[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7331452B2 - 硬化性インク組成物、光変換層及びカラーフィルタ - Google Patents

硬化性インク組成物、光変換層及びカラーフィルタ Download PDF

Info

Publication number
JP7331452B2
JP7331452B2 JP2019093084A JP2019093084A JP7331452B2 JP 7331452 B2 JP7331452 B2 JP 7331452B2 JP 2019093084 A JP2019093084 A JP 2019093084A JP 2019093084 A JP2019093084 A JP 2019093084A JP 7331452 B2 JP7331452 B2 JP 7331452B2
Authority
JP
Japan
Prior art keywords
ink composition
meth
light
polyfunctional
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019093084A
Other languages
English (en)
Other versions
JP2020186335A (ja
Inventor
洋平 有賀
博友 佐々木
栄志 乙木
崇之 三木
育郎 清都
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2019093084A priority Critical patent/JP7331452B2/ja
Publication of JP2020186335A publication Critical patent/JP2020186335A/ja
Application granted granted Critical
Publication of JP7331452B2 publication Critical patent/JP7331452B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ink Jet (AREA)
  • Optical Filters (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Description

本発明は、硬化性インク組成物、光変換層及びカラーフィルタに関する。
従来、液晶表示装置等のディスプレイにおける画素部(カラーフィルタ画素部)は、例えば、赤色有機顔料粒子又は緑色有機顔料粒子と、アルカリ可溶性樹脂及び/又はアクリル系単量体とを含有する硬化性レジスト材料を用いて、フォトリソグラフィ法により製造されてきた。
近年、ディスプレイの低消費電力化が強く求められるようになり、上記赤色有機顔料粒子又は緑色有機顔料粒子に代えて、例えば量子ドット、量子ロッド、その他の無機蛍光体粒子等の発光性ナノ結晶粒子を用いて、赤色画素、緑色画素といった画素部を形成させる方法が、活発に研究されている。
ところで、上記フォトリソグラフィ法でのカラーフィルタの製造方法では、その製造方法の特徴から、比較的高価な発光性ナノ結晶粒子を含めた画素部以外のレジスト材料が無駄になるという欠点があった。このような状況下、上記のようなレジスト材料の無駄をなくすため、インクジェット法(インクジェット方式)により、硬化性インク組成物を用いて、光変換基板画素部を形成することが検討され始めている(特許文献1)。
国際公開第2008/001693号
発光性ナノ結晶粒子を含む硬化性インク組成物により形成されるカラーフィルタ画素部(以下、単に「画素部」ともいう。)には、低消費電力化等の観点から、外部量子効率(EQE:External Quantum Efficiency)の更なる向上が求められている。
本発明の目的の一つは、優れた外部量子効率を有するカラーフィルタ画素部を形成し得る硬化性インク組成物を提供することにある。
本発明者らは、硬化性インク組成物に含有させる硬化性成分として、多官能(メタ)アクリル化合物と多官能(メタ)アリル化合物とを組み合わせて用いることにより、硬化後の発光特性を向上させることができることを見出し、本発明を完成させた。
すなわち、本発明の一側面は、発光性ナノ結晶粒子と、多官能(メタ)アクリル化合物と、多官能(メタ)アリル化合物と、を含有する、硬化性インク組成物に関する。
上記側面のインク組成物によれば、優れた外部量子効率を有するカラーフィルタ画素部を形成することができる。
一側面において、多官能(メタ)アリル化合物はベンゼン環を有していてよい。
一側面において、多官能(メタ)アリル化合物は二官能又は三官能(メタ)アリル化合物であってよい。
一側面において、多官能(メタ)アリル化合物は(メタ)アリルオキシ基を有していてよい。
一側面において、多官能(メタ)アリル化合物の分子量は100~300であってよい。
一側面において、多官能(メタ)アリル化合物は下記式(I)で表される化合物であってよい。
[式(I)中、nは2又は3を示し、複数のRは、それぞれ独立して、水素原子又はメチル基を示す。]
一側面において、多官能(メタ)アクリル化合物は二官能又は三官能(メタ)アクリル化合物であってよい。
一側面において、多官能(メタ)アクリル化合物の分子量は50~700であってよい。
一側面において、多官能(メタ)アクリル化合物は(ポリ)アルキレングリコールジ(メタ)アクリレートであってよい。
一側面において、硬化性インク組成物は光散乱性粒子を更に含有してよい。
一側面において、硬化性インク組成物は亜リン酸トリエステルを更に含有してよい。
一側面において、硬化性インク組成物は光変換層を形成するために用いることができる。すなわち、硬化性インク組成物は光変換層形成用のインク組成物であってよい。
一側面において、硬化性インク組成物はインクジェット方式で用いることができる。すなわち、硬化性インク組成物は硬化性インクジェットインクであってよい。
本発明の他の一側面は、複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、複数の画素部が、上述した硬化性インク組成物の硬化物を含む発光性画素部を有する、光変換層に関する。
一側面において、光変換層は、発光性画素部として、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、を備えてよい。
一側面において、光変換層は、光散乱性粒子を含有する非発光性画素部を更に備えてよい。
本発明の他の一側面は、上述した光変換層を備える、カラーフィルタに関する。
本発明によれば、優れた外部量子効率を有するカラーフィルタ画素部を形成し得る硬化性インク組成物、並びに当該インク組成物を用いた光変換層及びカラーフィルタを提供することができる。
図1は、本発明の一実施形態のカラーフィルタの模式断面図である。
以下、本発明の実施形態について詳細に説明する。なお、本明細書において、「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値及び最大値として含む範囲を示す。また、本明細書において「インク組成物の硬化物」とは、インク組成物(インク組成物が溶剤成分を含む場合には、乾燥後のインク組成物)中の硬化性成分を硬化させて得られるものである。乾燥後のインク組成物の硬化物中には、有機溶剤が含まれなくてよい。
<硬化性インク組成物>
一実施形態の硬化性インク組成物(以下、単に「インク組成物」ともいう。)は、発光性ナノ結晶粒子と、多官能(メタ)アクリル化合物と、多官能(メタ)アリル化合物と、を含有する。インク組成物は、例えば光硬化性又は熱重合性を有しており、活性光線の照射又は加熱により、インク組成物中の硬化性成分(例えば、多官能(メタ)アクリル化合物、多官能(メタ)アリル化合物等の重合性化合物)が反応(例えば重合)して硬化する。
上記インク組成物は、例えば、カラーフィルタ等が有する光変換層の画素部を形成するために用いられる、光変換層形成用(例えばカラーフィルタ画素部の形成用)のインク組成物である。上記インク組成物によれば、優れた外部量子効率を有するカラーフィルタ画素部を形成することができる。また、上記インク組成物によれば、インクジェット法において優れた吐出安定性が得られやすい。すなわち、上記インク組成物は、インクジェット法に好適に使用できる。
ところで、画素部は光に曝される環境で使用されるため、光によって外部量子効率が低下しないこと(耐光性)が求められるが、従来の発光性ナノ結晶粒子を含むインク組成物を用いた場合、必ずしも充分な耐光性を有する画素部が得られるとはいえない。一方、上記インク組成物によれば、上記光による外部量子効率の低下が抑制される傾向がある。すなわち、上記インク組成物によれば、耐光性に優れる画素部を形成しやすい。
上記インク組成物により上述した効果が得られる理由は、明らかではないが、不安定で反応性が高く高活性なラジカルを経由して重合反応する多官能(メタ)アクリル化合物に比べ、多官能(メタ)アリル化合物は安定なラジカルを経由して重合反応をするため、結果として発光性ナノ結晶粒子(例えば量子ドット)の失活が抑制されることが一因として推察される。
一実施形態のインク組成物は、公知慣用のカラーフィルタの製造方法に用いるインクとして適用が可能であるが、比較的高額である発光性ナノ結晶粒子、溶剤等の材料を無駄に消費せずに、必要な箇所に必要な量を用いるだけで画素部(光変換層)を形成できる点においても、フォトリソグラフィ方式用よりインクジェット方式用に適合するように適切に調製して用いることが好ましい。
以下では、インクジェット方式に用いられるカラーフィルタ用硬化性インク組成物(カラーフィルタ用硬化性インクジェットインク)を例に挙げて、一実施形態の硬化性インク組成物について説明する。以下に説明するインク組成物は、発光性ナノ結晶粒子、多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物に加えて、有機リガンド、光散乱性粒子、有機溶剤等の他の成分を更に含有することができる。
[発光性ナノ結晶粒子]
発光性ナノ結晶粒子は、励起光を吸収して蛍光又は燐光を発光するナノサイズの結晶体であり、例えば、透過型電子顕微鏡又は走査型電子顕微鏡によって測定される最大粒子径が100nm以下である結晶体である。
発光性ナノ結晶粒子は、例えば、所定の波長の光を吸収することにより、吸収した波長とは異なる波長の光(蛍光又は燐光)を発することができる。発光性ナノ結晶粒子は、605~665nmの範囲に発光ピーク波長を有する光(赤色光)を発する、赤色発光性のナノ結晶粒子(赤色発光性ナノ結晶粒子)であってよく、500~560nmの範囲に発光ピーク波長を有する光(緑色光)を発する、緑色発光性のナノ結晶粒子(緑色発光性ナノ結晶粒子)であってよく、420~480nmの範囲に発光ピーク波長を有する光(青色光)を発する、青色発光性のナノ結晶粒子(青色発光性ナノ結晶粒子)であってもよい。本実施形態では、インク組成物がこれらの発光性ナノ結晶粒子のうちの少なくとも1種を含むことが好ましい。また、発光性ナノ結晶粒子が吸収する光は、例えば、400nm以上500nm未満の範囲(特に、420~480nmの範囲の波長の光)の波長の光(青色光)、又は、200nm~400nmの範囲の波長の光(紫外光)であってよい。なお、発光性ナノ結晶粒子の発光ピーク波長は、例えば、分光蛍光光度計を用いて測定される蛍光スペクトル又は燐光スペクトルにおいて確認することができる。
赤色発光性のナノ結晶粒子は、665nm以下、663nm以下、660nm以下、658nm以下、655nm以下、653nm以下、651nm以下、650nm以下、647nm以下、645nm以下、643nm以下、640nm以下、637nm以下、635nm以下、632nm以下又は630nm以下に発光ピーク波長を有することが好ましく、628nm以上、625nm以上、623nm以上、620nm以上、615nm以上、610nm以上、607nm以上又は605nm以上に発光ピーク波長を有することが好ましい。これらの上限値及び下限値は、任意に組み合わせることができる。なお、以下の同様の記載においても、個別に記載した上限値及び下限値は任意に組み合わせ可能である。
緑色発光性のナノ結晶粒子は、560nm以下、557nm以下、555nm以下、550nm以下、547nm以下、545nm以下、543nm以下、540nm以下、537nm以下、535nm以下、532nm以下又は530nm以下に発光ピーク波長を有することが好ましく、528nm以上、525nm以上、523nm以上、520nm以上、515nm以上、510nm以上、507nm以上、505nm以上、503nm以上又は500nm以上に発光ピーク波長を有することが好ましい。
青色発光性のナノ結晶粒子は、480nm以下、477nm以下、475nm以下、470nm以下、467nm以下、465nm以下、463nm以下、460nm以下、457nm以下、455nm以下、452nm以下又は450nm以下に発光ピーク波長を有することが好ましく、450nm以上、445nm以上、440nm以上、435nm以上、430nm以上、428nm以上、425nm以上、422nm以上又は420nm以上に発光ピーク波長を有することが好ましい。
発光性ナノ結晶粒子が発する光の波長(発光色)は、井戸型ポテンシャルモデルのシュレディンガー波動方程式の解によれば、発光性ナノ結晶粒子のサイズ(例えば粒子径)に依存するが、発光性ナノ結晶粒子が有するエネルギーギャップにも依存する。そのため、使用する発光性ナノ結晶粒子の構成材料及びサイズを変更することにより、発光色を選択することができる。
発光性ナノ結晶粒子は、半導体材料を含む発光性ナノ結晶粒子(発光性半導体ナノ結晶粒子)であってよい。発光性半導体ナノ結晶粒子としては、量子ドット、量子ロッド等が挙げられる。これらの中でも、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、量子ドットが好ましい。
発光性半導体ナノ結晶粒子は、第一の半導体材料を含むコアのみからなっていてよく、第一の半導体材料を含むコアと、第一の半導体材料とは異なる第二の半導体材料を含み、上記コアの少なくとも一部を被覆するシェルと、を有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアのみからなる構造(コア構造)であってよく、コアとシェルからなる構造(コア/シェル構造)であってもよい。また、発光性半導体ナノ結晶粒子は、第二の半導体材料を含むシェル(第一のシェル)の他に、第一及び第二の半導体材料とは異なる第三の半導体材料を含み、上記コアの少なくとも一部を被覆するシェル(第二のシェル)を更に有していてもよい。換言すれば、発光性半導体ナノ結晶粒子の構造は、コアと第一のシェルと第二のシェルとからなる構造(コア/シェル/シェル構造)であってもよい。コア及びシェルのそれぞれは、2種以上の半導体材料を含む混晶(例えば、CdSe+CdS、CIS+ZnS等)であってよい。
発光性ナノ結晶粒子は、半導体材料として、II-VI族半導体、III-V族半導体、I-III-VI族半導体、IV族半導体及びI-II-IV-VI族半導体からなる群より選択される少なくとも1種の半導体材料を含むことが好ましい。
具体的な半導体材料としては、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、CdSeS、CdSeTe、CdSTe、ZnSeS、ZnSeTe、ZnSTe、HgSeS、HgSeTe、HgSTe、CdZnS、CdZnSe、CdZnTe、CdHgS、CdHgSe、CdHgTe、HgZnS、HgZnSe、CdHgZnTe、CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、HgZnSeS、HgZnSeTe、HgZnSTe;GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSb、InN、InP、InAs、InSb、GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP、GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb;SnS、SnSe、SnTe、PbS、PbSe、PbTe、SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe、SnPbSSe、SnPbSeTe、SnPbSTe;Si、Ge、SiC、SiGe、AgInSe、CuGaSe、CuInS、CuGaS、CuInSe、AgInS、AgGaSe、AgGaS、C、Si及びGeが挙げられる。発光性半導体ナノ結晶粒子は、発光スペクトルの制御が容易であり、信頼性を確保した上で、生産コストを低減し、量産性を向上させることができる観点から、CdS、CdSe、CdTe、ZnS、ZnSe、ZnTe、ZnO、HgS、HgSe、HgTe、InP、InAs、InSb、GaP、GaAs、GaSb、AgInS、AgInSe、AgInTe、AgGaS、AgGaSe、AgGaTe、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaTe、Si、C、Ge及びCuZnSnSからなる群より選択される少なくとも1種を含むことが好ましい。
赤色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がCdSeであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がCdSであり内側のコア部がZnSeであるナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、InPのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、CdSeとCdSとの混晶のナノ結晶粒子、ZnSeとCdSとの混晶のナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。
緑色発光性の半導体ナノ結晶粒子としては、例えば、CdSeのナノ結晶粒子、CdSeとZnSとの混晶のナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。
青色発光性の半導体ナノ結晶粒子としては、例えば、ZnSeのナノ結晶粒子、ZnSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSeであり内側のコア部がZnSであるナノ結晶粒子、CdSのナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSであり内側のコア部がInPであるナノ結晶粒子、コア/シェル構造を備えたナノ結晶粒子であって、当該シェル部分がZnSとZnSeとの混晶であり内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSeであり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子、コア/シェル/シェル構造を備えたナノ結晶粒子であって、第一のシェル部分がZnSとZnSeとの混晶であり、第二のシェル部分がZnSであり、内側のコア部がInPであるナノ結晶粒子等が挙げられる。
半導体ナノ結晶粒子は、同一の化学組成で、それ自体の平均粒子径を変えることにより、当該粒子から発光させるべき色を赤色にも緑色にも変えることができる。また、半導体ナノ結晶粒子は、それ自体として、人体等に対する悪影響が極力低いものを用いることが好ましい。カドミウム、セレン等を含有する半導体ナノ結晶粒子を発光性ナノ結晶粒子として用いる場合は、上記元素(カドミウム、セレン等)が極力含まれない半導体ナノ結晶粒子を選択して単独で用いるか、上記元素が極力少なくなるようにその他の発光性ナノ結晶粒子と組み合わせて用いることが好ましい。
発光性ナノ結晶粒子の形状は特に限定されず、任意の幾何学的形状であってもよく、任意の不規則な形状であってもよい。発光性ナノ結晶粒子の形状は、例えば、球状、楕円体状、角錐形状、ディスク状、枝状、網状、ロッド状等であってもよい。しかしながら、発光性ナノ結晶粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性及び流動性をより高められる点で好ましい。
発光性ナノ結晶粒子の平均粒子径(体積平均径)は、所望の波長の発光が得られやすい観点、並びに、分散性及び保存安定性に優れる観点から、1nm以上であってよく、1.5nm以上であってよく、2nm以上であってもよい。所望の発光波長が得られやすい観点から、40nm以下であってよく、30nm以下であってよく、20nm以下であってもよい。発光性ナノ結晶粒子の平均粒子径(体積平均径)は、透過型電子顕微鏡又は走査型電子顕微鏡により測定し、体積平均径を算出することにより得られる。
発光性ナノ結晶粒子は、分散安定性の観点から、その表面に有機リガンドを有することが好ましい。有機リガンドは、例えば、発光性ナノ結晶粒子の表面に配位結合されていてよい。換言すれば、発光性ナノ結晶粒子の表面は、有機リガンドによってパッシベーションされていてよい。また、インク組成物が後述する高分子分散剤を更に含有する場合には、発光性ナノ結晶粒子は、その表面に高分子分散剤を有していてもよい。本実施形態では、例えば、上述の有機リガンドを有する発光性ナノ結晶粒子から有機リガンドを除去し、有機リガンドと高分子分散剤とを交換することで発光性ナノ結晶粒子の表面に高分子分散剤を結合させてよい。ただし、インクジェットインクにした際の分散安定性の観点では、有機リガンドが配位したままの発光性ナノ結晶粒子に対して高分子分散剤が配合されることが好ましい。
有機リガンドとしては、多官能(メタ)アクリル化合物、多官能(メタ)アリル化合物、有機溶剤等との親和性を確保するための官能基(以下、単に「親和性基」ともいう。)と、発光性ナノ結晶粒子と結合可能な官能基(発光性ナノ結晶粒子への吸着性を確保するための官能基)と、を有する化合物であることが好ましい。親和性基としては、置換又は無置換の脂肪族炭化水素基であってよい。当該脂肪族炭化水素基は、直鎖型であってもよく分岐構造を有していてもよい。また、脂肪族炭化水素基は、不飽和結合を有していてもよく、不飽和結合を有していなくてもよい。置換の脂肪族炭化水素は、脂肪族炭化水素基の一部の炭素原子が酸素原子で置換された基であってもよい。置換の脂肪族炭化水素基は、例えば、(ポリ)オキシアルキレン基を含んでいてよい。ここで、「(ポリ)オキシアルキレン基」とは、オキシアルキレン基、及び、2以上のアルキレン基がエーテル結合で連結したポリオキシアルキレン基の少なくとも1種を意味する。発光性ナノ結晶粒子と結合可能な官能基としては、例えば、ヒドロキシル基、アミノ基、カルボキシル基、チオール基、リン酸基、ホスホン酸基、ホスフィン基、ホスフィンオキサイド基及びアルコキシシリル基が挙げられる。有機リガンドとしては、例えば、TOP(トリオクチルホスフィン)、TOPO(トリオクチルホスフィンオキサイド)、オレイン酸、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、及びオクチルホスフィン酸(OPA)が挙げられる。
一実施形態において、有機リガンドは、下記式(1-1)で表される有機リガンドであってもよい。
Figure 0007331452000002

