JP7441103B2 - Spraying material - Google Patents
Spraying material Download PDFInfo
- Publication number
- JP7441103B2 JP7441103B2 JP2020066179A JP2020066179A JP7441103B2 JP 7441103 B2 JP7441103 B2 JP 7441103B2 JP 2020066179 A JP2020066179 A JP 2020066179A JP 2020066179 A JP2020066179 A JP 2020066179A JP 7441103 B2 JP7441103 B2 JP 7441103B2
- Authority
- JP
- Japan
- Prior art keywords
- mass
- raw material
- less
- construction
- rouseki
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims description 40
- 238000005507 spraying Methods 0.000 title claims description 32
- 239000002994 raw material Substances 0.000 claims description 121
- 238000010276 construction Methods 0.000 claims description 79
- 239000002245 particle Substances 0.000 claims description 26
- 229910052851 sillimanite Inorganic materials 0.000 claims description 23
- 239000007921 spray Substances 0.000 claims description 21
- 239000011230 binding agent Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- KZHJGOXRZJKJNY-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Si]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O.O=[Al]O[Al]=O KZHJGOXRZJKJNY-UHFFFAOYSA-N 0.000 claims description 13
- 229910052863 mullite Inorganic materials 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- 229910000805 Pig iron Inorganic materials 0.000 claims description 5
- 229910001570 bauxite Inorganic materials 0.000 claims description 5
- 239000000377 silicon dioxide Substances 0.000 claims description 5
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 claims description 3
- 239000011707 mineral Substances 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 description 14
- 238000011156 evaluation Methods 0.000 description 12
- 239000000843 powder Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002002 slurry Substances 0.000 description 5
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 229910052849 andalusite Inorganic materials 0.000 description 3
- 239000004568 cement Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011398 Portland cement Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000004115 Sodium Silicate Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WPUINVXKIPAAHK-UHFFFAOYSA-N aluminum;potassium;oxygen(2-) Chemical compound [O-2].[O-2].[Al+3].[K+] WPUINVXKIPAAHK-UHFFFAOYSA-N 0.000 description 2
- ANBBXQWFNXMHLD-UHFFFAOYSA-N aluminum;sodium;oxygen(2-) Chemical compound [O-2].[O-2].[Na+].[Al+3] ANBBXQWFNXMHLD-UHFFFAOYSA-N 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910001388 sodium aluminate Inorganic materials 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 229910000162 sodium phosphate Inorganic materials 0.000 description 2
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 2
- 229910052911 sodium silicate Inorganic materials 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- INJRKJPEYSAMPD-UHFFFAOYSA-N aluminum;silicic acid;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O INJRKJPEYSAMPD-UHFFFAOYSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011449 brick Substances 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- -1 chamotte Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 229910052850 kyanite Inorganic materials 0.000 description 1
- 239000010443 kyanite Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Landscapes
- Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Description
本発明は、混銑車、溶銑鍋、溶鋼鍋等の溶融金属容器、あるいは高温炉、溶融金属処理装置等の内張りの形成や補修に使用する吹付材に関する。 The present invention relates to a spraying material used for forming or repairing linings of molten metal containers such as pig iron mixers, hot metal ladle, molten steel ladle, etc., high temperature furnaces, molten metal processing equipment, etc.
溶融金属容器、高温炉、溶融金属処理装置等に対し、その内張りの形成あるいは補修の手段として、吹付施工が行われている。吹付施工は、湿式吹付施工と乾式吹付施工とに大別される。湿式吹付施工は、施工水を添加して予め泥しょう状に調整した吹付材を、ノズル内又は圧送管内にて急結剤を添加して吹付する施工方法である。他方、乾式吹付施工は吹付材を乾燥状態でガス搬送し、ノズル部で施工水を添加して吹付する施工方法である。 BACKGROUND ART Spraying is performed as a means of forming or repairing the lining of molten metal containers, high-temperature furnaces, molten metal processing equipment, and the like. Spraying construction is broadly divided into wet spraying construction and dry spraying construction. Wet spraying is a construction method in which a spraying material that has been prepared in advance into a slurry by adding construction water is sprayed with a quick-setting agent added inside a nozzle or a pressure pipe. On the other hand, dry spraying is a construction method in which the spraying material is conveyed with gas in a dry state, and construction water is added at the nozzle section before spraying.
このような吹付施工により形成される施工体は、溶融金属熱等の加熱を受けると焼結収縮による剥離を生じやすいという問題がある。
従来、焼結収縮による施工体の剥離を抑制するための技術として、蝋石原料を使用することで吹付材(施工体)に残存膨張性を付与する技術が知られている(例えば特許文献1)。
The construction body formed by such spraying construction has a problem in that it tends to peel off due to sintering shrinkage when it is heated by molten metal heat or the like.
Conventionally, as a technique for suppressing peeling of a construction body due to sintering shrinkage, a technique is known in which residual expansivity is imparted to a sprayed material (construction body) by using Rouseki raw material (for example, Patent Document 1) .
このように蝋石原料を使用することで施工体の剥離は少なくなるものの、依然として施工体の剥離は発生しているのが現状である。 Although the use of the Rouseki raw material reduces peeling of the constructed body, the present situation is that peeling of the constructed body still occurs.
本発明が解決しようとする課題は、吹付施工により形成される施工体の剥離を抑制する技術を提供することにある。 The problem to be solved by the present invention is to provide a technique for suppressing peeling of a construction body formed by spraying construction.
