[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7331729B2 - 運転者状態推定装置 - Google Patents

運転者状態推定装置 Download PDF

Info

Publication number
JP7331729B2
JP7331729B2 JP2020026633A JP2020026633A JP7331729B2 JP 7331729 B2 JP7331729 B2 JP 7331729B2 JP 2020026633 A JP2020026633 A JP 2020026633A JP 2020026633 A JP2020026633 A JP 2020026633A JP 7331729 B2 JP7331729 B2 JP 7331729B2
Authority
JP
Japan
Prior art keywords
driver
state
attention
vehicle
saliency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020026633A
Other languages
English (en)
Other versions
JP2021130390A (ja
Inventor
耕二 岩瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2020026633A priority Critical patent/JP7331729B2/ja
Priority to CN202110067957.8A priority patent/CN113276822B/zh
Priority to US17/160,397 priority patent/US11247687B2/en
Priority to EP21156774.8A priority patent/EP3868622B1/en
Publication of JP2021130390A publication Critical patent/JP2021130390A/ja
Application granted granted Critical
Publication of JP7331729B2 publication Critical patent/JP7331729B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/112Roll movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0872Driver physiology
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/18Steering angle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/22Psychological state; Stress level or workload
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/221Physiology, e.g. weight, heartbeat, health or special needs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/223Posture, e.g. hand, foot, or seat position, turned or inclined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/225Direction of gaze
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/59Context or environment of the image inside of a vehicle, e.g. relating to seat occupancy, driver state or inner lighting conditions
    • G06V20/597Recognising the driver's state or behaviour, e.g. attention or drowsiness