[式(1-1)中、pは0~50の整数を示し、qは0~50の整数を示す。]
式(1-1)で表される有機リガンドにおいて、p及びqのうち少なくとも一方が1以上であることが好ましく、p及びqの両方が1以上であることがより好ましい。
有機リガンドは、例えば、下記式(1-2)で表される有機リガンドであってもよい。
Figure 0007331452000003
式(1-2)中、Aは、カルボキシル基を含む1価の基を示し、Aは、ヒドロキシル基を含む1価の基を示し、Rは、水素原子、メチル基、又はエチル基を示し、Lは、置換又は無置換のアルキレン基を示し、rは0以上の整数を示す。カルボキシル基を含む1価の基におけるカルボキシル基の数は、2個以上であってよく、2個以上4個以下であってよく、2個であってよい。Lで示されるアルキレン基の炭素数は、例えば、1~10であってよい。Lで示されるアルキレン基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。rは、例えば、1~100の整数であってよく、10~20の整数であってもよい。
有機リガンドは、画素部(インク組成物の硬化物)の外部量子効率に優れる観点から、下記式(1-2A)で表される有機リガンドであってもよい。
Figure 0007331452000004
式(1-2A)中、rは上記と同義である。
インク組成物における有機リガンドの含有量は、発光性ナノ結晶粒子の分散安定性の観点及び発光特性維持の観点から、発光性ナノ結晶粒子100質量部に対して、15質量部以上、20質量部以上、25質量部以上、30質量部以上、35質量部以上又は40質量部以上であってよい。インク組成物における有機リガンドの含有量は、インク組成物の粘度を低く保ちやすい観点から、発光性ナノ結晶粒子100質量部に対して、50質量部以下、45質量部以下、40質量部以下又は30質量部以下であってよい。
発光性ナノ結晶粒子としては、重合性化合物、有機溶剤等の中にコロイド形態で分散しているものを用いることができる。有機溶剤中で分散状態にある発光性ナノ結晶粒子の表面は、上述の有機リガンドによってパッシベーションされていることが好ましい。有機溶剤としては、インク組成物に含有される後述の有機溶剤が用いられる。
発光性ナノ結晶粒子としては、市販品を用いることができる。発光性ナノ結晶粒子の市販品としては、例えば、NN-ラボズ社の、インジウムリン/硫化亜鉛、D-ドット、CuInS/ZnS、アルドリッチ社の、InP/ZnS等が挙げられる。
発光性ナノ結晶粒子の含有量は、画素部の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、好ましくは5質量部以上であり、10質量部以上、15質量部以上、20質量部以上又は30質量部以上であってもよい。発光性ナノ結晶粒子の含有量は、吐出安定性及び画素部の外部量子効率がより向上する観点から、インク組成物に含まれる有機溶剤以外の成分の合計に対して、好ましくは80質量部以下であり、75質量部以下、70質量部以下又は60質量部以下であってもよい。なお、本明細書中、「インク組成物に含まれる有機溶剤以外の成分」は、インク組成物の硬化物に含有させるべき成分と言い換えてもよい。インク組成物が、発光性ナノ結晶粒子と、有機リガンドと、重合性化合物と、光散乱性粒子と、有機溶剤と、を含む場合、「インク組成物に含まれる有機溶剤以外の成分の合計」は、発光性ナノ結晶粒子と、有機リガンドと、重合性化合物と、光散乱性粒子との合計であってよい。
インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、外部量子効率がより向上する観点から、好ましくは15質量%以上であり、18質量%以上又は20質量%以上であってもよい。インク組成物の全質量を基準とする発光性ナノ結晶粒子の含有量は、吐出安定性及び外部量子効率を向上させる観点から、好ましくは35質量%以下であり、32質量%以下又は30質量%以下であってもよい。
インク組成物は、発光性ナノ結晶粒子として、赤色発光性ナノ結晶粒子、緑色発光性ナノ結晶粒子及び青色発光性ナノ結晶粒子のうちの2種以上を含んでいてもよいが、好ましくはこれらの粒子のうちの1種のみを含む。インク組成物が赤色発光性ナノ結晶粒子を含む場合、緑色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、好ましくは10質量%以下であり、より好ましくは0質量%である。インク組成物が緑色発光性ナノ結晶粒子を含む場合、赤色発光性ナノ結晶粒子の含有量及び青色発光性ナノ結晶粒子の含有量は、発光性ナノ結晶粒子の全質量を基準として、好ましくは10質量%以下であり、より好ましくは0質量%である。
[多官能(メタ)アクリル化合物]
多官能(メタ)アクリル化合物は、(メタ)アクリロイル基を2つ以上有する化合物である。なお、本明細書において、「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味する。「(メタ)アクリロイル」との表現及び「(メタ)アクリレート」との表現についても同様である。
多官能(メタ)アクリル化合物は、二官能又は三官能(メタ)アクリル化合物であることが好ましい。すなわち、多官能(メタ)アクリル化合物が有する(メタ)アクリロイル基の数は好ましくは2又は3である。
多官能(メタ)アクリル化合物は、初期の外部量子効率及び耐光性により優れる画素部を形成しやすい観点から、(ポリ)アルキレングリコールジ(メタ)アクリレートであってよい。なお、(ポリ)アルキレングリコールジ(メタ)アクリレートとは、モノアルキレングリコールジ(メタ)アクリレート又はポリアルキレングリコールジ(メタ)アクリレートを意味する。アルキレン基は、直鎖状であってよく分岐鎖状であってもよい。
モノアルキレングリコールジ(メタ)アクリレートとしては、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、3-メチル-1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート等が挙げられる。
ポリアルキレングリコールジ(メタ)アクリレートとしては、例えば、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート(ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート等)、ネオペンチルグリコール1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、トリメチロールプロパン1モルに3モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるトリオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート等が挙げられる。
多官能(メタ)アクリル化合物は、ベンゼン環を有していてもよい。多官能(メタ)アクリル化合物がベンゼン環を有する場合、画素部の外部量子効率により優れる傾向がある。また、多官能(メタ)アクリル化合物がベンゼン環を有する場合、インク組成物の硬化により生成する多官能(メタ)アクリル化合物由来の構造を含む重合体が剛直な構造となりやすく、画素部の耐久性に優れる傾向がある。このような多官能アクリル化合物としては、例えば、ビスフェノールA1モルに2モルのエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート、ビスフェノールA1モルに4モル以上のエチレンオキサイド若しくはプロピレンオキサイドを付加して得られるジオールの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート等が挙げられる。
上記の中でも、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート及びネオペンチルグリコールジ(メタ)アクリレートからなる群より選択される少なくとも一種が好ましい。
多官能(メタ)アクリル化合物は、上記の他、例えば、トリシクロデカンジメタノールジ(メタ)アクリレート、ネオペンチルグリコ-ルヒドロキシピバリン酸エステルジアクリレ-ト、トリス(2-ヒドロキシエチル)イソシアヌレートの2個の水酸基が(メタ)アクリロイルオキシ基によって置換されたジ(メタ)アクリレート等の二官能(メタ)アクリレート;グリセリントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート等の三官能(メタ)アクリレートなどであってもよい。多官能(メタ)アクリル化合物は、一種を単独で又は二種以上を組み合わせて用いられてよい。
多官能(メタ)アクリル化合物は、信頼性に優れる画素部が得られやすい観点から、アルカリ不溶性であってよい。本明細書中、「アルカリ不溶性」とは、1質量%の水酸化カリウム水溶液に対する25℃での化合物の溶解量が、化合物の全質量を基準として、30質量%以下であることを意味する。多官能(メタ)アクリル化合物の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。
多官能(メタ)アクリル化合物の分子量は、粘度の観点から、700以下、500以下又は400以下であってよく、揮発性の観点から、50以上、100以上、150以上又は200以上であってよい。
多官能(メタ)アクリル化合物の含有量は、画素部の外部量子効率により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、20質量部以上、30質量部以上又は40質量部以上であってよい。多官能(メタ)アクリル化合物の含有量は、画素部の外部量子効率により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、70質量部以下、60質量部以下又は55質量部以下であってよい。
[多官能(メタ)アリル化合物]
多官能(メタ)アリル化合物は、(メタ)アリル基を2つ以上有する化合物である。なお、本明細書において、「(メタ)アリル」とは、「アリル」及びそれに対応する「メタリル」を意味する。
多官能(メタ)アリル化合物は、二官能又は三官能(メタ)アリル化合物であることが好ましい。すなわち、多官能(メタ)アリル化合物が有する(メタ)アリル基の数は好ましくは2又は3である。(メタ)アリル基は、例えば、酸素原子、硫黄原子、窒素原子等のヘテロ原子に結合していてよい。
多官能(メタ)アリル化合物が有する(メタ)アリル基は、(メタ)アリルオキシ基又は(メタ)アリルオキシカルボニル基の一部として多官能(メタ)アリル化合物に含まれていてよい。多官能(メタ)アリル化合物が(メタ)アリルオキシ基を有する場合、画素部の外部量子効率により優れる傾向がある。多官能(メタ)アリル化合物が(メタ)アリルオキシカルボニル基を有する場合、画素部の外部量子効率に更に優れる傾向がある。(メタ)アリルオキシ基の数は2又は3であってよく、(メタ)アリルオキシカルボニル基の数は2又は3であってよい。
多官能(メタ)アリル化合物は、画素部の外部量子効率により優れる観点から、好ましくはベンゼン環を有する。また、多官能(メタ)アリル化合物がベンゼン環を有する場合、インク組成物の硬化により生成する多官能(メタ)アリル化合物由来の構造を含む重合体が剛直な構造となりやすく、画素部の耐久性に優れる傾向がある。
多官能(メタ)アリル化合物は、例えば、ポリカルボン酸1モルに2モル以上の(メタ)アリルアルコールを付加(あるいは縮合)して得られるポリ(メタ)アリルエステル化合物であってよい。ポリカルボン酸は、ジカルボン酸又はトリカルボン酸であってよい。ポリカルボン酸は、飽和又は不飽和のいずれであってもよく、脂肪族又は芳香族のいずれであってもよい。脂肪族ポリカルボン酸は、直鎖状であっても分子鎖状であってもよい。ポリカルボン酸としては、例えば、コハク酸、アジピン酸、グルタル酸、フマル酸、マレイン酸、フタル酸、イソフタル酸、テレフタル酸、トリメシン酸等が挙げられる。
初期の外部量子効率及び耐光性により優れる画素部を形成しやすい観点では、上記ポリカルボン酸が、フタル酸、イソフタル酸、テレフタル酸又はトリメシン酸であることが好ましい。すなわち、多官能(メタ)アリル化合物は、好ましくは下記式(I)で表される化合物である。
[式(I)中、nは2又は3を示し、複数のRは、それぞれ独立して、水素原子又はメチル基を示す。]
式(I)で表される化合物は、好ましくは下記式(Ia)で表される化合物である。