本発明者らが蝋石原料を含有する吹付材の吹付施工試験を多数回実施し、その施工体の剥離現象について詳細に調査した結果、施工体の稼働面側(高温側)での残存膨張性に比べ、施工体の背面側(低温側)での残存膨張性が小さく、結果として施工体の稼働面側(高温側)と背面側(低温側)との残存膨張差が大きくなり、この残存膨張差が施工体の剥離を助長していることがわかった。すなわち、蝋石原料は、施工体の稼働面側の温度域(例えば1450℃程度の高温域)では大きな残存膨張性を示すが、施工体の背面側の温度域(例えば1200℃程度の低温域)ではあまり残存膨張性を示さない。このため、蝋石原料を使用するのみでは、施工体の背面側(低温側)での残存膨張が不足し、結果として施工体の稼働面側(高温側)と背面側(低温側)との残存膨張差が大きくなる。残存膨張差が大きいと、特に施工体が使用後冷却される段階で、施工体に亀裂を生じやすくなり施工体が剥離しやすくなる。 The present inventors conducted many spraying tests of spraying material containing Rouseki raw material and investigated in detail the peeling phenomenon of the constructed body. The residual expansion on the back side (low temperature side) of the construction body is small compared to It was found that the difference in expansion facilitated the peeling of the construction body. In other words, the Rouseki raw material exhibits large residual expansion in the temperature range on the operating side of the construction body (for example, a high temperature range of about 1450°C), but it shows a large residual expansion property in the temperature range on the back side of the construction body (for example, a low temperature range of about 1200 °C). It does not show much residual expansion. For this reason, if only the Rouseki raw material is used, there will be insufficient residual expansion on the back side (low temperature side) of the construction body, resulting in residual expansion between the working side (high temperature side) and the back side (low temperature side) of the construction body. The expansion difference increases. If the residual expansion difference is large, cracks are likely to occur in the construction body, particularly when the construction body is cooled after use, and the construction body is likely to peel off.
そこで本発明者らは、施工体の背面側(低温側)においても十分かつ適度な残存膨張性を付与し、施工体の稼働面側(高温側)と背面側(低温側)との残存膨張差を小さくすることを志向し、そのための適切な吹付材の原料構成について検討した。その結果、平均粒径1mm超の蝋石原料とシリマナイト族原料とをそれぞれ特定量組み合わせて使用することで、施工体の稼働面側(高温側)と背面側(低温側)の両方において十分かつ適度な残存膨張性を確保でき、その残存膨張差を小さくできることを知見し、本発明を完成させるに至った。 Therefore, the present inventors provided sufficient and appropriate residual expansion even on the back side (low temperature side) of the construction body, and the residual expansion between the working side (high temperature side) and the back side (low temperature side) of the construction body. Aiming to reduce the difference, we investigated the raw material composition of suitable spray materials for this purpose. As a result, by using a combination of specific amounts of Rouseki raw materials and sillimanite group raw materials with an average particle size of more than 1 mm, we found that both the working side (high temperature side) and the back side (low temperature side) of the construction body were sufficiently The present inventors have discovered that it is possible to ensure a good residual expansion property and to reduce the difference in residual expansion, and have completed the present invention.
すなわち、本発明の一観点によれば、次の吹付材が提供される。
耐火原料及びバインダーを含む吹付材であって、前記耐火原料及びバインダーの合量100質量%中に、平均粒径1mm超の蝋石原料を1質量%以上15質量%以下含み、かつ、シリマナイト族原料を1質量%以上40質量%以下含み、さらに、ムライト原料、シャモット原料、ボーキサイト原料、炭化珪素原料、アルミナ原料及びシリカ原料から選択される一種以上を合計で50質量%以上90質量%以下含む、吹付材。
That is, according to one aspect of the present invention, the following spray material is provided.
A spraying material containing a refractory raw material and a binder, which contains 1% by mass or more and 15% by mass or less of a Rouseki raw material with an average particle size of more than 1 mm in 100% by mass of the refractory raw material and binder, and a sillimanite group raw material. 1% by mass or more and 40% by mass or less, and further contains a total of 50% by mass or more and 90% by mass or less of one or more selected from mullite raw material, chamotte raw material, bauxite raw material, silicon carbide raw material, alumina raw material, and silica raw material. , spray material.
本発明の吹付材によれば、吹付施工により形成される施工体の剥離を抑制することができる。 According to the spray material of the present invention, peeling of a construction body formed by spray construction can be suppressed.
本発明の吹付材は耐火原料及びバインダーを含み、これら耐火原料及びバインダーの合量100質量%中に、平均粒径1mm超の蝋石原料を1質量%以上15質量%以下含み、かつ、シリマナイト族原料を1質量%以上40質量%以下含む。 The spraying material of the present invention contains a refractory raw material and a binder, and contains 1% by mass or more and 15% by mass or less of a Rouseki raw material with an average particle size of more than 1 mm in 100% by mass of the refractory raw material and binder, and contains a sillimanite group Contains 1% by mass or more and 40% by mass or less of raw materials.
蝋石原料は、パイロフィライト、石英等を主成分とした天然原料である。加熱を受けると石英のα型からβ型への変態よる体積膨張で吹付材に残存膨張性を付与する。より具体的には上述のとおり、蝋石原料は施工体の稼働面側の温度域(例えば1450℃程度の高温域)において大きな残存膨張性を示す。
蝋石原料による残存膨張性の効果を十分に発揮させるため、蝋石原料の粒度は平均粒径1mm超とする。ここで、平均粒径1mm超とは、蝋石原料を目開き1mmの篩いで篩って分離したときに、篩いの上に残った蝋石原料の質量が、篩いを通過した蝋石原料の質量を上回る粒度のことである。
Rouseki raw material is a natural raw material whose main components are pyrophyllite, quartz, etc. When heated, quartz undergoes volumetric expansion due to transformation from α-type to β-type, imparting residual expandability to the sprayed material. More specifically, as described above, the Rouseki raw material exhibits large residual expansion in the temperature range on the operating surface side of the construction body (for example, a high temperature range of about 1450° C.).