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

ここに開示する技術は、運転者状態推定装置に関する。
特許文献1には、運転者の状態を判定する運転者状態判定装置が開示されている。この運転者状態判定装置は、運転者の視線方向を検出する視線検出手段と、この視線検出手段の検出結果より予め定められた時間内の視線方向の頻度分布を視線頻度分布として計算する視線頻度分布計算手段と、視線頻度分布のパタ-ンを識別することにより運転者の心理的または生理的状態を判断する運転者状態判断手段を備える。
特許第3027786号公報
特許文献1の運転者状態判定装置では、運転者の視線が一点に集中しているとみなされる場合に、運転者が「ぼんやり状態」であると判定される。なお、前方車両との距離が安全な車間距離ではない場合は、運転者が前方車両を注視しているとみなされ、運転者が「ぼんやり状態」であると判定されない。
しかしながら、特許文献1の装置のように、運転者の視線が一点に集中している度合いと前方車両との距離とに基づいて運転者の状態を推定する手法では、運転者の疾患などに起因する運転者の注意機能低下状態を推定することができない。そのため、運転者の状態の推定精度を向上させることが困難である。
ここに開示する技術は、かかる点に鑑みてなされたものであり、その目的とするところは、運転者の状態の推定精度を向上させることにある。
ここに開示する技術は、移動体に搭乗する運転者の状態を推定する運転者状態推定装置に関し、この運転者状態推定装置は、前記運転者の周囲環境のうち前記運転者のトップダウン注意が支配的となる第1領域において、前記運転者のトップダウン注意に割り当てられる注意資源の量であるトップダウン注意資源量相関のある第1指標値を計測する第1計測部と、前記運転者の周囲環境のうち前記運転者のボトムアップ注意が支配的となる第2領域において、前記運転者のボトムアップ注意に割り当てられる注意資源の量であるボトムアップ注意資源量相関のある第2指標値を計測する第2計測部と、前記第1領域における前記第1指標値と、前記第2領域における前記第2指標値とに基づいて、前記運転者の注意機能低下状態を含む前記運転者の状態を推定する推定部とを備える。前記運転者が前記注意機能低下状態であるときの前記運転者の前記トップダウン注意資源量と前記ボトムアップ注意資源量との総量である注意資源総量は、前記運転者が正常状態であるときの前記運転者の前記注意資源総量よりも少ない。前記推定部は、前記第1指標値が予め定められた第1閾値を下回る場合において、前記第2指標値が予め定められた第2閾値を下回る場合に、前記運転者が前記注意機能低下状態であると推定し、前記第2指標値が前記第2閾値を下回らない場合に、前記運転者が前記注意機能低下状態であると推定しない。
前記の構成では、運転者のトップダウン注意が支配的となる第1領域における運転者のトップダウン注意資源量(トップダウン注意に割り当てられる注意資源の量)と、運転者のボトムアップ注意が支配的となる第2領域における運転者のボトムアップ注意資源量(ボトムアップ注意に割り当てられる注意資源の量)とに基づいて、運転者の注意機能低下状態を含む運転者の状態を推定することができる。また、トップダウン注意資源量およびボトムアップ注意資源量の一方のみに基づいて運転者の状態を推定する場合よりも、運転者の状態の推定精度を向上させることができる。
前記運転者状態推定装置において、前記運転者が漫然状態であるときの前記運転者のトップダウン注意資源量は、前記運転者が前記正常状態であるときの前記運転者のトップダウン注意資源量よりも少なくてもよい。前記運転者が前記漫然状態であるときの前記運転者のボトムアップ注意資源量は、前記運転者が前記正常状態であるときの前記運転者のボトムアップ注意資源量よりも多くてもよい。前記推定部は、前記第1指標値が前記第1閾値を下回る場合において、前記第2指標値が前記第2閾値を下回らない場合に、前記運転者が前記漫然状態であると推定してもよい。
前記運転者状態推定装置は、前記運転者の視線を検出する視線検出部を備えてもよい。また、前記第1計測部は、前記運転者の周囲環境における注目箇所を検出する注目箇所検出部と、前記運転者の周囲環境における注目箇所に対する前記運転者の視線の動きに基づいて、前記第1領域における前記第1指標値を導出する第1指標導出部とを有してもよい。前記第2計測部は、前記運転者の周囲環境におけるサリエンシーの分布を検出するサリエンシー検出部と、前記運転者の周囲環境におけるサリエンシーの分布に対する前記運転者の視線の動きに基づいて、前記第2領域における前記第2指標値を導出する第2指標導出部とを有してもよい。
前記の構成では、運転者の周囲環境における注目箇所に対する運転者の視線の動きに基づいて、第1領域における第1指標値を適切に導出することができる。また、運転者の周囲環境におけるサリエンシーの分布に対する運転者の視線の動きに基づいて、第2領域における第2指標値を適切に導出することができる。
前記運転者状態推定装置において、前記第1領域は、前記運転者の周囲環境のうち前記移動体の運転中に前記運転者により注視される頻度が高い領域であってもよい。
前記の構成では、運転者の周囲環境のうち移動体の運転中に運転者により注視される頻度が高い領域を第1領域に設定することにより、運転者のトップダウン注意が支配的となる第1領域を適切に設定することができる。
ここに開示する技術によれば、運転者の状態の推定精度を向上させることができる。
実施形態の車両制御システムの構成を例示するブロック図である。 車両の前側の構成を例示する図である。 運転者状態推定部の構成を例示するブロック図である。 車両の前方領域を示す前方画像を例示する図である。 前方画像に車両の構成部材が重ねられた合成画像を例示する図である。 注目箇所の分布を示す注目箇所マップを例示する図である。 サリエンシーの分布を示すサリエンシーマップを例示する図である。 注視点におけるサリエンシーの変化を例示するグラフである。 ランダム点におけるサリエンシーの変化を例示するグラフである。 注視点におけるサリエンシーが閾値を超える確率とランダム点におけるサリエンシーが閾値を超える確率との関係を示すグラフである。 ドライビングシミュレータを例示する斜視図である。 健常者のサリエンシー指標値の変化を例示するグラフである。 注意障害患者のサリエンシー指標値の変化を例示するグラフである。 トップダウン注意およびボトムアップ注意の各々に割り当てられる注意資源の量の変化について説明するための図である。 トップダウン注意が支配的となる第1領域とボトムアップ注意が支配的となる第2領域とを例示する図である。 運転者状態推定について説明するためのフローチャートである。 運転者状態推定の変形例について説明するためのフローチャートである。
以下、図面を参照して実施の形態を詳しく説明する。なお、図中同一または相当部分には同一の符号を付しその説明は繰り返さない。
(車両制御システム)
図1は、実施形態の車両制御システム10の構成を例示する。この車両制御システム10は、車両(具体的には自動四輪車)に設けられる。車両は、マニュアル運転とアシスト運転と自動運転とに切り換え可能である。マニュアル運転は、運転者の操作(例えばアクセルの操作など)に応じて走行する運転である。アシスト運転は、運転者の操作を支援して走行する運転である。自動運転は、運転者の操作なしに走行する運転である。車両制御システム10は、アシスト運転および自動運転において、車両を制御する。具体的には、車両制御システム10は、車両に設けられたアクチュエータ11を制御することで車両の動作(特に走行)を制御する。なお、車両制御システム10は、移動体に設けられる移動体制御システムの一例である。
この例では、車両制御システム10は、情報取得部20と、車両制御装置30と、通知部40とを備える。以下の説明では、車両制御システム10が設けられている車両を「自車両」と記載し、自車両の周囲に存在する他の車両を「他車両」と記載する。
〔アクチュエータ〕
アクチュエータ11は、駆動系のアクチュエータ、操舵系のアクチュエータ、制動系のアクチュエータなどを含む。駆動系のアクチュエータの例としては、エンジン、トランスミッション、モータが挙げられる。制動系のアクチュエータの例としては、ブレーキが挙げられる。操舵系のアクチュエータの例としては、ステアリングが挙げられる。
〔情報取得部〕
情報取得部20は、車両の制御に用いられる各種情報を取得する。この例では、情報取得部20は、複数のカメラ21と、複数のレーダ22と、位置センサ23と、通信部24と、車両状態センサ25と、運転操作センサ26と、運転者状態センサ27とを含む。
〈カメラ〉
複数のカメラ21は、互いに同様の構成を有する。複数のカメラ21は、複数のカメラ21の撮像エリアが車両の周囲を囲うように車両に設けられる。複数のカメラ21は、車両の周囲に広がる環境(外部環境)を撮像することで、外部環境を示す画像データを取得する。複数のカメラ21の各々により得られた画像データは、車両制御装置30に送信される。
この例では、カメラ21は、広角レンズを有する単眼カメラである。例えば、カメラ21は、CCD(Charge Coupled Device)やCMOS(Complementary metal-oxide-semiconductor)などの固体撮像素子を用いて構成される。なお、カメラ21は、狭角レンズを有する単眼カメラであってもよいし、広角レンズまたは狭角レンズを有するステレオカメラであってもよい。
〈レーダ〉
複数のレーダ22は、互いに同様の構成を有する。複数のレーダ22は、複数のレーダ22の探索エリアが車両の周囲を囲うように車両に設けられる。複数のレーダ22は、外部環境を検出する。具体的には、レーダ22は、車両の外部環境へ向けて探索波を送信して外部環境からの反射波を受信することで外部環境を検出する。複数のレーダ22の検出結果は、車両制御装置30に送信される。
例えば、レーダ22は、ミリ波を送信するミリ波レーダであってもよいし、レーザ光を送信するライダ(Light Detection and Ranging)であってもよいし、赤外線を送信する赤外線レーダであってもよいし、超音波を送信する超音波センサであってもよい。
〈位置センサ〉
位置センサ23は、車両の位置(例えば緯度および経度)を検出する。例えば、位置センサ23は、全地球測位システムからのGPS情報を受信し、GPS情報に基づいて車両の位置を検出する。位置センサ23により得られた情報(車両の位置)は、車両制御装置30に送信される。
〈通信部〉
通信部24は、車両の外部に設けられた車外ネットワーク(例えばインターネットなど)を通じて情報を受信する。例えば、通信部24は、車両の周囲に位置する他車両(図示省略)からの通信情報、ナビゲーションシステム(図示省略)からのカーナビゲーションデータ、交通情報、ダイナミックマップなどの高精度地図情報などを受信する。通信部24により得られた情報は、車両制御装置30に送信される。
〈車両状態センサ〉
車両状態センサ25は、車両の状態(例えば速度や加速度やヨーレートなど)を検出する。例えば、車両状態センサ25は、車両の速度を検出する車速センサ、車両の加速度を検出する加速度センサ、車両のヨーレートを検出するヨーレートセンサなどを含む。車両状態センサ25により得られた情報(車両の状態)は、車両制御装置30に送信される。
〈運転操作センサ〉
運転操作センサ26は、車両に加えられる運転操作を検出する。例えば、運転操作センサ26は、アクセル開度センサ、操舵角センサ、ブレーキ油圧センサなどを含む。アクセル開度センサは、車両のアクセルの操作量を検出する。操舵角センサは、車両のステアリングホイールの操舵角を検出する。ブレーキ油圧センサは、車両のブレーキの操作量を検出する。運転操作センサ26により得られた情報(車両の運転操作)は、車両制御装置30に送信される。
〈運転者状態センサ〉
運転者状態センサ27は、車両に搭乗する運転者の状態(例えば運転者の身体挙動や生体情報など)を検出する。運転者状態センサ27により得られた情報(運転者の状態)は、車両制御装置30に送信される。この例では、運転者状態センサ27は、車内カメラ28と、生体情報センサ29とを含む。
《車内カメラ》
車内カメラ28は、車両の内部に設けられる。車内カメラ28は、運転者を含む領域を撮像することで運転者を含む画像データを取得する。車内カメラ28により得られた画像データは、車両制御装置30に送信される。この例では、車内カメラ28は、運転者の前方に配置され、運転者の顔(特に眼球)が撮像範囲内に位置するように撮像範囲が設定される。なお、車内カメラ28は、運転者に装着されるゴーグル(図示省略)に設けられてもよい。
《生体情報センサ》
生体情報センサ29は、車両の内部に設けられる。生体情報センサ29は、運転者の生体情報を検出する。なお、運転者の生体情報の例としては、発汗、心拍、血流量、皮膚温などが挙げられる。生体情報センサ29により得られた情報(運転者の生体情報)は、車両制御装置30に送信される。例えば、生体情報センサ29は、運転者の手と接触する箇所(例えば後述するステアリングホイール76)に配置されてもよいし、運転者の身体に装着される部材(図示省略)に設けられてもよい。
〔車両制御装置〕
車両制御装置30は、アクチュエータ11および車両制御システム10の各部(この例では情報取得部20と通知部40など)と信号伝送可能に接続される。そして、車両制御装置30は、車両制御システム10の各部により得られた情報に基づいてアクチュエータ11および車両制御システム10の各部を制御する。具体的には、車両制御装置30は、アシスト運転または自動運転において、情報取得部20により取得された各種情報に基づいて、車両が走行すべき経路である目標経路を決定し、目標経路を走行するために必要となる車両の運動である目標運動を決定する。そして、車両制御装置30は、車両の運動が目標運動となるように、アクチュエータ11の動作を制御する。なお、車両制御装置30は、運転者状態推定装置の一例である。
例えば、車両制御装置30は、1つまたは複数の電子制御ユニット(ECU)により構成される。電子制御ユニットは、単一のIC(Integrated Circuit)により構成されてもよいし、複数のICにより構成されてもよい。また、IC内には、単一のコアまたはダイが設けられてもよいし、連携する複数のコアまたはダイが設けられてもよい。コアまたはダイは、例えば、CPU(プロセッサ)と、CPUを動作させるためのプログラムやCPUでの処理結果などの情報を記憶するメモリとにより構成されてもよい。
この例では、車両制御装置30は、車両挙動認識部31と、運転操作認識部32と、外部環境認識部33と、運転者状態認識部34と、車両制御部35とを有する。
〈車両挙動認識部〉
車両挙動認識部31は、車両状態センサ25の出力に基づいて車両の挙動(例えば速度や加速度やヨーレートなど)を推定する。例えば、車両挙動認識部31は、深層学習により生成された学習モデルを用いて、車両状態センサ25の出力から車両の挙動を示すデータを生成する。
〈運転操作認識部〉
運転操作認識部32は、運転操作センサ26の出力に基づいて車両に加えられる運転操作を認識する。例えば、運転操作認識部32は、深層学習により生成された学習モデルを用いて、運転操作センサ26の出力から車両に加えられる運転操作を示すデータを生成する。
〈外部環境認識部〉
外部環境認識部33は、複数のカメラ21の出力と、複数のレーダ22の出力と、位置センサ23の出力と、通信部24の出力と、車両挙動認識部31の出力に基づいて、車両の外部環境を認識する。
例えば、外部環境認識部33は、深層学習により生成された学習モデルを用いて、上記の出力から車両の外部環境を示すデータを生成する。深層学習では、多層ニューラルネットワーク(Deep Neural Network)が用いられる。多層ニューラルネットワークの例としては、CNN(Convolutional Neural Network)が挙げられる。