多官能(メタ)アリル化合物は、上記の他、アリルエーテル(3-(アリルオキシ)-1-プロペン)、グリセロールα,α’-ジアリルエーテル(1,3-ジアリルオキシ-2-プロパノール)、トリメチロールプロパンジアリルエーテル等のポリ(メタ)アリルエーテル化合物であってもよい。多官能(メタ)アリル化合物は、イソシアヌル酸トリアリル等のイソシアヌレート環を有する化合物であってもよいが、多官能(メタ)アリル化合物がイソシアヌレート環を有する場合、粘度が高くなりやすく、吐出安定性が低下する傾向がある。多官能(メタ)アリル化合物は、一種を単独で又は二種以上を組み合わせて用いられてよい。
多官能(メタ)アリル化合物は、信頼性に優れる画素部が得られやすい観点から、アルカリ不溶性であってよい。多官能(メタ)アリル化合物の、1質量%の水酸化カリウム水溶液に対する25℃での溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。
多官能(メタ)アリル化合物の分子量は、粘度の観点から、300以下、又は250以下であってよく、揮発性の観点から、100以上、又は200以上であってよい。
多官能(メタ)アリル化合物の含有量は、画素部の外部量子効率により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、1質量部以上、5質量部以上又は8質量部以上であってよい。多官能(メタ)アリル化合物の含有量は、画素部の外部量子効率により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、20質量部以下、15質量部以下又は12質量部以下であってよい。
多官能(メタ)アリル化合物の含有量は、画素部の外部量子効率により優れる観点から、多官能(メタ)アクリル化合物の含有量100質量部に対して、5質量部以上、10質量部以上又は15質量部以上であってよい。多官能(メタ)アリル化合物の含有量は、画素部の外部量子効率により優れる観点から、多官能(メタ)アクリル化合物の含有量100質量部に対して、40質量部以下、30質量部以下又は25質量部以下であってよい。
[重合開始剤]
インク組成物は、重合開始剤を更に含有してよい。重合開始剤は、光重合開始剤(例えば光ラジカル重合開始剤)又は熱重合開始剤(例えば熱ラジカル重合開始剤)であってよい。この中でも、光ラジカル重合開始剤が好ましく、分子開裂型又は水素引き抜き型の光ラジカル重合開始剤がより好ましい。
分子開裂型の光ラジカル重合開始剤としては、ベンゾインイソブチルエーテル、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントン、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド等が好適に用いられる。これら以外の分子開裂型の光ラジカル重合開始剤として、1-ヒドロキシシクロヘキシルフェニルケトン、ベンゾインエチルエーテル、ベンジルジメチルケタール、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン及び2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オンを併用してもよい。
水素引き抜き型の光ラジカル重合開始剤としては、ベンゾフェノン、4-フェニルベンゾフェノン、イソフタルフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド等が挙げられる。分子開裂型の光ラジカル重合開始剤と水素引き抜き型の光ラジカル重合開始剤とを併用してもよい。
光ラジカル重合開始剤として市販品を用いることもできる。市販品としては、IGM resin社製の「Omnirad TPO-H」、「Omnirad TPO-L」、「Omnirad 819」等のアシルフォスフィンオキサイド化合物、BASF社製の「Irgacure OXE01」、「Irgacure OXE02」等のオキシムエステル系化合物、IGM resin社製の「Omnirad 1173」、「Omnirad 907」、「Omnirad 379EG」及び「Omnirad 184」等のアルキルフェノン化合物などが挙げられる。これらは、単独で用いても併用してもよい。
重合開始剤の含有量は、インク組成物の硬化性の観点から、重合性化合物100質量部に対して、0.1質量部以上であってよく、0.5質量部以上であってもよく、1質量部以上であってもよく、3質量部以上であってもよく、5質量部以上であってもよい。光重合開始剤の含有量は、画素部の経時安定性の観点から、重合性化合物100質量部に対して、40質量部以下であってよく、30質量部以下であってもよく、20質量部以下であってもよく、10質量部以下であってもよい。
[光散乱性粒子]
インク組成物は、光散乱性粒子を更に含有してよい。光散乱性粒子は、例えば、光学的に不活性な無機微粒子である。インク組成物が光散乱性粒子を含有する場合、画素部に照射された光源からの光を散乱させることができるため、優れた光学特性を得ることができる。
光散乱性粒子を構成する材料としては、例えば、タングステン、ジルコニウム、チタン、白金、ビスマス、ロジウム、パラジウム、銀、スズ、プラチナ、金等の単体金属;シリカ、硫酸バリウム、炭酸バリウム、炭酸カルシウム、タルク、クレー、カオリン、硫酸バリウム、炭酸バリウム、炭酸カルシウム、アルミナホワイト、酸化チタン、酸化マグネシウム、酸化バリウム、酸化アルミニウム、酸化ビスマス、酸化ジルコニウム、酸化亜鉛等の金属酸化物;炭酸マグネシウム、炭酸バリウム、次炭酸ビスマス、炭酸カルシウム等の金属炭酸塩;水酸化アルミニウム等の金属水酸化物;ジルコン酸バリウム、ジルコン酸カルシウム、チタン酸カルシウム、チタン酸バリウム、チタン酸ストロンチウム等の複合酸化物、次硝酸ビスマス等の金属塩などが挙げられる。光散乱性粒子は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、酸化チタン、アルミナ、酸化ジルコニウム、酸化亜鉛、炭酸カルシウム、硫酸バリウム、チタン酸バリウム及びシリカからなる群より選択される少なくとも1種を含むことが好ましく、酸化チタン、酸化ジルコニウム、酸化亜鉛及びチタン酸バリウムからなる群より選択される少なくとも1種を含むことがより好ましい。
光散乱性粒子の形状は、球状、フィラメント状、不定形状等であってよい。しかしながら、光散乱性粒子としては、粒子形状として方向性の少ない粒子(例えば、球状、正四面体状等の粒子)を用いることが、インク組成物の均一性、流動性及び光散乱性をより高めることができ、優れた吐出安定性を得ることができる点で好ましい。
インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、0.05μm(50nm)以上であってよく、0.2μm(200nm)以上であってもよく、0.3μm(300nm)以上であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、吐出安定性に優れる観点から、1.0μm(1000nm)以下であってもよく、0.6μm(600nm)以下であってもよく、0.4μm(400nm)以下であってもよい。インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、0.05~1.0μm、0.05~0.6μm、0.05~0.4μm、0.2~1.0μm、0.2~0.6μm、0.2~0.4μm、0.3~1.0μm、0.3~0.6μm、又は0.3~0.4μmであってもよい。このような平均粒子径(体積平均径)が得られやすい観点から、使用する光散乱性粒子の平均粒子径(体積平均径)は、0.05μm以上であってよく、1.0μm以下であってもよい。本明細書中、インク組成物中での光散乱性粒子の平均粒子径(体積平均径)は、動的光散乱式ナノトラック粒度分布計により測定し、体積平均径を算出することにより得られる。また、使用する光散乱性粒子の平均粒子径(体積平均径)は、例えば透過型電子顕微鏡又は走査型電子顕微鏡により各粒子の粒子径を測定し、体積平均径を算出することにより得られる。
インク組成物における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.1質量部以上であってよく、1質量部以上であってもよく、3質量部以上であってもよい。光散乱性粒子の含有量は、吐出安定性に優れる観点及び外部量子効率の向上効果により優れる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、60質量部以下であってよく、50質量部以下であってもよく、40質量部以下であってもよく、30質量部以下であってもよく、25質量部以下であってもよく、20質量部以下であってもよく、15質量部以下であってもよい。
インク組成物の全質量を基準とする光散乱性粒子の含有量は、画素部の外部量子効率をより向上させる観点から、好ましくは3質量%以上であり、4質量%以上又は7質量%以上であってもよい。インク組成物の全質量を基準とする光散乱性粒子の含有量は、画素部の外部量子効率をより向上させる、及び、吐出安定性をより向上させる観点から、好ましくは20質量%以下であり、18質量%以下又は15質量%以下であってもよい。
発光性ナノ結晶粒子の含有量に対する光散乱性粒子の含有量の質量比(光散乱性粒子/発光性ナノ結晶粒子)は、外部量子効率の向上効果に優れる観点から、0.1以上であってよく、0.2以上であってもよく、0.5以上であってもよい。質量比(光散乱性粒子/発光性ナノ結晶粒子)は、外部量子効率の向上効果により優れ、インクジェット印刷時の連続吐出性(吐出安定性)に優れる観点から、5.0以下であってよく、2.0以下であってもよく、1.5以下であってもよい。
インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、好ましくは20質量部以上、より好ましくは25質量部以上、更に好ましくは30質量部以上である。インク組成物における発光性ナノ結晶粒子と光散乱性粒子の合計量は、インクジェットインクとして適正な粘度が得られやすい観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、好ましくは75質量部以下、より好ましくは65質量部以下、更に好ましくは55質量部以下である。
[高分子分散剤]
インク組成物は、高分子分散剤を更に含有してよい。高分子分散剤は、750以上の重量平均分子量を有し、かつ、光散乱性粒子に対し親和性を有する官能基を有する高分子化合物である。高分子分散剤は、光散乱性粒子を分散させる機能を有する。高分子分散剤は、光散乱性粒子に対し親和性を有する官能基を介して光散乱性粒子に吸着し、高分子分散剤同士の静電反発及び/又は立体反発により、光散乱性粒子をインク組成物中に分散させる。インク組成物が高分子分散剤を含む場合、光散乱性粒子の含有量を比較的多くした場合(例えば60質量%程度とした場合)であっても光散乱性粒子を良好に分散させることができる。高分子分散剤は、光散乱性粒子の表面と結合して光散乱性粒子に吸着していることが好ましいが、発光性ナノ結晶粒子の表面に結合して発光性ナノ粒子に吸着していてもよく、インク組成物中に遊離していてもよい。
光散乱性粒子に対し親和性を有する官能基としては、酸性官能基、塩基性官能基及び非イオン性官能基が挙げられる。酸性官能基は解離性のプロトンを有しており、アミン、水酸化物イオン等の塩基により中和されていてもよく、塩基性官能基は有機酸、無機酸等の酸により中和されていてもよい。
酸性官能基としては、カルボキシル基(-COOH)、スルホ基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO(OH))、リン酸基(-OPO(OH))、ホスフィン酸基(-PO(OH)-)、メルカプト基(-SH)、が挙げられる。
塩基性官能基としては、一級、二級及び三級アミノ基、アンモニウム基、イミノ基、並びに、ピリジン、ピリミジン、ピラジン、イミダゾール、トリアゾール等の含窒素ヘテロ環基等が挙げられる。
非イオン性官能基としては、ヒドロキシ基、エーテル基、チオエーテル基、スルフィニル基(-SO-)、スルホニル基(-SO-)、カルボニル基、ホルミル基、エステル基、炭酸エステル基、アミド基、カルバモイル基、ウレイド基、チオアミド基、チオウレイド基、スルファモイル基、シアノ基、アルケニル基、アルキニル基、ホスフィンオキサイド基、ホスフィンスルフィド基が挙げられる。
高分子分散剤は、単一のモノマーの重合体(ホモポリマー)であってよく、複数種のモノマーの共重合体(コポリマー)であってもよい。また、高分子分散剤は、ランダム共重合体、ブロック共重合体又はグラフト共重合体のいずれであってもよい。また、高分子分散剤がグラフト共重合体である場合、くし形のグラフト共重合体であってよく、星形のグラフト共重合体であってもよい。高分子分散剤は、例えば、アクリル樹脂、ポリエステル樹脂、ポリウレタン樹脂、ポリアミド樹脂、ポリエーテル、フェノール樹脂、シリコーン樹脂、ポリウレア樹脂、アミノ樹脂、エポキシ樹脂、ポリエチレンイミン及びポリアリルアミン等のポリアミン、ポリイミドなどであってよい。
高分子分散剤として、市販品を使用することも可能であり、市販品としては、味の素ファインテクノ株式会社製のアジスパーPBシリーズ、BYK社製のDISPERBYKシリーズ並びにBYK-シリーズ、BASF社製のEfkaシリーズ等を使用することができる。
[亜リン酸トリエステル]
インク組成物は、亜リン酸トリエステルを更に含有してよい。多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物と共に亜リン酸トリエステルを用いることで、画素部の外部量子効率及び耐光性がより一層向上する傾向がある。
亜リン酸トリエステルとしては、例えば、下記式(2)で表される化合物、下記式(3)で表される化合物及び下記式(4)で表される化合物が挙げられる。
Figure 0007331452000007