In order to fully exhibit the effect of the residual expandability of the Rouseki raw material, the particle size of the Rouseki raw material is set to an average particle size of more than 1 mm. Here, the average particle size of more than 1 mm means that when the Rouseki raw material is sieved and separated through a sieve with an opening of 1 mm, the mass of the Rouseki raw material remaining on the sieve exceeds the mass of the Rouseki raw material that has passed through the sieve. It refers to particle size.
本発明では、施工体の稼働面側(高温側)において十分かつ適度な残存膨張性を確保するために、平均粒径1mm超の蝋石原料を1質量%以上15質量%以下で使用する。
平均粒径1mm超の蝋石原料が1質量%未満であると、施工体の稼働面側(高温側)での残存膨張不足により施工体に収縮亀裂が発生して施工体が剥離しやすくなる。平均粒径1mm超の蝋石原料が15質量%超であると、耐火度が低下してしまう。また、施工体の稼働面側(高温側)での残存膨張が大きくなりすぎて施工体が剥離しやすくなる。
平均粒径1mm超の蝋石原料の使用量(含有量)は、耐火原料及びバインダーの合量100質量%中に占める割合で3質量%以上8質量%以下であることが好ましい。
In the present invention, in order to ensure sufficient and appropriate residual expansibility on the working surface side (high temperature side) of the construction body, a Rouseki raw material with an average particle size of more than 1 mm is used in an amount of 1% by mass or more and 15% by mass or less.
If the amount of Rouseki raw material with an average particle size of more than 1 mm is less than 1% by mass, shrinkage cracks will occur in the construction body due to insufficient residual expansion on the operating surface side (high temperature side) of the construction body, making the construction body easy to peel off. If the amount of Rouseki raw material with an average particle size of more than 1 mm exceeds 15% by mass, the refractoriness will decrease. Further, the residual expansion on the operating surface side (high temperature side) of the construction object becomes too large, making the construction object easy to peel off.
The amount (content) of the Rouseki raw material having an average particle size of more than 1 mm is preferably 3% by mass or more and 8% by mass or less in 100% by mass of the total amount of the refractory raw material and the binder.
シリマナイト族原料は低温域から高温域までゆるやかな残存膨張性を示す。そこで本発明では、施工体の背面側(低温側)において十分かつ適度な残存膨張性を確保するために、シリマナイト族原料を1質量%以上40質量%以下で使用する。
シリマナイト族原料が1質量%未満であると、施工体の背面側(低温側)での残存膨張不足により施工体に収縮亀裂が発生して施工体が剥離しやすくなる。シリマナイト族原料が40質量%超であると、施工体の背面側(低温側)での残存膨張が大きくなりすぎて施工体が剥離しやすくなる。
シリマナイト族原料の使用量(含有量)は、耐火原料及びバインダーの合量100質量%中に占める割合で5質量%以上20質量%以下であることが好ましい。
なお、シリマナイト族原料としては、アンダルサイト原料、カイヤナイト原料及びシリマナイト原料の3種類があるが、膨張挙動の点からアンダルサイト原料又はシリマナイト原料が好ましく、アンダルサイト原料が最も好ましい。
Sillimanite group raw materials exhibit gradual residual expansion from low temperature to high temperature ranges. Therefore, in the present invention, in order to ensure sufficient and appropriate residual expandability on the back side (low temperature side) of the construction body, the sillimanite group raw material is used in an amount of 1% by mass or more and 40% by mass or less.
If the content of the sillimanite group raw material is less than 1% by mass, shrinkage cracks will occur in the construction body due to insufficient residual expansion on the back side (low temperature side) of the construction body, and the construction body will easily peel off. If the content of the sillimanite group raw material exceeds 40% by mass, the residual expansion on the back side (low temperature side) of the construction object becomes too large, making the construction object easy to peel off.
The usage amount (content) of the sillimanite group raw material is preferably 5% by mass or more and 20% by mass or less based on 100% by mass of the total amount of the refractory raw material and the binder.
There are three types of sillimanite group raw materials: andalusite raw material, kyanite raw material, and sillimanite raw material, and from the viewpoint of expansion behavior, andalusite raw material or sillimanite raw material is preferable, and andalusite raw material is most preferable.
このように本発明では、平均粒径1mm超の蝋石原料とシリマナイト族原料とをそれぞれ特定量組み合わせて使用することで、施工体の稼働面側(高温側)と背面側(低温側)の両方において十分かつ適度な残存膨張性を確保でき、施工体の剥離を抑制することができる。
すなわち、平均粒径1mm超の蝋石原料のみを使用する場合、施工体の背面側(低温側)での残存膨張が不足し、結果として施工体の稼働面側(高温側)と背面側(低温側)との残存膨張差が大きくなる。残存膨張差が大きいと、特に施工体が使用後冷却される段階で、施工体に亀裂を生じやすくなり施工体が剥離しやすくなる。また、シリマナイト族原料のみを使用する場合、施工体の稼働面側(高温側)において十分な残存膨張が得られず、結果として施工体が剥離しやすくなる。
In this way, in the present invention, by using a combination of specific amounts of Rouseki raw materials and sillimanite group raw materials with an average particle size of more than 1 mm, both the working side (high temperature side) and the back side (low temperature side) of the construction body are heated. It is possible to ensure sufficient and appropriate residual expansibility in the process, and it is possible to suppress peeling of the construction body.