具体的には、外部環境認識部33は、複数のカメラ21により得られた画像データに対して画像処理を行うことにより、車両が移動可能な道路を表す道路マップデータ(例えば三次元マップデータ)を生成する。また、外部環境認識部33は、複数のレーダ22の検出結果に基づいて、車両の周辺に存在する物体に関する情報である物体情報を取得する。物体情報には、物体の位置座標、物体の速度などが含まれる。なお、外部環境認識部33は、複数のカメラ21により得られた画像データに基づいて物体情報を取得してもよい。そして、外部環境認識部33は、道路マップデータと物体情報とを統合することで、外部環境を表す統合マップデータ(三次元マップデータ)を生成する。
道路マップデータには、道路の形状、道路の構造、道路の勾配、区画線、路面標示などに関する情報が含まれる。物体情報には、静的物体情報と、動的物体情報とが含まれる。静的物体情報は、時間経過により変位しない静止体に関する情報である。静的物体情報には、静止体の形状、静止体の位置座標などに関する情報が含まれる。静止体の例としては、道路標識、構造物などが挙げられる。構造物の例としては、信号機、中央分離帯、センターポール、建物、看板、踏切、トンネル、軌道敷、バス停留所などが挙げられる。動的物体情報は、時間経過により変位する可能性がある動体に関する情報である。動的物体情報には、動体の形状、動体の位置座標、動体の速度などに関する情報が含まれる。動体の例としては、他車両、歩行者などが挙げられる。
なお、通信部24により受信される高精度地図情報に、道路マップデータと物体情報が含まれていてもよい。この場合、外部環境認識部33は、高精度地図情報に含まれる道路マップデータと物体情報に基づいて統合マップデータを生成し、複数のカメラ21や複数のレーダ22などの情報取得部20の出力に基づいて統合マップデータを適宜補正するように構成されてもよい。例えば、外部環境認識部33は、複数のカメラ21の出力および複数のレーダ22の出力に基づいて認識された物体が統合マップデータに含まれていない場合に、その物体に関する物体情報を統合マップデータに追加してもよい。また、外部環境認識部33は、統合マップデータに含まれる物体が複数のカメラ21の出力および複数のレーダ22の出力に基づいて認識されない場合に、その物体に関する物体情報を統合マップデータから削除してもよい。
〈運転者状態認識部〉
運転者状態認識部34は、運転者状態センサ27の出力に基づいて運転者の状態(例えば運転者の健康状態や感情や姿勢など)を認識する。例えば、運転者状態認識部34は、深層学習により生成された学習モデルを用いて、運転者状態センサ27の出力から運転者の状態を示すデータを生成する。この例では、運転者状態認識部34は、運転者状態推定部300を有する。運転者状態推定部300については、後で詳しく説明する。
〈車両制御部〉
車両制御部35は、車両挙動認識部31の出力と、運転操作認識部32の出力と、外部環境認識部33の出力と、運転者状態認識部34の出力に基づいて、アクチュエータ11を制御する。この例では、車両制御部35は、走行制御と、通知制御とを行う。
《走行制御》
走行制御は、アシスト運転および自動運転において行われる。走行制御では、車両制御部35は、車両の走行を制御する。この例では、車両制御部35は、走行制御において、候補経路生成処理と、目標経路決定処理と、運動制御処理とを行う。
候補経路生成処理では、車両制御部35は、外部環境認識部33の出力に基づいて1つまたは複数の候補経路を生成する。候補経路は、車両が走行可能な経路であり、目標経路の候補である。なお、この例では、候補経路生成処理により生成される候補経路には、安全経路が含まれる。安全経路は、安全領域(例えば路肩)へ向かう走行経路である。
例えば、候補経路生成処理において、車両制御部35は、外部環境認識部33の出力(統合マップデータ)に基づいて、車両の進行方向前方の道路と道路上に存在する物体とを含む走行マップデータ(二次元マップデータ)を生成する。そして、車両制御部35は、ステートラティス法を用いて候補経路を生成する。具体的には、車両制御部35は、走行マップデータの道路上に多数のグリッド点からなるグリッド領域を設定し、車両の進行方向へ向けて複数のグリッド点を順に連結することで複数の走行経路を設定する。また、車両制御部35は、複数の走行経路の各々に経路コストを付与する。例えば、ある走行経路における車両の安全性が高くなるに連れて、その走行経路に付与される経路コストが小さくなる。そして、車両制御部35は、複数の走行経路の各々に付与された経路コストに基づいて、複数の走行経路の中から1つまたは複数の走行経路を候補経路として選択する。
目標経路決定処理では、車両制御部35は、運転操作認識部32の出力と、運転者状態認識部34の出力に基づいて、候補経路生成処理において生成された1つまたは複数の候補経路の中から目標経路となる候補経路を選択する。例えば、車両制御部35は、複数の候補経路のうち運転者が最も快適であると感じる候補経路を選択する。
運動制御処理では、車両制御部35は、目標経路決定処理において目標経路として選択された候補経路に基づいて目標運動を決定し、その決定された目標運動に基づいてアクチュエータ11を制御する。例えば、車両制御部35は、目標運動を達成するための駆動力と制動力と操舵量である目標駆動力と目標制動力と目標操舵量をそれぞれ導出する。そして、車両制御部35は、目標駆動力を示す駆動指令値と目標制動力を示す制動指令値と目標操舵量を示す操舵指令値とを、駆動系のアクチュエータと制動系のアクチュエータと操舵系のアクチュエータとにそれぞれ送信する。
《通知制御》
通知制御では、車両制御部35は、運転者に通知するための各種情報を出力する。この例では、車両制御部35は、運転者に通知するための各種情報を通知部40に出力する。
〔通知部〕
通知部40は、車両の内部に設けられる。そして、通知部40は、車両の運転者に各種情報を通知する。この例では、通知部40は、表示部41と、スピーカ42とを含む。表示部41は、各種情報を画像で出力する。スピーカ42は、各種情報を音声で出力する。
〔車両の前側の構成(車両構成部材)〕
図2に示すように、車両の前側には、フロントウィンドウガラス60が設けられる。フロントウィンドウガラス60は、2つのフロントピラートリム71と、ルーフトリム72と、インストルメントパネル73とに囲まれる。2つのフロントピラートリム71は、フロントウィンドウガラス60の右側および左側の境界をそれぞれ構成する。2つのフロントピラートリム71は、上側へ向かうに連れて互いに離間するように傾斜している。ルーフトリム72およびインストルメントパネル73は、フロントウィンドウガラス60の上側および下側の境界をそれぞれ構成する。また、フロントウィンドウガラス60の上側中央部には、バックミラー74が設けられる。フロントピラートリム71よりも車幅方向の外側には、サイドミラー75が設けられる。インストルメントパネル73には、表示部41と、ステアリングホイール76と、メータークラスタ77とが設けられる。
この例では、2つのフロントピラートリム71と、ルーフトリム72と、インストルメントパネル73と、バックミラー74と、サイドミラー75と、ステアリングホイール76とが車両構成部材70を構成する。車両構成部材70は、車両を構成する部材であり、車内に設けられた運転席に着座する運転者が車外を見る場合に運転者の視線を遮る部材である。
〔用語の説明〕
次に、以下の説明において用いられる用語について説明する。以下の説明では、注意資源、トップダウン注意、トップダウン注意資源量、トップダウン注意ディマンド量、ボトムアップ注意、ボトムアップ注意資源量、ボトムアップ注意ディマンド量、タスクディマンド、注目箇所、サリエンシーという用語が用いられる。
〈注意資源〉
注意資源は、人(運転者)の注意力を定量的に示す概念である。人の注意力は、有限の資源であると考えることができる。ある対象に対する注意に割り当てられる注意資源の量が不足している場合、その対象に対して人の注意力を十分に発揮することができず、その対象に対する人の注意が不十分となる。
〈トップダウン注意〉
トップダウン注意は、人が意図する箇所に視線を能動的に移動させる注意メカニズムのことである。例えば、選ぶべき刺激について事前知識をもっている場合、人は、能動的にバイアスをかけることによって目的とする刺激を選択することができる。
〈トップダウン注意資源量とトップダウン注意ディマンド量〉
トップダウン注意資源量は、人のトップダウン注意に割り当てられる注意資源の量のことである。トップダウン注意ディマンド量は、人のトップダウン注意に対して要求される注意資源の量のことである。トップダウン注意資源量がトップダウン注意ディマンド量を下回ると、トップダウン注意が不十分となる。
〈ボトムアップ注意〉
ボトムアップ注意は、目立つ箇所に人の視線が受動的に惹きつけられる注意メカニズムのことである。例えば、複数の視覚刺激のうち1つの刺激が周囲の刺激と顕著に異なる場合、視覚刺激が突然出現した場合など、その刺激に対して人の視線が受動的に惹きつけられる。
〈ボトムアップ注意資源量とボトムアップ注意ディマンド量〉
ボトムアップ注意資源量は、人のボトムアップ注意に割り当てられる注意資源の量のことである。ボトムアップ注意ディマンド量は、人のボトムアップ注意に対して要求される注意資源の量のことである。ボトムアップ注意資源量がボトムアップ注意ディマンド量を下回ると、ボトムアップ注意が不十分となる。
〈タスクディマンド〉
タスクディマンドは、運転タスクの難易度のことである。運転タスクの難易度が高くなるに連れて、タスクディマンドが大きくなる。運転タスクは、車両を運転する運転者に課せられる仕事のことである。運転タスクには、車両の外部に関する外部タスクと、車両の内部に関する内部タスクとが含まれる。外部タスクの例としては、状況監視、危険回避、車速保持/調節、車線保持/調節、交通ルール遵守、目的地探索などが挙げられる。状況監視では、運転者の目視による車両の前方の確認、バックミラー74およびサイドミラー75を用いた車両の後方の確認が行われる。危険回避では、他車両、歩行者、路側物などの障害物の確認、危険回避のための運転操作が行われる。車速保持/調節では、自車両の前方を走行する他車両、道路勾配、道路線形などの確認、車速保持/調節のための運転操作が行われる。車線保持/調節では、道路線形、区画線、路肩などの確認、車線保持/調節のための運転操作が行われる。交通ルール遵守では、信号機、道路標識、路面標示などの確認が行われる。目的地探索では、目的地を示す看板などの確認が行われる。内部タスクの例としては、メータークラスタ77などの表示機器の確認、ナビゲーションシステムなどの操作機器の確認などが挙げられる。例えば、高速道路などの確認すべき箇所が少ない単調な運転シーンでは、タスクディマンドが小さくなり、市街地道路などの確認すべき箇所が多い複雑な運転シーンでは、タスクディマンドが大きくなる。
〈注目箇所〉
注目箇所は、車両に搭乗する運転者の周囲に広がる環境(以下では「運転者の周囲環境」と記載)において、運転者が注目すべき箇所のことである。注目箇所は、トップダウン注意において運転者が意図的に視線を向けるべき箇所である。注目箇所は、車両の運転シーン毎に定めることが可能である。注目箇所の例としては、バックミラー74、サイドミラー75、メータークラスタ77、他車両、歩行者、路側物、区画線、路肩、信号機、道路標識、路面標示などが挙げられる。なお、注目箇所は、経験的に定められてもよい。例えば、歩行者の飛び出しが予測される交差点が注目箇所に設定されてもよい。
〈サリエンシー〉
サリエンシーは、ボトムアップ注意を誘引する視覚刺激の度合いを示す値であり、色、輝度、方向、動きなどの特徴により変化する値である。例えば、画像に含まれる任意の領域とその領域の周囲の領域との間において色、輝度、方向、動きなどの特徴の違いが顕著になるに連れて、ボトムアップ注意を誘引する視覚刺激が強くなり、その任意の領域におけるサリエンシーが高くなる。画像に含まれる任意の箇所におけるサリエンシーが高くなるほど、その任意の箇所に人の視線が惹きつけられやすくなる。
〔運転者状態推定部の構成〕
図3は、運転者状態推定部300の構成を例示する。運転者状態推定部300は、視線検出部310と、第1計測部320と、第2計測部330と、推定部340とを有する。
〈視線検出部〉
視線検出部310は、運転者の視線を検出する。この例では、視線検出部310は、車内カメラ28により得られた画像データに対して視線検出処理を行うことにより、運転者の視線を検出する。なお、この視線検出処理は、深層学習により生成された学習モデル(視線を検出するための学習モデル)を用いて行われる処理であってもよいし、周知の視線検出技術を用いて行われる処理であってもよい。例えば、視線検出部310は、車内カメラ28により得られた画像(画像データ)の中から運転者の瞳孔を検出し、その検出された瞳孔に基づいて運転者の視線を検出する。なお、運転者の視線は、運転者の右眼の視線であってもよいし、運転者の左眼の視線であってもよいし、運転者の右眼の視線および左眼の視線に基づいて導出される視線であってもよい。
〈第1計測部〉
第1計測部320は、運転者の周囲環境のうち運転者のトップダウン注意が支配的となる第1領域R10において、運転者のトップダウン注意資源量と相関のある第1指標値id1を計測する。運転者のトップダウン注意資源量が多くなるに連れて、第1領域R10における第1指標値id1が大きくなる。なお、第1領域R10については、後で詳しく説明する。この例では、第1計測部320は、注目箇所検出部321と、第1指標導出部322とを有する。
《注目箇所検出部》
注目箇所検出部321は、運転者の周囲環境における注目箇所を検出する。この例では、注目箇所検出部321は、複数のカメラ21のうち車両の前方領域を撮像するカメラ21の出力に基づいて、運転者の周囲環境における注目箇所を示す注目箇所マップデータD3を生成する。具体的には、注目箇所検出部321は、以下の手順により、注目箇所マップデータD3を生成する。
まず、注目箇所検出部321は、複数のカメラ21のうち車両の前方領域を撮像するカメラ21の出力に基づいて、前方画像データD1を取得する。図4に示すように、前方画像データD1は、車両の外部環境のうち前方領域の画像を示す。図4の例では、前方画像データD1に示される画像には、車道150が含まれる。車道150には、他車両161が走行する。車道150の右側には、壁162が設けられる。壁162の右側には、樹木163と、丘164とが設けられる。車道150の左側には、森林165が設けられる。樹木163の右側には、建物166が設けられる。車道150と樹木163と丘164と森林165の上側には、空167が広がる。図4の例では、空167は、曇り空であり、ほぼ白色である。
次に、注目箇所検出部321は、前方画像データD1に、構成部材画像データを合成することにより、合成画像データD2を生成する。構成部材画像データは、車両構成部材70(車内の運転者が車外を見る場合に運転者の視界を遮る車両の部材)の画像を示す。例えば、車内に設けられた運転席から車両の前側をカメラで撮像することにより、構成部材画像データを得ることができる。図5に示すように、合成画像データD2に示された画像では、前方画像データD1に示された車両の前方領域の画像に、構成部材画像データに示された車両構成部材70の画像が重ねられている。これにより、運転者の周囲環境を示す合成画像データD2が生成される。
次に、注目箇所検出部321は、合成画像データD2に示された運転者の周囲環境の画像の中から注目箇所を検出する。例えば、注目箇所は、車両の運転シーン毎に予め定められている。注目箇所検出部321は、車両の運転シーン毎に定められた注目箇所を示す注目箇所情報を記憶する。そして、注目箇所検出部321は、合成画像データD2に示された画像に基づいて車両の運転シーンを検出し、その検出された運転シーンに対応する注目箇所を合成画像データD2に示された画像の中から検出する。運転シーンの検出は、深層学習により生成された学習モデル(運転シーンを検出するための学習モデル)を用いて行われる処理であってもよいし、周知のシーン判別技術を用いて行われる処理であってもよい。これと同様に、注目箇所の検出は、深層学習により生成された学習モデル(注目箇所を検出するための学習モデル)を用いて行われる処理であってもよいし、周知の特徴検出技術を用いて行われる処理であってもよい。
