[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7440895B2 - 土壌硬度等高線マップを用いた農作業機の運行支援方法 - Google Patents

土壌硬度等高線マップを用いた農作業機の運行支援方法 Download PDF

Info

Publication number
JP7440895B2
JP7440895B2 JP2020031461A JP2020031461A JP7440895B2 JP 7440895 B2 JP7440895 B2 JP 7440895B2 JP 2020031461 A JP2020031461 A JP 2020031461A JP 2020031461 A JP2020031461 A JP 2020031461A JP 7440895 B2 JP7440895 B2 JP 7440895B2
Authority
JP
Japan
Prior art keywords
hardness
area
travel
agricultural machine
contour map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020031461A
Other languages
English (en)
Other versions
JP2021132572A (ja
Inventor
宗大 江波戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2020031461A priority Critical patent/JP7440895B2/ja
Publication of JP2021132572A publication Critical patent/JP2021132572A/ja
Application granted granted Critical
Publication of JP7440895B2 publication Critical patent/JP7440895B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Guiding Agricultural Machines (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Description

本発明は、作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いた農作業機の運行支援方法に関する。
自動車の自動運転について急ピッチで実用化に向けた開発が進んでおり、トラクターなど農作業機の自動運転についても取り組まれている。しかし、自動運転技術の主流はGNSS(位置情報人工衛星システム)によって位置情報を確定するが、GNSSに障害が起きた場合には対応できず、また衛星からの電波を十分に受信できない環境では自動運転ができない。
また、圃場は、一般道路と異なり、土壌によって安定した走行ができない。
特許文献1には、土壌データその他の情報から作成された走行予定ルートを農作業機により自動走行させることが開示されている。
本発明者は、土壌硬度データを用いて、作物生産性に及ぼす土壌物理性を診断する圃場における土壌物理性診断方法を既に提案している(特許文献2)。
特許文献2で提案している土壌物理性診断方法では、雨水滞留エリアなど、圃場における土壌硬度を把握することができる。
特開2019-126268号公報 特開2019-20395号公報
しかし、特許文献1は、農作業機の走行可能性を判断するものではなく、ぬかるみのような走行困難なエリアでの対応ができない。
そこで本発明は、エリア別硬度値から農作業機が走行可能か否かを推定することで農作業機の安全な運行を支援できる土壌硬度等高線マップを用いた農作業機の運行支援方法を提供することを目的とする。
請求項1記載の本発明の土壌硬度等高線マップを用いた農作業機の運行支援方法は、作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いた農作業機の運行支援方法であって、コンピュータが、前記深度別の前記土壌硬度等高線マップから、作業時におけるエリア別硬度値を推定する硬度値推定ステップ2と、前記硬度値推定ステップ2で推定した前記エリア別硬度値から前記農作業機が走行可能か否かを推定する走行可能性推定ステップ3と、を実行し、前記走行可能性推定ステップ3において、前記農作業機が走行できない走行不可能エリアが有ると判断されると、前記圃場における前記農作業機の走行ルートの作成を延期し、又は前記走行不可能エリアを除く走行可能エリアで前記走行ルートを決定し、前記農作業機が走行困難である走行困難エリアが有ると判断されると、前記走行困難エリアでは前記農作業機の走行速度を速くする指示を出力することを特徴とする。
請求項2記載の本発明は、請求項1に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法において、前記農作業機の前記走行速度を速くする場合には、農薬又は肥料の散布量を多くする指示を出力することを特徴とする。