In other words, when only Rouseki raw material with an average particle size of more than 1 mm is used, residual expansion on the back side (low temperature side) of the construction body is insufficient, and as a result, the working side (high temperature side) and back side (low temperature side) of the construction body are insufficient. The difference in residual expansion between the two sides increases. If the residual expansion difference is large, cracks are likely to occur in the construction body, particularly when the construction body is cooled after use, and the construction body is likely to peel off. Furthermore, when only the sillimanite group raw material is used, sufficient residual expansion cannot be obtained on the operating surface side (high temperature side) of the construction body, and as a result, the construction body is likely to peel off.
本発明の吹付材は、耐火原料及びバインダーの合量100質量%中に、平均粒径1mm超の蝋石原料を1質量%以上15質量%以下、シリマナイト族原料を1質量%以上40質量%以下含むが、その残部には、蝋石原料及びシリマナイト族原料以外のアルミナ-シリカ質原料(例えば、ムライト原料、シャモット原料、ボーキサイト原料等)、炭化珪素原料、アルミナ原料及びシリカ原料から選択される一種以上を合計で50質量%以上90質量%以下含むことができる。
なお、本発明の吹付材において耐火原料の粒度は、蝋石原料の粒度を平均粒径1mm超とするほかは、吹付材の流動性・充填性等を考慮して適宜、粗粒、中粒、微粒に調整する。
The spraying material of the present invention includes 1% to 15% by mass of Rouseki raw materials with an average particle size of more than 1 mm and 1% to 40% by mass of sillimanite group raw materials in 100% by mass of the refractory raw materials and binder. However, the remainder includes at least one type selected from alumina-siliceous raw materials other than Rouseki raw materials and sillimanite group raw materials (for example, mullite raw materials, chamotte raw materials, bauxite raw materials, etc.), silicon carbide raw materials, alumina raw materials, and silica raw materials. It can contain 50% by mass or more and 90% by mass or less in total.
In addition, in the spray material of the present invention, the particle size of the refractory raw material is coarse, medium, coarse, medium, Adjust to fine grain.
本発明の吹付材では、粒径1mm以上の耐火原料の合量を100質量%とし、この合量100質量%中に、Al2O3含有量が90質量%未満であってムライトを鉱物に含む耐火原料を50質量%以上含むことが好ましい。Al2O3含有量が90質量%未満であってムライトを鉱物に含む耐火原料(以下「ムライト系原料」という。)としては、ムライト、シャモット、ボーキサイト等が挙げられるが、ムライト系原料は鉱物としてコランダムを実質的に含まないので、施工体の稼働面側の温度域(例えば1450℃程度の高温域)での熱膨張率が低いという特性を有する。したがって、粒径1mm以上の耐火原料の合量100質量%中にムライト系原料を50質量%以上含むことで、施工体の稼働面側の温度域(例えば1450℃程度の高温域)での施工体の熱膨張を抑制することができる。これにより、高温下での吹付材の熱膨張により発生する応力を小さくすることでき、施工体の剥離をさらに抑制することができる。なお、粒径1mm以上の耐火原料の合量100質量%中におけるムライト系原料の含有量の上限値は特に限定されないが、例えば85質量%程度とすることができる。 In the sprayed material of the present invention, the total amount of refractory raw materials with a particle size of 1 mm or more is 100% by mass, and within this 100% by mass, the Al 2 O 3 content is less than 90% by mass and mullite is used as a mineral. It is preferable that the content of the refractory raw material is 50% by mass or more. Examples of refractory raw materials with an Al 2 O 3 content of less than 90% by mass and containing mullite as a mineral (hereinafter referred to as "mullite-based raw materials") include mullite, chamotte, bauxite, etc.; Since it does not substantially contain corundum, it has a characteristic of having a low coefficient of thermal expansion in the temperature range on the operating surface side of the construction body (for example, a high temperature range of about 1450° C.). Therefore, by including 50% by mass or more of mullite-based raw materials in 100% by mass of refractory raw materials with a particle size of 1 mm or more, construction can be carried out in the temperature range of the operating surface side of the construction body (for example, a high temperature range of about 1450°C). Thermal expansion of the body can be suppressed. Thereby, the stress generated due to thermal expansion of the sprayed material under high temperature can be reduced, and peeling of the construction body can be further suppressed. Note that the upper limit of the content of the mullite-based raw material in the total amount of 100 mass% of the refractory raw materials having a particle size of 1 mm or more is not particularly limited, but may be, for example, about 85 mass%.
なお、本発明でいう粒径とは、耐火原料を篩いで篩って分離したときの篩い目の大きさのことであり、例えば粒径1mm以上の耐火原料とは篩い目が1mmの篩い目を通過しない耐火原料のことであり、粒径1mm未満の耐火原料とは篩い目が1mmの篩い目を通過する耐火原料のことである。 In addition, the particle size as used in the present invention refers to the size of the sieve mesh when the refractory raw material is sieved and separated, and for example, the refractory raw material with a particle size of 1 mm or more refers to the size of the sieve mesh with a sieve mesh of 1 mm. A refractory raw material with a particle size of less than 1 mm is a refractory raw material that does not pass through a sieve with a sieve mesh size of 1 mm.