次に、注目箇所検出部321は、注目箇所の検出結果に基づいて、注目箇所マップデータD3を生成する。図6に示すように、注目箇所マップデータD3は、注目箇所の分布を示す。図6の例では、ハッチングが付された箇所が注目箇所である。具体的には、図6の例では、バックミラー74、サイドミラー75、他車両161、壁162、車道150の区画線が注目箇所となる。
そして、注目箇所検出部321は、前方画像データD1が更新される毎に、上記の手順により注目箇所マップデータD3を生成する。これにより、時系列順に並ぶ複数の注目箇所マップデータD3が得られる。
《第1指標導出部》
第1指標導出部322は、運転者の周囲環境における注目箇所に対する運転者の視線の動きに基づいて、第1領域R10における第1指標値id1を導出する。具体的には、第1指標導出部322は、運転者の周囲環境における注目箇所と運転者の視線との合致度(合致頻度)に基づいて、第1領域R10における第1指標値id1を導出する。運転者のトップダウン注意資源量が増加すると、第1領域R10において運転者の周囲環境における注目箇所と運転者の視線との合致度が増加し、その結果、第1領域R10における第1指標値id1が増加する。
この例では、第1指標導出部322は、注目箇所検出部321により生成された注目箇所マップデータD3に示された注目箇所と、視線検出部310により検出された運転者の視線との第1領域R10における合致度に応じた値を、第1領域R10における第1指標値id1として導出する。具体的には、第1指標導出部322は、注目箇所検出部321により生成された注目箇所マップデータD3のうち第1領域R10を対象として、予め定められた計測期間毎に、以下の処理を行う。
まず、第1指標導出部322は、時系列順に並ぶ複数の注目箇所マップデータD3の中から計測期間内に含まれる2つ以上の注目箇所マップデータD3を抽出し、視線検出部310により検出された運転者の視線の方向に基づいて、計測期間内に含まれる2つ以上の注目箇所マップデータD3の各々において注視点を検出する。注視点は、注目箇所マップデータD3における運転者の視線の位置(座標)を示す点である。例えば、第1指標導出部322は、予め定められたサンプリング周期毎に、注目箇所マップデータD3から運転者の視線の位置を注視点として検出してもよい。または、第1指標導出部322は、停滞時間が予め定められた基準時間を上回る運転者の視線の位置を注視点として検出してもよい。
次に、第1指標導出部322は、計測期間内に含まれる注目箇所マップデータD3から検出された注視点がその注目箇所マップデータD3に示された注目箇所と合致するか否かを判定する。
次に、第1指標導出部322は、注視点と注目箇所との合致判定の結果に基づいて、第1指標値id1を導出する。例えば、第1指標値id1は、計測期間内に含まれる注視点の総数に対して注目箇所と合致する注視点の数が占める割合(以下では「注目合致割合」と記載)に応じた値である。この注目合致割合は、運転者の周囲環境における注目箇所と運転者の視線との合致度の一例である。このようにして、計測期間毎に第1領域R10における第1指標値id1が導出される。
また、第1指標導出部322は、運転者の周囲環境のうち車両の運転中に運転者により注視される頻度が高い領域を第1領域R10に設定する。例えば、第1指標導出部322は、視線検出部310により検出された運転者の視線に基づいて、予め定められた監視期間内の注目箇所マップデータD3における注視点の分布を検出する。そして、第1指標導出部322は、注目箇所マップデータD3のうち注視点の密度が予め定められた第1密度閾値を上回る箇所を含む領域を第1領域R10に設定する。なお、第1領域R10は、周期的に更新されてもよい。
また、第1指標導出部322は、車両の移動速度に応じて第1領域R10の大きさを変化させる。具体的には、第1指標導出部322は、車両の移動速度が高くなるに連れて第1領域R10が小さくなるように、第1領域R10の大きさを変化させる。
〈第2計測部〉
第2計測部330は、運転者の周囲環境のうち運転者のボトムアップ注意が支配的となる第2領域R20において、運転者のボトムアップ注意資源量と相関のある第2指標値id2を計測する。運転者のボトムアップ注意資源量が多くなるに連れて、第2領域R20における第2指標値id2が大きくなる。なお、第2領域R20については、後で詳しく説明する。この例では、第2計測部330は、注目箇所検出部321と、第2指標導出部332とを有する。
《サリエンシー検出部》
サリエンシー検出部331は、運転者の周囲環境におけるサリエンシーの分布を検出する。この例では、サリエンシー検出部331は、複数のカメラ21のうち車両の前方領域を撮像するカメラ21の出力に基づいて、運転者の周囲環境におけるサリエンシーの分布を示すサリエンシーマップデータD4を生成する。具体的には、サリエンシー検出部331は、以下の手順により、サリエンシーマップデータD4を生成する。
まず、注目箇所検出部321と同様に、サリエンシー検出部331は、前方画像データD1を生成し、前方画像データD1に構成部材画像データを合成することにより合成画像データD2を生成する。
次に、サリエンシー検出部331は、合成画像データD2に対してサリエンシーマップ生成処理を行うことにより、サリエンシーマップデータD4を生成する。なお、サリエンシーマップ生成処理には、サリエンシーディテクションなどの周知の技術を用いることができる。例えば、サリエンシー検出部331は、色、輝度、方向、動きなどの特徴毎にサリエンシーマップデータを生成し、それらの特徴毎のサリエンシーマップを足し合わせることで、最終的なサリエンシーマップデータ(すべての特徴が反映されたサリエンシーマップデータ)を生成する。
図7に示すように、サリエンシーマップデータD4は、運転者の周囲環境におけるサリエンシーの分布を示す。サリエンシーマップデータD4の画素の値は、その画素の領域におけるサリエンシーを示す。図7の例では、ハッチングの濃淡によりサリエンシーの高低が示されている。ハッチングが濃くなるに連れて、そのハッチングが付された領域におけるサリエンシーが高くなる。
そして、サリエンシー検出部331は、前方画像データD1が更新される毎に、上記の手順によりサリエンシーマップデータD4を生成する。これにより、時系列順に並ぶ複数のサリエンシーマップデータD4が得られる。
《第2指標導出部》
第2指標導出部332は、運転者の周囲環境におけるサリエンシーの分布に対する運転者の視線の動きに基づいて、第2領域R20における第2指標値id2を導出する。具体的には、第2指標導出部332は、運転者の周囲環境における高サリエンシー箇所と運転者の視線との第2領域R20における合致度(合致頻度)に基づいて、第2領域R20における第2指標値id2を導出する。高サリエンシー箇所は、運転者の周囲環境のうちサリエンシーが比較的に高い箇所である。例えば、高サリエンシー箇所は、サリエンシーが予め定められた基準サリエンシーを上回る箇所である。運転者のボトムアップ注意資源量が増加すると、第2領域R20において運転者の周囲環境における高サリエンシー箇所と運転者の視線との合致度が増加し、その結果、第2領域R20における第2指標値id2が増加する。
この例では、第2指標導出部332は、サリエンシー検出部331により生成されたサリエンシーマップデータD4に示された高サリエンシー箇所と、視線検出部310により検出された運転者の視線との合致度に応じた値を、第2指標値id2として導出する。具体的には、第2指標導出部332は、サリエンシー検出部331により生成されたサリエンシーマップデータD4のうち第2領域R20を対象として、予め定められた演算期間毎に、以下の第1処理と第2処理と第3処理と第4処理とを行う。
第1処理では、第2指標導出部332は、時系列順に並ぶ複数のサリエンシーマップデータD4の中から演算期間内に含まれる2つ以上のサリエンシーマップデータD4を抽出し、視線検出部310により検出された運転者の視線の方向に基づいて、計測期間内に含まれる2つ以上のサリエンシーマップデータD4の各々において注視点を検出し、注視点におけるサリエンシーを検出する。注視点は、サリエンシーマップデータD4における運転者の視線の位置(座標)を示す点である。例えば、第2指標導出部332は、予め定められたサンプリング周期毎に、サリエンシーマップデータD4から運転者の視線の位置を注視点として検出してもよい。または、第2指標導出部332は、停滞時間が予め定められた基準時間を上回る運転者の視線の位置を注視点として検出してもよい。この第1処理により、所定時刻毎の注視点のサリエンシーが得られる。図8に示すように、注視点のサリエンシーは、時間の経過に応じて変化する。
第2処理では、時系列順に並ぶ複数のサリエンシーマップデータD4の中から演算期間内に含まれる2つ以上のサリエンシーマップデータD4を抽出し、計測期間内に含まれる2つ以上のサリエンシーマップデータD4の各々においてランダム点を指定し、ランダム点におけるサリエンシーを検出する。ランダム点は、サリエンシーマップデータD4においてランダムに指定される位置(座標)を示す点である。なお、ランダム点は、複数のサリエンシーマップデータD4のうち第1処理により注視点が検出されるサリエンシーマップデータD4において指定されることが好ましい。すなわち、ランダム点におけるサリエンシーが検出される時刻は、注視点におけるサリエンシーが検出される時刻と一致していることが好ましい。この第2処理により、所定時刻毎のランダム点のサリエンシーが得られる。図9に示すように、ランダム点のサリエンシーは、時間の経過に応じて変化する。
次に、第3処理が行われる。第3処理では、第2指標導出部332は、第1処理により得られた演算期間内の所定時刻毎の注視点のサリエンシーと、第2処理により得られた演算期間内の所定時刻毎のランダム点のサリエンシーとに基づいて、「注視点のサリエンシーが閾値を超える確率」と「ランダム点のサリエンシーが閾値を超える確率」との関係を示すROC(Receiver Operating Characteristic)曲線を導出する。
具体的には、第2指標導出部332は、サリエンシーに関する閾値を最大値から最小値まで段階的に変更する。そして、第1指標導出部322は、閾値を変更する毎に、以下の処理を行う。
まず、第2指標導出部332は、演算期間内の所定時刻毎の注視点のサリエンシーのうち閾値を超える注視点のサリエンシーの数を求め、閾値を超える注視点のサリエンシーの数を演算期間内の注視点のサリエンシーの総数で除算することで、注視点のサリエンシーが閾値を超える確率を求める。また、第2指標導出部332は、演算期間内の所定時刻毎のランダム点のサリエンシーのうち閾値を超えるランダム点のサリエンシーの数を求め、閾値を超えるランダム点のサリエンシーの数を演算期間内のランダム点のサリエンシーの総数で除算することで、ランダム点のサリエンシーが閾値を超える確率を求める。
そして、第2指標導出部332は、閾値毎に求められた「注視点のサリエンシーが閾値を超える確率」と「ランダム点のサリエンシーが閾値を超える確率」との組合せに基づいて、ROC曲線を導出する。図10は、ROC曲線を例示する。このROC曲線は、運転者の視線が高サリエンシー箇所に誘引される傾向の強さに応じて変化する。例えば、運転者の視線が高サリエンシー箇所を向く傾向がある場合、ROC曲線は、図10の第1曲線C1のように、傾きが1の直線(破線で示す直線)よりも上側に凸の曲線となる。一方、運転者の視線が低サリエンシー箇所を向く傾向がある場合、ROC曲線は、図10の第2曲線C2のように、傾きが1の直線(破線で示す直線)よりも下側に凸の曲線となる。なお、低サリエンシー箇所は、運転者の周囲環境のうちサリエンシーが比較的に低い箇所であり、例えば、サリエンシーが予め定められた基準サリエンシーを下回る箇所である。
次に、第4処理が行われる。第4処理では、第2指標導出部332は、ROC曲線の下側の面積であるAUC(Area Under the Curve)値をサリエンシー指標値として求める。例えば、図10の第1曲線C1がROC曲線である場合、AUC値は、図10のハッチングが付された領域の面積に相当する。例えば、運転者の視線が高サリエンシー箇所を向く傾向が強くなるに連れて、サリエンシー指標値であるAUC値が大きくなり、運転者の視線が低サリエンシー箇所を向く傾向が強くなるに連れて、サリエンシー指標値であるAUC値が小さくなる。このようにして、演算期間毎にサリエンシー指標値が導出される。
また、第2指標導出部332は、予め定められた計測期間毎に、第5処理を行う。計測期間は、演算期間よりも長い。計測期間の各々には、複数の演算期間が含まれる。第5処では、第2指標導出部332は、計測期間内に含まれるサリエンシー指標値が予め定められた高サリエンシー閾値を上回るか否かを判定する。そして、第2指標導出部332は、サリエンシー指標値の判定結果に基づいて、第2指標値id2を導出する。例えば、第2指標値id2は、計測期間内に含まれるサリエンシー指標値の総数に対して高サリエンシー閾値を上回るサリエンシー指標値の数が占める割合(以下では「高指標割合」と記載)に応じた値である。この高指標割合は、運転者の周囲環境における高サリエンシー箇所と運転者の視線との合致度の一例である。このようにして、計測期間毎に第2領域R20における第2指標値id2が導出される。
また、第2指標導出部332は、運転者の周囲環境のうち車両の運転中に運転者により注視される頻度が低い領域を第2領域R20に設定する。例えば、第2指標導出部332は、視線検出部310により検出された運転者の視線に基づいて、予め定められた監視期間内のサリエンシーマップデータD4における注視点の分布を検出する。そして、第2指標導出部332は、サリエンシーマップデータD4のうち注視点の密度が予め定められた第2密度閾値を下回る箇所を含む領域を第2領域R20に設定する。なお、第2密度閾値は、第1密度閾値よりも低い密度であってもよいし、第1密度閾値と同一の密度であってもよい。また、第2領域R20は、周期的に更新されてもよい。
なお、第2指標導出部332は、サリエンシーマップデータD4のうち第1指標導出部322により設定された第1領域R10を除く領域を第2領域R20に設定してもよい。
〈推定部〉
推定部340は、第1領域R10における第1指標値id1と、第2領域R20における第2指標値id2とに基づいて、運転者の状態を推定する。具体的には、推定部340は、第1領域R10における第1指標値id1の変化と、第2領域R20における第2指標値id2の変化とに基づいて、運転者の状態を推定する。なお、運転者の状態の推定については、後で詳しく説明する。
〔運転者の状態〕
この例では、推定部340により推定される運転者の状態には、「注意機能低下状態」と「漫然状態」と「正常状態」とが含まれる。
注意機能低下状態は、注意機能が低下している状態のことであり、車両の運転に支障がある状態である。注意機能低下の要因としては、注意機能低下を伴う疾患の発生、覚醒低下などが挙げられる。注意機能の低下を伴う疾患の例としては、心筋梗塞などの心疾患、脳卒中などの脳疾患、癲癇、低血糖などが挙げられる。
漫然状態は、車両の運転に集中しておらず、ぼんやりとしている状態のことであり、車両の運転に支障がある状態である。
正常状態は、上述の注意機能低下状態でも漫然状態でもない状態のことであり、車両の運転を正常に行うことができる状態である。
〔本願発明者により行われた実験〕
本願発明者は、運転者の状態と運転者の挙動(特に視線の動き)との関係を調べるために、下記のような実験を実施した。
まず、運転者の注意機能低下状態における挙動を擬似的に観測するために、注意機能障害を有する患者(以下では「注意障害患者」と記載)を被験者として選出した。また、運転者の正常状態における挙動を擬似的に観測するために、注意機能障害を有さない健常者(以下では単に「健常者」と記載)を被験者として選出した。