[式(2)中、X~Xは、それぞれ独立して、酸素原子又は硫黄原子を示し、R21~R23は、それぞれ独立して、一価の炭化水素基を示す。R21~R23のうちの少なくとも一つはアルキル基であることが好ましい。]
Figure 0007331452000008

[式(3)中、X~Xは、それぞれ独立して、酸素原子又は硫黄原子を示し、Yは二価の炭化水素基を示し、R31~R34は、それぞれ独立して、一価の炭化水素基を示す。R31~R34のうちの少なくとも一つはアルキル基であることが好ましい。]
Figure 0007331452000009

[式(4)中、X10~X15は、それぞれ独立して、酸素原子又は硫黄原子を示し、Zは四価の炭化水素基を示し、R41及びR42は、それぞれ独立して、一価の炭化水素基を示す。R41及びR42のうちの少なくとも一方はアルキル基であることが好ましい。]
式(2)~式(4)における一価の炭化水素基の炭素数は、1~30であってよく、1~18であってもよい。一価の炭化水素基は、例えば、フェニル基、ナフチル基、tert-ブチルフェニル基、ジ-tert-ブチルフェニル基、オクチルフェニル基、ノニルフェニル基、イソデシルフェニル基、イソデシルフェニル基、イソデシルナフチル基等の芳香族炭化水素基であってもよいが、芳香環を有しないことが好ましい。すなわち、一価の炭化水素基は、好ましくは脂肪族炭化水素基である。一価の炭化水素基は、より好ましくは、非環式の脂肪族炭化水素基であり、更に好ましくはアルキル基である。
アルキル基は、直鎖状であっても分岐状であってもよい。アルキル基の炭素数は、好ましくは1~13であり、より好ましくは4~10である。アルキル基としては、例えば、2-エチルヘキシル基、ブチル基、オクチル基、ノニル基、デシル基、イソデシル基、ドデシル基及びトリデシル基が挙げられる。アルキル基は、好ましくは第一級アルキル基である。式(2)~式(4)中、一価の炭化水素基の全てが第一級アルキル基であることが好ましい。
式(3)における二価の炭化水素基は、芳香環構造を有しないことが好ましい。すなわち、二価の炭化水素基は、好ましくは脂肪族炭化水素基である。脂肪族炭化水素基は、炭素原子の一部がヘテロ原子で置換されていてもよく、酸素原子、硫黄原子及び窒素原子からなる群より選択される少なくとも1種のヘテロ原子で置換されていてもよい。二価の炭化水素基の炭化水素基の炭素数は、例えば、1~30である。
式(4)における四価の炭化水素基は、芳香環構造を有しないことが好ましい。すなわち、四価の炭化水素基は、好ましくは脂肪族炭化水素基である。四価の炭化水素基の炭素数は、例えば、1~9である。
亜リン酸エステル化合物は、外部量子効率をより向上させることができる観点から、上記の中でも、式(4)で表される化合物であることが好ましい。
亜リン酸トリエステルの具体例としては、例えば、トリエチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリオレイルホスファイト、トリステアリルホスファイト、ジフェニルモノ(2-エチルヘキシル)ホスファイト、ジフェニルモノデシルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、トリラウリルトリチオホスファイト、テトラ(C12~C15アルキル)-4,4’-イソプロピリデンジフェニルジホスファイト、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェニル ジトリデシルホスファイト)、ビス(デシル)ペンタエリスリトールジホスファイト、ビス(トリデシル)ペンタエリスリトールジホスファイト、ジステアリルペンタエリスリトールジホスファイト等が挙げられる。これらの中でも、外部量子効率の向上効果がより一層得られる観点から、トリエチルホスファイト、トリス(2-エチルヘキシル)ホスファイト、トリデシルホスファイト、トリラウリルホスファイト、トリス(トリデシル)ホスファイト、トリラウリルトリチオホスファイト、ビス(デシル)ペンタエリスリトールジホスファイト及びビス(トリデシル)ペンタエリスリトールジホスファイトが好ましく、ビス(デシル)ペンタエリスリトールジホスファイト及びビス(トリデシル)ペンタエリスリトールジホスファイトがより好ましい。亜リン酸トリエステルは、一種を単独で又は複数種を組み合わせて用いてよい。
亜リン酸トリエステルの含有量は、外部量子効率の低下がより抑制されるという観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、0.01質量部以上であってよく、0.1質量部以上であってもよく、0.2質量部以上であってもよく、0.3質量部以上であってもよい。亜リン酸トリエステルの含有量は、塗布膜形成時に、より良好な膜強度の確保が可能となることに加え、亜リン酸トリエステルの画素部表面へのブリードがより抑制され、かつ、より優れた外部量子効率が得られる観点から、インク組成物に含まれる有機溶剤以外の成分の合計100質量部に対して、好ましくは3質量部以下であり、より好ましくは2質量部以下であり、更に好ましくは1質量部以下である。
[有機溶剤]
インク組成物は有機溶剤を更に含有してよい。有機溶剤としては、例えば、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールジブチルエーテル、アジピン酸ジエチル、シュウ酸ジブチル、マロン酸ジメチル、マロン酸ジエチル、コハク酸ジメチル、コハク酸ジエチル、1,4-ブタンジオールジアセテート、グリセリルトリアセテート等が挙げられる。
有機溶剤の沸点は、インクジェットインクの連続吐出安定性の観点から、好ましくは150℃以上であり、より好ましくは180℃以上である。また、画素部の形成時には、インク組成物の硬化前にインク組成物から溶剤を除去する必要があるため、有機溶剤を除去しやすい観点から、有機溶剤の沸点は好ましくは300℃以下である。
有機溶剤は、好ましくは、沸点が150℃以上のアセテート化合物を含む。この場合、発光性ナノ結晶粒子と溶剤との間の親和性が向上し、発光性ナノ結晶粒子が優れた発光特性を発揮し得る。沸点が150℃以上のアセテート化合物の具体例としては、ジエチレングリコールモノエチルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート等のモノアセテート化合物、1,4-ブタンジオールジアセテート、プロピレングリコールジアセテート等のジアセテート化合物、グリセリルトリアセテート等のトリアセテート化合物などが挙げられる。
本実施形態のインク組成物は多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物を含有するため、多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物中に発光性ナノ結晶粒子等を分散させることが可能である。そのため、インク組成物は溶剤を含有しなくてよい。この場合、画素部を形成する際に溶剤を乾燥により除去する工程が不要となる。
インク組成物は、本発明の効果を阻害しない範囲で、上述した成分以外の成分を更に含有していてもよい。
インク組成物は、例えば、多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物以外の他の重合性化合物を更に含有してもよい。他の重合性化合物としては、単官能(メタ)アクリル化合物、単官能(メタ)アリル化合物等のエチレン性不飽和基を有する化合物が挙げられる。本明細書において、エチレン性不飽和基とは、エチレン性不飽和結合(重合性炭素-炭素二重結合)を有する基を意味する。エチレン性不飽和基としては、例えば、ビニル基、ビニレン基、ビニリデン基、(メタ)アクリロイル基、(メタ)アリル基等が挙げられる。
インク組成物は、例えば、亜リン酸トリエステル化合物以外に酸化防止剤として機能する成分(例えば、フェノール系酸化防止剤、アミン系酸化防止剤、亜リン酸トリエステル化合物以外のリン系酸化防止剤、イオウ系酸化防止剤等の従来公知の酸化防止剤)を更に含有してもよい。
以上説明したインク組成物のインクジェット印刷時のインク温度(例えば25℃又は40℃)における粘度は、例えば、インクジェット印刷時の吐出安定性の観点から、2mPa・s以上であってよく、5mPa・s以上であってもよく、7mPa・s以上であってもよい。インク組成物のインクジェット印刷時のインク温度における粘度は、20mPa・s以下であってよく、15mPa・s以下であってもよく、12mPa・s以下であってもよい。インク組成物のインクジェット印刷時のインク温度における粘度は、例えば、2~20mPa・s、2~15mPa・s、2~12mPa・s、5~20mPa・s、5~15mPa・s、5~12mPa・s、7~20mPa・s、7~15mPa・s、又は7~12mPa・sであってもよい。本明細書中、インク組成物の粘度は、例えば、E型粘度計によって測定される粘度である。
インク組成物のインクジェット印刷時のインク温度における粘度が2mPa・s以上でである場合、吐出ヘッドのインク吐出孔の先端におけるインクジェットインクのメニスカス形状が安定するため、インクジェットインクの吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、インク組成物のインクジェット印刷時のインク温度における粘度が20mPa・s以下である場合、インク吐出孔からインクジェットインクを円滑に吐出させることができる。
インク組成物の表面張力は、インクジェット方式に適した表面張力であることが好ましく、具体的には、20~40mN/mの範囲であることが好ましく、25~35mN/mであることがより好ましい。表面張力を当該範囲とすることで吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易になると共に、飛行曲がりの発生を抑制することができる。なお、飛行曲がりとは、インク組成物をインク吐出孔から吐出させたとき、インク組成物の着弾位置が目標位置に対して30μm以上のずれを生じることをいう。表面張力が40mN/m以下である場合、インク吐出孔の先端におけるメニスカス形状が安定するため、インク組成物の吐出制御(例えば、吐出量及び吐出のタイミングの制御)が容易となる。一方、表面張力が20mN/m以上である場合、インク吐出孔周辺部がインクジェットインクで汚染することが防げるため、飛行曲がりの発生を抑制できる。すなわち、着弾すべき画素部形成領域に正確に着弾されずにインク組成物の充填が不充分な画素部が生じたり、着弾すべき画素部形成領域に隣接する画素部形成領域(又は画素部)にインク組成物が着弾し、色再現性が低下したりすることがない。
本実施形態のインク組成物をインクジェット方式用のインク組成物として用いる場合には、圧電素子を用いた機械的吐出機構による、ピエゾジェット方式のインクジェット記録装置に適用することが好ましい。ピエゾジェット方式では、吐出に当たり、インク組成物が瞬間的に高温に晒されることがない。そのため、発光性ナノ結晶粒子の変質が起こり難く、画素部(光変換層)において、期待した通りの発光特性がより容易に得られやすい。
以上、インクジェット用インク組成物の一実施形態について説明したが、上述した実施形態のインクジェット用インク組成物は、インクジェット方式の他に、例えば、フォトリソグラフィ方式で用いることもできる。この場合、インク組成物は、バインダーポリマーとしてアルカリ可溶性樹脂を含有する。
インク組成物をフォトリソグラフィー方式で用いる場合、まず、インク組成物を基材上に塗布し、さらにインク組成物を乾燥させて塗布膜を形成する。このようにして得られる塗布膜は、アルカリ現像液に可溶性であり、アルカリ現像液で処理されることでパターニングされる。この際、アルカリ現像液は、現像液の廃液処理の容易さ等の観点から、水溶液であることが大半を占めるため、インク組成物の塗布膜は水溶液で処理されることとなる。一方、発光性ナノ結晶粒子(量子ドット等)を用いたインク組成物の場合、発光性ナノ結晶粒子が水に対して不安定であり、発光性(例えば蛍光性)が水分により損なわれる。このため本実施形態においては、アルカリ現像液(水溶液)で処理する必要のない、インクジェット方式が好ましい。
また、インク組成物の塗布膜に対してアルカリ現像液による処理を行わない場合でも、インク組成物がアルカリ可溶性である場合、インク組成物の塗布膜が大気中の水分を吸収しやすくなるため、時間が経過するにつれて発光性ナノ結晶粒子(量子ドット等)の発光性(例えば蛍光性)が損なわれてゆく。この観点から、本実施形態においては、インク組成物の塗布膜はアルカリ不溶性であることが好ましい。すなわち、本実施形態のインク組成物は、アルカリ不溶性の塗布膜を形成可能なインク組成物であることが好ましい。このようなインク組成物は、多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物として、アルカリ不溶性の多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物を用いることにより得ることができる。インク組成物の塗布膜がアルカリ不溶性であるとは、1質量%の水酸化カリウム水溶液に対する25℃におけるインク組成物の塗布膜の溶解量が、インク組成物の塗布膜の全質量を基準として、30質量%以下であることを意味する。インク組成物の塗布膜の上記溶解量は、好ましくは、10質量%以下であり、より好ましくは3質量%以下である。なお、インク組成物がアルカリ不溶性の塗布膜を形成可能なインク組成物であることは、インク組成物を基材上に塗布した後、80℃、3分の条件で乾燥して得られる厚さ1μmの塗布膜の、上記溶解量を測定することにより確認できる。
<インク組成物の製造方法>
上述した実施形態のインク組成物は、例えば、上述したインク組成物の構成成分を混合し、分散処理を行うことで得られる。以下では、一例として、光散乱性粒子及び高分子分散剤を含有するインク組成物の製造方法を説明する。
インク組成物の製造方法は、例えば、光散乱性粒子及び高分子分散剤を含有する、光散乱性粒子の分散体を用意する第1の工程と、光散乱性粒子の分散体及び発光性ナノ結晶粒子を混合する第2の工程と、を備える。この方法では、光散乱性粒子の分散体が多官能(メタ)アクリル化合物及び/又は多官能(メタ)アリル化合物を更に含有してよく、第2の工程において、多官能(メタ)アクリル化合物及び/又は多官能(メタ)アリル化合物を更に混合してもよい。多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物は、同時に添加してよく、異なる工程で添加してもよい。上記方法によれば、光散乱性粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば外部量子効率)を向上させることができると共に、吐出安定性に優れるインク組成物を容易に得ることができる。
光散乱性粒子の分散体を用意する工程では、光散乱性粒子と、高分子分散剤と、場合により、多官能(メタ)アクリル化合物及び/又は多官能(メタ)アリル化合物とを混合し、分散処理を行うことにより光散乱性粒子の分散体を調製してよい。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。光散乱性粒子の分散性が良好となり、光散乱性粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル又はペイントコンディショナーを用いることが好ましい。発光性ナノ結晶粒子と光散乱性粒子とを混合する前に光散乱性粒子と高分子分散剤とを混合することにより、光散乱性粒子をより充分に分散させることができる。そのため、優れた吐出安定性及び優れた外部量子効率をより一層容易に得ることができる。
インク組成物の製造方法は、第2の工程の前に、発光性ナノ結晶粒子と、多官能(メタ)アクリル化合物及び/又は多官能(メタ)アリル化合物と、を含有する、発光性ナノ結晶粒子の分散体を用意する工程を更に備えていてもよい。この場合、第2の工程では、光散乱性粒子の分散体と、発光性ナノ結晶粒子の分散体と、を混合する。発光性ナノ結晶粒子の分散体を用意する工程では、発光性ナノ結晶粒子と、多官能(メタ)アクリル化合物及び/又は多官能(メタ)アリル化合物と、を混合し、分散処理を行うことにより発光性ナノ結晶粒子分散体を調製してよい。発光性ナノ結晶粒子としては、その表面に有機リガンドを有する発光性ナノ結晶粒子を用いてよい。すなわち、発光性ナノ結晶粒子分散体は、有機リガンドを更に含んでいてもよい。混合及び分散処理は、ビーズミル、ペイントコンディショナー、遊星攪拌機、ジェットミル等の分散装置を用いて行ってよい。発光性ナノ結晶粒子の分散性が良好となり、発光性ナノ結晶粒子の平均粒子径を所望の範囲に調整しやすい観点から、ビーズミル、ペイントコンディショナー又はジェットミルを用いることが好ましい。この方法によれば、発光性ナノ結晶粒子を充分に分散させることができる。そのため、画素部の光学特性(例えば外部量子効率)を向上させることができると共に、吐出安定性に優れるインク組成物を容易に得ることができる。
この製造方法では、上述した成分以外の他の成分(亜リン酸トリエステル等)を更に用いてもよい。この場合、他の成分は、発光性ナノ結晶粒子分散体に含有させてもよく、光散乱性粒子分散体に含有させてもよい。また、他の成分を、発光性ナノ結晶粒子分散体と光散乱性粒子分散体とを混合して得られる組成物に混合してもよい。
<インク組成物セット>
一実施形態のインク組成物セットは、上述した実施形態のインク組成物を備える。インク組成物セットは、上述した実施形態のインク組成物(発光性インク組成物)に加えて、発光性ナノ結晶粒子を含有しないインク組成物(非発光性インク組成物)を備えていてよい。非発光性インク組成物は、例えば、硬化性のインク組成物である。非発光性インク組成物は、従来公知のインク組成物であってよく、発光性ナノ結晶粒子を含まないこと以外は、上述した実施形態のインク組成物(発光性インク組成物)と同様の組成であってもよい。
非発光性インク組成物は、発光性ナノ結晶粒子を含有しないため、非発光性インク組成物により形成される画素部(非発光性インク組成物の硬化物を含む画素部)に光を入射させた場合に画素部から出射する光は、入射光と略同一の波長を有する。したがって、非発光性インク組成物は、光源からの光と同色の画素部を形成するために好適に用いられる。例えば、光源からの光が420~480nmの範囲の波長を有する光(青色光)である場合、非発光性インク組成物により形成される画素部は青色画素部となり得る。
非発光性インク組成物は、好ましくは光散乱性粒子を含有する。非発光性インク組成物が光散乱性粒子を含有する場合、当該非発光性インク組成物により形成される画素部によれば、画素部に入射した光を散乱させることができ、これにより、画素部からの出射光の、視野角における光強度差を低減することができる。
<光変換層及びカラーフィルタ>
以下、上述した実施形態のインク組成物セットを用いて得られる光変換層及びカラーフィルタの詳細について、図面を参照しつつ説明する。なお、以下の説明において、同一又は相当要素には同一符号を用い、重複する説明は省略する。
図1は、一実施形態のカラーフィルタの模式断面図である。図1に示すように、カラーフィルタ100は、基材40と、基材40上に設けられた光変換層30と、を備える。光変換層30は、複数の画素部10と、遮光部20と、を備えている。
光変換層30は、画素部10として、第1の画素部10aと、第2の画素部10bと、第3の画素部10cとを有している。第1の画素部10aと、第2の画素部10bと、第3の画素部10cとは、この順に繰り返すように格子状に配列されている。遮光部20は、隣り合う画素部の間、すなわち、第1の画素部10aと第2の画素部10bとの間、第2の画素部10bと第3の画素部10cとの間、第3の画素部10cと第1の画素部10aとの間に設けられている。言い換えれば、これらの隣り合う画素部同士は、遮光部20によって離間されている。
第1の画素部10a及び第2の画素部10bは、それぞれ上述した実施形態のインク組成物の硬化物を含む発光性の画素部(発光性画素部)である。図1に示す硬化物は、発光性ナノ結晶粒子と、硬化成分と、光散乱性粒子と、を含有する。換言すれば、第1の画素部10aは、第1の硬化成分13aと、第1の硬化成分13a中にそれぞれ分散された第1の発光性ナノ結晶粒子11a及び第1の光散乱性粒子12aとを含む。同様に、第2の画素部10bは、第2の硬化成分13bと、第2の硬化成分13b中にそれぞれ分散された第2の発光性ナノ結晶粒子11b及び第2の光散乱性粒子12bとを含む。硬化成分は、多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物の重合によって得られる成分である。硬化成分は、多官能(メタ)アクリル化合物由来の構造単位を含む重合体と、多官能(メタ)アリル化合物由来の構造単位を含む重合体とをそれぞれ含んでいてよく、多官能(メタ)アクリル化合物由来の構造単位及び多官能(メタ)アリル化合物由来の構造単位を含む重合体を含んでいてもよい。硬化成分には、上記重合体の他、インク組成物に含まれていた有機成分(有機リガンド、高分子分散剤、未反応の重合性化合物等)が含まれていてよい。第1の画素部10a及び第2の画素部10bにおいて、第1の硬化成分13aと第2の硬化成分13bとは同一であっても異なっていてもよく、第1の光散乱性粒子12aと第2の光散乱性粒子12bとは同一であっても異なっていてもよい。
第1の発光性ナノ結晶粒子11aは、420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する、赤色発光性のナノ結晶粒子である。すなわち、第1の画素部10aは、青色光を赤色光に変換するための赤色画素部と言い換えてよい。また、第2の発光性ナノ結晶粒子11bは、420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する、緑色発光性のナノ結晶粒子である。すなわち、第2の画素部10bは、青色光を緑色光に変換するための緑色画素部と言い換えてよい。
発光性画素部における発光性ナノ結晶粒子の含有量は、外部量子効率の向上効果により優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは5質量%以上であり、10質量%以上、15質量%以上、20質量%以上又は30質量%以上であってもよい。発光性ナノ結晶粒子の含有量は、画素部の信頼性に優れる観点及び優れた発光強度が得られる観点から、発光性インク組成物の硬化物の全質量を基準として、好ましくは80質量%以下であり、75質量%以下、70質量%以下又は60質量%以下であってもよい。
発光性画素部における光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点から、発光性インク組成物の硬化物の全質量を基準として、0.1質量%以上、1質量%以上又は3質量%以上であってもよい。光散乱性粒子の含有量は、外部量子効率の向上効果により優れる観点及び画素部の信頼性に優れる観点から、発光性インク組成物の硬化物の全質量を基準として、60質量%以下、50質量%以下、40質量%以下、30質量%以下、25質量部%以下、20質量部%以下又は15質量%以下であってもよい。
第3の画素部10cは、上述した非発光性インク組成物の硬化物を含む非発光性の画素部(非発光性画素部)である。硬化物は、発光性ナノ結晶粒子を含有せず、光散乱性粒子と、硬化成分とを含有する。すなわち、第3の画素部10cは、第3の硬化成分13cと、第3の硬化成分13c中に分散された第3の光散乱性粒子12cとを含む。第3の硬化成分13cは、例えば、重合性化合物の重合によって得られる成分であり、重合性化合物の重合体を含む。第3の光散乱性粒子12cは、第1の光散乱性粒子12a及び第2の光散乱性粒子12bと同一であっても異なっていてもよい。
第3の画素部10cは、例えば、420~480nmの範囲の波長の光に対し30%以上の透過率を有する。そのため、第3の画素部10cは、420~480nmの範囲の波長の光を発する光源を用いる場合に、青色画素部として機能する。なお、第3の画素部10cの透過率は、顕微分光装置により測定することができる。
非発光性画素部における光散乱性粒子の含有量は、視野角における光強度差をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、1質量%以上であってよく、5質量%以上であってもよく、10質量%以上であってもよい。光散乱性粒子の含有量は、光反射をより低減することができる観点から、非発光性インク組成物の硬化物の全質量を基準として、80質量%以下であってよく、75質量%以下であってもよく、70質量%以下であってもよい。
画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、1μm以上であってよく、2μm以上であってもよく、3μm以上であってもよい。画素部(第1の画素部10a、第2の画素部10b及び第3の画素部10c)の厚さは、例えば、30μm以下であってよく、20μm以下であってもよく、15μm以下であってもよい。
遮光部20は、隣り合う画素部を離間して混色を防ぐ目的及び光源からの光の漏れを防ぐ目的で設けられる、いわゆるブラックマトリックスである。遮光部20を構成する材料は、特に限定されず、クロム等の金属の他、バインダーポリマーにカーボン微粒子、金属酸化物、無機顔料、有機顔料等の遮光性粒子を含有させた樹脂組成物の硬化物等を用いることができる。ここで用いられるバインダーポリマーとしては、ポリイミド樹脂、アクリル樹脂、エポキシ樹脂、ポリアクリルアミド、ポリビニルアルコール、ゼラチン、カゼイン、セルロース等の樹脂を1種又は2種以上混合したもの、感光性樹脂、O/Wエマルジョン型の樹脂組成物(例えば、反応性シリコーンをエマルジョン化したもの)などを用いることができる。遮光部20の厚さは、例えば、0.5μm以上であってよく、10μm以下であってよい。
基材40は、光透過性を有する透明基材であり、例えば、石英ガラス、パイレックス(登録商標)ガラス、合成石英板等の透明なガラス基板、透明樹脂フィルム、光学用樹脂フィルム等の透明なフレキシブル基材などを用いることができる。これらの中でも、ガラス中にアルカリ成分を含まない無アルカリガラスからなるガラス基板を用いることが好ましい。具体的には、コーニング社製の「7059ガラス」、「1737ガラス」、「イーグル200」及び「イーグルXG」、旭硝子社製の「AN100」、日本電気硝子社製の「OA-10G」及び「OA-11」が好適である。これらは、熱膨脹率の小さい素材であり寸法安定性及び高温加熱処理における作業性に優れる。
以上の光変換層30を備えるカラーフィルタ100は、420~480nmの範囲の波長の光を発する光源を用いる場合に好適に用いられる。
カラーフィルタ100は、例えば、基材40上に遮光部20をパターン状に形成した後、基材40上の遮光部20によって区画された画素部形成領域に画素部10を形成することにより製造できる。画素部10は、インク組成物(インクジェットインク)をインクジェット方式により基材40上の画素部形成領域に選択的に付着させる工程と、乾燥によりインク組成物から有機溶剤を除去する工程と、乾燥後のインク組成物に対して活性エネルギー線(例えば紫外線)を照射し、インク組成物を硬化させて発光性画素部を得る工程と、を備える方法により形成することができる。インク組成物として上述した発光性インク組成物を用いることで発光性画素部が得られ、非発光性インク組成物を用いることで非発光性画素部が得られる。
遮光部20を形成させる方法は、基材40の一面側の複数の画素部間の境界となる領域に、クロム等の金属薄膜、又は、遮光性粒子を含有させた樹脂組成物の薄膜を形成し、この薄膜をパターニングする方法等が挙げられる。金属薄膜は、例えば、スパッタリング法、真空蒸着法等により形成することができ、遮光性粒子を含有させた樹脂組成物の薄膜は、例えば、塗布、印刷等の方法により形成することができる。パターニングを行う方法としては、フォトリソグラフィ法等が挙げられる。
インクジェット方式としては、エネルギー発生素子として電気熱変換体を用いたバブルジェット(登録商標)方式、或いは圧電素子を用いたピエゾジェット方式等が挙げられる。
インク組成物の乾燥では、有機溶剤の少なくとも一部が除去されればよく、有機溶剤の全てが除去されることが好ましい。インク組成物の乾燥方法は、減圧による乾燥(減圧乾燥)であることが好ましい。減圧乾燥は、通常、インク組成物の組成を制御する観点から、1.0~500Paの圧力下、20~30℃で3~30分間行う。
インク組成物の硬化は、例えば、水銀ランプ、メタルハライドランプ、キセノンランプ、LED等を用いてよい。照射する光の波長は、例えば、200nm以上であってよく、440nm以下であってよい。露光量は、例えば、10mJ/cm以上であってよく、4000mJ/cm以下であってよい。
以上、カラーフィルタ及び光変換層、並びにこれらの製造方法の一実施形態について説明したが、本発明は上記実施形態に限定されない。
例えば、光変換層は、第3の画素部10cに代えて又は第3の画素部10cに加えて、青色発光性のナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(青色画素部)を備えていてもよい。また、光変換層は、赤、緑、青以外の他の色の光を発するナノ結晶粒子を含有する発光性インク組成物の硬化物を含む画素部(例えば黄色画素部)を備えていてもよい。これらの場合、光変換層の各画素部に含有される発光性ナノ結晶粒子のそれぞれは、同一の波長域に吸収極大波長を有することが好ましい。
また、光変換層の画素部の少なくとも一部は、発光性ナノ結晶粒子以外の顔料を含有する組成物の硬化物を含むものであってもよい。
また、カラーフィルタは、遮光部のパターン上に、遮光部よりも幅の狭い撥インク性を持つ材料からなる撥インク層を備えていてもよい。また、撥インク層を設けるのではなく、画素部形成領域を含む領域に、濡れ性可変層としての光触媒含有層をベタ塗り状に形成した後、当該光触媒含有層にフォトマスクを介して光を照射して露光を行い、画素部形成領域の親インク性を選択的に増大させてもよい。光触媒としては、酸化チタン、酸化亜鉛等が挙げられる。
また、カラーフィルタは、基材と画素部との間に、ヒドロキシプロピルセルロース、ポリビニルアルコール、ゼラチン等を含むインク受容層を備えていてもよい。
また、カラーフィルタは、画素部上に保護層を備えていてもよい。この保護層は、カラーフィルタを平坦化すると共に、画素部に含有される成分、又は、画素部に含有される成分及び光触媒含有層に含有される成分の液晶層への溶出を防止するために設けられるものである。保護層を構成する材料は、公知のカラーフィルタ用保護層として使用されているものを使用できる。
また、カラーフィルタ及び光変換層の製造では、インクジェット方式ではなく、フォトリソグラフィ方式で画素部を形成してもよい。この場合、まず、基材にインク組成物を層状に塗工し、インク組成物層を形成する。次いで、インク組成物層をパターン状に露光した後、現像液を用いて現像する。このようにして、インク組成物の硬化物からなる画素部が形成される。現像液は、通常アルカリ性であるため、インク組成物の材料としてはアルカリ可溶性の材料が用いられる。ただし、材料の使用効率の観点では、インクジェット方式がフォトリソグラフィ方式よりも優れている。これはフォトリソグラフィ方式では、その原理上、材料のほぼ2/3以上を除去することとなり、材料が無駄になるからである。このため、本実施形態では、インクジェットインクを用い、インクジェット方式により画素部を形成することが好ましい。
また、本実施形態の光変換層の画素部には、上記した発光性ナノ結晶粒子に加えて、発光性ナノ結晶粒子の発光色と概ね同色の顔料を更に含有させてもよい。顔料を画素部に含有させるため、インク組成物に顔料を含有させてもよい。
また、本実施形態の光変換層中の赤色画素部(R)、緑色画素部(G)、及び青色画素部(B)のうち、1種又は2種の発光性画素部を、発光性ナノ結晶粒子を含有させずに色材を含有させた画素部としてもよい。ここで使用し得る色材としては、公知の色材を使用することができ、例えば、赤色画素部(R)に用いる色材としては、ジケトピロロピロール顔料及び/又はアニオン性赤色有機染料が挙げられる。緑色画素部(G)に用いる色材としては、ハロゲン化銅フタロシアニン顔料、フタロシアニン系緑色染料、フタロシアニン系青色染料とアゾ系黄色有機染料との混合物からなる群から選ばれる少なくとも1種が挙げられる。青色画素部(B)に用いる色材としては、ε型銅フタロシアニン顔料及び/又はカチオン性青色有機染料が挙げられる。これらの色材の使用量は、光変換層に含有させる場合には、透過率の低下を防止できる観点から、画素部(インク組成物の硬化物)の全質量を基準として、1~5質量%であることが好ましい。
以下、実施例により本発明を具体的に説明する。ただし、本発明は下記の実施例のみに限定されるものではない。なお、実施例で用いた材料は全て、アルゴンガスを導入して溶存酸素をアルゴンガスに置換したものを用いた。酸化チタンについては、混合前に、1mmHgの減圧下、4時間、175℃で加熱し、アルゴンガス雰囲気下で放冷したものを用いた。実施例で用いた液状の材料は、混合前にあらかじめ、モレキュラーシーブス3Aで48時間以上脱水して用いた。
<光重合性化合物の用意>
多官能(メタ)アクリルモノマー及び多官能(メタ)アリルモノマーとして以下の化合物を用意した。
[多官能(メタ)アクリルモノマー]
・HDDA(1,6-ヘキサンジオールジアクリレート、大阪有機化学工業株式会社製、商品名:ビスコート#230)
[多官能(メタ)アリルモノマー]
・DAP(フタル酸ジアリル、株式会社大阪ソーダ製、商品名:ダイソーダップモノマー)
<緑色発光性のInP/ZnSeS/ZnSナノ結晶粒子分散体の準備>
[ラウリン酸インジウム溶液の調製]
1-オクタデセン(ODE)10g、酢酸インジウム146mg(0.5mmol)及びラウリン酸300mg(1.5mmol)を反応フラスコに添加し混合物を得た。真空下において混合物を140℃にて2時間加熱することで透明な溶液(ラウリン酸インジウム溶液)を得た。この溶液は、必要になるまで室温でグローブボックス中に維持した。なお、ラウリン酸インジウムは室温では溶解性が低く沈殿しやすいため、ラウリン酸インジウム溶液を使用する際は、当該溶液(ODE混合物)中の沈殿したラウリン酸インジウムを約90℃に加熱して透明な溶液を形成した後、所望量を計量して用いた。
[緑色発光性ナノ結晶粒子のコア(InPコア)の作製]
トリオクチルホスフィンオキサイド(TOPO)5g、酢酸インジウム1.46g(5mmol)及びラウリン酸3.16g(15.8mmol)を反応フラスコに添加し混合物を得た。窒素(N)環境下において混合物を160℃にて40分間加熱した後、真空下で250℃にて20分間加熱した。次いで、反応温度(混合物の温度)を窒素(N)環境の下で300℃に昇温した。この温度で、1-オクタデセン(ODE)3gとトリス(トリメチルシリル)ホスフィン0.25g(1mmol)との混合物を反応フラスコに迅速に導入し、反応温度を260℃に維持した。5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。次いで、トルエン8ml及びエタノール20mlをグローブボックス中の反応溶液に添加した。続いて遠心分離を行いInPナノ結晶粒子を沈殿させた後、上澄みの傾瀉によってInPナノ結晶粒子を得た。次いで、得られたInPナノ結晶粒子をヘキサンに分散させた。これにより、InPナノ結晶粒子を5質量%含有する分散液(ヘキサン分散液)を得た。
上記で得られたInPナノ結晶粒子のヘキサン分散液、及びラウリン酸インジウム溶液を反応フラスコに仕込み、混合物を得た。InPナノ結晶粒子のヘキサン分散液及びラウリン酸インジウム溶液の仕込量は、それぞれ、0.5g(InPナノ結晶粒子が25mg)、5g(ラウリン酸インジウムが178mg)となるように調整した。真空下、室温にて混合物を10分間静置した後、窒素ガスでフラスコ内を常圧に戻し、混合物の温度を230℃に上げ、その温度で2時間保持してヘキサンをフラスコ内部から除去した。次いで、フラスコ内温を250℃まで昇温し、1-オクタデセン(ODE)3g及びトリス(トリメチルシリル)ホスフィン0.03g(0.125mmol)の混合物を反応フラスコに迅速に導入し、反応温度を230℃に維持した。5分後、ヒーターの除去により反応を停止させ、得られた反応溶液を室温に冷却した。次いで、トルエン8ml、エタノール20mlをグローブボックス中の反応溶液に添加した。続いて遠心分離を行い、緑色発光性InP/ZnSeS/ZnSナノ結晶粒子のコアとなる、InPナノ結晶粒子(InPコア)を沈殿させた後、上澄みの傾瀉によって、InPナノ結晶粒子(InPコア)を得た。次いで、得られたInPナノ結晶粒子(InPコア)をヘキサンに分散させて、InPナノ結晶粒子(InPコア)を5質量%含有する分散液(ヘキサン分散液)を得た。
[緑色発光性ナノ結晶粒子のシェル(ZnSeS/ZnSシェル)の形成]
上記で得られたInPナノ結晶粒子(InPコア)のヘキサン分散液を反応フラスコに2.5g加えた後、室温にて、オレイン酸0.7gを反応フラスコに添加し、温度を80℃に上げて2時間保持した。次いで、この反応混合物中に、ODE1mlに溶解したジエチル亜鉛14mg、ビス(トリメチルシリル)セレニド8mg及びヘキサメチルジシラチアン7mg(ZnSeS前駆体溶液)を滴下し、200℃に昇温して10分保持することによって、厚さが0.5モノレイヤーのZnSeSシェルを形成させた。
次いで、温度を140℃に上げ、30分間保持した。次に、この反応混合物中に、ODE2mlにジエチル亜鉛69mg及びヘキサメチルジシラチアン66mgを溶解させて得られたZnS前駆体溶液を滴下し、温度を200℃に上げて30分保持することにより、厚さ2モノレイヤーのZnSシェルを形成させた。ZnS前駆体溶液の滴下の10分後に、ヒーターの除去により反応を停止させた。次いで、反応混合物を室温に冷却し、得られた白色沈殿物を遠心分離によって除去することにより、緑色発光性InP/ZnSeS/ZnSナノ結晶粒子が分散した透明なナノ結晶粒子分散液(InP/ZnSeS/ZnSナノ結晶粒子のODE分散液)を得た。
[InP/ZnSeS/ZnSナノ結晶粒子用の有機リガンドの合成]
(有機リガンドの合成)
ポリエチレングリコール|average Mn400|(Sigma-Aldrich社製)をフラスコに投入した後、窒素ガス環境にて攪拌しながら、そこにポリエチレングリコール|average Mn400|と等モル量の無水コハク酸(Sigma-Aldrich社製)を添加した。フラスコの内温を80℃に昇温し、8時間攪拌することにより、淡い黄色の粘稠な油状物として下記式(A)で表される有機リガンドを得た。
Figure 0007331452000010
[リガンド交換による緑色発光性InP/ZnSeS/ZnSナノ結晶粒子分散体の作製]
上記有機リガンド30mgを上記で得られたInP/ZnSeS/ZnSナノ結晶粒子のODE分散液1mlに添加した。次いで、90℃で5時間加熱することによりリガンド交換を行った。リガンド交換の進行に伴い、ナノ結晶粒子の凝集が見られた。リガンド交換終了後、上澄みの傾瀉を行い、ナノ結晶粒子を得た。次いで、得られたナノ結晶粒子にエタノール3mlを加え、超音波処理して再分散させた。得られたナノ結晶粒子のエタノール分散液3mLにn-ヘキサン10mlを添加した。続いて、遠心分離を行いナノ結晶粒子を沈殿させた後、上澄みの傾瀉及び真空下での乾燥によってナノ結晶粒子(上記有機リガンドで修飾されたInP/ZnSeS/ZnSナノ結晶粒子)を得た。有機リガンドで修飾されたナノ結晶粒子全量に占める有機リガンドの含有量は35質量%であった。得られたナノ結晶粒子(上記有機リガンドで修飾されたInP/ZnSeS/ZnSナノ結晶粒子)を、分散体中の含有量が50質量%となるように、HDDA中に分散させることにより、緑色発光性ナノ結晶粒子の分散体(QD分散体)を得た。
<光散乱性粒子分散体の準備>
アルゴンガスで満たした容器内で、酸化チタン(商品名:CR-60-2、石原産業株式会社製、平均粒子径(体積平均径):210nm)を33.0gと、高分子分散剤(商品名:アジスパーPB-821、味の素ファインテクノ株式会社製)を1.0gと、HDDAを26.0g混合した後、得られた混合物にジルコニアビーズ(直径:1.25mm)を加え、ペイントコンディショナーを用いて2時間振とうさせることで混合物を分散処理し、ポリエステルメッシュフィルターにてジルコニアビーズを除去することで光散乱性粒子分散体(酸化チタン含有量:55質量%)を得た。
<実施例1>
[緑色インク組成物(インクジェットインク)の調製]
<実施例1>
発光性ナノ結晶粒子分散体を0.7gと、光散乱性粒子分散体を0.062gと、光重合開始剤(フェニル(2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(IGM resin社製、商品名:Omnirad TPO))を0.005gと、HDDAを0.133gと、DAP0.1gを、アルゴンガスで満たした容器内で均一に混合した後、グローブボックス内で、混合物を孔径5μmのフィルターでろ過した。さらに、アルゴンガスを得られた濾過物を入れた容器内に導入し、容器内をアルゴンガスで飽和させた。次いで、減圧してアルゴンガスを除去することにより、実施例1のインクジェットインクを得た。発光性ナノ結晶粒子、有機リガンド、光重合性化合物(HDDA及びDAP)、並びに光散乱性粒子の合計含有量は、インクジェットインクの全質量を基準として98.5質量%であった。発光性ナノ結晶粒子及び有機リガンドの合計含有量は、発光性ナノ結晶粒子、有機リガンド、光重合性化合物(HDDA及びDAP)、並びに光散乱性粒子の合計含有量100質量部に対して35質量部であった。
<実施例2>
発光性ナノ結晶粒子分散体、光散乱性粒子分散体、光重合開始剤、HDDA及びDAPに加えて、亜リン酸トリエステルとしてビス(デシル)ペンタエリスリトールジホスファイト(城北化学工業株式会社製、商品名:JPE-10)を混合したこと、及び、これらの配合量を、インク組成物中の発光性ナノ結晶粒子及び有機リガンド、光重合性化合物(多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物)、光重合開始剤、光散乱性粒子、高分子分散剤並びに亜リン酸トリエステルの含有量が表1に示す値(単位:質量部)となるように調整したこと以外は、実施例1と同様にして、実施例2のインクジェットインクを得た。
<比較例1>
発光性ナノ結晶粒子分散体、光散乱性粒子分散体、光重合開始剤、HDDA及びDAPの配合量を、インク組成物中の発光性ナノ結晶粒子及び有機リガンド、光重合性化合物(多官能(メタ)アクリル化合物及び多官能(メタ)アリル化合物)、光重合開始剤、光散乱性粒子並びに高分子分散剤の含有量が表1に示す値(単位:質量部)となるように調整したこと以外は、実施例1と同様にして、比較例1のインクジェットインクを得た。
<外部量量子効率(EQE)の評価>
[外部量子効率評価用試料の作製]
インク組成物を、ガラス基板上に、膜厚が10μmとなるように、スピンコーターにて大気中で塗布した。塗布膜を窒素雰囲気下、主波長395nmのLEDランプを用いたUV照射装置で積算光量1500mJ/cmになるようにUVを照射して硬化させて、ガラス基板上にインク組成物の硬化物からなる層(光変換層)を形成した。これにより、外部量子効率評価用試料を得た。
[外部量子効率の測定]
面発光光源としてシーシーエス株式会社製の青色LED(ピーク発光波長:450nm)を用いた。測定装置は、大塚電子株式会社製の放射分光光度計(商品名「MCPD-9800」)に積分球を接続し、青色LEDの上側に積分球を設置した。青色LEDと積分球との間に、作製した評価用試料を挿入し、青色LEDを点灯させて観測されるスペクトル、各波長における照度を測定した。
上記の測定装置で測定されるスペクトル及び照度より、以下のようにして外部量子効率を求めた。外部量子効率は、光変換層に入射した光(光子)のうち、どの程度の割合で蛍光として観測者側に放射されるかを示す値である。従って、この値が大きければ光変換層が発光特性に優れていることを示しており、重要な評価指標である。
EQE(%)=P1(Green)/E(Blue)×100
ここで、E(Blue)及びP1(Green)はそれぞれ以下を表す。
E(Blue):380~490nmの波長域における「照度×波長÷hc」の合計値を表す。
P1(Green):500~650nmの波長域における「照度×波長÷hc」の合計値を表す。
これらは観測した光子数に相当する値である。なお、hは、プランク定数、cは光速を表す。
<耐光性(EQE維持率)の評価>
[耐光性評価用試料の作製]
各インク組成物を、ガラス基板上に、膜厚が10μmとなるように、スピンコーターにて大気中で塗布した。塗布後、別のガラス基板を載せ、ガラス基板の上から、主波長395nmのLEDランプを用いたUV照射装置で積算光量1500mJ/cmになるようにUVを照射して硬化させて、ガラス基板上にインク組成物の硬化物からなる層(光変換層)を形成した。これにより、耐光性評価用試料を得た。
[耐光性の評価]
上記にて作製した耐光性評価用サンプルの初期EQEを上記測定装置にて測定後、サンプル温度を25-30℃にキープし、100mW/cmの照度にて、主波長450nmのLEDランプにて照射した。2週間の照射後、再びEQEを測定し、下記式にてEQE維持率を算出した。
EQE維持率(%)=2週間照射後のEQE/初期EQE×100
Figure 0007331452000011
10…画素部、10a…第1の画素部、10b…第2の画素部、10c…第3の画素部、11a…第1の発光性ナノ結晶粒子、11b…第2の発光性ナノ結晶粒子、12a…第1の光散乱性粒子、12b…第2の光散乱性粒子、12c…第3の光散乱性粒子、20…遮光部、30…光変換層、40…基材、100…カラーフィルタ。

Claims (16)

  1. 発光性ナノ結晶粒子と、多官能(メタ)アクリル化合物と、多官能(メタ)アリル化合物と、光散乱性粒子と、を含有する、硬化性インク組成物。
  2. 前記多官能(メタ)アリル化合物がベンゼン環を有する、請求項1に記載の硬化性インク組成物。
  3. 前記多官能(メタ)アリル化合物が二官能又は三官能(メタ)アリル化合物である、請求項1又は2に記載の硬化性インク組成物。
  4. 前記多官能(メタ)アリル化合物が(メタ)アリルオキシ基を有する、請求項1~3のいずれか一項に記載の硬化性インク組成物。
  5. 前記多官能(メタ)アリル化合物の分子量が100~300である、請求項1~4のいずれか一項に記載の硬化性インク組成物。
  6. 前記多官能(メタ)アリル化合物が下記式(I)で表される化合物である、請求項1~5のいずれか一項に記載の硬化性インク組成物。
    [式(I)中、nは2又は3を示し、複数のRは、それぞれ独立して、水素原子又はメチル基を示す。]
  7. 前記多官能(メタ)アクリル化合物が二官能又は三官能(メタ)アクリル化合物である、請求項1~6のいずれか一項に記載の硬化性インク組成物。
  8. 前記多官能(メタ)アクリル化合物の分子量が50~700である、請求項1~7のいずれか一項に記載の硬化性インク組成物。
  9. 前記多官能(メタ)アクリル化合物が(ポリ)アルキレングリコールジ(メタ)アクリレートである、請求項1~8のいずれか一項に記載の硬化性インク組成物。
  10. 亜リン酸トリエステルを更に含有する、請求項1~のいずれか一項に記載の硬化性インク組成物。
  11. 光変換層を形成するために用いられる、請求項1~10のいずれか一項に記載の硬化性インク組成物。
  12. インクジェット方式で用いられる、請求項1~10のいずれか一項に記載の硬化性インク組成物。
  13. 複数の画素部と、当該複数の画素部間に設けられた遮光部と、を備え、
    前記複数の画素部は、請求項1~10のいずれか一項に記載の硬化性インク組成物の硬化物を含む発光性画素部を有する、光変換層。
  14. 前記発光性画素部として、
    420~480nmの範囲の波長の光を吸収し605~665nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第1の発光性画素部と、
    420~480nmの範囲の波長の光を吸収し500~560nmの範囲に発光ピーク波長を有する光を発する発光性ナノ結晶粒子を含有する、第2の発光性画素部と、
    を備える、請求項13に記載の光変換層。
  15. 光散乱性粒子を含有する非発光性画素部を更に備える、請求項13又は14に記載の光変換層。
  16. 請求項1315のいずれか一項に記載の光変換層を備える、カラーフィルタ。
JP2019093084A 2019-05-16 2019-05-16 硬化性インク組成物、光変換層及びカラーフィルタ Active JP7331452B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019093084A JP7331452B2 (ja) 2019-05-16 2019-05-16 硬化性インク組成物、光変換層及びカラーフィルタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019093084A JP7331452B2 (ja) 2019-05-16 2019-05-16 硬化性インク組成物、光変換層及びカラーフィルタ

Publications (2)

Publication Number Publication Date
JP2020186335A JP2020186335A (ja) 2020-11-19
JP7331452B2 true JP7331452B2 (ja) 2023-08-23

Family

ID=73220885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019093084A Active JP7331452B2 (ja) 2019-05-16 2019-05-16 硬化性インク組成物、光変換層及びカラーフィルタ

Country Status (1)

Country Link
JP (1) JP7331452B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022244669A1 (ja) * 2021-05-20 2022-11-24 Dic株式会社 インク組成物、光変換層、カラーフィルタおよび光変換フィルム
CN115491080B (zh) * 2021-06-18 2023-08-29 苏州星烁纳米科技有限公司 光转换层油墨组合物及其制备方法、光转换层及滤色器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274077A (ja) 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd インクジェット用インク組成物、並びに、これを用いた画像形成方法および記録物
JP2016065178A (ja) 2014-09-25 2016-04-28 Jsr株式会社 硬化性樹脂組成物、硬化膜、波長変換フィルム、発光素子および発光層の形成方法
JP2016098375A (ja) 2014-11-21 2016-05-30 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造されたカラーフィルタおよび前記カラーフィルタを含む画像表示装置
JP2018053141A (ja) 2016-09-29 2018-04-05 株式会社日本触媒 顔料分散組成物
JP2018084823A (ja) 2016-11-22 2018-05-31 三星電子株式会社Samsung Electronics Co., Ltd. 感光性樹脂組成物、複合体、積層構造物、並びにこれを用いたディスプレイ素子及び電子素子
JP2019500453A (ja) 2015-12-18 2019-01-10 エシロール・アンテルナシオナル 鎖成長重合モノマー及び逐次成長重合モノマーと、その中に分散された無機ナノ粒子とを含む液状重合性組成物、及び光学物品を製造するためのその使用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274077A (ja) 2005-03-29 2006-10-12 Fuji Photo Film Co Ltd インクジェット用インク組成物、並びに、これを用いた画像形成方法および記録物
JP2016065178A (ja) 2014-09-25 2016-04-28 Jsr株式会社 硬化性樹脂組成物、硬化膜、波長変換フィルム、発光素子および発光層の形成方法
JP2016098375A (ja) 2014-11-21 2016-05-30 東友ファインケム株式会社Dongwoo Fine−Chem Co., Ltd. 自発光感光性樹脂組成物、これから製造されたカラーフィルタおよび前記カラーフィルタを含む画像表示装置
JP2019500453A (ja) 2015-12-18 2019-01-10 エシロール・アンテルナシオナル 鎖成長重合モノマー及び逐次成長重合モノマーと、その中に分散された無機ナノ粒子とを含む液状重合性組成物、及び光学物品を製造するためのその使用
JP2018053141A (ja) 2016-09-29 2018-04-05 株式会社日本触媒 顔料分散組成物
JP2018084823A (ja) 2016-11-22 2018-05-31 三星電子株式会社Samsung Electronics Co., Ltd. 感光性樹脂組成物、複合体、積層構造物、並びにこれを用いたディスプレイ素子及び電子素子

Also Published As

Publication number Publication date
JP2020186335A (ja) 2020-11-19

Similar Documents

Publication Publication Date Title
KR102696767B1 (ko) 잉크 조성물 및 그 제조 방법, 그리고 광변환층 및 컬러 필터
JP6838691B2 (ja) インク組成物、光変換層、及びカラーフィルタ
JP7294864B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP7024383B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP7180795B2 (ja) 光変換層形成用のインク組成物、光変換層及びカラーフィルタ
JP7024336B2 (ja) インク組成物、光変換層及びカラーフィルタ
TWI850494B (zh) 光轉換層形成用噴墨墨水組成物、光轉換層及彩色濾光片
JP7331452B2 (ja) 硬化性インク組成物、光変換層及びカラーフィルタ
JP7087797B2 (ja) インク組成物、光変換層及びカラーフィルタ
JP7367894B2 (ja) インク組成物、光変換層、カラーフィルタおよび光変換フィルム
TW202202581A (zh) 光轉換層形成用油墨組成物之印刷方法、光轉換層之形成方法及洗淨液
JP2023036307A (ja) 発光性ナノ粒子複合体、インク組成物、光変換層およびカラーフィルタ
JP7238445B2 (ja) インク組成物、光変換層、カラーフィルタ及び発光性画素部の形成方法
JP7581713B2 (ja) インク組成物、硬化物、光変換層、及びカラーフィルタ
WO2022181430A1 (ja) カラーフィルタ用インクジェットインク組成物、硬化物、光変換層、及びカラーフィルタ
JP7180798B2 (ja) インク組成物、硬化物、光変換層、及びカラーフィルタ
JP7243073B2 (ja) インク組成物及びその硬化物、光変換層、並びにカラーフィルタ
TW202235517A (zh) 白色油墨組成物、硬化物、光擴散層及濾色器
JP2023092096A (ja) 光変換層形成用インク組成物の印刷方法、およびカラーフィルタ
JP2023036187A (ja) 発光性ナノ粒子複合体、インク組成物、光変換層およびカラーフィルタ
TW202233438A (zh) 含有發光性奈米結晶粒子之油墨之印刷方法、濾色器像素部之形成方法、及濾色器
JP2022044970A (ja) インク組成物、硬化物、光変換層、及びカラーフィルタ
JP2021017481A (ja) インク組成物及びその製造方法、光変換層、並びに、カラーフィルタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230207

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230320

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230724

R151 Written notification of patent or utility model registration

Ref document number: 7331452

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151