本発明の吹付材においてバインダーとしては、アルミナセメント、水硬性遷移アルミナ、ポルトランドセメント、マグネシアセメント、ケイ酸塩、リン酸塩等の、吹付材のバインダーとして一般的に使用されているものを使用可能である。また、バインダーの一部又は全部は、粒径75μm以下のマグネシア微粉とシリカ超微粉との組み合わせにより凝集性の結合部を形成するものとしてもよい。上記例示したバインダーのうち、早期強度が大きく、耐食性に優れる点からアルミナセメントを用いるのが好ましい。
バインダーの使用量(含有量)は、耐火原料及びバインダーの合量100質量%中に占める割合で1質量%以上15質量%以下程度とすることができる。
As the binder in the spray material of the present invention, binders commonly used for spray materials such as alumina cement, hydraulic transition alumina, Portland cement, magnesia cement, silicates, and phosphates can be used. It is. Further, part or all of the binder may be one that forms a cohesive joint by combining fine magnesia powder with a particle size of 75 μm or less and ultrafine silica powder. Among the above-mentioned binders, it is preferable to use alumina cement because it has high early strength and excellent corrosion resistance.
The amount (content) of the binder to be used can be approximately 1% by mass or more and 15% by mass or less based on 100% by mass of the total amount of the refractory raw material and binder.
本発明の吹付材には、上述の耐火原料及びバインダー以外に、分散剤、硬化調整剤、繊維、増粘剤等の各種添加剤を使用することができる。なお、本発明においてこれら添加剤は、耐火原料及びバインダーの合量100質量%に対して外掛けで添加するものとし、その添加量は、本発明の効果を損なわない範囲で技術常識も考慮して適宜決定する。 In addition to the above-mentioned refractory raw materials and binders, various additives such as dispersants, hardening modifiers, fibers, and thickeners can be used in the spray material of the present invention. In addition, in the present invention, these additives shall be added in an amount added to 100% by mass of the total amount of the refractory raw material and the binder, and the amount to be added shall also take into account common general knowledge within the range that does not impair the effects of the present invention. The decision shall be made accordingly.
本発明の吹付材は、混銑車、溶銑鍋、溶鋼鍋等の溶融金属容器、あるいは高温炉、溶融金属処理装置等の内張りの形成や補修に広く適用することができるが、なかでも混銑車又は溶銑鍋に好適に適用することができる。本発明の吹付材は蝋石原料を含むところ、溶銑は溶鋼よりも温度が低いので、蝋石原料が軟化して半溶融状態となり荷重下において変形が大きくなって冷却される段階で施工体に亀裂を生じるといった弊害を生じにくい。また、溶銑は溶鋼よりも粘性が低いことから亀裂に差し込みやすいので、混銑車又は溶銑鍋においては本発明のような亀裂が入りにくい吹付材を適用することが好ましい。 The spraying material of the present invention can be widely applied to forming and repairing linings of molten metal containers such as pig iron cars, hot metal ladle, molten steel ladle, etc., high temperature furnaces, molten metal processing equipment, etc. It can be suitably applied to hot metal ladle. The spraying material of the present invention contains a raw material of Rouseki, and since the temperature of hot metal is lower than that of molten steel, the raw material of Rouseki softens and becomes semi-molten, deforming greatly under load and causing cracks in the construction body during the cooling stage. It is unlikely to cause any harmful effects such as Furthermore, since hot metal has a lower viscosity than molten steel, it can easily be inserted into cracks, so it is preferable to use a spray material that does not easily cause cracks, such as the one of the present invention, in a pig iron mixing car or a hot metal ladle.
本発明の吹付材は、湿式吹付施工と乾式吹付施工のうち、湿式吹付施工に好適に用いることができる。湿式吹付施工では乾式吹付施工に比べ緻密な施工体が得られやすく、施工体の稼働面側(高温側)と背面側(低温側)の両方において十分かつ適度な残存膨張性を確保できるという本発明の効果が顕著に得られる。 The spray material of the present invention can be suitably used for wet spray construction between wet spray construction and dry spray construction. Wet spraying makes it easier to obtain a dense construction compared to dry spraying, and it is possible to ensure sufficient and appropriate residual expansion on both the operating side (high temperature side) and back side (low temperature side) of the construction. The effects of the invention can be significantly obtained.
また、本発明の吹付材において蝋石原料とシリマナイト族原料の含有量は、施工条件に応じて適宜調整することができる。例えば、湿式吹付施工に用いる場合、上述のとおり緻密な施工体が得られやすいので蝋石原料とシリマナイト族原料の含有量は少なくできる。すなわち緻密な施工体では、蝋石原料とシリマナイト族原料は少量でも上記効果が得られやすい。一方、湿式吹付施工であっても雰囲気温度の高い条件において熱間吹付材として用いる場合は、施工水の添加量が多くなり施工体がポーラスになるので、蝋石原料とシリマナイト族原料の添加量は相対的に多くする。 Further, in the spray material of the present invention, the contents of the Rouseki raw material and the Sillimanite group raw material can be adjusted as appropriate depending on the construction conditions. For example, when used in wet spraying construction, the contents of the Rouseki raw material and the sillimanite group raw material can be reduced because a dense construction body is easily obtained as described above. That is, in a dense construction body, the above effects are likely to be obtained even if the Rouseki raw material and the Sillimanite group raw material are used in small amounts. On the other hand, even in wet spraying construction, when using it as a hot spraying material under conditions of high ambient temperature, the amount of construction water added becomes large and the construction body becomes porous, so the amount of Rouseki raw material and sillimanite group raw material added is Make it relatively large.
