耐性と接合を示すことが分かった。 From Table 4, Examples 15 to 18 in which the protrusion width is 10 to 200 μm all exhibit good thermal shock resistance and bonding. In particular, it was found that better resistance and bonding were exhibited when the width of the protrusions was 10 to 100 μm, and the strongest resistance and bonding were exhibited when the width of the protrusions was 20 to 50 μm.

〔実施例19〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1060mm/s、走査回数:5回、サブパルス:20本。
[Example 19]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 5 times, sub-pulses: 20.

〔実施例20〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1060mm/s、走査回数:10回、サブパルス:20本。
[Example 20]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 10 times, sub-pulses: 20.

〔実施例21〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1060mm/s、走査回数:65回、サブパルス:20本。
[Example 21]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 65 times, sub-pulses: 20.

〔実施例22〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1060mm/s、走査回数:130回、サブパルス10本。
[Example 22]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 130 times, 10 subpulses.

〔実施例23〕
第一部材の突起を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例1と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1060mm/s、走査回数:200回、サブパルス:10本。
[Example 23]
A bonded structure was obtained in the same manner as in Example 1, except that the laser irradiation conditions for forming the protrusions of the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 200 times, sub-pulses: 10.

実施例1および19~23の試験結果を表5に示す。 The test results of Examples 1 and 19 to 23 are shown in Table 5.

Figure 0007447512000005
Figure 0007447512000005

表5より、突起の高さが15μm以上である実施例19~23は、いずれも良好な冷熱衝撃耐性と接合を示す。特に突起の高さが20μm以上である場合により良好な耐性と接合を示し、さらに突起の高さが50μm以上の場合に最も強い耐性と接合を示すことが分かった。 From Table 5, Examples 19 to 23, in which the height of the protrusions is 15 μm or more, all exhibit good thermal shock resistance and bonding. In particular, it was found that better resistance and bonding were exhibited when the height of the protrusions was 20 μm or more, and the strongest resistance and bonding were exhibited when the height of the protrusions was 50 μm or more.

〔実施例24〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:1W、周波数:10kHz、走査速度:1060mm/s、走査回数:30回、サブパルス:20本。
[Example 24]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 1W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 30 times, sub-pulses: 20.

〔実施例25〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:1W、周波数:10kHz、走査速度:1060mm/s、走査回数:20回、サブパルス:20本。
[Example 25]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 1W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 20 times, sub-pulses: 20.

〔実施例26〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:1060mm/s、走査回数:20回、サブパルス:10本。
[Example 26]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 3W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 20 times, sub-pulses: 10.

〔実施例27〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1470mm/s、走査回数:30回、サブパルス:20本。
[Example 27]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1470mm/s, number of scans: 30 times, sub-pulses: 20.

〔実施例28〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:6W、周波数:10kHz、走査速度:1840mm/s、走査回数:20回、サブパルス:10本。
[Example 28]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 6W, frequency: 10kHz, scanning speed: 1840mm/s, number of scans: 20 times, sub-pulses: 10.

実施例2および24~28の試験結果を表6に示す。 The test results of Examples 2 and 24 to 28 are shown in Table 6.

Figure 0007447512000006
Figure 0007447512000006

表6より、穿孔の開口径が5~150μmである実施例24~28はいずれも良好な冷熱衝撃耐性と接合を示す。特に穿孔の開口径が10~100μmである場合により良好な耐性と接合を示し、さらに穿孔の開口径が50μmの場合に最も強い耐性と接合を示すことが分かった。 From Table 6, Examples 24 to 28 in which the opening diameter of the holes was 5 to 150 μm all exhibited good thermal shock resistance and bonding. In particular, it was found that better resistance and bonding were exhibited when the diameter of the perforations was 10 to 100 μm, and the strongest resistance and bonding were exhibited when the diameter of the perforations was 50 μm.

〔実施例29〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:1060mm/s、走査回数:5回、サブパルス:20本。
[Example 29]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 3W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 5 times, sub-pulses: 20.

〔実施例30〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:1060mm/s、走査回数:10回、サブパルス:20本。
[Example 30]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 3W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 10 times, sub-pulses: 20.

〔実施例31〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:1060mm/s、走査回数:65回、サブパルス:15本。
[Example 31]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 3W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 65 times, sub-pulses: 15.

〔実施例32〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:1060mm/s、走査回数:130回、サブパルス:10本。
[Example 32]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 3W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 130 times, sub-pulses: 10.

〔実施例33〕
第一部材の穿孔を形成するためのレーザ照射条件を以下の通りに変更したこと以外は、実施例2と同様に接合構造体を得た。出力:3W、周波数:10kHz、走査速度:1060mm/s、走査回数:200回、サブパルス:5本。
[Example 33]
A bonded structure was obtained in the same manner as in Example 2, except that the laser irradiation conditions for forming the perforations in the first member were changed as follows. Output: 3W, frequency: 10kHz, scanning speed: 1060mm/s, number of scans: 200 times, sub-pulses: 5.

実施例2および29~33の試験結果を表7に示す。 The test results of Examples 2 and 29 to 33 are shown in Table 7.

Figure 0007447512000007
Figure 0007447512000007

表7より、穿孔の深さが15~300μmである実施例29~33はいずれも良好な冷熱衝撃耐性と接合を示す。特に穿孔の深さが20μm以上である場合により良好な耐性と接合を示すことが分かった。 From Table 7, Examples 29 to 33, in which the perforation depth was 15 to 300 μm, all exhibited good thermal shock resistance and bonding. In particular, it was found that better resistance and bonding were exhibited when the depth of the perforation was 20 μm or more.

本発明の一態様は、例えば金属と炭素繊維複合樹脂による接合が必要な機器全般に利用することができる。 One embodiment of the present invention can be used, for example, in general equipment that requires bonding between metal and carbon fiber composite resin.

1 第一部材
2 第二部材
3 突起
4 穿孔
5 炭素繊維
6 レーザ加工部
11 レーザ照射部
12 レーザ照射重畳部
13 レーザ非照射部
21 径が拡大する領域
22 径が縮小する領域
31 突起の間隔
101、102 接合構造体
1 First member 2 Second member 3 Protrusion 4 Perforation 5 Carbon fiber 6 Laser processing section 11 Laser irradiation section 12 Laser irradiation superimposition section 13 Laser non-irradiation section 21 Area where the diameter increases 22 Area where the diameter decreases 31 Interval between protrusions 101 , 102 joint structure

Claims (6)

表面に突起および穿孔の少なくともいずれか一方が形成された金属加工物である第一部材と、
熱可塑性樹脂と当該熱可塑性樹脂中に解繊された状態で分散された炭素繊維とを含み、前記突起および前記穿孔の少なくともいずれか一方を介して前記第一部材と接合された、第二部材と、を備え、
前記穿孔は深さが15μm以上であり、
前記突起は独立しており、かつ前記突起の間隔は5~150μmであ
前記突起の間隔は、突起の先端側から見た場合の、突起の輪郭線から、隣接する他の突起の輪郭線までの距離である、
接合構造体。
a first member that is a metal workpiece having at least one of protrusions and perforations formed on its surface;
A second member comprising a thermoplastic resin and carbon fibers dispersed in a defibrated state in the thermoplastic resin, and joined to the first member through at least one of the protrusion and the perforation. and,
The perforation has a depth of 15 μm or more,
The protrusions are independent, and the interval between the protrusions is 5 to 150 μm,
The interval between the protrusions is the distance from the contour line of the protrusion to the contour line of another adjacent protrusion when viewed from the tip side of the protrusion.
bonded structure.
前記炭素繊維の下記式から導かれる解繊率は、50%以上である、請求項1に記載の接合構造体。
解繊率(%)=(単独で存在する炭素繊維の本数)/(炭素繊維の総本数)×100
The bonded structure according to claim 1, wherein the carbon fiber has a defibration rate derived from the following formula of 50% or more.
Defibration rate (%) = (number of carbon fibers existing alone) / (total number of carbon fibers) x 100
前記突起の幅は、10~200μmである、請求項1または2に記載の接合構造体。 The bonded structure according to claim 1 or 2, wherein the protrusion has a width of 10 to 200 μm. 前記突起の高さは、15μm以上である、請求項1~3のいずれか一項に記載の接合構造体。 The bonded structure according to any one of claims 1 to 3, wherein the height of the protrusion is 15 μm or more. 前記穿孔の開口径は、5~150μmである、請求項1~4のいずれか一項に記載の接合構造体。 The joining structure according to any one of claims 1 to 4, wherein the perforation has an opening diameter of 5 to 150 μm. 金属材料の表面に突起および穿孔の少なくともいずれか一方を形成して第一部材を得る工程と、
内部帰還型スクリューによって熱可塑性樹脂中に炭素繊維を解繊された状態で分散させて第二部材を得る工程と、
前記第一部材と前記第二部材とを接合する工程と、を含み、
前記穿孔は深さが15μm以上であり、
前記突起は独立しており、かつ前記突起の間隔は5~150μmであ
前記突起の間隔は、突起の先端側から見た場合の、突起の輪郭線から、隣接する他の突起の輪郭線までの距離である、
接合構造体の製造方法。
forming at least one of protrusions and perforations on the surface of the metal material to obtain a first member;
obtaining a second member by dispersing carbon fibers in a defibrated state in a thermoplastic resin using an internal feedback screw;
a step of joining the first member and the second member,
The perforation has a depth of 15 μm or more,
The protrusions are independent, and the interval between the protrusions is 5 to 150 μm,
The interval between the protrusions is the distance from the contour line of the protrusion to the contour line of another adjacent protrusion when viewed from the tip side of the protrusion.
A method for manufacturing a bonded structure.
JP2020013900A 2020-01-30 2020-01-30 bonded structure Active JP7447512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020013900A JP7447512B2 (en) 2020-01-30 2020-01-30 bonded structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020013900A JP7447512B2 (en) 2020-01-30 2020-01-30 bonded structure

Publications (2)

Publication Number Publication Date
JP2021120196A JP2021120196A (en) 2021-08-19
JP7447512B2 true JP7447512B2 (en) 2024-03-12

Family

ID=77270156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020013900A Active JP7447512B2 (en) 2020-01-30 2020-01-30 bonded structure

Country Status (1)

Country Link
JP (1) JP7447512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153332A1 (en) * 2022-02-08 2023-08-17 株式会社ヒロテック Resin material for joining, method for manufacturing same, and joining method using resin material for joining
CN115847949A (en) * 2023-01-20 2023-03-28 太原科技大学 Method for preparing laminated plate by brazing stainless steel ultra-thin strip and carbon fiber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108815A1 (en) 2012-01-17 2013-07-25 独立行政法人産業技術総合研究所 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
JP2016144823A (en) 2015-02-09 2016-08-12 オムロン株式会社 Manufacturing method of joint structure and joint structure
JP2017524554A (en) 2014-06-11 2017-08-31 サビック・イノヴェイティヴ・プラスティックス・ビイ ブイ Method for producing a material composite of metal and plastic to form a plastic-metal hybrid component
JP2018051775A (en) 2016-09-26 2018-04-05 いすゞ自動車株式会社 Dissimilar material bonded body and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62208932A (en) * 1986-02-27 1987-09-14 Nippon Kokan Kk <Nkk> Plastic sheet dispersed by fibrous filler

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013108815A1 (en) 2012-01-17 2013-07-25 独立行政法人産業技術総合研究所 Carbon fiber-reinforced plastic material with nanofiller mixed therein, and production method therefor
JP2017524554A (en) 2014-06-11 2017-08-31 サビック・イノヴェイティヴ・プラスティックス・ビイ ブイ Method for producing a material composite of metal and plastic to form a plastic-metal hybrid component
JP2016144823A (en) 2015-02-09 2016-08-12 オムロン株式会社 Manufacturing method of joint structure and joint structure
JP2018051775A (en) 2016-09-26 2018-04-05 いすゞ自動車株式会社 Dissimilar material bonded body and manufacturing method thereof

Also Published As

Publication number Publication date
JP2021120196A (en) 2021-08-19

Similar Documents

Publication Publication Date Title
JP5622929B2 (en) Manufacturing method of joined body
Ferreira et al. A review on fibre reinforced composite printing via FFF
JP7447512B2 (en) bonded structure
JP5973690B2 (en) Fiber reinforced plastic joined body, method for producing fiber reinforced plastic joined body, and fiber reinforced molded body
DE102017112881B4 (en) Process for joining different material workpieces
JP6276080B2 (en) Fiber reinforced thermoplastic resin composition, composite molded body using the same, and method for producing the same
WO2012102315A1 (en) Joined body of carbon fiber reinforced composite material
JP6199655B2 (en) Composite molded product
EP2799211A1 (en) Method for joining composite materials
KR20190042571A (en) Hybrid composite between metal surface and polymer material surface and method of making same
JP5918451B2 (en) Composite molded article and manufacturing method thereof
WO2015162998A1 (en) Fiber-reinforced resin joined object, intermediate and fastening rod
Czigány et al. Friction stir welding of fiber reinforced polymer composites
SJ et al. Review on the advancements and relevance of emerging joining techniques for aluminium to polymers/carbon fibre-reinforced polymer lightweight hybrid structures
Nusom et al. Effects of 3D-printing surface morphologies on interfacial bonding strength between Ti–6Al–4V and CFRTP with PMCs interlayer
JP6302606B1 (en) Manufacturing method of joined body
JP2013129177A (en) Manufacturing method of joined body
KR101804661B1 (en) Resin joined body, method of producing resin joined body, and vehicular structural body
JP7404899B2 (en) Composite molded body
US20050230025A1 (en) Method and apparatus for welding reinforced polymers
Quader et al. Effect of ultrasonic vibration on physical and tensile properties of fused deposition modeled polylactic acid specimens
JP2013129159A (en) Manufacturing method of joined body
JP7532783B2 (en) Joint structure
WO2024224440A1 (en) Structure molding method and joining structure
US20240025167A1 (en) Methods To Directly Join Metals To Polymer/Polymer Composites Using Functionally Active Insert Layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240212

R150 Certificate of patent or registration of utility model

Ref document number: 7447512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150