請求項3記載の本発明は、請求項1に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法において、前記走行可能性推定ステップ3において、高硬度エリア63が有ると判断されると、前記高硬度エリア63では前記農作業機の前記走行速度を遅くしロータリー速度を速くする指示を出力することを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれか1項に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法において、前記硬度値推定ステップ2では、現在より前の所定期間の気象データを用いることを特徴とする。
請求項5記載の本発明は、請求項4に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法において、前記気象データとして、前記所定期間での積算降水量を用いることを特徴とする。
請求項6記載の本発明は、請求項4に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法において、前記気象データとして、単位時間当たりの降水強度を用いることを特徴とする。
請求項7記載の本発明は、請求項1から請求項6のいずれか1項に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法において、前記走行可能性推定ステップ3では、前記農作業機によって決定される走破閾値を用いることを特徴とする。
請求項8記載の本発明は、請求項1から請求項7のいずれか1項に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法において、前記硬度値推定ステップ2で推定した前記エリア別硬度値を、前記圃場での代表ポイントにおける深度別硬度実測値によって補正する硬度値補正ステップ8を有することを特徴とする。
請求項9記載の本発明の土壌硬度等高線マップを用いた農作業機の運行支援方法作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いた農作業機の運行支援方法であって、コンピュータが、前記深度別の前記土壌硬度等高線マップから、作業時におけるエリア別硬度値を推定する硬度値推定ステップ2と、前記硬度値推定ステップ2で推定した前記エリア別硬度値から前記農作業機が走行可能か否かを推定する走行可能性推定ステップ3と、を実行し、前記走行可能性推定ステップ3において、前記農作業機が走行できない走行不可能エリアが有ると判断されると、前記圃場における前記農作業機の走行ルートの作成を延期し、又は前記走行不可能エリアを除く走行可能エリアで前記走行ルートを決定し、前記走行不可能エリアが有り、前記走行ルートの作成を延期する場合には、延期日における前記エリア別硬度値を推定し、前記エリア別硬度値から前記農作業機が走行可能か否かを推定することを特徴とする。
本発明によれば、作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いてエリア別硬度値を推定し、推定されたエリア別硬度値から農作業機が走行可能か否かを推定でき、走行不可能エリアが有ると判断された場合には、農作業機での作業を延期し、又は走行不可能エリアを除いて走行ルートを決定するため、農作業機の安全な運行を支援できる。
本発明の一実施例による土壌硬度等高線マップを用いた農作業機の運行支援方法を示すフローチャート 本実施例による土壌硬度等高線マップを用いた農作業機の運行支援方法での走行ルート別フローチャート 本実施例による農作業機の運行支援方法に用いる土壌硬度等高線マップの作成を示す図 深度毎の土壌硬度等高線マップ それぞれの調査日前10日間の降水量と平均気温を示す表 それぞれの調査日について同一圃場における下層土(深度40cm)での土壌硬度等高線マップ それぞれの調査日について同一圃場における作土(深度12cm)での土壌硬度等高線マップ それぞれの調査日前の日降水量(アメダスデータ)を示すグラフと、調査対象とする圃場における作土(深度12cm)での土壌硬度等高線マップ それぞれの調査日における圃場の表層での土壌含水率等高線マップ 作土における土壌水分の垂直分布と土壌硬度とを対比して示す土壌含水率等高線マップ及び土壌硬度等高線マップ 下層土における土壌水分の垂直分布と土壌硬度とを対比して示す土壌含水率等高線マップ及び土壌硬度等高線マップ 圃場における土壌硬度等高線マップ
本発明の第1の実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法は、コンピュータが、深度別の土壌硬度等高線マップから、作業時におけるエリア別硬度値を推定する硬度値推定ステップと、硬度値推定ステップで推定したエリア別硬度値から農作業機が走行可能か否かを推定する走行可能性推定ステップと、を実行し、走行可能性推定ステップにおいて、農作業機が走行できない走行不可能エリアが有ると判断されると、圃場における農作業機の走行ルートの作成を延期し、又は走行不可能エリアを除く走行可能エリアで走行ルートを決定し、走行可能性推定ステップにおいて、農作業機が走行困難である走行困難エリアが有ると判断されると、走行困難エリアでは農作業機の走行速度を速くする指示を出力するものである。
本実施の形態によれば、作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いてエリア別硬度値を推定し、推定されたエリア別硬度値から農作業機が走行可能か否かを推定でき、走行不可能エリアが有ると判断された場合には、農作業機での作業を延期し、又は走行不可能エリアを除いて走行ルートを決定するため、農作業機の安全な運行を支援できる。また、ぬかるみのような走行困難なエリアでの農作業機のスタックを防止できる。
本発明の第2の実施の形態は、第1の実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法において、農作業機の走行速度を速くする場合には、農薬又は肥料の散布量を多くする指示を出力するものである。
本実施の形態によれば、走行速度に影響することなく一定の散布量とすることができる。
本発明の第3の実施の形態は、第1の実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法において、走行可能性推定ステップにおいて、高硬度エリアが有ると判断されると、高硬度エリアでは農作業機の走行速度を遅くしロータリー速度を速くする指示を出力するものである。
本実施の形態によれば、耕起強度を高めることができる。
本発明の第4の実施の形態は、第1から第3のいずれかの実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法において、硬度値推定ステップでは、現在より前の所定期間の気象データを用いるものである。
本実施の形態によれば、所定期間の気象データを用いることで、作業時におけるエリア別硬度値を正確に推定できる。
本発明の第5の実施の形態は、第4の実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法において、気象データとして、所定期間での積算降水量を用いるものである。
本実施の形態によれば、積算降水量を用いることで、作業時におけるエリア別硬度値を正確に推定できる。
本発明の第6の実施の形態は、第4の実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法において、気象データとして、単位時間当たりの降水強度を用いるものである。
本実施の形態によれば、単位時間当たりの降水強度を用いることで、作業時におけるエリア別硬度値を正確に推定できる。
本発明の第7の実施の形態は、第1から第6のいずれかの実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法において、走行可能性推定ステップでは、農作業機によって決定される走破閾値を用いるものである。
本実施の形態によれば、農作業機の重量や大きさ、農作業機の性能に応じて走行可能か否かを推定できるため、作業時におけるエリア別硬度値に応じて農作業機を選択することもできる。
本発明の第8の実施の形態は、第1から第7のいずれかの実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法において、硬度値推定ステップで推定したエリア別硬度値を、圃場での代表ポイントにおける深度別硬度実測値によって補正する硬度値補正ステップを有するものである。
本実施の形態によれば、作業時におけるエリア別硬度値をより正確に推定できる。
本発明の第9の実施の形態による土壌硬度等高線マップを用いた農作業機の運行支援方法コンピュータが、深度別の土壌硬度等高線マップから、作業時におけるエリア別硬度値を推定する硬度値推定ステップと、硬度値推定ステップで推定したエリア別硬度値から農作業機が走行可能か否かを推定する走行可能性推定ステップと、を実行し、走行可能性推定ステップにおいて、農作業機が走行できない走行不可能エリアが有ると判断されると、圃場における農作業機の走行ルートの作成を延期し、又は走行不可能エリアを除く走行可能エリアで走行ルートを決定し、走行不可能エリアが有り、走行ルートの作成を延期する場合には、延期日におけるエリア別硬度値を推定し、エリア別硬度値から農作業機が走行可能か否かを推定するものである。
本実施の形態によれば、作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いてエリア別硬度値を推定し、推定されたエリア別硬度値から農作業機が走行可能か否かを推定でき、走行不可能エリアが有ると判断された場合には、農作業機での作業を延期し、又は走行不可能エリアを除いて走行ルートを決定するため、農作業機の安全な運行を支援できる。また、農作業を延期するか否かの判断に役立つ情報を提供できる。
以下本発明の一実施例による土壌硬度等高線マップを用いた農作業機の運行支援方法について説明する。なお、以下にフローチャートを用いて説明する各ステップの全て又は一部はサーバーによって処理することができる。
図1は本実施例による土壌硬度等高線マップを用いた農作業機の運行支援方法を示すフローチャートである。
本実施例による土壌硬度等高線マップを用いた農作業機の運行支援方法は、以下のステップで行われる。
本実施例による農作業機の運行支援方法は、作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いる(S1)。
深度別土壌硬度等高線マップ作成ステップ1で作成された深度別の土壌硬度等高線マップから、作業時におけるエリア別硬度値を推定する(S2)。
硬度値推定ステップ2では、現在より前の所定期間の気象データを用いる。所定期間の気象データを用いることで、作業時におけるエリア別硬度値を正確に推定できる。
硬度値推定ステップ2で用いる気象データとしては、所定期間での積算降水量を用いることができる。積算降水量を用いることで、作業時におけるエリア別硬度値を正確に推定できる。
また、気象データとして、単位時間当たりの降水強度を用いることが好ましい。単位時間当たりの降水強度を用いることで、作業時におけるエリア別硬度値を正確に推定できる。
気象データは、例えば気象庁が提供するデータを用いることができるが、出願人が提供する農研機構メッシュ農業気象データや、その他の機関が提供する気象データでもよい。なお、気象データには、公に提供されている気象データだけでなく、作業対象となる圃場で個別の計測機器によって計測される気象データを用いることができる。
硬度値推定ステップ2で推定したエリア別硬度値から農作業機が走行可能か否かを推定する(S3)。
走行可能性推定ステップ3では、農作業機によって決定される走破閾値を用いる。保有する農作業機に関しては、農作業機の種類、機体寸法、機体重量、エンジン性能、走行性能など、あらかじめ主要諸元データが入力され(S4)、入力されたデータをもとに、農作業機別に走破閾値が決定される(S5)。特に農作業機の種類では、スタブルカルチ、サブソイラ、及びプラウのような種別、機体寸法では最低地上高、走行性能ではタイヤかクローラーかの区分によって走破閾値が異なる。
このように、農作業機によって決定される走破閾値を用いることで、農作業機の重量や大きさ、農作業機の性能に応じて走行可能か否かを推定できるため、作業時におけるエリア別硬度値に応じて農作業機を選択することもできる。
走行可能性推定ステップ3では、農作業機が走行できない走行不可能エリアが存在するか否かが判断される(S6)。
S6において、農作業機が走行できない走行不可能エリアが存在しないと判断されると、標準走行ルートが決定される(S7)。
なお、硬度値推定ステップ2で推定したエリア別硬度値を、圃場での代表ポイントにおける深度別硬度実測値によって補正する硬度値補正ステップ8(S8)を有することが好ましい。
硬度値補正ステップ8は、走行可能性推定ステップ3で農作業機の走行可能性を推定された後に、走行不可能領域が存在すると判断された場合(S6でYes)に限って行うことが好ましいが、硬度値推定ステップ2で推定したエリア別硬度値を硬度値補正ステップ8で補正し、硬度値補正ステップ8で補正した後に走行可能性推定ステップ3で農作業機の走行可能性を推定してもよい。
深度別硬度実測値を得るための代表ポイントは、深度別土壌硬度等高線マップを用いて決定する。
硬度値補正ステップ8において、農作業機が走行できないと判断された走行不可能エリアの少なくとも1か所を代表ポイントとして用いることで、すべての走行不可能エリアを実測することなく、走行可能性を推定することができる。
S9において、農作業機が走行できない走行不可能エリアが存在しないと判断されると、標準走行ルートが決定される(S10)。
S9において、農作業機が走行できない走行不可能エリアが存在すると判断されると、作業日を延期するか否かを判断する(S11)。
S11における判断には、作業期日の入力が必要である(S12)。入力された作業期日から作業可能日数が算出される(S13)。
S13で算出された作業可能日数から、S11において作業日延期できないと判断されると、個別走行ルートが決定される(S14)。
S14では、走行不可能エリアを除いて走行ルートが決定される。
S11において、作業日延期が可能と判断されると、延期日の硬度値の推定が行われる(S15)。
S15における延期日の硬度値の推定では、今後の気象予報データが用いられる。
気象予報データは、気象衛星やアメダスを用いて気象庁が提供する気象予報データの他に、気象庁や米国海洋大気局等の気象予測モデルをスーパーコンピュータで計算した予測値(GPV)を提供するGPV気象予報データや、天気予報サイト「SCW」で提供している気象データを用いることができる。
延期日における硬度値は、延期日より前の所定期間の気象予報データを用いる。所定期間の気象データを用いることで、作業時におけるエリア別硬度値を正確に推定できる。
S15で用いる気象予報データとしては、所定期間での積算降水量を用いることができる。積算降水量を用いることで、作業時におけるエリア別硬度値を正確に推定できる。
また、気象予報データとして、単位時間当たりの降水強度を用いることが好ましい。単位時間当たりの降水強度を用いることで、作業時におけるエリア別硬度値を正確に推定できる。
S16では、延期日の硬度値の推定の結果、延期日においても走行不可能エリアが存在する可能性があり、延期日で作業が完了しないと判断されると、個別走行ルートが決定される(S17)。
S17における個別走行ルートの決定は、S14における個別走行ルートの決定と同様である。
S16において、延期日で作業が完了すると判断されると延期が決定される(S18)。
このように、走行可能性推定ステップ3又は硬度値補正ステップ8において、走行不可能エリアが有り、走行ルートの作成を延期する場合(S11においてYes)には、延期日におけるエリア別硬度値を推定し(S15)、エリア別硬度値から農作業機が走行可能か否かを推定する(S16)ことで、農作業を延期するか否かの判断に役立つ情報を提供できる。
図2は本実施例による土壌硬度等高線マップを用いた農作業機の運行支援方法での走行ルート別フローチャートである。
図2(a)は、図1におけるS7及びS10で標準走行ルートが決定された場合であり、走行不可能エリアが存在しない場合である。
走行可能性推定ステップ3又は硬度値補正ステップ8において、農作業機が走行困難である走行困難エリアが有ると判断されると(S30でYes)、走行困難エリアでは農作業機の走行速度を速くする(S31)。
走行困難エリアでは農作業機の走行速度を速くすることで、ぬかるみのような走行困難なエリアでの農作業機のスタックを防止できる。
なお、農作業機の走行速度を速くする場合には、農薬又は肥料の散布量を多くする(S32)。走行速度に比例して農薬又は肥料の散布量を多くすることで、走行速度に影響することなく一定の散布量とすることができる。
走行可能性推定ステップ3又は硬度値補正ステップ8において、農作業機が走行困難である走行困難エリアが無いと判断されると(S30でNo)、高硬度エリアが存在するか否かが判断される(S33)。
走行可能性推定ステップ3又は硬度値補正ステップ8において、高硬度エリアが有ると判断されると(S33でYes)、高硬度エリアでは農作業機の走行速度を遅くしロータリー速度を速くする(S34)。高硬度エリアでは農作業機の走行速度を遅くしロータリー速度を速くすることで、耕起強度を高めることができる。
なお、農作業機の走行速度を遅くする場合には、農薬又は肥料の散布量を少なくする(S35)。走行速度に比例して農薬又は肥料の散布量を少なくすることで、走行速度に影響することなく一定の散布量とすることができる。
走行可能性推定ステップ3又は硬度値補正ステップ8において、農作業機が走行困難である走行困難エリアが無いと判断され(S30でNo)、高硬度エリアが無いと判断されると(S33でNo)、農作業機は標準速度で運転される(S36)。
図2(b)は、図1におけるS14及びS17で個別走行ルートが決定された場合であり、走行不可能エリアが存在する場合である。
走行可能性推定ステップ3又は硬度値補正ステップ8において、農作業機が走行不可能である走行不可能エリアを判別し、走行不可能エリアを除く走行可能エリアで走行ルートを決定する(S21)。
走行可能性推定ステップ3又は硬度値補正ステップ8において、農作業機が走行困難である走行困難エリアが有ると判断されると(S30でYes)、走行困難エリアでは農作業機の走行速度を速くする(S31)。
走行困難エリアでは農作業機の走行速度を速くすることで、ぬかるみのような走行困難なエリアでの農作業機のスタックを防止できる。
なお、農作業機の走行速度を速くする場合には、農薬又は肥料の散布量を多くする(S32)。走行速度に比例して農薬又は肥料の散布量を多くすることで、走行速度に影響することなく一定の散布量とすることができる。
走行可能性推定ステップ3又は硬度値補正ステップ8において、農作業機が走行困難である走行困難エリアが無いと判断されると(S30でNo)、高硬度エリアが存在するか否かが判断される(S33)。
走行可能性推定ステップ3又は硬度値補正ステップ8において、高硬度エリアが有ると判断されると(S33でYes)、高硬度エリアでは農作業機の走行速度を遅くしロータリー速度を速くする(S34)。高硬度エリアでは農作業機の走行速度を遅くしロータリー速度を速くすることで、耕起強度を高めることができる。
なお、農作業機の走行速度を遅くする場合には、農薬又は肥料の散布量を少なくする(S35)。走行速度に比例して農薬又は肥料の散布量を少なくすることで、走行速度に影響することなく一定の散布量とすることができる。
走行可能性推定ステップ3又は硬度値補正ステップ8において、農作業機が走行困難である走行困難エリアが無いと判断され(S30でNo)、高硬度エリアが無いと判断されると(S33でNo)、農作業機は標準速度で運転される(S36)。
図3は本実施例による農作業機の運行支援方法に用いる土壌硬度等高線マップの作成を示す図である。
図3(a)は、圃場を対象とした診断エリア51における測位ポイント52を示し、図3(b)は、一つの測位ポイント52における深度毎の土壌硬度であり、1cm刻みで深さ60cmまでを測定した場合を示し、図3(c)は、7つの深度の異なる土壌硬度等高線マップを示している。
図3(a)に示すように、圃場を対象とした診断エリア51について複数の測位ポイント52を決定する。例えば、測位ポイント52が約10mメッシュとなるように決定する。診断エリア51を1haとすると、診断エリア51の最外周を測位ポイント52から外すことで、測位ポイント52は64地点となる。
決定した測位ポイント52について、深度毎に土壌硬度を測定する。土壌硬度の測定には、貫入式土壌硬度計を用いる。また、測定ポイント52での測定では、衛星測位システム(GNSS)を用い、測位ポイント52の位置データを取得する。
測定した土壌硬度データ及び測位ポイント52の位置データから、深度毎に、土壌硬度等高線マップを作成する。
図4は深度毎の土壌硬度等高線マップである。
図4(a)は深度15cm、図4(b)は深度20cm、図4(c)は深度30cm、図4(d)は深度40cm、図4(e)は深度50cm、図4(f)は深度60cmにおける土壌硬度等高線マップである。
図4に示すように、深度20cm以上が下層土であり、少なくとも深度20cm未満が作土であることが分かる。所定の硬度を閾値として定め、閾値以上の硬度が占める比率によって土壌層位が下層土であると判別することができる。
図4に示す土壌硬度等高線マップでは、例えば、深度が深い土壌硬度等高線マップである深度60cmにおける土壌硬度等高線マップから低硬度ポイント60を判別し、深度が浅い土壌硬度等高線マップである深度15cmにおける土壌硬度等高線マップから、低硬度ポイント60を含む低硬度エリア61を雨水滞留エリアと判別することができる。
図5から図7を用いて、年間を通した土壌硬度の変化について説明する。
図5はそれぞれの調査日前10日間の降水量と平均気温を示す表、図6はそれぞれの調査日について同一圃場における下層土(深度40cm)での土壌硬度等高線マップ、図7はそれぞれの調査日について同一圃場における作土(深度12cm)での土壌硬度等高線マップである。
図5(a)に示すように、調査日の2015/11/25、及び調査日の2016/11/18が10日間の積算降水量が多く、調査日の2016/3/2、及び調査日の2016/6/1が10日間の積算降水量が少ない。また、図5(b)に示すように、調査日の2016/6/1が10日間の積算平均気温が最も高い。
図6及び図7では、10日間の積算降水量が多かった、調査日の2015/11/25(図6(a)、図7(a))、及び調査日の2016/11/18(図6(d)、図7(d))は、調査日の2016/3/2(図6(b)、図7(b))、及び調査日の2016/6/1(図6(c)、図7(c))に比べて低硬度となっていることが分かる。
図6及び図7に示すように、降水量や気温によって土壌硬度の絶対値は変化するが、低硬度ポイント60や低硬度エリア61はほぼ同じ位置で発生し、年間を通じて土壌硬度が高い地点と低い地点の相対的な関係は変わらない。
土壌硬度三次元分布と10日前からのアメダスデータを総合して考察すると、積算降水量が少なく、積算平均気温が高い方が、土壌硬度は高い傾向にある。このことから、事前に土壌硬度等高線マップを作成しておけば、降雨後に農作業機で圃場作業を行おうとした場合に、土壌硬度を数点測定することによって、滞りなく圃場作業を行えるかどうかの判定ができる。
図8から図11を用いて、土壌硬度三次元分布と実際の水の流れとの関係について説明する。
図8はそれぞれの調査日前の日降水量(アメダスデータ)を示すグラフと、調査対象とする圃場における作土(深度12cm)での土壌硬度等高線マップ、図9はそれぞれの調査日における圃場の表層での土壌含水率等高線マップ、図10及び図11は同一調査日(2017/6/15)における異なる深度での土壌含水率等高線マップと土壌硬度等高線マップである。
図9(a)に示す調査日の2017/5/10は図8(a)に示すように降雨直後、図9(b)に示す調査日の2017/5/12は図8(a)に示すように降雨なく土壌が乾いた状態、図9(c)に示す調査日の2017/5/15は図8(a)に示すように30mmの降雨から2日後、図9(d)に示す調査日の2017/6/6は図8(a)に示すように降雨から4日経過して土壌が乾いた状態である。
図9では、土壌水分について降雨イベントと表層土壌水分の水平分布を経時的に示している。
図9に示すように、降水量によって含水率の絶対値は変化するが、同一圃場における高含水率エリア62は、低硬度エリア61と重なっており、実際に低硬度エリア61に雨水が溜まることが分かる。
図10では、作土における土壌水分の垂直分布と土壌硬度とを対比して示している。
図10(a)は深度0~3cmでの土壌含水率等高線マップ、図10(b)は深度9~12cmでの土壌含水率等高線マップ、図10(c)は深度1cmでの土壌硬度等高線マップ、図10(d)は深度12cmでの土壌硬度等高線マップである。
図10(a)及び図10(b)に示す高含水率エリア62は、図10(c)及び図10(d)に矢印で示すように、高硬度エリア63から低硬度エリア61に雨水が流れ込んでいることが分かる。
図11では、下層土における土壌水分の垂直分布と土壌硬度とを対比して示している。
図11(a)は深度15~18cmでの土壌含水率等高線マップ、図11(b)は深度24~27cmでの土壌含水率等高線マップ、図11(c)は深度18cmでの土壌硬度等高線マップ、図11(d)は深度27cmでの土壌硬度等高線マップである。
図11(a)及び図11(b)に示す高含水率エリア62は、図11(c)及び図11(d)に矢印で示すように、高硬度エリア63から低硬度エリア61に雨水が流れ込んでいることが分かる。
以上のように、深度毎の土壌硬度等高線マップから、作土及び下層土における雨水の流れや雨水滞留エリアを把握することができる。
図12は、圃場における土壌硬度等高線マップであり、図12(a)は表層での土壌硬度等高線マップ、図12(b)は深度12cmでの土壌硬度等高線マップ、図12(c)は深度40cmでの土壌硬度等高線マップである。
表層での土壌硬度等高線マップである図12(a)は、仮比重と高い相関性が認められる。
また、深度が深い土壌硬度等高線マップである図12(c)から低硬度ポイント60を判別でき、深度が浅い土壌硬度等高線マップである図12(b)から、低硬度ポイント60を含む低硬度エリア61を雨水滞留エリアと判別でき、図12(b)に示すように雨水の流れを推測できる。図12では、高粘土エリア66を図示している。
このように、粒度組成の分布は雨水の流れと相関があることから、粒度組成を測定することなく、本実施例による土壌物理性診断方法によって粒径の小さいシルト画分や粘土画分が多いエリアを判別することができる。
また、図12(a)に示す表層での土壌硬度等高線マップ、又は図12(b)に示す作土での土壌硬度等高線マップから、明渠の敷設位置を決定することができ、明渠を敷設することで作土における雨水の流れや滞留を調整でき、収穫量の低いエリアを改善することができる。
また、図12(c)に示す下層土での土壌硬度等高線マップから、暗渠の敷設位置を決定することができ、暗渠を敷設することで、作土の土壌含水率を適正に保ち、地下水位を低下させることが可能であり、土壌中の通気性を良好として収穫量を高めることができる。
本発明による土壌硬度等高線マップを用いた農作業機の運行支援方法は、GNSSや、圃場境界情報、圃場周辺の施設情報、圃場周辺の経路情報を含む圃場地図情報とともに用いることができ、特に農作業機の位置情報については、GNSSを用いることで自動運転を実現できる。
51 診断エリア
52 測位ポイント
60 低硬度ポイント
61 低硬度エリア
62 高含水率エリア
63 高硬度エリア
66 高粘土エリア
ステップ1 深度別土壌硬度等高線マップ作成
ステップ2 硬度値推定
ステップ3 走行可能性推定
ステップ8 硬度値補正

Claims (9)

  1. 作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いた農作業機の運行支援方法であって、
    コンピュータが、
    前記深度別の前記土壌硬度等高線マップから、作業時におけるエリア別硬度値を推定する硬度値推定ステップと、
    前記硬度値推定ステップで推定した前記エリア別硬度値から前記農作業機が走行可能か否かを推定する走行可能性推定ステップと、
    を実行し、
    前記走行可能性推定ステップにおいて、前記農作業機が走行できない走行不可能エリアが有ると判断されると、前記圃場における前記農作業機の走行ルートの作成を延期し、又は前記走行不可能エリアを除く走行可能エリアで前記走行ルートを決定し、
    前記農作業機が走行困難である走行困難エリアが有ると判断されると、前記走行困難エリアでは前記農作業機の走行速度を速くする
    指示を出力する
    ことを特徴とする土壌硬度等高線マップを用いた農作業機の運行支援方法。
  2. 前記農作業機の前記走行速度を速くする場合には、農薬又は肥料の散布量を多くする指示を出力する
    ことを特徴とする請求項1に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法。
  3. 前記走行可能性推定ステップにおいて、高硬度エリアが有ると判断されると、前記高硬度エリアでは前記農作業機の前記走行速度を遅くしロータリー速度を速くする指示を出力する
    ことを特徴とする請求項1に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法。
  4. 前記硬度値推定ステップでは、現在より前の所定期間の気象データを用いる
    ことを特徴とする請求項1から請求項3のいずれか1項に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法。
  5. 前記気象データとして、前記所定期間での積算降水量を用いる
    ことを特徴とする請求項4に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法。
  6. 前記気象データとして、単位時間当たりの降水強度を用いる
    ことを特徴とする請求項4に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法。
  7. 前記走行可能性推定ステップでは、前記農作業機によって決定される走破閾値を用いる
    ことを特徴とする請求項1から請求項6のいずれか1項に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法。
  8. 前記硬度値推定ステップで推定した前記エリア別硬度値を、前記圃場での代表ポイントにおける深度別硬度実測値によって補正する硬度値補正ステップを有する
    ことを特徴とする請求項1から請求項7のいずれか1項に記載の土壌硬度等高線マップを用いた農作業機の運行支援方法。
  9. 作業対象となる圃場について深度別に作成された土壌硬度等高線マップを用いた農作業機の運行支援方法であって、
    コンピュータが、
    前記深度別の前記土壌硬度等高線マップから、作業時におけるエリア別硬度値を推定する硬度値推定ステップと、
    前記硬度値推定ステップで推定した前記エリア別硬度値から前記農作業機が走行可能か否かを推定する走行可能性推定ステップと、
    を実行し、
    前記走行可能性推定ステップにおいて、前記農作業機が走行できない走行不可能エリアが有ると判断されると、前記圃場における前記農作業機の走行ルートの作成を延期し、又は前記走行不可能エリアを除く走行可能エリアで前記走行ルートを決定し、
    記走行不可能エリアが有り、前記走行ルートの作成を延期する場合には、延期日における前記エリア別硬度値を推定し、前記エリア別硬度値から前記農作業機が走行可能か否かを推定する
    ことを特徴とする土壌硬度等高線マップを用いた農作業機の運行支援方法。
JP2020031461A 2020-02-27 2020-02-27 土壌硬度等高線マップを用いた農作業機の運行支援方法 Active JP7440895B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020031461A JP7440895B2 (ja) 2020-02-27 2020-02-27 土壌硬度等高線マップを用いた農作業機の運行支援方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031461A JP7440895B2 (ja) 2020-02-27 2020-02-27 土壌硬度等高線マップを用いた農作業機の運行支援方法

Publications (2)

Publication Number Publication Date
JP2021132572A JP2021132572A (ja) 2021-09-13
JP7440895B2 true JP7440895B2 (ja) 2024-02-29

Family

ID=77659517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031461A Active JP7440895B2 (ja) 2020-02-27 2020-02-27 土壌硬度等高線マップを用いた農作業機の運行支援方法

Country Status (1)

Country Link
JP (1) JP7440895B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7547778B2 (ja) * 2020-05-14 2024-09-10 コベルコ建機株式会社 遠隔操作支援サーバ、遠隔操作支援システムおよび遠隔操作支援方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019020395A (ja) 2017-07-20 2019-02-07 国立研究開発法人農業・食品産業技術総合研究機構 圃場における土壌物理性診断方法
US20190360165A1 (en) 2017-01-19 2019-11-28 Scania Cv Ab Method and control unit for ground bearing capacity analysis

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190360165A1 (en) 2017-01-19 2019-11-28 Scania Cv Ab Method and control unit for ground bearing capacity analysis
JP2019020395A (ja) 2017-07-20 2019-02-07 国立研究開発法人農業・食品産業技術総合研究機構 圃場における土壌物理性診断方法

Also Published As

Publication number Publication date
JP2021132572A (ja) 2021-09-13

Similar Documents

Publication Publication Date Title
JP7356748B2 (ja) 圃場における土壌物理性診断方法
Senay et al. Manipulation of high spatial resolution aircraft remote sensing data for use in site-specific farming
Heil et al. Characterisation of soil texture variability using the apparent soil electrical conductivity at a highly variable site
Van Bergeijk et al. PA—Precision agriculture: Soil tillage resistance as a tool to map soil type differences
Svoray et al. Catchment scale analysis of the effect of topography, tillage direction and unpaved roads on ephemeral gully incision
Van Uffelen et al. Comparison of simulated crop yield patterns for site-specific management
Montgomery et al. Quantifying tillage translocation and deposition rates due to moldboard plowing in the Palouse region of the Pacific Northwest, USA
JP7440895B2 (ja) 土壌硬度等高線マップを用いた農作業機の運行支援方法
James et al. Soil, water and yield relationships in developing strategies for the precision application of nitrogen fertiliser to winter barley
Shamshiri et al. Exploring gps data for operational analysis of farm machinery
da Silva et al. Spatial variability of soil roughness in persimmon plantations: A new combined ISUM (improved stock unearthing method) approach
Rachman et al. Predicting runoff and sediment yield from a stiff-stemmed grass hedge system for a small watershed
MMM et al. Monitoring, predicting and quantifying soil salinity, sodicity and alkalinity in Sudan, using soil techniques, remote sensing and GIS analysis, case study: University of Khartoum Top Farm
Renschler et al. Site-specific decision-making based on RTK GPS survey and six alternative elevation data sources: Soil erosion predictions
Saetung et al. Monitoring in soil fertility change in Tung Kula Rong Hai using geographic information systems
Reyes et al. Comparing the soil loss predictions of GLEAMS, RUSLE, EPIC, and WEPP
Florent et al. Evaluation of soil water management properties based on LiDAR data and soil analyses, at farm level.
Williams et al. Capture of plateau runoff by global positioning system–guided seed drill operation
Bakhsh et al. Role of landscape and hydrologic attributes in developing and interpreting yield clusters
Young et al. Impact of rain-fed cropping on the hydrology and fertility of alluvial clays in the more arid areas of the upper Darling Basin, eastern Australia
Hoffmann et al. Test of a modelling system for estimating nitrogen leaching–A pilot study in a small agricultural catchment
Bandyopadhyay et al. Impact assessment of land resource inventory towards optimizing land use plan in Brahmaputra valley ecosystem, Assam, India
Hobza et al. Groundwater discharge characteristics for selected streams within the Loup River basin, Nebraska, 2014–16
Mukhamedjanov et al. Optimizing use of water for cotton production using evapotranspiration based irrigation scheduling technique in the Fergana Valley Uzbekistan
Beashel SIS soil analysis looking subsurface to grow a better crop

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240208

R150 Certificate of patent or registration of utility model

Ref document number: 7440895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150