図1は、湿式吹付施工の一例のイメージ図である。施工水を添加して予め泥しょう状に調整した吹付材を、圧送管5を介してノズル1内に圧送する。吹付材はノズル1先端近傍に接続した急結剤導入管2から圧縮空気をもって急結剤を添加しつつ、ノズル1から噴出される。そして、吹付対象の壁面3(例えば混銑車又は溶銑鍋のウエアれんが)に吹付け施工体(施工体)4を形成する。
なお、図1では急結剤の添加をノズル1内としているが、ノズル1後方の圧送管5内でもよい。
FIG. 1 is an image diagram of an example of wet spraying construction. The spraying material, which has been prepared in advance into a slurry by adding construction water, is force-fed into the nozzle 1 through the pressure-feeding pipe 5. The spraying material is sprayed from the nozzle 1 while adding the quick-setting agent with compressed air from the quick-setting agent introduction pipe 2 connected near the tip of the nozzle 1. Then, a sprayed construction body (construction body) 4 is formed on a wall surface 3 to be sprayed (for example, a wear brick of a pig iron mixer or a hot metal ladle).
In addition, in FIG. 1, the quick-setting agent is added inside the nozzle 1, but it may be added inside the pressure feeding pipe 5 behind the nozzle 1.
ノズル1内又はノズル1後方の圧送管5にて添加する急結剤は液状、粉末のいずれでもよい。
液状急結剤としては、アルミン酸ソーダ、アルミン酸カリウム、ケイ酸ソーダ、リン酸ソーダ等の水溶液である。また、これらの液状急結剤には、必要によりカチオン系あるいはアニオン系等の凝集剤を組み合わせる。
粉末急結剤としては、例えばアルミン酸ソーダ、アルミン酸カリウム、ケイ酸ソーダ、リン酸ソーダ、炭酸ソーダ、塩化カルシウム,水酸化カルシウム、酸化カルシウム、アルミン酸カルシウム、水酸化マグネシウム、ポルトランドセメント、硫酸ばん土等から選ばれる一種以上である。
The quick setting agent added within the nozzle 1 or through the pressure feed pipe 5 behind the nozzle 1 may be either liquid or powder.
The liquid quick-setting agent is an aqueous solution of sodium aluminate, potassium aluminate, sodium silicate, sodium phosphate, or the like. Further, these liquid rapid setting agents are combined with a cationic or anionic flocculant, if necessary.
Examples of powder quick-setting agents include sodium aluminate, potassium aluminate, sodium silicate, sodium phosphate, sodium carbonate, calcium chloride, calcium hydroxide, calcium oxide, calcium aluminate, magnesium hydroxide, Portland cement, and sulfuric acid. It is one or more types selected from soil, etc.
吹付材に対する急結剤の添加は、圧縮空気をもって行うことができる。また、粉末急結剤は耐火物微粉と混合した状態で添加することもできる。なお、ノズル内又はノズル後方の圧送管にて添加する急結剤及びこれに混合する耐火物微粉は、本発明でいう耐火原料及びバインダーの概念に含まれないものとする。 The quick-setting agent can be added to the spray material using compressed air. Further, the powder quick setting agent can also be added in a mixed state with the fine refractory powder. It should be noted that the quick setting agent added in the nozzle or in the pressure pipe behind the nozzle and the refractory fine powder mixed therein are not included in the concept of refractory raw material and binder as used in the present invention.
吹付材を泥しょう状に調整するための施工水の添加量は、吹付材全体100質量%に対して外掛けで5質量%以上15質量%以下が好ましい。また、泥しょう状に調整した吹付材(施工水を含む)に対する急結剤の添加量は、吹付材の付着性の点から、外掛けで0.5質量%以上3質量%以下が好ましい。 The amount of construction water added to adjust the sprayed material into a slurry form is preferably 5% by mass or more and 15% by mass or less based on 100% by mass of the entire sprayed material. In addition, the amount of quick-setting agent added to the sprayed material (including construction water) adjusted to the shape of slurry is preferably 0.5% by mass or more and 3% by mass or less in terms of external application from the viewpoint of adhesion of the sprayed material.
表1に示す各例の配合(耐火原料及びバインダー)の合量100質量%に対して外掛けで10質量%の施工水を添加して予め泥しょう状に調整した吹付材を、ピストン式圧送ポンプにて圧送し、ノズル部で急結剤を圧縮空気にて外掛け2質量%添加し、耐火物垂直壁に吹付して得た施工体について、下記を評価した。
なお、表1において「その他耐火原料」とは、同表に記載のアルミナ-シリカ質原料以外のアルミナ-シリカ質原料(例えば粒径1mm未満のムライト原料)、炭化珪素原料、アルミナ原料及びシリカ原料から選択される一種以上である。
The sprayed material, which has been prepared in advance into a slurry by adding 10% by mass of construction water to the total of 100% by mass of each example formulation (refractory raw material and binder) shown in Table 1, is pumped using a piston method. The following evaluations were made for the constructed body obtained by force-feeding with a pump, adding 2% by mass of the quick-setting agent to the outside using compressed air at the nozzle, and spraying it onto a refractory vertical wall.
In addition, in Table 1, "other refractory raw materials" refers to alumina-siliceous raw materials other than the alumina-siliceous raw materials listed in the same table (for example, mullite raw materials with a particle size of less than 1 mm), silicon carbide raw materials, alumina raw materials, and silica raw materials. One or more types selected from.