次に、図11に示すように、上記のように選出された被験者に対して、ドライビングシミュレータ80を用いて車両の運転操作を擬似的に体験させた。具体的には、ドライビングシミュレータ80により車両の走行中の動画像(車内から見える車両の外部環境を示す動画像)を被験者に視聴させ、その被験者の実験中の挙動を観測することで、被験者の車両運転時の挙動を擬似的に観測した。この実験では、車両の走行中の動画像を視聴する被験者の前方にカメラを設置し、撮像範囲内に被験者の眼球が含まれるようにカメラを設定した。
そして、カメラにより得られた画像データに対して視線検出処理を行うことで被験者の視線を検出した。なお、被験者の視線の検出は、上述の視線検出部310において行われる処理と同様である。
また、ドライビングシミュレータ80により再生される動画像に基づいて、注目箇所の分布を示す注目箇所マップデータD3を生成し、注目箇所マップデータD3と被験者の視線とに基づいて、トップダウン注意資源量と相関のある第1指標値id1を導出した。なお、注目箇所マップデータD3の生成は、上述の注目箇所検出部321において行われる処理と同様である。第1指標値id1の導出は、上述の第1指標導出部322において行われる処理と同様である。ただし、この実験では、注目箇所マップデータD3の一部の領域だけでなく、注目箇所マップデータD3の全域を対象として、第1指標値id1の導出が行われた。
また、ドライビングシミュレータ80により再生される動画像に基づいて、サリエンシーの分布を示すサリエンシーマップデータD4を生成し、サリエンシーマップデータD4と被験者の視線とに基づいて、ボトムアップ注意資源量と相関のある第2指標値id2を導出した。なお、サリエンシーマップデータD4の生成は、上述のサリエンシー検出部331において行われる処理と同様である。第2指標値id2の導出は、上述の第2指標導出部332において行われる処理と同様である。ただし、この実験では、サリエンシーマップデータD4の一部の領域だけでなく、サリエンシーマップデータD4の全域を対象として、第2指標値id2の導出が行われた。
そして、第1指標値id1に基づいて、被験者のトップダウン注意資源量を推定し、第2指標値id2に基づいて、被験者のボトムアップ注意資源量を推定した。
以上の実験を、複数の被験者に対して実施した。
図12は、健常者のサリエンシー指標値の時間的変化を示す。図13は、注意障害患者のサリエンシー指標値の時間的変化を示す。これらのサリエンシー指標値は、第2指標値id2の導出の過程で得られる。図12および図13において、ハッチングが付された部分は、サリエンシー指標値が高サリエンシー閾値(この例では0.6)を上回る部分である。破線の枠で囲まれた部分は、注目箇所と被験者の視線とが合致する部分である。健常者は、注意障害患者よりも、注目箇所と視線とが合致する部分が多く、トップダウン注意が支配的であった。一方、注意障害患者は、サリエンシー指標値が高サリエンシー閾値を上回る部分が多く、ボトムアップ注意が支配的であった。
また、健常者を被験者とし、被験者の状態を漫然状態と正常状態とに区別し、タスクディマンドを変化させて上述の実験を実施した。具体的には、ドライビングシミュレータ80による実験中に運転操作とは異なるタスク(暗算)を被験者に実施させることで、被験者の漫然状態を擬似的に再現し、ドライビングシミュレータ80による実験中に運転操作とは異なるタスク(暗算)を被験者に実施させないことで、被験者の正常状態を擬似的に再現した。また、高速道路のような単調な運転シーンの動画像をドライビングシミュレータ80に再生させることで、タスクディマンドが小さい状況下を擬似的に再現し、市街地道路のような複雑な運転シーンの動画像をドライビングシミュレータ80に再生させることで、タスクディマンドが大きい状況下を擬似的に再現した。市街地道路の運転シーンには、駐車車両回避、交差点通過、右折、左折、先行車追従、歩行者横断などのイベントが含まれている。
〔本願発明者により得られた知見 その1〕
上述の実験により、本願発明者は、以下の知見を得た。以下の説明では、トップダウン注意資源量とボトムアップ注意資源量との総量を「注意資源総量」と記載する。
(1)注意障害患者の注意資源総量は、健常者の注意資源総量よりも少ない。
(2)健常者のトップダウン注意資源量およびボトムアップ注意資源量は、健常者の漫然状態と正常状態とで異なる。具体的には、健常者のトップダウン注意資源量は、漫然状態では、トップダウン注意ディマンド量を下回り、正常状態では、トップダウン注意ディマンド量を下回らない。また、健常者の漫然状態のトップダウン注意資源量は、健常者の正常状態のトップダウン注意資源量よりも少なく、健常者の漫然状態のボトムアップ注意資源量は、健常者の正常状態のボトムアップ注意資源量よりも多い。なお、健常者の注意資源総量は、健常者の正常状態の注意資源総量と同等である。
(3)健常者のトップダウン注意資源量およびボトムアップ注意資源量は、タスクディマンドに応じて変化する。具体的には、タスクディマンドの減少によりトップダウン注意ディマンド量が減少すると、トップダウン注意資源量が減少し、その分、ボトムアップ注意資源量が増加する。逆に、タスクディマンドの増加によりトップダウン注意ディマンド量が増加すると、トップダウン注意資源量が増加し、その分、ボトムアップ注意資源量が減少する。
〔運転者の状態およびタスクディマンドと注意資源との関係〕
そして、以上の知見から、本願発明者は、図14に示すように、運転者の状態およびタスクディマンドに応じて運転者のトップダウン注意資源量およびボトムアップ注意資源量が変化することを見出した。図14の例において、右上がりの斜線のハッチングが付された上向きの三角形の高さは、運転者のトップダウン注意資源量を示す。破線の上向きの三角形の高さは、運転者のトップダウン注意ディマンド量を示す。左上がりの斜線のハッチングが付された下向きの三角形の高さは、運転者のボトムアップ注意資源量を示す。図14には、他の参考例として、歩行者のトップダウン注意資源量およびボトムアップ注意資源量と、運転者の意識喪失時のトップダウン注意資源量およびボトムアップ注意資源量とが図示されている。図14の例において、運転者の意識喪失時のトップダウン注意資源量およびボトムアップ注意資源量は、ゼロである。
具体的には、本願発明者は、以上の知見から、以下のことを見出した。
(1)運転者の状態が正常状態から注意機能低下状態になると、運転者の注意資源総量が減少する。具体的には、トップダウン注意資源量が減少し、トップダウン注意資源量がトップダウン注意ディマンド量を下回る。一方、ボトムアップ注意資源量も減少する。
(2)運転者のトップダウン注意資源量およびボトムアップ注意資源量は、運転者の状態に応じて変化する。具体的には、運転者の状態が正常状態から漫然状態になると、トップダウン注意資源量が減少し、トップダウン注意資源量がトップダウン注意ディマンド量を下回る。一方、トップダウン注意資源量が減少した分、ボトムアップ注意資源量が増加する。逆に、運転者の状態が漫然状態から正常状態になると、トップダウン注意資源量が増加し、トップダウン注意資源量がトップダウン注意ディマンド量に到達する。一方、トップダウン注意資源量が増加した分、ボトムアップ注意資源量が減少する。なお、運転者の漫然状態時の注意資源総量は、運転者の正常状態時の注意資源総量と同等である。
(3)運転者のトップダウン注意資源量およびボトムアップ注意資源量は、タスクディマンドに応じて変化する。具体的には、タスクディマンドが増加すると、トップダウン注意ディマンド量が増加する。その結果、トップダウン注意資源量が増加し、トップダウン注意資源量がトップダウン注意ディマンド量に到達する。一方、トップダウン注意資源量が増加した分、ボトムアップ注意資源量が減少する。逆に、タスクディマンドが減少すると、トップダウン注意ディマンド量が減少する。その結果、トップダウン注意資源量が減少し、トップダウン注意資源量がトップダウン注意ディマンド量に到達する。一方、トップダウン注意資源量が減少した分、ボトムアップ注意資源量が増加する。
さらに、本願発明者は、以上の知見から、以下のことを見出した。
(4)運転者のトップダウン注意資源量と相関のある第1指標値id1と予め定められた第1閾値ht1とを比較することで、運転者のトップダウン注意資源量を評価することができる。第1閾値th1は、運転者のトップダウン注意ディマンド量に応じた値に設定される。トップダウン注意ディマンド量が多くなるに連れて、第1閾値th1が大きくなる。例えば、第1閾値th1は、トップダウン注意資源量がトップダウン注意ディマンド量と一致するときの第1指標値id1に設定される。なお、トップダウン注意ディマンド量は、タスクディマンドに応じて変化する。具体的には、タスクディマンドが大きくなるに連れて、トップダウン注意ディマンド量が多くなる。
(5)運転者のボトムアップ注意資源量と相関のある第2指標値id2と予め定められた第2閾値th2とを比較することで、運転者のボトムアップ注意資源量を評価することができる。第2閾値th2は、運転者のボトムアップ注意ディマンド量に応じた値に設定される。運転者のボトムアップ注意ディマンド量が多くなるに連れて、第2閾値th2が大きくなる。例えば、第2閾値th2は、ボトムアップ注意資源量がボトムアップ注意ディマンド量と一致するときの第2指標値id2に設定される。なお、運転者のボトムアップ注意ディマンド量は、タスクディマンドに応じて変化する。具体的には、タスクディマンドが大きくなるに連れて、運転者のボトムアップ注意ディマンド量が少なくなる。例えば、ボトムアップ注意ディマンド量は、予め定められた注意ディマンド総量からトップダウン注意ディマンド量を差し引いて得られる量である。注意ディマンド総量は、例えば、正常状態時における注意資源総量である。
〔本願発明者により得られた知見 その2〕
また、本願発明者は、鋭意研究の結果、図15に示すように、運転者の周囲環境には、運転者のトップダウン注意が支配的となる第1領域R10と、運転者のボトムアップ注意が支配的となる第2領域R20とが含まれることを見出した。例えば、運転者が正常状態から注意機能低下状態になると、第1領域R10では、トップダウン注意資源量の減少が顕著に現れ、第2領域R20では、ボトムアップ注意資源量の減少が顕著に現れる。
〈第1領域〉
第1領域R10は、運転者の周囲環境のうち車両の運転中に運転者により意識的に注視される頻度が高い領域である。第1領域R10の例としては、前方中央領域R11、メータークラスタ77を含むメータークラスタ領域R12、ヘッドアップディスプレイ(図示省略)を含む領域などが挙げられる。前方中央領域R11は、車両に搭乗する運転者の前方中央に位置する円形状の領域である。
なお、第1領域R10の大きさは、車両の移動速度に応じて変化する。具体的には、車両の移動速度が高くなるに連れて、第1領域R10が小さくなる。例えば、車両の移動速度が高くなるに連れて、前方中央領域R11の径が小さくなる。
〈第2領域〉
第2領域R20は、運転者の周囲環境のうち車両の運転中に運転者により意識的に注視される頻度が低い領域である。第2領域R20の例としては、バックミラー74を含む領域、サイドミラー75を含む領域、空や雲などの車両の周囲の景色を含む領域、リアビークルモニタリングシステム(RVM)により点灯される表示灯(図示省略)などの点灯部を含む領域などが挙げられる。例えば、第2領域R20は、運転者の周囲環境のうち第1領域R10を除く領域であってもよい。
〔運転者状態推定〕
次に、図16を参照して、運転者の状態の推定について説明する。推定部340は、予め定められた推定周期毎に、以下の処理を行う。
〈ステップST11〉
推定部340は、第1領域R10における第1指標値id1が第1閾値th1を下回るか否かを判定する。第1領域R10における第1指標値id1が第1閾値th1を下回る場合には、ステップST11の処理が行われ、そうでない場合には、ステップST15の処理が行われる。
〈ステップST12〉
推定部340は、第2領域R20における第2指標値id2が第2閾値th2を下回るか否かを判定する。第2領域R20における第2指標値id2が第2閾値th2を下回る場合には、ステップST13の処理が行われ、そうでない場合には、ステップST14の処理が行われる。
〈ステップST13〉
第1領域R10における第1指標値id1が第1閾値th1を下回り、且つ、第2領域R20における第2指標値id2が第2閾値th2を下回る場合、推定部340は、運転者が注意機能低下状態であると推定する。この例では、推定部340は、注意機能低下状態であることを示すフラグを立てる。注意機能低下状態であることを示すフラグが立つと、車両制御部35は、注意機能低下状態に応じた動作を行う。注意機能低下状態に応じた動作の例としては、運転者の状態が注意機能低下状態(例えば疾患)であることを示す異常情報を出力する動作、運転者の状態が注意機能低下状態であることを車両の外部に通知するための動作、車両が安全経路を走行して安全領域で停車するようにアクチュエータ11を制御する動作などが挙げられる。異常情報を出力する動作の例としては、異常情報を通知部40に出力することで運転者の注意機能低下状態を車内に通知する動作が挙げられる。運転者が注意機能低下状態であることを車両の外部に通知するための動作の例としては、車両のハザードランプ(図示省略)を点滅させる動作が挙げられる。
〈ステップST14〉
一方、第1領域R10における第1指標値id1が第1閾値th1を下回り、且つ、第2領域R20における第2指標値id2が第2閾値th2を下回らない場合、推定部340は、運転者が注意機能低下状態であると推定せず、運転者が漫然状態であると推定する。この例では、推定部340は、漫然状態であることを示すフラグを立てる。漫然状態であることを示すフラグが立つと、車両制御部35は、漫然状態に応じた動作を行う。漫然状態に応じた動作の例としては、運転者の状態が漫然状態であることを示す漫然状態情報を出力する動作、運転者の漫然状態を解消するための動作などが挙げられる。漫然状態情報を出力する動作の例としては、漫然状態情報を通知部40に出力することで運転者の漫然状態を車内に通知する動作が挙げられる。運転者の漫然状態を解消するための動作の例としては、車両の運転に集中すること運転者に促すための情報を通知部40に出力する動作、休憩をとることを運転者に促すための情報を通知部40に出力する動作などが挙げられる。
〈ステップST15〉
また、第1領域R10における第1指標値id1が第1閾値th1を下回らない場合、推定部340は、運転者が正常状態であると推定する。この例では、推定部340は、正常状態であることを示すフラグを立てる。正常状態であることを示すフラグが立つと、車両制御部35は、正常状態に応じた動作を行う。正常状態に応じた動作の例としては、運転者の状態が正常状態であることを示す情報を出力する動作、走行制御を継続する動作などが挙げられる。
〔実施形態の効果〕
以上のように、第1領域R10における第1指標値id1と、第2領域R20における運転者のボトムアップ注意資源量と相関のある第2指標値id2とを用いることにより、運転者のトップダウン注意が支配的である第1領域R10における運転者のトップダウン注意資源量と、運転者のボトムアップ注意が支配的である第2領域R20における運転者のボトムアップ注意資源量とに基づいて、運転者の注意機能低下状態を含む運転者の状態を推定することができる。
例えば、第1領域R10における第1指標値id1(トップダウン注意資源量と相関のある値)が第1閾値th1を下回る場合に、第2領域R20における第2指標値id2(ボトムアップ注意資源量と相関のある値)と第2閾値th2とを比較することで、運転者が注意機能低下状態であるか否かを推定することができる。
また、トップダウン注意資源量およびボトムアップ注意資源量の一方のみに基づいて運転者の状態を推定する場合よりも、運転者の状態の推定精度を向上させることができる。
また、視線検出部310と注目箇所検出部321と第1指標導出部322とを設けることにより、運転者の周囲環境における注目箇所に対する運転者の視線の動きに基づいて、第1領域R10における第1指標値id1を適切に導出することができる。また、視線検出部310とサリエンシー検出部331と第2指標導出部332とを設けることにより、運転者の周囲環境におけるサリエンシーの分布に対する運転者の視線の動きに基づいて、第2領域R20における第2指標値id2を適切に導出することができる。
また、第1閾値th1を運転者のトップダウン注意ディマンド量に応じた値に設定することにより、運転者のトップダウン注意資源量の評価に利用される第1閾値th1を適切に設定することができる。
また、第2閾値th2を運転者のボトムアップ注意ディマンド量に応じた値に設定することにより、運転者のボトムアップ注意資源量の評価に利用される第2閾値th2を適切に設定することができる。
また、第1領域R10における第1指標値id1と第2領域R20における第2指標値id2とを用いて運転者の状態を推定することにより、運転者の周囲環境の全域における第1指標値id1および第2指標値id2を用いる場合よりも、第1指標値id1および第2指標値id2の導出に要する処理負荷(例えば注視点の検出に要する処理負荷)を軽減することができる。
また、運転者の周囲環境のうち車両の運転中に運転者により注視される頻度が高い領域を第1領域R10に設定することにより、運転者のトップダウン注意が支配的となる第1領域R10を適切に設定することができる。
(第2指標導出部の変形例)
なお、第2指標導出部332は、次のようにして、予め定められた計測期間毎に、第2領域R20における第2指標値id2を導出してもよい。第2指標導出部332による処理(第2指標値id2の導出)は、サリエンシー検出部331により生成されたサリエンシーマップデータD4のうち第2領域R20を対象として行われる。
まず、第2指標導出部332は、時系列順に並ぶ複数のサリエンシーマップデータD4の中から計測期間内に含まれる2つ以上のサリエンシーマップデータD4を抽出し、視線検出部310により検出された運転者の視線の方向に基づいて、計測期間内に含まれる2つ以上のサリエンシーマップデータD4の各々において注視点を検出する。
次に、第2指標導出部332は、計測期間内に含まれるサリエンシーマップデータD4から検出された注視点がそのサリエンシーマップデータD4に示された高サリエンシー箇所と一致するか否かを判定する。
次に、第2指標導出部332は、注視点と高サリエンシー箇所との合致判定の結果に基づいて、第2指標値id2を導出する。例えば、第2指標値id2は、計測期間内に含まれる注視点の総数に対して高サリエンシー箇所と合致する注視点の数が占める割合(以下では「高サリエンシー合致割合」と記載)に応じた値である。この高サリエンシー合致割合は、運転者の周囲環境における高サリエンシー箇所と運転者の視線との合致度の一例である。
(実施形態の変形例1)
次に、実施形態の変形例1による車両制御システム10について説明する。実施形態の変形例1による車両制御システム10は、推定部340の動作が実施形態による車両制御システム10と異なる。なお、実施形態の変形例1による車両制御システム10のその他の構成は、実施形態による車両制御システム10の構成と同様である。
〔本願発明者により得られた知見〕
本願発明者は、鋭意研究の結果、運転者が注意機能低下状態(例えば疾患)であったとして、運転者が注目箇所を見ようと頑張ることで、運転者のトップダウン注意資源量の減少が顕著に現れない場合があることを見出した。また、本願発明者は、このような場合であっても、運転者の状態が正常状態から注意機能低下状態になることで、運転者の注意資源総量が減少することを見出した。
〔運転者状態推定〕
実施形態の変形例1による車両制御システム10では、図16に示した処理に代えて、図17に示す処理が行われる。図17に示す処理では、図16に示したステップST15の処理に代えて、ステップST21~ST23の処理が行われる。
〈ステップST21〉
ステップST11において第1領域R10における第1指標値id1が第1閾値th1を下回らない場合、推定部340は、第2領域R20における第2指標値id2が第2閾値th2を下回るか否かを判定する。第2領域R20における第2指標値id2が第2閾値th2を下回る場合には、ステップST22の処理が行われ、そうでない場合には、ステップST23の処理が行われる。
〈ステップST22〉
第1領域R10における第1指標値id1が第1閾値th1を下回らず、且つ、第2領域R20における第2指標値id2が第2閾値th2を下回る場合、推定部340は、運転者が注意機能低下状態であると推定する。この例では、推定部340は、注意機能低下状態であることを示すフラグを立てる。
〈ステップST23〉
一方、第1領域R10における第1指標値id1が第1閾値th1を下回らず、且つ、第2領域R20における第2指標値id2が第2閾値th2を下回らない場合、推定部340は、運転者が正常状態であると推定する。この例では、推定部340は、正常状態であることを示すフラグを立てる。
〔実施形態の変形例1の効果〕
以上のように、第1領域R10における第1指標値id1が第1閾値th1を下回らない場合に、第2領域R20における第2指標値id2と第2閾値th2との比較結果に基づいて運転者の状態を推定することにより、運転者が注意機能低下状態(例えば疾患)であるが運転者のトップダウン注意資源量の減少が顕著に現れない場合であっても、運転者が注意機能低下状態であると推定することができる。これにより、運転者の状態の推定精度を向上させることができる。
(実施形態の変形例2)
次に、実施形態の変形例2による車両制御システム10について説明する。実施形態の変形例2による車両制御システム10は、第1指標導出部322および第2指標導出部332の動作が実施形態による車両制御システム10と異なる。なお、実施形態の変形例1による車両制御システム10のその他の構成は、実施形態による車両制御システム10の構成と同様である。
〔運転者の視線〕
視線検出部310により検出される運転者の視線の中には、運転者の周囲環境における注目箇所および高サリエンシー箇所のいずれにも合致しない運転者の視線が含まれる。このような運転者の視線は、第1指標値id1および第2指標値id2の導出においてノイズとして作用する可能性が高い。したがって、運転者の周囲環境における注目箇所および高サリエンシー箇所のいずれにも合致しない運転者の視線は、第1指標値id1および第2指標値id2の導出に利用されないことが好ましい。
実施形態の変形例2による車両制御システム10では、第1指標導出部322および第2指標導出部332は、視線検出部310により検出された運転者の視線のうち運転者の周囲環境における注目箇所および高サリエンシー箇所のいずれにも合致しない運転者の視線を、第1領域R10における第1指標値id1および第2領域R20における第2指標値id2の導出のために使用しないように構成される。例えば、第1指標導出部322および第2指標導出部332は、次のような処理を行うように構成されてもよい。
なお、実施形態の変形例2では、第1指標導出部322における注目箇所と注視点との合致判定は、注目箇所マップデータD3の第1領域R10と第2領域R20において行われる。第2指標導出部332における高サリエンシー箇所と注視点との合致判定は、サリエンシーマップデータD4の第1領域R10と第2領域R20において行われる。
第1指標導出部322は、第1指標導出部322における注目箇所と注視点との合致判定の結果と、第2指標導出部332における高サリエンシー箇所と注視点との合致判定の結果とに基づいて、計測期間内に含まれる第1領域R10内の注視点の中から注目箇所および高サリエンシー箇所のいずれにも合致しない第1領域R10内の注視点を検出する。次に、第1指標導出部322は、計測期間内に含まれる第1領域R10内の注視点の総数から注目箇所および高サリエンシー箇所のいずれにも合致しない第1領域R10内の注視点の数を減算し、その減算により得られた数を計測期間内に含まれる第1領域R10内の注視点の母数とする。そして、第1指標導出部322は、計測期間内に含まれる第1領域R10内の注視点の母数に対して注目箇所と合致する第1領域R10内の注視点の数が占める割合に応じた値を、第1領域R10における第1指標値id1として導出する。
第2指標導出部332は、第1指標導出部322における注目箇所と注視点との合致判定の結果と、第2指標導出部332における高サリエンシー箇所と注視点との合致判定の結果とに基づいて、計測期間内に含まれる第2領域R20内の注視点の中から注目箇所および高サリエンシー箇所のいずれにも合致しない第2領域R20内の注視点を検出する。次に、第2指標導出部332は、計測期間内に含まれる第2領域R20内の注視点の総数から注目箇所および高サリエンシー箇所のいずれにも合致しない第2領域R20内の注視点の数を減算し、その減算により得られた数を計測期間内に含まれる第2領域R20内の注視点の母数とする。そして、第2指標導出部332は、計測期間内に含まれる第2領域R20内の注視点の母数に対して高サリエンシー箇所と合致する第2領域R20内の注視点の数が占める割合に応じた値を、第2領域R20における第2指標値id2として導出する。
〔実施形態の変形例2の効果〕
以上のように、視線検出部310により検出された運転者の視線のうち運転者の周囲環境における注目箇所および高サリエンシー箇所のいずれにも合致しない運転者の視線(すなわちノイズとなる運転者の視線)を、第1領域R10における第1指標値id1の導出および第2領域R20における第2指標値id2の導出から排除することができる。これにより、運転者の状態の推定精度を向上させることができる。
(その他の実施形態)
以上の説明では、第1領域R10における第1指標値id1が注目合致割合(計測期間内に含まれる注視点の総数に対して注目箇所と合致する注視点の数が占める割合)に応じた値である場合を例に挙げたが、これに限定されない。これと同様に、第2領域R20における第2指標値id2が高指標割合(計測期間内に含まれるサリエンシー指標値の総数に対して高サリエンシー閾値を上回るサリエンシー指標値の数が占める割合)または高サリエンシー合致割合(計測期間内に含まれる注視点の総数に対して高サリエンシー箇所と合致する注視点の数が占める割合)に応じた値である場合を例に挙げたが、これに限定されない。
また、以上の説明では、移動体の一例として車両を挙げたが、これに限定されない。例えば、移動体の他の例としては、船舶、飛行機などが挙げられる。
また、以上の説明では、注目箇所検出部321およびサリエンシー検出部331がカメラ21の出力に基づいて前方画像データD1を取得する場合を例に挙げたが、これに限定されない。例えば、注目箇所検出部321およびサリエンシー検出部331は、外部環境認識部33の出力に基づいて前方画像データD1を取得するように構成されてもよい。また、注目箇所検出部321およびサリエンシー検出部331の両方において前方画像データD1および合成画像データD2が生成される場合を例に挙げたが、注目箇所検出部321およびサリエンシー検出部331の一方において生成された前方画像データD1および合成画像データD2が注目箇所検出部321およびサリエンシー検出部331の他方において利用されるようになっていてもよい。
以上の説明では、推定部340が推定周期毎に運転者の状態を推定する場合を例に挙げたが、これに限定されない。例えば、推定部340は、上記のように運転者の短期的な状態を推定するように構成されてもよいし、運転者の長期的な状態を推定するように構成されてもよい。なお、運転者の短期的な状態は、車両の運転の開始から終了までの期間(1回の運転の期間)内における運転者の状態のことである。運転者の長期的な状態は、車両の運転を複数回行うことが可能な期間(例えば年単位)内における運転者の状態のことである。運転者の長期的な状態の例としては、症状が緩やかに進行する疾患の状態、加齢による機能低下の状態などが挙げられる。
また、以上の説明では、推定部340が注意機能低下状態と漫然状態と正常状態とを推定する場合を例に挙げたが、これに限定されない。例えば、推定部340は、上記の注意機能低下状態や漫然状態のような運転者のネガティブな状態を推定するように構成されてもよいし、運転者のポジティブな状態を推定するように構成されてもよい。運転者のポジティブな状態の例としては、注意機能低下状態や漫然状態などの車両の運転に適さない状態から正常状態へ回復した状態、正常状態が維持されている状態などが挙げられる。
また、以上の説明では、車両制御装置30がカメラ21により得られた画像データと車内カメラ28により得られた画像データとを利用する場合を例に挙げたが、これに限定されない。例えば、車両制御装置30は、表示機器に入力される画像データと、その表示機器に表示された画像を見る対象者(運転者となり得る対象者)を撮像するカメラにより得られた画像データとを利用するように構成されてもよい。表示機器の例としては、スマートフォン、パーソナルコンピュータ、テレビ受像機などが挙げられる。また、車両制御装置30は、監視カメラにより得られた画像データと、監視カメラにより撮像される環境を見る対象者を撮像するカメラにより得られた画像データとを利用するように構成されてもよい。監視カメラは、病院の待合室、警備員の監視室、店舗のレジ、建物内、街頭などに設けられる。
また、以上の説明において、第1閾値th1や第2閾値th2などの判定の基準となる基準値は、運転者毎に設定されてもよい。具体的には、上記の基準値は、運転者の経験、運転者の普段の挙動などの運転者に特有の情報の学習結果に基づいて設定または調節されてもよい。運転者の経験の例としては、道路の通行頻度などが挙げられる。例えば、車両が走行している道路が通り慣れた道路であるのか初めて通行する道路であるのかに基づいて、上記の基準値が設定または調節されてもよい。運転者の普段の挙動の例としては、1週間や1ヶ月などの長期間における平均的な運転者の挙動、他の手法により正常状態であると推定されている期間における運転者の挙動などが挙げられる。運転者の挙動の例としては、高サリエンシー箇所および/または注目箇所に対する運転者の視線移動の感度などが挙げられる。
また、以上の説明において、上記の基準値は、人に関する様々なデータが記憶されたデータベースに基づいて設定されてもよい。このようなデータベースには、人の年齢、身体特徴、身体機能、性格、文化、生活スタイル、運転経験、運転スキル、運転スタイルなどが互いに関連付けられて記憶されている。例えば、データベースに記憶されたデータ群の中から特定の特性を有する人に関するデータ群が抽出され、その抽出されたデータ群に基づいて上記の基準値が設定されてもよい。なお、データベースに記憶されたデータ群の中から抽出されるデータ群の例としては、健常者に関連するデータ群、特定の疾患を有する人に関連するデータ群、交通事故を起こしたことがある人に関連するデータ群などが挙げられる。
また、以上の説明において、上記の基準値は、車両制御装置30とは異なる他の機器(例えばスマートフォン)により得られた情報に基づいて設定されてもよい。
また、以上の実施形態を適宜組み合わせて実施してもよい。以上の実施形態は、本質的に好ましい例示であって、この発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
以上説明したように、ここに開示する技術は、運転者状態推定装置として有用である。
10 車両制御システム(移動体制御システム)
11 アクチュエータ
20 情報取得部
21 カメラ
22 レーダ
23 位置センサ
24 通信部
25 車両状態センサ
26 運転操作センサ
27 運転者状態センサ
28 車内カメラ
29 生体情報センサ
30 車両制御装置(運転者状態推定装置)
31 車両挙動認識部
32 運転操作認識部
33 外部環境認識部
34 運転者状態認識部
35 車両制御部
300 運転者状態推定部
310 視線検出部
320 第1計測部
321 注目箇所検出部
322 第1指標導出部
330 第2計測部
331 サリエンシー検出部
332 第2指標導出部
340 推定部
R10 第1領域
R11 前方中央領域
R12 メータークラスタ領域
R20 第2領域

Claims (4)

  1. 移動体に搭乗する運転者の状態を推定する運転者状態推定装置であって、
    前記運転者の周囲環境のうち前記運転者のトップダウン注意が支配的となる第1領域において、前記運転者のトップダウン注意に割り当てられる注意資源の量であるトップダウン注意資源量相関のある第1指標値を計測する第1計測部と、
    前記運転者の周囲環境のうち前記運転者のボトムアップ注意が支配的となる第2領域において、前記運転者のボトムアップ注意に割り当てられる注意資源の量であるボトムアップ注意資源量相関のある第2指標値を計測する第2計測部と、
    前記第1領域における前記第1指標値と、前記第2領域における前記第2指標値とに基づいて、前記運転者の注意機能低下状態を含む前記運転者の状態を推定する推定部とを備え
    前記運転者が前記注意機能低下状態であるときの前記運転者の前記トップダウン注意資源量と前記ボトムアップ注意資源量との総量である注意資源総量は、前記運転者が正常状態であるときの前記運転者の前記注意資源総量よりも少なく、
    前記推定部は、前記第1指標値が予め定められた第1閾値を下回る場合において、前記第2指標値が予め定められた第2閾値を下回る場合に、前記運転者が前記注意機能低下状態であると推定し、前記第2指標値が前記第2閾値を下回らない場合に、前記運転者が前記注意機能低下状態であると推定しない
    ことを特徴とする運転者状態推定装置。
  2. 請求項1において、
    前記運転者が漫然状態であるときの前記運転者のトップダウン注意資源量は、前記運転者が前記正常状態であるときの前記運転者のトップダウン注意資源量よりも少なく、
    前記運転者が前記漫然状態であるときの前記運転者のボトムアップ注意資源量は、前記運転者が前記正常状態であるときの前記運転者のボトムアップ注意資源量よりも多く、
    前記推定部は、前記第1指標値が前記第1閾値を下回る場合において、前記第2指標値が前記第2閾値を下回らない場合に、前記運転者が前記漫然状態であると推定する
    ことを特徴とする運転者状態推定装置。
  3. 請求項1または2において、
    前記運転者の視線を検出する視線検出部を備え、
    前記第1計測部は、前記運転者の周囲環境における注目箇所を検出する注目箇所検出部と、前記運転者の周囲環境における注目箇所に対する前記運転者の視線の動きに基づいて前記第1領域における前記第1指標値を導出する第1指標導出部とを有し、
    前記第2計測部は、前記運転者の周囲環境におけるサリエンシーの分布を検出するサリエンシー検出部と、前記運転者の周囲環境におけるサリエンシーの分布に対する前記運転者の視線の動きに基づいて前記第2領域における前記第2指標値を導出する第2指標導出部とを有する
    ことを特徴とする運転者状態推定装置。
  4. 請求項1~3のいずれか1つにおいて、
    前記第1領域は、前記運転者の周囲環境のうち前記移動体の運転中に前記運転者により注視される頻度が高い領域である
    ことを特徴とする運転者状態推定装置。
JP2020026633A 2020-02-19 2020-02-19 運転者状態推定装置 Active JP7331729B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020026633A JP7331729B2 (ja) 2020-02-19 2020-02-19 運転者状態推定装置
CN202110067957.8A CN113276822B (zh) 2020-02-19 2021-01-19 驾驶员状态推断装置
US17/160,397 US11247687B2 (en) 2020-02-19 2021-01-28 Driver state estimation device, method and computer program therefor
EP21156774.8A EP3868622B1 (en) 2020-02-19 2021-02-12 Driver state estimation device and movable body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026633A JP7331729B2 (ja) 2020-02-19 2020-02-19 運転者状態推定装置

Publications (2)

Publication Number Publication Date
JP2021130390A JP2021130390A (ja) 2021-09-09
JP7331729B2 true JP7331729B2 (ja) 2023-08-23

Family

ID=74595113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026633A Active JP7331729B2 (ja) 2020-02-19 2020-02-19 運転者状態推定装置

Country Status (4)

Country Link
US (1) US11247687B2 (ja)
EP (1) EP3868622B1 (ja)
JP (1) JP7331729B2 (ja)
CN (1) CN113276822B (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11787429B2 (en) * 2021-04-27 2023-10-17 Toyota Research Institute, Inc. Vehicle sneeze control system and method
CN114266513B (zh) * 2022-03-01 2022-06-21 四川省公路规划勘察设计研究院有限公司 连续纵坡路段安全性评价模型构建、诊断方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009825A (ja) 2011-06-29 2013-01-17 Denso Corp 視認負荷量推定装置、運転支援装置、および視認負荷量推定プログラム
JP2013254409A (ja) 2012-06-08 2013-12-19 Toyota Central R&D Labs Inc 漫然運転検出装置及びプログラム
WO2018145028A1 (en) 2017-02-06 2018-08-09 Honda Motor Co., Ltd. Systems and methods of a computational framework for a driver's visual attention using a fully convolutional architecture
JP2019215688A (ja) 2018-06-12 2019-12-19 国立大学法人神戸大学 自動キャリブレーションを行う視線計測装置、視線計測方法および視線計測プログラム
JP2021077135A (ja) 2019-11-11 2021-05-20 マツダ株式会社 車両制御装置および運転者状態判定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3027786B2 (ja) 1993-02-23 2000-04-04 三菱電機株式会社 運転者状態判定装置
JP5036814B2 (ja) * 2006-06-11 2012-09-26 ボルボ テクノロジー コーポレイション 視覚的関心場所の決定および分析のための方法および装置
EP2256667B1 (en) * 2009-05-28 2012-06-27 Honda Research Institute Europe GmbH Driver assistance system or robot with dynamic attention module
CN103770733B (zh) * 2014-01-15 2017-01-11 中国人民解放军国防科学技术大学 一种驾驶员安全驾驶状态检测方法及装置
JP6638701B2 (ja) * 2017-06-08 2020-01-29 トヨタ自動車株式会社 運転意識推定装置
US11017249B2 (en) * 2018-01-29 2021-05-25 Futurewei Technologies, Inc. Primary preview region and gaze based driver distraction detection
JP7222216B2 (ja) * 2018-10-29 2023-02-15 株式会社アイシン 運転支援装置
US10882398B2 (en) * 2019-02-13 2021-01-05 Xevo Inc. System and method for correlating user attention direction and outside view

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009825A (ja) 2011-06-29 2013-01-17 Denso Corp 視認負荷量推定装置、運転支援装置、および視認負荷量推定プログラム
JP2013254409A (ja) 2012-06-08 2013-12-19 Toyota Central R&D Labs Inc 漫然運転検出装置及びプログラム
WO2018145028A1 (en) 2017-02-06 2018-08-09 Honda Motor Co., Ltd. Systems and methods of a computational framework for a driver's visual attention using a fully convolutional architecture
JP2019215688A (ja) 2018-06-12 2019-12-19 国立大学法人神戸大学 自動キャリブレーションを行う視線計測装置、視線計測方法および視線計測プログラム
JP2021077135A (ja) 2019-11-11 2021-05-20 マツダ株式会社 車両制御装置および運転者状態判定方法

Also Published As

Publication number Publication date
CN113276822B (zh) 2023-10-20
EP3868622A1 (en) 2021-08-25
US20210253110A1 (en) 2021-08-19
US11247687B2 (en) 2022-02-15
EP3868622B1 (en) 2023-11-08
JP2021130390A (ja) 2021-09-09
CN113276822A (zh) 2021-08-20

Similar Documents

Publication Publication Date Title
JP7080598B2 (ja) 車両制御装置および車両制御方法
KR102669020B1 (ko) 정보 처리 장치, 이동 장치, 및 방법, 그리고 프로그램
JP7560486B2 (ja) 情報処理装置、情報処理システム、情報処理方法及び情報処理プログラム
JPWO2019202881A1 (ja) 情報処理装置、移動装置、情報処理システム、および方法、並びにプログラム
JP7459634B2 (ja) ドライバ異常判定システム
CN110826369A (zh) 一种驾驶员驾驶时注意力检测方法和系统
JP7331728B2 (ja) 運転者状態推定装置
JP7342638B2 (ja) 運転者状態検出装置
JP7331729B2 (ja) 運転者状態推定装置
JP7342636B2 (ja) 車両制御装置および運転者状態判定方法
JP7342637B2 (ja) 車両制御装置および運転者状態判定方法
US20240051585A1 (en) Information processing apparatus, information processing method, and information processing program
JP7415460B2 (ja) 車両制御装置及び運転者状態判定方法
JP7415459B2 (ja) 車両制御装置及び運転者状態判定方法
JP7318560B2 (ja) 状態推定装置
JP7298509B2 (ja) 状態推定装置
JP7298510B2 (ja) 状態推定装置
JP7298508B2 (ja) 状態推定装置
JP2023022409A (ja) 運転者状態判定方法及びその判定システム
JP2023022410A (ja) 運転者状態判定方法及びその判定システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R150 Certificate of patent or registration of utility model

Ref document number: 7331729

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150