<残存線変化率>
JIS-2554に準拠して1200℃と1450℃において測定した。1200℃は使用時の施工体の背面側の温度を想定し、1450℃は使用時の施工体の稼動面側の温度を想定したものである。具体的には以下の基準で評価した。
1200℃の残存線変化率
◎(優):-0.2以上0.2未満、〇(良):-0.3以上-0.2未満、△(可):-0.5以上-0.3未満又は0.2以上0.5未満、×(不可):-0.5未満又は0.5以上(単位:%)
1450℃の残存線変化率
◎(優):0以上0.5未満、〇(良):0.5以上1未満、△(可):1以上2未満又は-0.5以上0未満、×(不可):2以上又は-0.5未満(単位:%)
<Residual line change rate>
It was measured at 1200°C and 1450°C in accordance with JIS-2554. 1200°C assumes the temperature on the back side of the construction body during use, and 1450°C assumes the temperature on the operating side of the construction body during use. Specifically, the evaluation was based on the following criteria.
Residual line change rate at 1200℃ ◎ (Excellent): -0.2 or more and less than 0.2, ○ (Good): -0.3 or more and less than -0.2, △ (Acceptable): -0.5 or more -0 Less than .3 or 0.2 or more and less than 0.5, × (impossible): less than -0.5 or 0.5 or more (unit: %)
Residual linear change rate at 1450°C ◎ (Excellent): 0 or more and less than 0.5, ○ (Good): 0.5 or more and less than 1, △ (Acceptable): 1 or more and less than 2 or -0.5 or more and less than 0, × (Not allowed): 2 or more or less than -0.5 (unit: %)
<残存膨張差>
上記の1200℃と1450℃における残存線変化率の差で評価した。具体的には以下の基準で評価した。
◎(優):0.7未満 〇(良):0.7以上1.3未満、△(可):1.3以上2.5未満、×(不可):2.5以上
<Residual expansion difference>
Evaluation was made based on the difference in residual line change rate at 1200°C and 1450°C. Specifically, the evaluation was based on the following criteria.
◎ (Excellent): Less than 0.7 〇 (Good): 0.7 or more and less than 1.3, △ (Acceptable): 1.3 or more and less than 2.5, × (Not good): 2.5 or more
<熱膨張率>
JIS-R2207に準拠して1450℃おいて測定した。具体的には以下の基準で評価した。
◎(優):0.5以下、〇(良):0.5超0.75以下、△(可):0.75超1以下、×(不可):1超(単位:%)
<Thermal expansion coefficient>
Measured at 1450°C in accordance with JIS-R2207. Specifically, the evaluation was based on the following criteria.
◎ (excellent): 0.5 or less, 〇 (good): over 0.5 and 0.75 or less, △ (acceptable): over 0.75 and 1 or less, × (impossible): over 1 (unit: %)
<熱間強さ>
雰囲気温度1450度に保持された雰囲気内でJIS-R2553に準拠して測定した。具体的には以下の基準で評価した。
◎(優):0.5以上、〇(良):0.3以上0.5未満、△(可):0.1以上0.3未満、×(不可):0.1未満(単位:MPa)
<Hot strength>
Measurement was performed in accordance with JIS-R2553 in an atmosphere maintained at an ambient temperature of 1450 degrees. Specifically, the evaluation was based on the following criteria.
◎ (Excellent): 0.5 or more, ○ (Good): 0.3 or more and less than 0.5, △ (Acceptable): 0.1 or more and less than 0.3, × (Unacceptable): Less than 0.1 (Unit: MPa)
<総合評価>
上記各評価の結果に基づき以下の基準で評価した。
◎(優):全ての評価が◎の場合、〇(良):×がなく少なくとも一つ○又は△がある場合、×(不良):少なくとも一つ×がある場合
<Comprehensive evaluation>
Based on the results of each of the above evaluations, the following criteria were used for evaluation.
◎ (Excellent): When all evaluations are ◎, 〇 (Good): When there is no × and at least one ○ or △, × (Poor): When there is at least one ×
表1に示しているように本発明の範囲内にある実施例1~10は、総合評価が◎(優)又は〇(良)であり良好な評価結果が得られた。すなわち実施例1~10では、1200℃と1450℃の両方において十分かつ適度な残存膨張性を確保でき、しかも残存膨張差も小さいことから、実使用環境において施工体の剥離を抑制することができると判断される。 As shown in Table 1, Examples 1 to 10 falling within the scope of the present invention had an overall evaluation of ◎ (excellent) or ○ (good), and good evaluation results were obtained. That is, in Examples 1 to 10, sufficient and appropriate residual expansion properties can be ensured at both 1200°C and 1450°C, and the difference in residual expansion is also small, so peeling of the constructed body can be suppressed in the actual use environment. It is judged that.
比較例1はシリマナイト族原料を含まない例である。1200℃における残存線変化率が小さく、その結果、残存膨張差が大きくなった。
比較例2は蝋石原料を含まない例である。1450℃における残存線変化率が小さくなった。
比較例3は蝋石原料の含有量が多い例である。1450℃における残存線変化率が大きくなりすぎた。また、耐火度が低下して熱間強さが低くなった。
比較例4はシリマナイト族原料の含有量が多い例である。1200℃における残存線変化率が大きくなりすぎた。
このように比較例1~4では、1200℃と1450℃の両方において十分かつ適度な残存膨張性を確保できないので、実使用環境において施工体の剥離を抑制することができないと判断される。
Comparative Example 1 is an example that does not contain any sillimanite group raw material. The residual linear change rate at 1200°C was small, resulting in a large residual expansion difference.
Comparative Example 2 is an example that does not contain Rouseki raw material. The residual line change rate at 1450°C became smaller.
Comparative Example 3 is an example in which the content of Rouseki raw material is large. The residual line change rate at 1450°C became too large. In addition, the fire resistance decreased and the hot strength decreased.
Comparative Example 4 is an example in which the content of the sillimanite group raw material is high. The residual line change rate at 1200°C became too large.
As described above, in Comparative Examples 1 to 4, sufficient and appropriate residual expansibility cannot be ensured at both 1200° C. and 1450° C., so it is judged that peeling of the constructed body cannot be suppressed in the actual use environment.
1 ノズル
2 急結剤導入管
3 壁面
4 吹付け施工体(施工体)
5 圧送管
1 Nozzle 2 Rapid setting agent introduction pipe 3 Wall surface 4 Sprayed construction body (construction body)
5 Pressure feed pipe
Claims (5)
前記耐火原料及びバインダーの合量100質量%中に、平均粒径1mm超の蝋石原料を1質量%以上15質量%以下含み、かつ、シリマナイト族原料を1質量%以上40質量%以下含み、さらに、ムライト原料、シャモット原料、ボーキサイト原料、炭化珪素原料、アルミナ原料及びシリカ原料から選択される一種以上を合計で50質量%以上90質量%以下含む、吹付材。 A spray material containing a refractory raw material and a binder,
The total amount of the refractory raw material and binder is 100% by mass, contains 1% by mass or more and 15% by mass or less of Rouseki raw material with an average particle size of more than 1 mm, and contains 1% by mass or more and 40% by mass or less of sillimanite group raw material, Furthermore, a spray material containing a total of 50% by mass or more and 90% by mass or less of one or more selected from mullite raw material, chamotte raw material, bauxite raw material, silicon carbide raw material, alumina raw material, and silica raw material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020066179A JP7441103B2 (en) | 2020-04-01 | 2020-04-01 | Spraying material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020066179A JP7441103B2 (en) | 2020-04-01 | 2020-04-01 | Spraying material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021161004A JP2021161004A (en) | 2021-10-11 |
JP7441103B2 true JP7441103B2 (en) | 2024-02-29 |
Family
ID=78002435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020066179A Active JP7441103B2 (en) | 2020-04-01 | 2020-04-01 | Spraying material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7441103B2 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114573A (en) | 1999-10-13 | 2001-04-24 | Kurosaki Harima Corp | Method for spraying refractory and refractory spraying material |
JP2006219330A (en) | 2005-02-09 | 2006-08-24 | Plibrico Japan Co Ltd | Monolithic refractory for spray repairing and repairing method |
-
2020
- 2020-04-01 JP JP2020066179A patent/JP7441103B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001114573A (en) | 1999-10-13 | 2001-04-24 | Kurosaki Harima Corp | Method for spraying refractory and refractory spraying material |
JP2006219330A (en) | 2005-02-09 | 2006-08-24 | Plibrico Japan Co Ltd | Monolithic refractory for spray repairing and repairing method |
Also Published As
Publication number | Publication date |
---|---|
JP2021161004A (en) | 2021-10-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101811879B (en) | Al2O3-SiO2-SiC-based jet material for foundry ladle | |
US4981731A (en) | Method for gunning a refractory composition | |
JP7441103B2 (en) | Spraying material | |
US20220033302A1 (en) | Spray material for hot and dry spray application, and hot and dry spray application method | |
JP4351526B2 (en) | Unshaped refractories for wet spraying with used refractories | |
JP4382930B2 (en) | Refractory spraying method and refractory spraying material | |
JP6302435B2 (en) | Quick setting agent for wet spraying material, method for producing the same, wet spraying material including the same, and method for applying wet spraying material | |
JP2000344581A (en) | Wet-spraying material for molten steel ladle and method for spraying | |
JP3873426B2 (en) | Refractories for spray repair and spray repair method | |
JP2831976B2 (en) | Wet spraying method | |
JP6374926B2 (en) | Unfixed refractory for repair and repair method | |
US20120252653A1 (en) | Setting agent accelerator for refractory material | |
JP6454653B2 (en) | Portland cement-based quick set slurry and wet spraying method | |
TW201446707A (en) | Amorphous refractory for spraying | |
JPH0952169A (en) | Refractory for tuyere of molten steel container | |
JP4456193B2 (en) | Refractory spraying method | |
JP3659627B2 (en) | Wet spray construction method | |
JP6330829B2 (en) | Indefinite refractory | |
JP2018052752A (en) | Monolithic refractory for use in extending work of blast furnace trough and its construction method | |
Tomšůu et al. | From Conventional Refractory Castables to Actual High-Quality Hydraulic Bonded Products–Development during the Last Forty Years | |
JP3981433B2 (en) | Refractory spraying method | |
KR20040021116A (en) | Refractory Compositions of Wet Gunning for Repairing of Torpedo Ladle Car | |
CN116874289A (en) | Preparation method of novel high-temperature-resistant high-strength aluminum-magnesium castable | |
JP2003192458A (en) | Castable for wet spraying, material and wet spraying method using the same | |
JP2000226268A (en) | Method of refractory material spraying work and spray refractory material to be used therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201224 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20231005 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20231024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240123 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240216 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7441103 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |