[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7323045B2 - Control device, control method and program - Google Patents

Control device, control method and program Download PDF

Info

Publication number
JP7323045B2
JP7323045B2 JP2022502356A JP2022502356A JP7323045B2 JP 7323045 B2 JP7323045 B2 JP 7323045B2 JP 2022502356 A JP2022502356 A JP 2022502356A JP 2022502356 A JP2022502356 A JP 2022502356A JP 7323045 B2 JP7323045 B2 JP 7323045B2
Authority
JP
Japan
Prior art keywords
robot
peripheral device
sequence
information
motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022502356A
Other languages
Japanese (ja)
Other versions
JPWO2021171350A1 (en
JPWO2021171350A5 (en
Inventor
永哉 若山
雅嗣 小川
岳大 伊藤
峰斗 佐藤
博之 大山
伸治 加美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of JPWO2021171350A1 publication Critical patent/JPWO2021171350A1/ja
Publication of JPWO2021171350A5 publication Critical patent/JPWO2021171350A5/en
Application granted granted Critical
Publication of JP7323045B2 publication Critical patent/JP7323045B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1661Programme controls characterised by programming, planning systems for manipulators characterised by task planning, object-oriented languages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/41815Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell
    • G05B19/4182Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the cooperation between machine tools, manipulators and conveyor or other workpiece supply system, workcell manipulators and conveyor only
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4189Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system
    • G05B19/41895Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the transport system using automatic guided vehicles [AGV]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39102Manipulator cooperating with conveyor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/40Robotics, robotics mapping to robotics vision
    • G05B2219/40113Task planning

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Description

本発明は、ロボットに作業させるタスクに関する処理を行う制御装置、制御方法及び記録媒体の技術分野に関する。 The present invention relates to a technical field of a control device, a control method, and a recording medium that perform processing related to tasks to be performed by a robot.

ロボットに作業させるタスクが与えられた場合に、当該タスクを実行するために必要なロボットの制御を行う制御手法が提案されている。例えば、特許文献1には、ハンドを有するロボットにより複数の物品を把持して容器に収容する場合に、ハンドが物品を把持する順序の組み合わせを決定し、組み合わせ毎に算出した指標に基づき、収容する物品の順序を決定するロボット制御装置が開示されている。 A control method has been proposed in which, when a task to be performed by a robot is given, the robot is controlled to perform the task. For example, in Patent Document 1, when a robot having a hand grips a plurality of items and stores them in a container, a combination of the order in which the hand grips the items is determined, and based on the index calculated for each combination, the items are stored. A robotic controller for determining the order of items to be delivered is disclosed.

特開2018-51684号公報JP 2018-51684 A

ロボットがタスクを実行する場合、与えられたタスクによっては、他の装置と物の受け渡しを行う必要があり、この場合のロボットの動作の決定方法について、特許文献1には何ら開示されていない。 When a robot performs a task, depending on the given task, it may be necessary to transfer objects to and from another device.

本発明の目的の1つは、上述した課題を鑑み、ロボットの動作シーケンスを好適に生成することが可能な制御装置、制御方法及び記録媒体を提供することである。 SUMMARY OF THE INVENTION One of the objects of the present invention is to provide a control device, a control method, and a recording medium capable of suitably generating a motion sequence of a robot in view of the above-described problems.

制御装置の一の態様は、制御装置であって、タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段と、前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態が、前記動作シーケンスの通りに動作した場合の前記ロボット及び前記周辺装置の予測される状態と整合しない場合、前記ロボット及び前記周辺装置の少なくとも一方の動作タイミングを調整する統合制御手段と、を有する。
One aspect of a control device is a control device comprising: robot motion information indicating motion characteristics of a robot that executes a task; and peripheral devices that indicate motion characteristics of a peripheral device that transfers an object related to the task to the robot. motion information; motion sequence generation means for generating a motion sequence indicating motions to be performed by the robot and the peripheral device, respectively; integrated control means for adjusting operation timing of at least one of the robot and the peripheral device when the state does not match the expected state of the robot and the peripheral device when the robot and the peripheral device operate according to the operation sequence. have.

制御方法の一の態様は、コンピュータにより、タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成し、前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態が、前記動作シーケンスの通りに動作した場合の前記ロボット及び前記周辺装置の予測される状態と整合しない場合、前記ロボット及び前記周辺装置の少なくとも一方の動作タイミングを調整する
In one aspect of the control method, a computer generates robot motion information indicating motion characteristics of a robot that executes a task, and peripheral device motion information that indicates motion characteristics of a peripheral device that transfers an object related to the task to the robot. , a motion sequence indicating motions to be performed by each of the robot and the peripheral device is generated, and the states of the robot and the peripheral device measured during execution of the motion sequence are determined according to the motion sequence. If it does not match the expected state of the robot and the peripheral device when the robot and the peripheral device operate in the same manner, the operation timing of at least one of the robot and the peripheral device is adjusted.

プログラムの一の態様は、タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段と、前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態が、前記動作シーケンスの通りに動作した場合の前記ロボット及び前記周辺装置の予測される状態と整合しない場合、前記ロボット及び前記周辺装置の少なくとも一方の動作タイミングを調整する統合制御手段としてコンピュータを機能させるプログラムである。 One aspect of the program is based on robot operation information indicating movement characteristics of a robot that executes a task and peripheral device operation information indicating movement characteristics of a peripheral device that transfers an object related to the task to the robot, a motion sequence generating means for generating a motion sequence indicating motions to be performed by each of the robot and the peripheral device; A program that causes a computer to function as an integrated control means that adjusts the operation timing of at least one of the robot and the peripheral device when it does not match the expected state of the robot and the peripheral device when the robot and the peripheral device operate as expected.

本発明によれば、ロボット及びロボットと対象物の受け渡しを行う周辺装置の各動作シーケンスを好適に生成することができる。 According to the present invention, it is possible to suitably generate each operation sequence of a robot and a peripheral device that transfers an object between the robot and the robot.

ロボット制御システムの構成を示す。4 shows the configuration of the robot control system. 制御装置のハードウェア構成を示す。The hardware configuration of the control device is shown. アプリケーション情報のデータ構造の一例を示す。An example of the data structure of application information is shown. 第1実施形態における制御装置の機能ブロックの一例である。It is an example of a functional block of a control device in a 1st embodiment. 作業空間の俯瞰図を示す。Fig. 3 shows an overhead view of a workspace; タスク入力画面の表示例を示す。A display example of a task input screen is shown. 第1実施形態におけるロボット及び周辺装置に関する制御処理を示すフローチャートの一例である。6 is an example of a flow chart showing control processing regarding the robot and peripheral devices in the first embodiment. 第2実施形態における制御装置の概略構成図の一例である。It is an example of the schematic block diagram of the control apparatus in 2nd Embodiment. 第2実施形態におけるロボット及び周辺装置に関する制御処理を示すフローチャートの一例である。FIG. 10 is an example of a flowchart showing control processing regarding the robot and peripheral devices in the second embodiment; FIG. 第3実施形態における制御装置の概略構成図の一例である。It is an example of the schematic block diagram of the control apparatus in 3rd Embodiment. 第3実施形態におけるロボット及び周辺装置に関する制御処理を示すフローチャートの一例である。FIG. 11 is an example of a flow chart showing control processing relating to a robot and peripheral devices in a third embodiment; FIG. 第4実施形態における制御装置の概略構成図である。FIG. 11 is a schematic configuration diagram of a control device in a fourth embodiment; 第4実施形態におけるロボット及び周辺装置に関する制御処理を示すフローチャートの一例である。FIG. 11 is an example of a flowchart showing control processing regarding a robot and peripheral devices in a fourth embodiment; FIG.

以下、図面を参照しながら、制御装置、制御方法及び記録媒体の実施形態について説明する。 Embodiments of a control device, a control method, and a recording medium will be described below with reference to the drawings.

<第1実施形態>
(1)システム構成
図1は、第1実施形態に係るロボット制御システム100の構成を示す。ロボット制御システム100は、主に、制御装置1と、入力装置2と、表示装置3と、記憶装置4と、ロボット5と、計測装置7と、周辺装置8と、を備える。
<First embodiment>
(1) System configuration
FIG. 1 shows the configuration of a robot control system 100 according to the first embodiment. The robot control system 100 mainly includes a control device 1 , an input device 2 , a display device 3 , a storage device 4 , a robot 5 , a measurement device 7 and peripheral devices 8 .

制御装置1は、ロボット5と周辺装置8に実行させるタスク(「目的タスク」とも呼ぶ。)が指定された場合に、タイムステップ(時間刻み)毎にロボット5及び周辺装置8が実行すべき動作シーケンスを生成し、動作シーケンスをロボット5及び周辺装置8に供給する。後述するように、動作シーケンスは、ロボット5及び周辺装置8が受付可能な単位に目的タスクを分解したタスク又はコマンド(「サブタスク」とも呼ぶ。)から構成されており、以後では「サブタスクシーケンス」とも呼ぶ。 When a task to be executed by the robot 5 and the peripheral device 8 (also referred to as a "target task") is specified, the control device 1 determines the operation to be performed by the robot 5 and the peripheral device 8 at each time step. A sequence is generated and the motion sequence is supplied to the robot 5 and the peripheral device 8 . As will be described later, the operation sequence is composed of tasks or commands (also called "subtasks") obtained by decomposing the target task into units that can be received by the robot 5 and the peripheral device 8, and hereinafter also called "subtask sequences". call.

制御装置1は、入力装置2、表示装置3及び記憶装置4と電気的に接続している。例えば、制御装置1は、入力装置2から、目的タスクを指定するための入力信号「S1」を受信する。また、制御装置1は、表示装置3に対し、ロボット5に実行させるタスクに関する表示を行うための表示信号「S2」を送信する。また、制御装置1は、ロボット5の制御に関する制御信号「S4」をロボット5に送信し、周辺装置8の制御に関する制御信号「S5」を周辺装置8に送信する。さらに、制御装置1は、計測装置7から出力信号「S3」を受信する。 The control device 1 is electrically connected to the input device 2 , the display device 3 and the storage device 4 . For example, the control device 1 receives from the input device 2 an input signal “S1” for designating a target task. Further, the control device 1 transmits a display signal “S2” for displaying a task to be executed by the robot 5 to the display device 3 . Further, the control device 1 transmits a control signal “S4” regarding control of the robot 5 to the robot 5 and transmits a control signal “S5” regarding control of the peripheral device 8 to the peripheral device 8 . Furthermore, the control device 1 receives an output signal “S3” from the measuring device 7 .

入力装置2は、ユーザの入力を受け付けるインターフェースであり、例えば、タッチパネル、ボタン、キーボード、音声入力装置などが該当する。入力装置2は、ユーザの入力に基づき生成した入力信号S1を、制御装置1へ供給する。 The input device 2 is an interface that receives user input, and corresponds to, for example, a touch panel, buttons, keyboard, voice input device, and the like. The input device 2 supplies an input signal S1 generated based on the user's input to the control device 1 .

表示装置3は、例えば、ディスプレイ、プロジェクタ等であり、制御装置1から供給される表示信号S2に基づき、所定の表示を行う。後述するように、例えば、表示装置3は、表示信号S2に基づき、目的タスクに関する情報を指定する入力画面(「タスク入力画面」とも呼ぶ。)を表示する。 The display device 3 is, for example, a display, a projector, etc., and performs predetermined display based on the display signal S2 supplied from the control device 1 . As will be described later, for example, the display device 3 displays an input screen (also called a "task input screen") for designating information about the target task based on the display signal S2.

記憶装置4は、アプリケーション情報記憶部41を有する。アプリケーション情報記憶部41は、目的タスクからサブタスクのシーケンスを生成するために必要なアプリケーション情報を記憶する。アプリケーション情報の詳細は、図3を参照しながら後述する。記憶装置4は、制御装置1に接続又は内蔵されたハードディスクなどの外部記憶装置であってもよく、フラッシュメモリなどの記録媒体であってもよい。また、記憶装置4は、制御装置1とデータ通信を行うサーバ装置であってもよい。この場合、記憶装置4は、複数のサーバ装置から構成されてもよい。 The storage device 4 has an application information storage unit 41 . The application information storage unit 41 stores application information required to generate a sequence of subtasks from a target task. Details of the application information will be described later with reference to FIG. The storage device 4 may be an external storage device such as a hard disk connected to or built into the control device 1, or may be a recording medium such as a flash memory. Also, the storage device 4 may be a server device that performs data communication with the control device 1 . In this case, the storage device 4 may be composed of a plurality of server devices.

ロボット5は、制御装置1から送信された制御信号S4に基づき動作を行う。図1に示すロボット5は、一例として、ロボット制御部51と、物を把持可能なロボットアーム52と、を有する。ロボットアーム52は、ロボット制御部51の制御に基づき、周辺装置8により搬送される対象物61を、対象物61以外の物体である障害物62に干渉することなく目的地領域63へ移動させるピックアンドプレイス(摘み上げて移動させる処理)を行う。ロボット制御部51は、制御信号S4が示すサブタスクシーケンスに基づき、ロボットアーム52の動作制御を行う。ロボット5は、垂直多関節型ロボットであってもよく、水平多関節型などの任意の種類のロボットであってもよい。 The robot 5 operates based on the control signal S4 transmitted from the control device 1 . The robot 5 shown in FIG. 1 has, as an example, a robot controller 51 and a robot arm 52 capable of gripping an object. The robot arm 52 is a pick that moves an object 61 conveyed by the peripheral device 8 to a destination area 63 without interfering with an obstacle 62 that is an object other than the object 61 under the control of the robot control unit 51 . And place (processing to pick up and move) is performed. The robot control unit 51 performs motion control of the robot arm 52 based on the subtask sequence indicated by the control signal S4. The robot 5 may be a vertical articulated robot or any type of robot such as a horizontal articulated robot.

計測装置7は、ロボット5及び周辺装置8が作業を行う作業空間6内を計測対象範囲として計測を行うカメラ、測域センサ、ソナーまたはこれらの組み合わせとなる1又は複数の外界センサである。計測装置7は、生成した出力信号S3を制御装置1に供給する。出力信号S3は、作業空間6内を撮影した画像データであってもよく、作業空間6内の物体の位置を示す点群データであってもよい。 The measuring device 7 is a camera, a range sensor, a sonar, or one or more external sensors that are a combination of these for measuring the work space 6 in which the robot 5 and the peripheral devices 8 work as a measurement target range. The measuring device 7 supplies the generated output signal S3 to the control device 1 . The output signal S3 may be image data obtained by photographing the inside of the work space 6, or may be point cloud data indicating the position of an object in the work space 6. FIG.

周辺装置8は、制御装置1から送信された制御信号S5に基づき動作を行う。図1に示す周辺装置8は、一例として、周辺装置制御部81と、物を搬送可能な搬送機器82と、を有する。搬送機器82は、周辺装置制御部81の制御に基づき、対象物61及び障害物62などの搬送を行う。周辺装置制御部81は、制御信号S5が示すサブタスクシーケンスに基づき、搬送機器82の動作制御を行う。周辺装置8は、AGV(Automated Guided Vehicle)又はスライダーであってもよく、所定方向又は複数方向に搬送可能なコンベアであってもよい。また、周辺装置8は、対象物61を収容する容器又は棚を移動させる機器であってもよい。 The peripheral device 8 operates based on the control signal S5 transmitted from the control device 1 . The peripheral device 8 shown in FIG. 1 has, as an example, a peripheral device control unit 81 and a transport device 82 capable of transporting objects. The transport device 82 transports the object 61 and the obstacle 62 under the control of the peripheral device control section 81 . The peripheral device control unit 81 controls the operation of the carrier device 82 based on the subtask sequence indicated by the control signal S5. The peripheral device 8 may be an AGV (Automated Guided Vehicle) or a slider, or may be a conveyor capable of transporting in a predetermined direction or multiple directions. Also, the peripheral device 8 may be a device that moves a container or a shelf containing the object 61 .

なお、図1に示すロボット制御システム100の構成は一例であり、当該構成に種々の変更が行われてもよい。例えば、ロボット5は複数台存在してもよい。また、ロボット5は、ロボットアーム52を2つ以上備えてもよい。これらの場合であっても、制御装置1は、目的タスクに基づき、ロボットアーム52毎に実行すべきサブタスクシーケンスを生成し、当該サブタスクシーケンスを示す制御信号S4を、対象のロボットアーム52を有するロボット5に送信する。同様に、周辺装置8又は搬送機器82は複数台存在してもよい。また、計測装置7は、ロボット5の一部であってもよい。また、ロボット制御部51は、ロボット5とは別体に構成されてもよい。この場合、ロボット制御部51は、制御装置1に組み込まれてもよい。また、入力装置2及び表示装置3は、夫々、制御装置1に内蔵されるなどの態様により、制御装置1と同一の装置(例えばタブレット型端末)として構成されてもよい。また、制御装置1は、複数の装置から構成されてもよい。この場合、制御装置1を構成する複数の装置は、予め割り当てられた処理を実行するために必要な情報の授受を、これらの複数の装置間において行う。また、制御装置の少なくとも一部の機能を、ロボット5又は周辺装置8が有してもよい。 Note that the configuration of the robot control system 100 shown in FIG. 1 is an example, and various modifications may be made to the configuration. For example, a plurality of robots 5 may exist. Also, the robot 5 may include two or more robot arms 52 . Even in these cases, the control device 1 generates a subtask sequence to be executed for each robot arm 52 based on the target task, and sends the control signal S4 indicating the subtask sequence to the robot having the target robot arm 52. 5. Similarly, there may be a plurality of peripheral devices 8 or carrier devices 82 . Also, the measuring device 7 may be a part of the robot 5 . Also, the robot control unit 51 may be configured separately from the robot 5 . In this case, the robot control section 51 may be incorporated into the control device 1 . Further, the input device 2 and the display device 3 may each be configured as the same device as the control device 1 (for example, a tablet-type terminal) by being incorporated in the control device 1 or the like. Also, the control device 1 may be composed of a plurality of devices. In this case, the plurality of devices that make up the control device 1 exchange information necessary for executing previously assigned processing among the plurality of devices. Also, the robot 5 or the peripheral device 8 may have at least part of the functions of the control device.

(2)制御装置のハードウェア構成
図2は、制御装置1のハードウェア構成を示す。制御装置1は、ハードウェアとして、プロセッサ11と、メモリ12と、インターフェース13とを含む。プロセッサ11、メモリ12及びインターフェース13は、データバス19を介して接続されている。
(2) Hardware configuration of control device
FIG. 2 shows the hardware configuration of the control device 1. As shown in FIG. The control device 1 includes a processor 11, a memory 12, and an interface 13 as hardware. Processor 11 , memory 12 and interface 13 are connected via data bus 19 .

プロセッサ11は、メモリ12に記憶されているプログラムを実行することにより、所定の処理を実行する。プロセッサ11は、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)などのプロセッサである。 The processor 11 performs predetermined processing by executing programs stored in the memory 12 . The processor 11 is a processor such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).

メモリ12は、RAM(Random Access Memory)、ROM(Read Only Memory)などの各種のメモリにより構成される。また、メモリ12には、制御装置1が所定の処理を実行するためのプログラムが記憶される。また、メモリ12は、作業メモリとして使用され、記憶装置4から取得した情報等を一時的に記憶する。なお、メモリ12は、記憶装置4として機能してもよい。同様に、記憶装置4は、制御装置1のメモリ12として機能してもよい。なお、制御装置1が実行するプログラムは、メモリ12以外の記録媒体に記憶されてもよい。 The memory 12 is composed of various memories such as RAM (Random Access Memory) and ROM (Read Only Memory). The memory 12 also stores a program for the control device 1 to execute a predetermined process. Also, the memory 12 is used as a work memory and temporarily stores information and the like acquired from the storage device 4 . Note that the memory 12 may function as the storage device 4 . Similarly, storage device 4 may function as memory 12 of control device 1 . Note that the program executed by the control device 1 may be stored in a recording medium other than the memory 12 .

インターフェース13は、制御装置1と他の装置とを電気的に接続するためのインターフェースである。例えば、インターフェース13は、制御装置1と入力装置2とを接続するためのインターフェース、制御装置1と表示装置3とを接続するためのインターフェース、及び制御装置1と記憶装置4とを接続するためのインターフェースを含む。また、インターフェース13は、制御装置1とロボット5とを接続するためのインターフェース、制御装置1と周辺装置8とを接続するためのインターフェース、及び制御装置1と計測装置7とを接続するためのインターフェースを含む。これらの接続は、有線接続であってもよく、無線接続であってもよい。例えば、制御装置1と記憶装置4とを接続するためのインターフェースは、プロセッサ11の制御に基づき記憶装置4とデータの送受信を有線又は無線により行うための通信インターフェースであってもよい。他の例では、制御装置1と記憶装置4とは、ケーブル等により接続されてもよい。この場合、インターフェース13は、記憶装置4とデータの授受を行うためのUSB(Universal Serial Bus)、SATA(Serial AT Attachment)などに準拠したインターフェースを含む。 The interface 13 is an interface for electrically connecting the control device 1 and other devices. For example, the interface 13 includes an interface for connecting the control device 1 and the input device 2, an interface for connecting the control device 1 and the display device 3, and an interface for connecting the control device 1 and the storage device 4. Contains interfaces. Further, the interface 13 includes an interface for connecting the control device 1 and the robot 5, an interface for connecting the control device 1 and the peripheral device 8, and an interface for connecting the control device 1 and the measuring device 7. including. These connections may be wired connections or wireless connections. For example, the interface for connecting the control device 1 and the storage device 4 may be a communication interface for transmitting and receiving data to and from the storage device 4 under the control of the processor 11 by wire or wirelessly. In another example, the control device 1 and the storage device 4 may be connected by a cable or the like. In this case, the interface 13 includes an interface conforming to USB (Universal Serial Bus), SATA (Serial AT Attachment), etc. for exchanging data with the storage device 4 .

なお、制御装置1のハードウェア構成は、図2に示す構成に限定されない。例えば、制御装置1は、入力装置2、表示装置3及び記憶装置4の少なくとも一方を含んでもよい。また、制御装置1は、スピーカなどの音出力装置と接続又は内蔵してもよい。これらの場合、制御装置1は、入力機能及び出力機能が本体と一体となったタブレット型端末等であってもよい。 Note that the hardware configuration of the control device 1 is not limited to the configuration shown in FIG. 2 . For example, the control device 1 may include at least one of the input device 2 , the display device 3 and the storage device 4 . Also, the control device 1 may be connected to or built in a sound output device such as a speaker. In these cases, the control device 1 may be a tablet terminal or the like in which the input function and the output function are integrated with the main body.

(3)アプリケーション情報
次に、アプリケーション情報記憶部41が記憶するアプリケーション情報のデータ構造について説明する。
(3) Application information
Next, the data structure of application information stored in the application information storage unit 41 will be described.

図3は、アプリケーション情報記憶部41に記憶されるアプリケーション情報のデータ構造の一例を示す。図3に示すように、アプリケーション情報記憶部41は、抽象状態指定情報I1と、制約条件情報I2と、動作限界情報I3と、サブタスク情報I4と、抽象モデル情報I5と、物体モデル情報I6とを含む。 FIG. 3 shows an example of the data structure of application information stored in the application information storage unit 41. As shown in FIG. As shown in FIG. 3, the application information storage unit 41 stores abstract state designation information I1, constraint information I2, motion limit information I3, subtask information I4, abstract model information I5, and object model information I6. include.

抽象状態指定情報I1は、サブタスクシーケンスの生成にあたり定義する必要がある抽象状態を指定する情報である。この抽象状態は、作業空間6内における物体の抽象的な状態であって、後述する目標論理式において使用する命題として定められる。例えば、抽象状態指定情報I1は、目的タスクの種類毎に、定義する必要がある抽象状態を指定する。なお、目的タスクは、例えば、ピックアンドプレイス、製品の組み立て、弁当箱などの容器への具材の配置などの種々の種類のタスクであってもよい。 The abstract state designation information I1 is information that designates an abstract state that needs to be defined when generating a subtask sequence. This abstract state is an abstract state of an object in the work space 6, and is defined as a proposition used in a target logical formula to be described later. For example, the abstract state designation information I1 designates an abstract state that needs to be defined for each type of target task. Note that the target task may be, for example, various types of tasks such as pick-and-place, product assembly, and placement of ingredients in a container such as a lunch box.

制約条件情報I2は、目的タスクを実行する際のロボット5及び周辺装置8に関する制約条件を示す情報である。制約条件情報I2は、例えば、目的タスクがピックアンドプレイスの場合、障害物にロボット5(ロボットアーム52)が接触してはいけないという制約条件、ロボット5と周辺装置8とが接触してはいけないという制約条件などを示す。なお、制約条件情報I2は、目的タスクの種類毎に夫々適した制約条件を記録した情報であってもよい。 Constraint information I2 is information indicating the constraint regarding the robot 5 and the peripheral device 8 when executing the target task. Constraint condition information I2 includes, for example, a constraint condition that the robot 5 (robot arm 52) must not come into contact with an obstacle when the target task is a pick-and-place task, and a constraint condition that the robot 5 (robot arm 52) must not come into contact with the peripheral device 8. It shows the constraint conditions such as Note that the constraint condition information I2 may be information in which a constraint condition suitable for each type of target task is recorded.

動作限界情報I3は、制御装置1により制御が行われるロボット5及び周辺装置8の動作限界に関する情報を示す。動作限界情報I3は、ロボット5の場合には、ロボットアーム52のリーチング等の各動作の速度及び加速度の最大値、及び、可動角度などの動作制約の情報を含む。また、動作限界情報I3は、周辺装置8の場合には、搬送機器82の搬送の速度及び加速度の最大値、及び、可能な搬送方向などの動作制約の情報を含む。 The motion limit information I3 indicates information about motion limits of the robot 5 and the peripheral device 8 controlled by the control device 1 . In the case of the robot 5, the motion limit information I3 includes the maximum value of velocity and acceleration of each motion such as reaching of the robot arm 52, and motion constraint information such as the movable angle. In addition, in the case of the peripheral device 8, the motion limit information I3 includes information on motion constraints such as the maximum values of the transport speed and acceleration of the transport device 82 and possible transport directions.

サブタスク情報I4は、ロボット5が受付可能なサブタスクの情報と、周辺装置8が受付可能なサブタスクの情報とを含む。例えば、目的タスクがピックアンドプレイスの場合には、サブタスク情報I4は、ロボットアーム52の移動であるリーチングと、ロボットアーム52による把持であるグラスピングとを、ロボット5のサブタスクとして規定する。また、この場合、サブタスク情報I4は、搬送機器82による物体の搬送に関する動作を、周辺装置8のサブタスクとして規定する。サブタスク情報I4は、目的タスクの種類がユーザにより選択可能な場合、目的タスクの種類毎に使用可能なサブタスクの情報を示すものであってもよい。 The subtask information I4 includes information on subtasks that the robot 5 can receive and information on subtasks that the peripheral device 8 can receive. For example, if the target task is pick and place, the subtask information I4 defines reaching, which is movement of the robot arm 52, and grasping, which is grasping by the robot arm 52, as subtasks of the robot 5. FIG. Further, in this case, the subtask information I4 defines the operation related to transportation of the object by the transportation device 82 as a subtask of the peripheral device 8 . If the user can select the type of target task, the subtask information I4 may indicate information on subtasks that can be used for each type of target task.

抽象モデル情報I5は、作業空間6におけるロボット5及び周辺装置8を含む物体のダイナミクスを抽象化したモデル(「抽象モデル」とも呼ぶ。)に関する情報である。抽象モデル情報I5は、目的タスクの種類がユーザにより選択可能な場合、目的タスクの種類毎に適した抽象モデルに関する情報を有している。抽象モデルは、現実のダイナミクスをハイブリッドシステムにより抽象化したモデルにより表されている。抽象モデル情報I5は、上述のハイブリッドシステムにおけるダイナミクスの切り替わりの条件(「ダイナミクス切替条件」とも呼ぶ。)を示す情報を含む。ダイナミクス切替条件は、ロボット5又は周辺装置8の少なくとも一方に関わるダイナミクスの切り替わりの条件である。図1の例では、以下のようなダイナミクス切替条件(a)、(b)が与えられる。
(a)「対象物61又は障害物62は、搬送機器82に載ると、搬送機器82の動作速度に基づき一定方向に動く」
(b)「ロボットアーム52が対象物61を掴むと、対象物61は、搬送機器82に載っているか否かに関わらず、ロボットアーム52の動作に基づき動く」
The abstract model information I5 is information about a model (also called an “abstract model”) that abstracts the dynamics of objects including the robot 5 and the peripheral device 8 in the workspace 6 . The abstract model information I5 has information on an abstract model suitable for each type of target task when the type of target task can be selected by the user. The abstract model is represented by a hybrid system abstracted from real dynamics. The abstract model information I5 includes information indicating a dynamics switching condition (also referred to as a "dynamics switching condition") in the hybrid system described above. The dynamics switching condition is a dynamics switching condition related to at least one of the robot 5 and the peripheral device 8 . In the example of FIG. 1, the following dynamics switching conditions (a) and (b) are given.
(a) "When the object 61 or the obstacle 62 is placed on the transport device 82, it moves in a certain direction based on the operating speed of the transport device 82."
(b) "When the robot arm 52 grabs the target object 61, the target object 61 moves based on the motion of the robot arm 52 regardless of whether it is placed on the transfer device 82 or not."

物体モデル情報I6は、計測装置7が生成した出力信号S3から認識すべき各物体(図1の例では、ロボットアーム52、対象物61、障害物62、目的地領域63、搬送機器82など)の物体モデルに関する情報である。物体モデル情報I6は、例えば、上述した各物体の種類、位置、又は/及び姿勢を制御装置1が認識するために必要な情報と、各物体の3次元形状を認識するためのCADデータなどの3次元形状情報とを含んでいる。前者の情報は、ニューラルネットワークなどの機械学習における学習モデルを学習することで得られた推論器のパラメータを含む。この推論器は、例えば、画像が入力された場合に、当該画像において被写体となる物体の種類、位置、姿勢等を出力するように予め学習される。 The object model information I6 is each object to be recognized from the output signal S3 generated by the measuring device 7 (in the example of FIG. 1, the robot arm 52, the target object 61, the obstacle 62, the destination area 63, the transport equipment 82, etc.). is information about the object model of The object model information I6 includes, for example, information necessary for the control device 1 to recognize the type, position, and/or orientation of each object described above, and CAD data for recognizing the three-dimensional shape of each object. 3D shape information. The former information includes the parameters of the reasoner obtained by learning a learning model in machine learning such as a neural network. For example, when an image is input, this inference unit is trained in advance so as to output the type, position, orientation, etc. of an object that is a subject in the image.

このように、アプリケーション情報は、ロボット5の動作限界、サブタスク、及び抽象モデルなどの動き特性を示すロボット動作情報と、周辺装置8の動作限界、サブタスク及び抽象モデルなどの動き特性を示す周辺装置動作情報と、を夫々含んでいる。なお、アプリケーション情報記憶部41は、上述した情報の他、サブタスクシーケンスの生成処理に関する種々の情報を記憶してもよい。 In this way, the application information includes robot motion information indicating motion characteristics such as the motion limits, subtasks, and abstract models of the robot 5, and peripheral device motion information indicating motion characteristics such as the motion limits, subtasks, and abstract models of the peripheral device 8. contains information and, respectively. In addition to the information described above, the application information storage unit 41 may store various information related to the process of generating the subtask sequence.

(4)機能ブロック
図4は、制御装置1の機能ブロックの一例である。制御装置1のプロセッサ11は、機能的には、状態計測部30と、抽象状態設定部31と、目標論理式生成部32と、タイムステップ論理式生成部33と、抽象モデル生成部34と、制御入力生成部35と、サブタスクシーケンス生成部36とを有する。なお、図4では、各ブロック間で授受が行われるデータの一例が示されているが、これに限定されない。
(4) Function block
FIG. 4 is an example of functional blocks of the control device 1 . The processor 11 of the control device 1 functionally includes a state measuring unit 30, an abstract state setting unit 31, a target logical expression generating unit 32, a time step logical expression generating unit 33, an abstract model generating unit 34, It has a control input generator 35 and a subtask sequence generator 36 . Note that FIG. 4 shows an example of data exchanged between blocks, but the invention is not limited to this.

状態計測部30は、計測装置7から供給される出力信号S3に基づき、作業空間6内における物体の状態を示す情報(「状態情報Im」とも呼ぶ。)を生成する。具体的には、状態計測部30は、出力信号S3を受信した場合に、物体モデル情報I6等を参照し、作業空間6内の環境を認識する技術(画像処理技術、画像認識技術、音声認識技術、RFID(Radio Frequency Identifier)を用いる技術等)により出力信号S3を解析する。これにより、状態計測部30は、目的タスクの実行に関連する作業空間6内の各物体の種類毎の数、位置及び姿勢等を計測し、この計測結果を、状態情報Imとして生成する。例えば、状態情報Imは、図1の場合、ロボットアーム52、対象物61、障害物62、搬送機器82の各々の数、位置、及び姿勢などの情報を含む。状態計測部30は、生成した状態情報Imを、抽象状態設定部31及び抽象モデル生成部34に供給する。なお、状態情報Imには、3次元形状の物体の計測結果に加えて、図1の目的地領域63などの目的タスクに関連する平面的な物体(領域)に対する位置及び範囲などの計測結果が含まれてもよい。 The state measurement unit 30 generates information (also referred to as “state information Im”) indicating the state of the object in the work space 6 based on the output signal S3 supplied from the measuring device 7 . Specifically, when the state measurement unit 30 receives the output signal S3, the state measurement unit 30 refers to the object model information I6 and the like, and uses technology (image processing technology, image recognition technology, voice recognition technology, etc.) to recognize the environment in the work space 6. technology, technology using RFID (Radio Frequency Identifier), etc.), the output signal S3 is analyzed. Thereby, the state measurement unit 30 measures the number, position, orientation, and the like of each type of each object in the workspace 6 related to the execution of the target task, and generates the measurement result as the state information Im. For example, in the case of FIG. 1, the state information Im includes information such as the numbers, positions, and attitudes of the robot arms 52, the objects 61, the obstacles 62, and the transfer equipment 82, respectively. The state measurement unit 30 supplies the generated state information Im to the abstract state setting unit 31 and the abstract model generation unit 34 . In addition to the measurement result of the three-dimensional object, the state information Im includes the measurement result of the position and range of a planar object (area) related to the target task such as the destination area 63 in FIG. may be included.

抽象状態設定部31は、上述の状態情報Im及びアプリケーション情報記憶部41から取得した抽象状態指定情報I1等に基づき、目的タスクを実行する際に考慮する必要がある作業空間6内の抽象状態を設定する。この場合、抽象状態設定部31は、各抽象状態に対し、抽象状態を論理式で表すための命題を定義する。抽象状態設定部31は、設定した抽象状態を示す情報(「抽象状態設定情報IS」とも呼ぶ。)を目標論理式生成部32に供給する。 The abstract state setting unit 31 sets the abstract state in the workspace 6 that needs to be considered when executing the target task based on the above-described state information Im and the abstract state specifying information I1 acquired from the application information storage unit 41. set. In this case, the abstract state setting unit 31 defines a proposition for expressing the abstract state with a logical expression for each abstract state. The abstract state setting unit 31 supplies information indicating the set abstract state (also referred to as “abstract state setting information IS”) to the target logical expression generating unit 32 .

目標論理式生成部32は、目的タスクに関する入力信号S1を入力装置2から受信した場合に、抽象状態設定情報ISに基づき、入力信号S1が示す目的タスクを、最終的な達成状態を表す時相論理の論理式(「目標論理式Ltag」とも呼ぶ。)に変換する。この場合、目標論理式生成部32は、アプリケーション情報記憶部41から制約条件情報I2を参照することで、目的タスクの実行において満たすべき制約条件を、目標論理式Ltagに付加する。そして、目標論理式生成部32は、生成した目標論理式Ltagを、タイムステップ論理式生成部33に供給する。また、目標論理式生成部32は、目的タスクに関する入力を受け付けるタスク入力画面を表示するための表示信号S2を生成し、当該表示信号S2を表示装置3に供給する。 When receiving an input signal S1 related to a target task from the input device 2, the target logical expression generation unit 32 converts the target task indicated by the input signal S1 into a time phase representing the final achievement state based on the abstract state setting information IS. Convert to a logical formula (also called "target logical formula Ltag"). In this case, the target logical expression generation unit 32 refers to the constraint information I2 from the application information storage unit 41 to add the constraint to be satisfied in executing the target task to the target logical expression Ltag. Then, the target logical expression generation unit 32 supplies the generated target logical expression Ltag to the time step logical expression generation unit 33 . In addition, the target logical expression generation unit 32 generates a display signal S2 for displaying a task input screen for receiving input regarding the target task, and supplies the display signal S2 to the display device 3 .

タイムステップ論理式生成部33は、目標論理式生成部32から供給された目標論理式Ltagを、各タイムステップでの状態を表した論理式(「タイムステップ論理式Lts」とも呼ぶ。)に変換する。そして、タイムステップ論理式生成部33は、生成したタイムステップ論理式Ltsを、制御入力生成部35に供給する。 The time step logical expression generation unit 33 converts the target logical expression Ltag supplied from the target logical expression generation unit 32 into a logical expression representing the state at each time step (also referred to as "time step logical expression Lts"). do. Then, the time step logical expression generator 33 supplies the generated time step logical expression Lts to the control input generator 35 .

抽象モデル生成部34は、状態情報Imと、アプリケーション情報記憶部41が記憶する抽象モデル情報I5とに基づき、作業空間6における現実のダイナミクスを抽象化した抽象モデル「Σ」を生成する。この場合、抽象モデル生成部34は、対象のダイナミクスを連続ダイナミクスと離散ダイナミクスとが混在したハイブリッドシステムとみなし、ハイブリッドシステムに基づく抽象モデルΣを生成する。抽象モデルΣの生成方法については後述する。抽象モデル生成部34は、生成した抽象モデルΣを、制御入力生成部35へ供給する。 The abstract model generation unit 34 generates an abstract model “Σ” that abstracts the actual dynamics in the work space 6 based on the state information Im and the abstract model information I5 stored in the application information storage unit 41 . In this case, the abstract model generator 34 regards the target dynamics as a hybrid system in which continuous dynamics and discrete dynamics coexist, and generates an abstract model Σ based on the hybrid system. A method of generating the abstract model Σ will be described later. The abstract model generator 34 supplies the generated abstract model Σ to the control input generator 35 .

制御入力生成部35は、タイムステップ論理式生成部33から供給されるタイムステップ論理式Ltsと、抽象モデル生成部34から供給される抽象モデルΣとを満たし、評価関数を最適化するタイムステップ毎のロボット5及び周辺装置8への制御入力を決定する。そして、制御入力生成部35は、ロボット5及び周辺装置8へのタイムステップ毎の制御入力を示す情報(「制御入力情報Ic」とも呼ぶ。)を、サブタスクシーケンス生成部36へ供給する。 The control input generation unit 35 satisfies the time step logical expression Lts supplied from the time step logical expression generation unit 33 and the abstract model Σ supplied from the abstract model generation unit 34, and optimizes the evaluation function at each time step determine the control inputs to the robot 5 and the peripheral device 8 of . The control input generator 35 then supplies the subtask sequence generator 36 with information (also referred to as “control input information Ic”) indicating control inputs to the robot 5 and the peripheral device 8 at each time step.

サブタスクシーケンス生成部36は、制御入力生成部35から供給される制御入力情報Icと、アプリケーション情報記憶部41が記憶するサブタスク情報I4とに基づき、ロボット5及び周辺装置8に動作させるサブタスクシーケンスを夫々生成する。そして、サブタスクシーケンス生成部36は、ロボット5に実行させるサブタスクシーケンスを示す制御信号S4を、インターフェース13を介してロボット5へ供給し、周辺装置8に実行させるサブタスクシーケンスを示す制御信号S5を、インターフェース13を介して周辺装置8へ供給する。なお、制御信号S4、S5には、夫々、サブタスクシーケンスを構成するサブタスクの実行順序及び実行タイミングを示す情報が含まれている。 The subtask sequence generation unit 36 generates subtask sequences for the robot 5 and the peripheral device 8 to operate based on the control input information Ic supplied from the control input generation unit 35 and the subtask information I4 stored in the application information storage unit 41. Generate. Then, the subtask sequence generator 36 supplies a control signal S4 indicating a subtask sequence to be executed by the robot 5 to the robot 5 via the interface 13, and a control signal S5 indicating a subtask sequence to be executed by the peripheral device 8 via the interface. 13 to the peripheral device 8. The control signals S4 and S5 each contain information indicating the execution order and execution timing of the subtasks forming the subtask sequence.

なお、図4において説明した状態計測部30、抽象状態設定部31、目標論理式生成部32、タイムステップ論理式生成部33、抽象モデル生成部34、制御入力生成部35及びサブタスクシーケンス生成部36の各構成要素は、例えば、プロセッサ11がプログラムを実行することによって実現できる。より具体的には、各構成要素は、メモリ12又は記憶装置4に格納されたプログラムを、プロセッサ11が実行することによって実現され得る。また、必要なプログラムを任意の不揮発性記録媒体に記録しておき、必要に応じてインストールすることで、各構成要素を実現するようにしてもよい。なお、これらの各構成要素は、プログラムによるソフトウェアで実現することに限ることなく、ハードウェア、ファームウェア、及びソフトウェアのうちのいずれかの組み合わせ等により実現してもよい。また、これらの各構成要素は、例えばFPGA(field-programmable gate array)又はマイコン等の、ユーザがプログラミング可能な集積回路を用いて実現してもよい。この場合、この集積回路を用いて、上記の各構成要素から構成されるプログラムを実現してもよい。このように、各構成要素は、プロセッサ以外のハードウェアにより実現されてもよい。以上のことは、後述する他の実施の形態においても同様である。 4, the state measuring unit 30, the abstract state setting unit 31, the target logical expression generating unit 32, the time step logical expression generating unit 33, the abstract model generating unit 34, the control input generating unit 35, and the subtask sequence generating unit 36 can be realized by the processor 11 executing a program, for example. More specifically, each component can be implemented by processor 11 executing a program stored in memory 12 or storage device 4 . Further, each component may be realized by recording necessary programs in an arbitrary non-volatile recording medium and installing them as necessary. It should be noted that each of these components is not limited to being realized by software based on a program, and may be realized by any combination of hardware, firmware, and software. Also, each of these components may be realized using a user-programmable integrated circuit such as an FPGA (field-programmable gate array) or a microcomputer. In this case, this integrated circuit may be used to implement a program composed of the above components. Thus, each component may be realized by hardware other than the processor. The above also applies to other embodiments described later.

(5)ブロック毎の処理詳細
次に、図4に示す機能ブロックごとの処理の詳細について、具体例を用いて説明する。
(5) Processing details for each block
Next, details of processing for each functional block shown in FIG. 4 will be described using a specific example.

(5-1)状態計測部及び抽象状態設定部
状態計測部30は、計測装置7から供給される出力信号S3に基づき、作業空間6内の物体の状態(種類、位置等)を示す状態情報Imを生成する。抽象状態設定部31は、状態情報Imに基づき、作業空間6内の抽象状態を設定する。この場合、抽象状態設定部31は、抽象状態指定情報I1を参照し、作業空間6内において設定すべき抽象状態を認識する。なお、作業空間6内において設定すべき抽象状態は、目的タスクの種類によって異なる。よって、目的タスクの種類毎に設定すべき抽象状態が抽象状態指定情報I1に規定されている場合には、抽象状態設定部31は、入力信号S1により指定された目的タスクに対応する抽象状態指定情報I1を参照し、設定すべき抽象状態を認識する。
(5-1) State measuring unit and abstract state setting unit
The state measurement unit 30 generates state information Im indicating the state (type, position, etc.) of the object in the work space 6 based on the output signal S3 supplied from the measuring device 7 . The abstract state setting unit 31 sets the abstract state in the work space 6 based on the state information Im. In this case, the abstract state setting unit 31 refers to the abstract state designation information I1 and recognizes the abstract state to be set within the work space 6. FIG. Note that the abstract state to be set in the work space 6 differs depending on the type of target task. Therefore, when the abstract state specification information I1 specifies the abstract state to be set for each type of target task, the abstract state setting unit 31 specifies the abstract state corresponding to the target task specified by the input signal S1. The information I1 is referenced to recognize the abstract state to be set.

図5は、作業空間6の俯瞰図を示す。図5に示す作業空間6には、ロボットアーム52と、矢印59の方向に物を搬送する搬送機器82と、搬送機器82上に置かれた対象物61及び障害物62と、目的地領域63と、が存在している。 FIG. 5 shows a bird's-eye view of the work space 6. As shown in FIG. The work space 6 shown in FIG. and exist.

この場合、状態計測部30は、計測装置7から受信した出力信号S3を、物体モデル情報I6等を用いて解析することで、ロボットアーム52、搬送機器82、対象物61、障害物62の位置及び姿勢などの状態、及び、対象物61の目的地となる目的地領域63の位置及び範囲等を認識する。この場合、抽象化のため、状態計測部30は、ロボットアーム52の手先(ロボットハンド)をロボットアーム52の位置として設定してもよい。そして、抽象状態設定部31は、抽象状態指定情報I1を参照することで、目的タスクにおいて定義すべき抽象状態を決定する。この場合、抽象状態設定部31は、状態計測部30の認識結果を示す状態情報Imと、抽象状態指定情報I1とに基づき、抽象状態を示す命題を定める。図5の例では、抽象状態設定部31は、状態情報Imにより特定される対象物61、障害物62、ロボットアーム52、搬送機器82、目的地領域63に夫々識別ラベルを付す。また、抽象状態設定部31は、抽象状態指定情報I1に基づき、対象物61又は障害物62が搬送機器82に載っているという命題、対象物61が最終的に載置されるべき目的地点である領域G(破線枠63参照)内に存在するという命題、ロボットアーム52が障害物62に干渉しているという命題などの目標論理式に用いられる各命題を定義する。 In this case, the state measuring unit 30 analyzes the output signal S3 received from the measuring device 7 using the object model information I6 and the like to determine the positions of the robot arm 52, the transfer device 82, the object 61, and the obstacle 62. and posture, and the position and range of the destination area 63 serving as the destination of the object 61 are recognized. In this case, the state measurement unit 30 may set the tip (robot hand) of the robot arm 52 as the position of the robot arm 52 for the sake of abstraction. The abstract state setting unit 31 then refers to the abstract state designation information I1 to determine the abstract state to be defined in the target task. In this case, the abstract state setting unit 31 determines a proposition indicating the abstract state based on the state information Im indicating the recognition result of the state measuring unit 30 and the abstract state specifying information I1. In the example of FIG. 5, the abstract state setting unit 31 attaches identification labels to the object 61, the obstacle 62, the robot arm 52, the conveying device 82, and the destination area 63 specified by the state information Im. Further, the abstract state setting unit 31, based on the abstract state designation information I1, sets the proposition that the object 61 or the obstacle 62 is placed on the conveying device 82, the destination point where the object 61 should be finally placed, and Each proposition used in the target logical formula is defined, such as the proposition that the robot arm 52 exists within a certain area G (see the dashed frame 63) and the proposition that the robot arm 52 is interfering with the obstacle 62. FIG.

このように、抽象状態設定部31は、抽象状態指定情報I1を参照することで、定義すべき抽象状態を認識し、当該抽象状態を表す命題を、対象物61の数、ロボットアーム52の数、障害物62の数等に応じてそれぞれ定義する。そして、抽象状態設定部31は、抽象状態を表す命題を示す情報を、抽象状態設定情報ISとして目標論理式生成部32に供給する。 In this way, the abstract state setting unit 31 refers to the abstract state designation information I1 to recognize the abstract state to be defined, and converts the proposition representing the abstract state into the number of objects 61, the number of robot arms 52, , according to the number of obstacles 62 and the like. Then, the abstract state setting unit 31 supplies the information indicating the proposition representing the abstract state to the target logical expression generating unit 32 as the abstract state setting information IS.

(5-2)目標論理式生成部
目標論理式生成部32は、目的タスクの種類と、前記ロボットの作業対象となる対象物の最終状態と、を指定する入力信号S1の入力を受け付ける。また、目標論理式生成部32は、これらの入力を受け付けるタスク入力画面の表示信号S2を、表示装置3に送信する。
(5-2) Target logical expression generator
The target logical expression generator 32 receives input of an input signal S1 that specifies the type of target task and the final state of the object to be worked on by the robot. In addition, the target logical expression generation unit 32 transmits to the display device 3 a display signal S2 of a task input screen that accepts these inputs.

目標論理式生成部32は、入力信号S1により指定された目的タスクを、時相論理を用いた論理式に変換する。入力信号S1は、自然言語を用いて表されていてもよい。なお、自然言語で表されたタスクを論理式に変換する方法は、種々の技術が存在する。例えば、目標論理式生成部32は、図5の例において、「最終的に対象物61が領域Gに存在する」という命題「g」を示す目的タスクが与えられたとする。この場合、目標論理式生成部32は、目的タスクを線形論理式(LTL:Linear Temporal Logic)の「eventually」に相当する演算子「◇」と、抽象状態設定部31により定義された命題「g」と用いて、論理式「◇g」を生成する。なお、目標論理式生成部32は、演算子「◇」以外の任意の時相論理の演算子(論理積「∧」、論理和「∨」、否定「¬」、論理包含「⇒」、always「□」、next「○」、until「U」等)を用いて論理式を表現してもよい。また、線形時相論理に限らず、MTL(Metric Temporal Logic)やSTL(Signal Temporal Logic)などの任意の時相論理を用いて論理式を表現してもよい。 The target logical formula generator 32 converts the target task specified by the input signal S1 into a logical formula using temporal logic. The input signal S1 may be expressed using natural language. There are various techniques for converting a task expressed in natural language into a logical expression. For example, in the example of FIG. 5, the target logical expression generator 32 is given a target task indicating the proposition "g" that "the object 61 finally exists in the region G." In this case, the target logical expression generation unit 32 sets the target task as an operator “◇” corresponding to “eventually” in a linear logical expression (LTL) and a proposition “g ” to generate the logical expression “◇g”. Note that the target logical expression generation unit 32 can generate arbitrary temporal logic operators other than the operator “◇” (logical product “∧”, logical sum “∨”, negation “¬”, logical inclusion “⇒”, always "□", next "○", until "U", etc.) may be used to express a logical expression. In addition, the logical expression may be expressed using any temporal logic such as MTL (Metric Temporal Logic), STL (Signal Temporal Logic), or the like, without being limited to linear temporal logic.

また、目標論理式生成部32は、アプリケーション情報記憶部41から制約条件情報I2を取得する。なお、タスクの種類毎に制約条件情報I2がアプリケーション情報記憶部41に記憶されている場合には、目標論理式生成部32は、入力信号S1により指定された目的タスクの種類に対応する制約条件情報I2を、アプリケーション情報記憶部41から取得する。 Also, the target logical expression generation unit 32 acquires the constraint condition information I2 from the application information storage unit 41 . If the application information storage unit 41 stores the constraint condition information I2 for each type of task, the target logical expression generation unit 32 calculates the constraint condition corresponding to the type of target task specified by the input signal S1. Information I2 is acquired from the application information storage unit 41 .

そして、目標論理式生成部32は、取得した制約条件情報I2が示す制約条件を、目的タスクを示す論理式に付加することで、目標論理式Ltagを生成する。例えば、ピックアンドプレイスに対応する制約条件として、「ロボットアーム52が障害物62に常に干渉しない」、「ロボットアーム52は、搬送機器82に常に干渉しない」などの制約条件情報I2に含まれていた場合、目標論理式生成部32は、これらの制約条件を論理式に変換する。そして、目的タスクに対応する論理式に、変換したこれらの制約条件の論理式を付加することで、目標論理式Ltagを生成する。 Then, the target logical formula generating unit 32 generates the target logical formula Ltag by adding the constraint indicated by the obtained constraint condition information I2 to the logical formula indicating the target task. For example, constraints corresponding to pick-and-place are included in the constraint information I2, such as "the robot arm 52 never interferes with the obstacle 62" and "the robot arm 52 never interferes with the transfer device 82". If so, the target logical formula generator 32 converts these constraints into logical formulas. Then, the target logical expression Ltag is generated by adding the converted logical expression of these constraints to the logical expression corresponding to the target task.

次に、タスク入力画面での目的タスクに関する入力例について説明する。 Next, an input example regarding the target task on the task input screen will be described.

図6は、タスク入力画面の表示例を示す。目標論理式生成部32は、表示信号S2を生成し、当該表示信号S2を表示装置3に送信することで、表示装置3に図6に示すタスク入力画面を表示させている。図6に示すタスク入力画面は、主に、タスク種類指定欄15と、画像表示欄16と、同種対象物指定ボタン17と、決定ボタン20とを有し、タスクの種類の指定及び対象物61とみなす物体の指定を受け付ける。 FIG. 6 shows a display example of the task input screen. The target logical expression generation unit 32 generates a display signal S2 and transmits the display signal S2 to the display device 3, thereby causing the display device 3 to display the task input screen shown in FIG. A task input screen shown in FIG. Accepts specification of an object to be regarded as

目標論理式生成部32は、タスク種類指定欄15において、目的タスクの種類を指定する入力を受け付ける。ここでは、一例として、タスク種類指定欄15はプルダウンメニュー形式の入力欄である。目標論理式生成部32は、たとえば、受付可能な目的タスクの種類の候補を、タスク種類指定欄15において選択可能に一覧表示する。ここでは、タスク種類指定欄15には、ピックアンドプレイスが目的タスクの種類として指定されている。 The target logical expression generation unit 32 receives an input designating the type of target task in the task type designation column 15 . Here, as an example, the task type specification field 15 is an input field in the form of a pull-down menu. The target logical expression generation unit 32 displays, for example, a list of acceptable target task type candidates in a selectable manner in the task type designation column 15 . Here, the task type designation field 15 designates pick and place as the type of the target task.

また、目標論理式生成部32は、画像表示欄16において、計測装置7が作業空間6内を撮像した画像を表示する。そして、目標論理式生成部32は、画像表示欄16上でのタッチパネル操作又はマウス操作等に基づき、対象物61とみなす物体を指定する入力を受け付ける。 In addition, the target logical expression generation unit 32 displays an image of the interior of the work space 6 captured by the measuring device 7 in the image display field 16 . Then, the target logical expression generation unit 32 receives an input designating an object regarded as the target object 61 based on a touch panel operation or a mouse operation on the image display field 16 .

この場合、第1の例では、目標論理式生成部32は、タスク入力画面の表示時点において、公知の画像認識処理に基づき、画像表示欄16での対象物61の候補となる物体の領域(ここでは領域18b、18c)を認識する。そして、目標論理式生成部32は、当該領域のうちいずれかがタッチ操作又はクリック操作により選択された場合に、選択された領域(ここでは領域18b)の物体を対象物61とみなす。第2の例では、目標論理式生成部32は、タッチ操作又はクリック操作により対象物61を構成する一部の画素が指定された場合、指定された画素を含む物体の領域を、対象物61の領域とみなす。第3の例では、目標論理式生成部32は、対象物61とする物体の画像領域を丸で囲む操作を検知した場合、丸で囲まれた画像領域内の物体を対象物61とみなす。 In this case, in the first example, when the task input screen is displayed, the target logical expression generation unit 32 generates an object region ( Areas 18b, 18c) are recognized here. Then, when one of the regions is selected by a touch operation or a click operation, the target logical expression generation unit 32 regards the object in the selected region (here, the region 18b) as the target object 61 . In the second example, when some pixels forming the target object 61 are specified by a touch operation or a click operation, the target logical expression generation unit 32 converts the area of the object including the specified pixels to the target object 61 considered to be the area of In the third example, the target logical expression generation unit 32 regards the object in the circled image area as the target object 61 when detecting the operation of encircling the image area of the object to be the target object 61 .

また、目標論理式生成部32は、画像認識処理により、領域18aが目的地領域63を示す領域であると自動認識する。この場合、目的地領域63には、目的地領域63を目標論理式生成部32が認識することを容易にするためのマーカなどが付されてもよく、目的地領域63の形状及び大きさ等の情報がアプリケーション情報として記憶装置4に記憶されていてもよい。なお、目標論理式生成部32が目的地領域63を自動認識する代わりに、対象物61と同様に、目的地領域63を指定する入力を受け付けることで、目的地領域63を認識してもよい。また、この場合、目標論理式生成部32は、ドラッグアンドドロップ操作による対象物61の最終目的地の入力を受け付けることで、目的地領域63を認識してもよい。 Further, the target logical expression generation unit 32 automatically recognizes that the area 18a is an area indicating the destination area 63 by image recognition processing. In this case, the destination area 63 may be provided with a marker or the like for facilitating the recognition of the destination area 63 by the target logical expression generation unit 32. may be stored in the storage device 4 as application information. Instead of the target logical expression generation unit 32 automatically recognizing the destination area 63, the destination area 63 may be recognized by receiving an input designating the destination area 63 in the same manner as the target object 61. . Further, in this case, the target logical expression generation unit 32 may recognize the destination area 63 by accepting input of the final destination of the object 61 by a drag-and-drop operation.

また、目標論理式生成部32は、同種対象物指定ボタン17が選択されている場合、画像表示欄16上で指定された物体に加えて、当該物体と同種の物体についても対象物61とみなす。この場合、対象物61とみなす物体は、タスク入力画面の表示時点において計測装置7の計測範囲外に存在する物体であってもよい。これにより、目標論理式生成部32は、効率的に対象物61をユーザに指定させることができる。なお、対象物61とする物体の種類が予め定められている場合には、制御装置1は、対象物61を指定する入力を受け付けることなく、対象物61を認識してもよい。この場合、物体モデル情報I6等に対象物61を識別するための情報が含まれており、状態計測部30は、物体モデル情報I6等を参照することで、対象物61の識別及び状態(位置、姿勢等)の認識を行う。 Further, when the same kind of object specification button 17 is selected, the target logical expression generation unit 32 regards an object of the same kind as the object in addition to the object specified on the image display field 16 as the target object 61. . In this case, the object regarded as the target object 61 may be an object existing outside the measurement range of the measuring device 7 at the time the task input screen is displayed. Thereby, the target logical expression generation unit 32 can efficiently allow the user to designate the object 61 . Note that when the type of object to be the target object 61 is predetermined, the control device 1 may recognize the target object 61 without receiving an input designating the target object 61 . In this case, information for identifying the object 61 is included in the object model information I6 and the like, and the state measurement unit 30 refers to the object model information I6 and the like to identify and state (position) the object 61. , posture, etc.).

そして、目標論理式生成部32は、決定ボタン20が選択されたことを検知した場合、タスク入力画面での入力内容を示す入力信号S1に基づき認識した目的タスク、対象物61又は/及び目的地領域63の情報を用いて、目標論理式Ltagを生成する。なお、目標論理式生成部32は、入力信号S1に基づき認識した目的タスク、対象物61又は/及び目的地領域63の情報を抽象状態設定部31に供給してもよい。この場合、抽象状態設定部31は、供給された情報に基づき、目的タスク、対象物61又は/及び目的地領域63に関する命題の設定を行う。 Then, when detecting that the decision button 20 has been selected, the target logical expression generation unit 32 recognizes the target task, the object 61 and/or the destination based on the input signal S1 indicating the input content on the task input screen. The information in area 63 is used to generate the target logical expression Ltag. The target logical expression generation unit 32 may supply the abstract state setting unit 31 with information on the target task, the target object 61 and/or the destination area 63 recognized based on the input signal S1. In this case, the abstract state setting unit 31 sets propositions regarding the target task, the object 61 and/or the destination area 63 based on the supplied information.

(5-3)タイムステップ論理式生成部
タイムステップ論理式生成部33は、目的タスクを完了するタイムステップ数(「目標タイムステップ数」とも呼ぶ。)を定め、目標タイムステップ数で目標論理式Ltagを満たすような各タイムステップでの状態を表す命題の組み合わせを定める。この組み合わせは、通常複数存在するため、タイムステップ論理式生成部33は、これらの組み合わせを論理和により結合した論理式を、タイムステップ論理式Ltsとして生成する。上述の組み合わせは、ロボット5に命令する動作のシーケンスを表す論理式の候補となり、以後では「候補φ」とも呼ぶ。よって、タイムステップ論理式生成部33は、生成した各候補φの論理和をタイムステップ論理式Ltsとして定める。この場合、タイムステップ論理式Ltsは、生成した候補φの少なくともいずれかが真となる場合に真となる。
(5-3) Time step logical expression generator
The time step logical expression generator 33 determines the number of time steps (also referred to as “target number of time steps”) for completing the target task, and determines the state at each time step such that the target number of time steps satisfies the target logical expression Ltag. Define a combination of propositions representing Since there are usually a plurality of such combinations, the time step logical expression generation unit 33 generates a logical expression combining these combinations by logical sum as the time step logical expression Lts. The above combinations are candidates for logical expressions representing sequences of actions to be instructed to the robot 5, and are hereinafter also referred to as "candidates φ". Therefore, the time step logical expression generation unit 33 determines the logical sum of the generated candidates φ as the time step logical expression Lts. In this case, the time step logical expression Lts is true when at least one of the generated candidates φ is true.

好適には、タイムステップ論理式生成部33は、生成された候補に対し、動作限界情報I3を参照することで、実現可能性を判定し、実現不可と判定した候補φを除外するとよい。例えば、タイムステップ論理式生成部33は、動作限界情報I3に基づき、ロボットアーム52の手先(ロボットハンド)が1タイムステップ当たりに移動可能な距離及び搬送機器82が1タイムステップ当たりに対象物61を移動させることが可能な距離を認識する。また、タイムステップ論理式生成部33は、状態情報Imが示す対象物61及びロボットハンドの位置ベクトルに基づき、移動対象となる対象物61とロボットハンドとの距離を認識する。そして、タイムステップ論理式生成部33は、これらの距離に基づき、実現可能性を判定する。 Preferably, the time step logical expression generation unit 33 refers to the operation limit information I3 for the generated candidates to determine the feasibility thereof, and excludes the candidates φ that are determined to be unrealizable. For example, based on the motion limit information I3, the time step logical expression generation unit 33 determines the distance that the robot arm 52's hand (robot hand) can move per time step and the transfer device 82 moves the object 61 per time step. Recognize the distance that can be moved. Further, the time step logical expression generator 33 recognizes the distance between the object 61 to be moved and the robot hand based on the position vectors of the object 61 and the robot hand indicated by the state information Im. Then, the time step logical expression generator 33 determines feasibility based on these distances.

このように、タイムステップ論理式生成部33は、動作限界情報I3を参照して実現不可能な候補をタイムステップ論理式Ltsから除外することで、後段の処理部の処理負荷を好適に低減させることができる。 In this way, the time step logical expression generation unit 33 refers to the operation limit information I3 and excludes unrealizable candidates from the time step logical expression Lts, thereby suitably reducing the processing load of the subsequent processing unit. be able to.

次に、目標タイムステップ数の設定方法について補足説明する。 Next, a supplementary explanation will be given on how to set the target number of time steps.

タイムステップ論理式生成部33は、例えば、ユーザ入力により指定された作業の見込み時間に基づき、目標タイムステップ数を決定する。この場合、タイムステップ論理式生成部33は、メモリ12又は記憶装置4に記憶された、1タイムステップ当たりの時間幅の情報に基づき、上述の見込み時間から目標タイムステップ数を算出する。他の例では、タイムステップ論理式生成部33は、目的タスクの種類毎に適した目標タイムステップ数を対応付けた情報を予めメモリ12又は記憶装置4に記憶しておき、当該情報を参照することで、実行すべき目的タスクの種類に応じた目標タイムステップ数を決定する。 The timestep logical expression generation unit 33 determines the target number of timesteps based on, for example, the expected time of work designated by user input. In this case, the time step logical expression generation unit 33 calculates the target number of time steps from the above-described estimated time based on the information on the time width per time step stored in the memory 12 or storage device 4 . In another example, the time step logical expression generation unit 33 stores in the memory 12 or the storage device 4 in advance information that associates the target number of time steps suitable for each type of target task, and refers to the information. Thus, the target number of time steps is determined according to the type of target task to be executed.

好適には、タイムステップ論理式生成部33は、目標タイムステップ数を所定の初期値に設定する。そして、タイムステップ論理式生成部33は、制御入力生成部35が制御入力を決定できるタイムステップ論理式Ltsが生成されるまで、目標タイムステップ数を徐々に増加させる。この場合、タイムステップ論理式生成部33は、設定した目標タイムステップ数により制御入力生成部35が最適化処理を行った結果、最適解を導くことができなかった場合、目標タイムステップ数を所定数(1以上の整数)だけ加算する。 Preferably, the timestep logical expression generator 33 sets the target number of timesteps to a predetermined initial value. Then, the time step logical expression generator 33 gradually increases the target number of time steps until the time step logical expression Lts that allows the control input generator 35 to determine the control input is generated. In this case, the time step logical expression generation unit 33 sets the target number of time steps to a predetermined number when the optimization process performed by the control input generation unit 35 fails to lead to the optimum solution. Add by a number (an integer of 1 or more).

このとき、タイムステップ論理式生成部33は、目標タイムステップ数の初期値を、ユーザが見込む目的タスクの作業時間に相当するタイムステップ数よりも小さい値に設定するとよい。これにより、タイムステップ論理式生成部33は、不必要に大きな目標タイムステップ数を設定することを好適に抑制する。 At this time, the time step logical expression generation unit 33 may set the initial value of the target number of time steps to a value smaller than the number of time steps corresponding to the working time of the target task expected by the user. Thereby, the time step logical expression generation unit 33 preferably suppresses setting an unnecessarily large target number of time steps.

(5-4)抽象モデル生成部
抽象モデル生成部34は、状態情報Imと、抽象モデル情報I5とに基づき、抽象モデルΣを生成する。ここで、抽象モデル情報I5には、抽象モデルΣの生成に必要な情報が記録されている。例えば、目的タスクがピックアンドプレイスの場合には、対象物の位置や数、対象物を置く目的地領域の位置、ロボットアーム52の数、搬送機器82の位置及び搬送速度(及び搬送方向)等を特定しない汎用的な形式の抽象モデルが抽象モデル情報I5に記録されている。この抽象モデルは、タイムステップ「k」での作業空間6内の物体の状態とタイムステップ「k+1」での作業空間6内の物体の状態との関係を示した差分方程式により表されてもよい。このとき、差分方程式には、例えば、対象物の位置を示す位置ベクトル、ロボットアーム52の手先の位置を示す位置ベクトルなどが変数として与えられる。
(5-4) Abstract model generator
The abstract model generator 34 generates an abstract model Σ based on the state information Im and the abstract model information I5. Here, information required for generating the abstract model Σ is recorded in the abstract model information I5. For example, if the target task is pick-and-place, the position and number of objects, the position of the destination area where the objects are placed, the number of robot arms 52, the position and transfer speed (and transfer direction) of transfer device 82, etc. is recorded in the abstract model information I5. This abstract model may be represented by a difference equation showing the relationship between the state of objects in workspace 6 at timestep 'k' and the state of objects in workspace 6 at timestep 'k+1'. . At this time, variables such as a position vector indicating the position of the object and a position vector indicating the position of the hand of the robot arm 52 are given to the difference equation.

そして、抽象モデル生成部34は、抽象モデル情報I5に記録された汎用的な形式の抽象モデルに対し、状態情報Imが示す対象物の位置や数、対象物を置く領域の位置、ロボット5の台数等を反映することで、抽象モデルΣを生成する。 Then, the abstract model generation unit 34 generates the position and number of objects indicated by the state information Im, the position of the area where the objects are placed, and the position of the robot 5 for the general-purpose abstract model recorded in the abstract model information I5. An abstract model Σ is generated by reflecting the number of machines.

ここで、ロボット5による目的タスクの作業時においては、作業空間6内のダイナミクスが頻繁に切り替わる。よって、抽象モデル情報I5に記憶された抽象モデルは、このダイナミクスの切り替わりを、論理変数を用いて抽象表現したモデルとなっている。よって、抽象モデル生成部34は、ダイナミクスが切り替わるイベント(動作)を、論理変数を用いて抽象モデルにおいて抽象表現することで、ダイナミクスの切り替わりを好適に抽象モデルにより表現することができる。 Here, when the robot 5 is working on the target task, the dynamics in the work space 6 are frequently switched. Therefore, the abstract model stored in the abstract model information I5 is a model that abstractly expresses this switching of dynamics using logic variables. Therefore, the abstract model generation unit 34 abstractly expresses an event (behavior) in which dynamics are switched in an abstract model using logical variables, so that dynamics switching can be suitably expressed by the abstract model.

例えば、図1及び図5に示す作業空間6では、以下のダイナミクス切替条件が存在する。
(a)「対象物61又は障害物62は、搬送機器82に載ると、搬送機器82の動作速度に基づき一定方向に動く」
(b)「ロボットアーム52が対象物61を掴むと、対象物61は、搬送機器82に載っているか否かに関わらず、ロボットアーム52の動作に基づき動く」
よって、この場合、抽象モデル生成部34は、対象物61又は障害物62が搬送機器82に載るという動作を、論理変数を用いて抽象モデル内で抽象表現すると共に、ロボットアーム52が対象物61を掴むという動作を、論理変数を用いて抽象モデル内で抽象表現する。
For example, in the workspace 6 shown in FIGS. 1 and 5, the following dynamics switching conditions exist.
(a) "When the object 61 or the obstacle 62 is placed on the transport device 82, it moves in a certain direction based on the operating speed of the transport device 82."
(b) "When the robot arm 52 grabs the target object 61, the target object 61 moves based on the motion of the robot arm 52 regardless of whether it is placed on the transfer device 82 or not."
Therefore, in this case, the abstract model generation unit 34 abstractly expresses the motion of placing the object 61 or the obstacle 62 on the carrier device 82 in the abstract model using logical variables, and the robot arm 52 is placed on the object 61 The action of grabbing is abstractly expressed in the abstract model using logical variables.

このように、抽象モデル生成部34は、抽象モデル情報I5を参照し、ダイナミクスの切り替わりが離散値である論理変数により表され、物体の移動が連続値により表されたハイブリッドシステムにより作業空間6内のダイナミクスを抽象化したモデルである抽象モデルΣを設定する。ここで、抽象モデルΣがタイムステップ「k」及び「k+1」での作業空間6内の物体の状態の関係を示した差分方程式により表される場合、当該差分方程式は、物体の状態を表す位置ベクトル等と、ロボット5への制御入力及び周辺装置8への制御入力を表す変数(パラメータ)と、ダイナミクスの切り替わりを示す論理変数とを含んでいる。 In this way, the abstract model generation unit 34 refers to the abstract model information I5, and the hybrid system in which the switching of dynamics is represented by a logical variable that is a discrete value, and the movement of an object is represented by a continuous value. An abstract model Σ, which is an abstracted model of dynamics, is set. Here, when the abstract model Σ is represented by a difference equation showing the relationship between the states of the object in the workspace 6 at time steps “k” and “k+1”, the difference equation represents the position It includes vectors and the like, variables (parameters) representing control inputs to the robot 5 and control inputs to the peripheral device 8, and logical variables representing dynamics switching.

また、抽象モデルΣは、ロボット5全体及び周辺装置8全体の詳細なダイナミクスではなく、抽象化されたダイナミクスを表す。例えば、抽象モデルΣでは、ロボット5について、対象物を実際に把持するロボット5の手先であるロボットハンドのダイナミクスのみが表されてもよい。他の例では、抽象モデルΣでは、周辺装置8の制御入力に応じて搬送機器82に載置された物の位置が変動することが周辺装置8のダイナミクスとして表されてもよい。これにより、制御入力生成部35による最適化処理の計算量を好適に削減することができる。 Also, the abstract model Σ represents not the detailed dynamics of the entire robot 5 and the peripheral device 8 but the abstracted dynamics. For example, the abstract model Σ may represent only the dynamics of the robot hand, which is the hand of the robot 5 that actually grips the object, for the robot 5 . As another example, in the abstract model Σ, the dynamics of the peripheral device 8 may represent that the position of an object placed on the transport device 82 changes according to the control input of the peripheral device 8 . As a result, the calculation amount of optimization processing by the control input generation unit 35 can be suitably reduced.

なお、抽象モデル生成部34は、混合論理動的(MLD:Mixed Logical Dynamical)システムまたはペトリネットやオートマトンなどを組み合わせたハイブリッドシステムのモデルを生成してもよい。 Note that the abstract model generation unit 34 may generate a model of a hybrid system combining a mixed logical dynamic (MLD) system or a petri net, an automaton, or the like.

(5-5)制御入力生成部
制御入力生成部35は、タイムステップ論理式生成部33から供給されるタイムステップ論理式Ltsと、抽象モデル生成部34から供給される抽象モデルΣとに基づき、最適となるタイムステップ毎のロボット5及び周辺装置8に対するタイムステップ毎の制御入力を決定する。この場合、制御入力生成部35は、目的タスクに対する評価関数を定義し、抽象モデルΣ及びタイムステップ論理式Ltsを制約条件として評価関数を最小化する最適化問題を解く。
(5-5) Control input generator
Based on the time step logical expression Lts supplied from the time step logical expression generating unit 33 and the abstract model Σ supplied from the abstract model generating unit 34, the control input generating unit 35 generates the optimal robot 5 for each time step. and the control inputs to the peripheral device 8 for each time step. In this case, the control input generator 35 defines an evaluation function for the target task, and solves an optimization problem of minimizing the evaluation function with the abstract model Σ and the time step logical expression Lts as constraints.

評価関数は、例えば、目的タスクの種類毎に予め定められ、メモリ12又は記憶装置4に記憶されている。評価関数は、ロボット5が費やすエネルギーを最小化するように設計されてもよく、ロボット5及び周辺装置8が費やすエネルギーを最小化するように設計されてもよい。図1及び図5に示す例において、例えば、制御入力生成部35は、対象物61と目的地領域63との距離「d」と、ロボット5に対する制御入力「ukr」と、搬送機器82に対する制御入力「ukp」とが最小となるように評価関数を定める。具体的には、制御入力生成部35は、たとえば、全タイムステップにおける距離dのノルムの2乗と、制御入力ukrのノルムの2乗と、制御入力ukpのノルムの2乗との和を評価関数として定める。この場合、制御入力生成部35は、距離dの項と、制御入力ukrの項と、制御入力ukpの項との夫々に対し、所定の重み付け係数を乗じてもよい。なお、制御入力ukr及び制御入力ukpは、速度であってもよく加速度であってもよい。The evaluation function is determined in advance for each type of target task, and stored in the memory 12 or the storage device 4, for example. The evaluation function may be designed to minimize the energy expended by the robot 5 or may be designed to minimize the energy expended by the robot 5 and the peripheral device 8 . In the example shown in FIGS. 1 and 5, for example, the control input generator 35 generates the distance “d k ” between the target object 61 and the destination region 63 , the control input “u kr ” to the robot 5 , the transport device 82 The evaluation function is determined so that the control input "u kp " for is minimized. Specifically, the control input generation unit 35 generates, for example, the square of the norm of the distance dk , the square of the norm of the control input u kr , and the square of the norm of the control input u kp in all time steps. Define the sum as the evaluation function. In this case, the control input generator 35 may multiply the term of the distance dk , the term of the control input ukr , and the term of the control input ukp by a predetermined weighting factor. The control input u kr and the control input u kp may be velocity or acceleration.

そして、制御入力生成部35は、設定した評価関数に対し、抽象モデルΣ及びタイムステップ論理式Lts(即ち候補φの論理和)を制約条件とする制約付き混合整数最適化問題を解く。ここで、制御入力生成部35は、論理変数を連続値に近似して連続緩和問題とすることで、計算量を削減してもよい。なお、線形論理式(LTL)に代えてSTLを採用した場合には、非線形最適化問題として記述することが可能である。これにより、制御入力生成部35は、ロボット5に対する制御入力ukrと、搬送機器82に対する制御入力ukpとを夫々算出する。Then, the control input generation unit 35 solves a constrained mixed integer optimization problem with the abstract model Σ and the time step logical expression Lts (that is, the logical sum of the candidates φ i ) as constraints for the set evaluation function. Here, the control input generation unit 35 may reduce the amount of calculation by approximating the logical variables to continuous values to form a continuous relaxation problem. It should be noted that when STL is adopted instead of linear logic equations (LTL), it is possible to describe the problem as a nonlinear optimization problem. Thereby, the control input generator 35 calculates the control input ukr for the robot 5 and the control input ukp for the transfer device 82 respectively.

また、制御入力生成部35は、目標タイムステップ数が長い場合(例えば所定の閾値より大きい場合)、最適化に用いるタイムステップ数を、目標タイムステップ数より小さい値(例えば上述の閾値)に設定してもよい。この場合、制御入力生成部35は、例えば、所定のタイムステップ数が経過する毎に、上述の最適化問題を解くことで、逐次的に制御入力ukrと制御入力ukpとを決定する。Further, when the target number of time steps is long (for example, when it is larger than a predetermined threshold value), the control input generation unit 35 sets the number of time steps used for optimization to a value smaller than the target number of time steps (for example, the threshold value described above). You may In this case, the control input generator 35 sequentially determines the control input u kr and the control input u kp by solving the above optimization problem every time a predetermined number of time steps elapses.

好適には、制御入力生成部35は、目的タスクの達成状態に対する中間状態に相当する所定のイベント毎に、上述の最適化問題を解き、使用すべき制御入力ukrと制御入力ukpとを決定してもよい。この場合、制御入力生成部35は、次のイベント発生までのタイムステップ数を、最適化に用いるタイムステップ数に設定する。上述のイベントは、例えば、作業空間6におけるダイナミクスが切り替わる事象である。例えば、ピックアンドプレイスを目的タスクとした場合には、ロボット5が対象物を掴む、ロボット5が運ぶべき複数の対象物のうちの1つの対象物を目的地点へ運び終える、などがイベントとして定められる。イベントは、例えば、目的タスクの種類毎に予め定められており、目的タスクの種類毎にイベントを特定する情報が記憶装置4に記憶されている。Preferably, the control input generation unit 35 solves the above-described optimization problem for each predetermined event corresponding to an intermediate state with respect to the target task achievement state, and determines the control input u kr and the control input u kp to be used. may decide. In this case, the control input generator 35 sets the number of time steps until the occurrence of the next event to the number of time steps used for optimization. The event described above is, for example, an event in which the dynamics in the workspace 6 are switched. For example, when the target task is pick-and-place, events such as the robot 5 picking up an object, finishing carrying one of a plurality of objects to be carried by the robot 5 to a destination point, etc. are defined as events. be done. The event is predetermined, for example, for each type of target task, and information specifying the event for each type of target task is stored in the storage device 4 .

この態様によっても、最適化に用いるタイムステップ数を小さくして最適化問題の計算量等を好適に低減することができる。 Also according to this aspect, the number of time steps used for optimization can be reduced, and the amount of calculation of the optimization problem can be suitably reduced.

(5-6)サブタスクシーケンス生成部
サブタスクシーケンス生成部36は、制御入力生成部35から供給される制御入力情報Icと、アプリケーション情報記憶部41が記憶するサブタスク情報I4とに基づき、サブタスクシーケンスを生成する。この場合、サブタスクシーケンス生成部36は、サブタスク情報I4を参照することで、ロボット5が受け付け可能なサブタスク及び周辺装置8が受付可能なサブタスクを夫々認識する。そして、サブタスクシーケンス生成部36は、制御入力情報Icが示すタイムステップ毎のロボット5への制御入力を、ロボット5のサブタスクに変換し、制御入力情報Icが示すタイムステップ毎の周辺装置8への制御入力を、周辺装置8のサブタスクに変換する。
(5-6) Subtask sequence generator
The subtask sequence generation unit 36 generates a subtask sequence based on the control input information Ic supplied from the control input generation unit 35 and the subtask information I4 stored in the application information storage unit 41 . In this case, the subtask sequence generator 36 recognizes the subtasks that the robot 5 can receive and the subtasks that the peripheral device 8 can receive by referring to the subtask information I4. Then, the subtask sequence generator 36 converts the control input to the robot 5 at each time step indicated by the control input information Ic into a subtask for the robot 5, and the subtask to the peripheral device 8 at each time step indicated by the control input information Ic. Transform control inputs into peripheral 8 subtasks.

例えば、サブタスク情報I4には、ピックアンドプレイスを目的タスクとする場合にロボット5が受け付け可能なサブタスクとして、ロボットハンドの移動(リーチング)とロボットハンドの把持(グラスピング)の2つのサブタスクを示す関数が定義されている。この場合、リーチングを表す関数「Move」は、例えば、当該関数実行前のロボット5の初期状態、当該関数実行後のロボット5の最終状態、及び当該関数の実行に要する所要時間をそれぞれ引数とする関数である。また、グラスピングを表す関数「Grasp」は、例えば、当該関数実行前のロボット5の状態、当該関数実行前の把持対象の対象物の状態、及びダイナミクスの切り替わりを示す論理変数をそれぞれ引数とする関数である。ここで、関数「Grasp」は、論理変数が「1」のときに物を掴む動作を行うこと表し、論理変数が「0」のときに物を放す動作を行うこと表す。この場合、サブタスクシーケンス生成部36は、関数「Move」を、制御入力情報Icが示すタイムステップ毎の制御入力により定まるロボットハンドの軌道に基づき決定し、関数「Grasp」を、制御入力情報Icが示すタイムステップ毎の論理変数の遷移に基づき決定する。 For example, the subtask information I4 includes a function indicating two subtasks of moving the robot hand (reaching) and grasping the robot hand (grasping) as subtasks that the robot 5 can accept when the target task is pick-and-place. is defined. In this case, the function "Move" representing reaching has, for example, the initial state of the robot 5 before executing the function, the final state of the robot 5 after executing the function, and the required time required to execute the function as arguments. is a function. Also, the function "Grasp" representing the grasping has, for example, the state of the robot 5 before execution of the function, the state of the object to be grasped before execution of the function, and logic variables indicating switching of dynamics as arguments. is a function. Here, the function "Grasp" represents the action of grasping an object when the logical variable is "1", and the action of releasing the object when the logical variable is "0". In this case, the subtask sequence generation unit 36 determines the function "Move" based on the trajectory of the robot hand determined by the control input at each time step indicated by the control input information Ic, and determines the function "Grasp" based on the control input information Ic. It is determined based on the transition of logic variables for each time step shown.

そして、サブタスクシーケンス生成部36は、関数「Move」と関数「Grasp」とにより構成されるロボット5のサブタスクシーケンスを生成し、当該サブタスクシーケンスを示す制御信号S4をロボット5に供給する。例えば、目的タスクが「最終的に対象物61が領域Gに存在する」の場合、サブタスクシーケンス生成部36は、ロボットアーム52に対し、関数「Move」、関数「Grasp」、関数「Move」、関数「Grasp」のサブタスクシーケンスを生成する。この場合、ロボットアーム52は、1回目の関数「Move」により搬送機器82上の対象物61の位置まで移動し、1回目の関数「Grasp」により対象物61を把持し、2回目の関数「Move」により目的地領域63まで移動し、2回目の関数「Grasp」により対象物61を目的地領域63に載置する。 The subtask sequence generator 36 then generates a subtask sequence for the robot 5 composed of the function “Move” and the function “Grasp” and supplies the robot 5 with a control signal S4 indicating the subtask sequence. For example, if the target task is "finally, the object 61 exists in the area G", the subtask sequence generator 36 instructs the robot arm 52 to perform the function "Move", the function "Grasp", the function "Move", Create a subtask sequence for the function "Grasp". In this case, the robot arm 52 moves to the position of the target object 61 on the transfer device 82 by the first function "Move", grips the target object 61 by the first function "Grasp", and the second function " Move" to move to the destination area 63, and place the object 61 on the destination area 63 by the second function "Grasp".

同様に、サブタスクシーケンス生成部36は、サブタスク情報I4が示す周辺装置8が実行可能なサブタスクと、制御入力情報Icが示す周辺装置8の時系列の制御入力とに基づき、周辺装置8に実行させるサブタスクシーケンスを生成する。この場合、周辺装置8のサブタスクは、搬送機器82上の物体を移動させる関数(「移動関数」とも呼ぶ。)を少なくとも有する。移動関数は、移動速度又は加速度の少なくとも一方をパラメータとして有し、サブタスクシーケンス生成部36は、制御入力情報Icが示す周辺装置8の時系列の制御入力に基づき、上述のパラメータが指定された移動関数を含むサブタスクシーケンスを生成する。なお、周辺装置8のサブタスクとして、移動関数のみに限らず、移動方向の変換を指示する関数、一時停止を指示する関数などの種々の関数がサブタスク情報I4に登録されていてもよい。 Similarly, the subtask sequence generator 36 causes the peripheral device 8 to execute the subtasks that can be executed by the peripheral device 8 indicated by the subtask information I4 and the time-series control inputs of the peripheral device 8 indicated by the control input information Ic. Generate a subtask sequence. In this case, the subtask of the peripheral device 8 has at least a function for moving the object on the transport device 82 (also called "movement function"). The movement function has at least one of movement speed and acceleration as a parameter, and the subtask sequence generation unit 36 performs movement specified by the above-described parameter based on the time-series control input of the peripheral device 8 indicated by the control input information Ic. Generate subtask sequences containing functions. As subtasks of the peripheral device 8, not only the movement function but also various functions such as a function for instructing a change in movement direction and a function for instructing a pause may be registered in the subtask information I4.

(6)処理フロー
図7は、第1実施形態において制御装置1が実行する制御処理を示すフローチャートの一例である。
(6) Processing flow
FIG. 7 is an example of a flowchart showing control processing executed by the control device 1 in the first embodiment.

まず、制御装置1の状態計測部30は、計測装置7から供給される出力信号S3に基づき、作業空間6内の物体の計測結果を示す状態情報Imを生成する。抽象状態設定部31は、当該状態情報Imに基づき、作業空間6における抽象状態の設定を行う(ステップS11)。次に、目標論理式生成部32は、入力信号S1等により指定された目的タスクから、目標論理式Ltagを決定する(ステップS12)。この場合、目標論理式生成部32は、制約条件情報I2を参照することで、目的タスクの実行における制約条件を、目標論理式Ltagに付加する。なお、ステップS12の処理は、ステップS11よりも前に実行されてもよい。 First, the state measurement unit 30 of the control device 1 generates state information Im indicating the measurement result of the object in the work space 6 based on the output signal S3 supplied from the measurement device 7 . The abstract state setting unit 31 sets the abstract state in the work space 6 based on the state information Im (step S11). Next, the target logical formula generator 32 determines a target logical formula Ltag from the target task specified by the input signal S1 (step S12). In this case, the target logical expression generation unit 32 references the constraint information I2 to add the constraint on the execution of the target task to the target logical expression Ltag. In addition, the process of step S12 may be performed before step S11.

そして、タイムステップ論理式生成部33は、目標論理式Ltagを、各タイムステップでの状態を表すタイムステップ論理式Ltsに変換する(ステップS13)。この場合、タイムステップ論理式生成部33は、目標タイムステップ数を定め、目標タイムステップ数で目標論理式Ltagを満たすような各タイムステップでの状態を表す候補φの論理和を、タイムステップ論理式Ltsとして生成する。この場合、好適には、タイムステップ論理式生成部33は、動作限界情報I3を参照することで、各候補φの実行可能性を判定し、実行不可能と判定される候補φを、タイムステップ論理式Ltsから除外する。 Then, the time step logical expression generator 33 converts the target logical expression Ltag into a time step logical expression Lts representing the state at each time step (step S13). In this case, the time step logical expression generator 33 determines the target number of time steps, and calculates the logical sum of the candidates φ representing the state at each time step that satisfies the target logical expression Ltag with the target number of time steps. Generate as the expression Lts. In this case, preferably, the time step logical expression generation unit 33 refers to the operation limit information I3 to determine the feasibility of each candidate φ, and selects the candidate φ that is determined to be impracticable as the time step Exclude from logical expression Lts.

次に、抽象モデル生成部34は、ステップS11で生成した状態情報Imと、抽象モデル情報I5とに基づき、目的タスクに適した抽象モデルΣを決定する(ステップS14)。この抽象モデルΣは、ロボット5又は周辺装置8に関するダイナミクス切替条件の成否によるダイナミクスの切り替えを離散値により表したハイブリッドシステムとなる。そして、制御入力生成部35は、抽象モデルΣ及びタイムステップ論理式Ltsを満たし、評価関数を最適化するロボット5の制御入力及び周辺装置8の制御入力を決定する(ステップS15)。そして、サブタスクシーケンス生成部36は、制御入力生成部35が決定した制御入力からロボット5及び周辺装置8に夫々実行させるサブタスクシーケンスを決定し、ロボット5及び周辺装置8に夫々出力する(ステップS16)。この場合、サブタスクシーケンス生成部36は、ロボット5のサブタスクシーケンスを示す制御信号S4を、インターフェース13を介してロボット5へ送信し、周辺装置8のサブタスクシーケンスを示す制御信号S5を、インターフェース13を介して周辺装置8へ送信する。 Next, the abstract model generator 34 determines an abstract model Σ suitable for the target task based on the state information Im generated in step S11 and the abstract model information I5 (step S14). This abstract model Σ is a hybrid system that expresses dynamics switching according to the success or failure of the dynamics switching conditions for the robot 5 or the peripheral device 8 using discrete values. Then, the control input generator 35 determines the control input of the robot 5 and the control input of the peripheral device 8 that satisfy the abstract model Σ and the time step logical expression Lts and optimize the evaluation function (step S15). Then, the subtask sequence generator 36 determines a subtask sequence to be executed by the robot 5 and the peripheral device 8 from the control input determined by the control input generator 35, and outputs the subtask sequence to the robot 5 and the peripheral device 8 (step S16). . In this case, the subtask sequence generator 36 transmits the control signal S4 indicating the subtask sequence of the robot 5 to the robot 5 via the interface 13, and transmits the control signal S5 indicating the subtask sequence of the peripheral device 8 via the interface 13. to the peripheral device 8.

(7)変形例
図4に示すプロセッサ11の機能ブロックの構成は一例であり、種々の変更がなされてもよい。例えば、プロセッサ11が状態計測部30を有する代わりに、計測装置7が状態計測部30に相当する機能を有し、状態情報Imの生成及び状態情報Imの制御装置1への供給を行ってもよい。他の例では、ロボット5及び周辺装置8に命令する動作のシーケンスの候補φの情報が記憶装置4に予め記憶され、制御装置1は、当該情報に基づき、制御入力生成部35の最適化処理を実行する。これにより、制御装置1は、最適な候補φの選定とロボット5及び周辺装置8の制御入力の決定を行う。この場合、制御装置1は、抽象状態設定部31、目標論理式生成部32及びタイムステップ論理式生成部33に相当する機能を有しなくともよい。また、図4に示すプロセッサ11の一部の機能ブロックの実行結果に関する情報が予めアプリケーション情報記憶部41に記憶されていてもよい。
(7) Modification
The configuration of the functional blocks of the processor 11 shown in FIG. 4 is an example, and various modifications may be made. For example, instead of the processor 11 having the state measuring unit 30, the measuring device 7 may have a function corresponding to the state measuring unit 30 to generate the state information Im and supply the state information Im to the control device 1. good. In another example, the information of the candidate φ of the motion sequence to be commanded to the robot 5 and the peripheral device 8 is stored in advance in the storage device 4, and the control device 1 optimizes the control input generator 35 based on the information. to run. Thereby, the control device 1 selects the optimum candidate φ and determines the control input of the robot 5 and the peripheral device 8 . In this case, the control device 1 does not have to have functions corresponding to the abstract state setting section 31 , the target logical expression generating section 32 and the time step logical expression generating section 33 . Further, information about execution results of some functional blocks of the processor 11 shown in FIG. 4 may be stored in the application information storage unit 41 in advance.

<第2実施形態>
図8は、第2実施形態における制御装置1Aの概略構成図である。第2実施形態における制御装置1Aは、サブタスクシーケンスに従い動作中のロボット5及び周辺装置8の状態を監視し、ロボット5及び周辺装置8が夫々与えられたサブタスクシーケンスを実行するために必要な調整を行う点で、第1実施形態と異なる。以後では、第1実施形態と同一の構成要素については第1実施形態と同一の符号を付し、その説明を省略する。
<Second embodiment>
FIG. 8 is a schematic configuration diagram of the control device 1A in the second embodiment. The control device 1A in the second embodiment monitors the states of the robot 5 and the peripheral device 8 during operation according to the subtask sequence, and makes adjustments necessary for the robot 5 and the peripheral device 8 to execute given subtask sequences. It differs from the first embodiment in that it is performed. Henceforth, the code|symbol same as 1st Embodiment is attached|subjected about the component same as 1st Embodiment, and the description is abbreviate|omitted.

制御装置1Aは、第1実施形態において説明した図2に示すハードウェア構成を有する。そして、図8に示すように、制御装置1Aのプロセッサ11は、機能的には、状態計測部30と、動作シーケンス生成部37と、統合制御部38とを有する。 The control device 1A has the hardware configuration shown in FIG. 2 described in the first embodiment. As shown in FIG. 8, the processor 11 of the control device 1A functionally includes a state measuring section 30, an operation sequence generating section 37, and an integrated control section .

状態計測部30は、出力信号S3と物体モデル情報I6とに基づき、第1実施形態の状態計測部30と同一処理を行うことで状態情報Imを生成し、状態情報Imを動作シーケンス生成部37と統合制御部38とに夫々供給する。なお、状態計測部30に相当する処理を、計測装置7が実行してもよい。 Based on the output signal S3 and the object model information I6, the state measurement unit 30 generates state information Im by performing the same processing as the state measurement unit 30 of the first embodiment, and sends the state information Im to the operation sequence generation unit 37. and the integrated control unit 38, respectively. Note that the processing corresponding to the state measuring unit 30 may be executed by the measuring device 7 .

動作シーケンス生成部37は、アプリケーション情報記憶部41に記憶された各種情報と、状態情報Imとに基づき、ロボット5に実行させるサブタスクシーケンス(「ロボット動作シーケンスSr」とも呼ぶ。)と、周辺装置8に実行させるサブタスクシーケンス(「周辺装置動作シーケンスSp」とも呼ぶ。)とを夫々生成する。ここで、動作シーケンス生成部37は、第1実施形態における図4に示す抽象状態設定部31、目標論理式生成部32、タイムステップ論理式生成部33、抽象モデル生成部34、制御入力生成部35及びサブタスクシーケンス生成部36に相当する機能を有する。 The motion sequence generation unit 37 generates a subtask sequence (also referred to as “robot motion sequence Sr”) to be executed by the robot 5 and the peripheral device 8 based on various information stored in the application information storage unit 41 and the state information Im. A subtask sequence (also referred to as a "peripheral device operation sequence Sp") to be executed by each is generated. Here, the operation sequence generation unit 37 includes the abstract state setting unit 31, the target logical expression generation unit 32, the time step logical expression generation unit 33, the abstract model generation unit 34, and the control input generation unit shown in FIG. 4 in the first embodiment. 35 and a subtask sequence generation unit 36 .

統合制御部38は、ロボット動作シーケンスSrと、周辺装置動作シーケンスSpと、状態情報Imと、ロボット5から送信される状態信号「S6」と、周辺装置8から送信される状態信号「S7」とに基づき、ロボット5及び周辺装置8の制御を行う。ここで、状態信号S6は、ロボット5の状態を検出するセンサの出力信号又はロボット制御部51が生成したロボット5の状態を示す信号である。状態信号S7は、周辺装置8の状態を検出するセンサの出力信号又は周辺装置制御部81が生成した周辺装置8の状態を示す信号である。これらの状態信号は、ロボット5及び周辺装置8のサブタスクの進捗度合を直接的又は間接的に示す情報である。 The integrated control unit 38 controls the robot operation sequence Sr, the peripheral device operation sequence Sp, the state information Im, the state signal "S6" transmitted from the robot 5, the state signal "S7" transmitted from the peripheral device 8, and the The robot 5 and the peripheral device 8 are controlled based on. Here, the state signal S6 is an output signal of a sensor that detects the state of the robot 5 or a signal indicating the state of the robot 5 generated by the robot control section 51 . The state signal S7 is an output signal of a sensor that detects the state of the peripheral device 8 or a signal indicating the state of the peripheral device 8 generated by the peripheral device control section 81 . These status signals are information that directly or indirectly indicate the degree of progress of the subtasks of the robot 5 and the peripheral device 8 .

統合制御部38は、ロボット5及び周辺装置8による動作シーケンスの実行中に計測されたロボット5及び周辺装置8の状態(「計測状態」とも呼ぶ。)と、動作シーケンスの通りに動作した場合に予測されるロボット5及び周辺装置8の状態(「予測状態」とも呼ぶ。)とを比較する。なお、統合制御部38は、計測状態を、状態信号S6及び状態信号S7、又は、状態情報Imの少なくともいずれかに基づいて推定する。そして、統合制御部38は、上述の計測状態が予測状態と整合しない場合には、上述の計測状態と予測状態とを近付けるようにロボット5及び周辺装置8の少なくとも一方の制御を行う。 The integrated control unit 38 controls the state of the robot 5 and the peripheral device 8 measured during execution of the action sequence by the robot 5 and the peripheral device 8 (also referred to as "measured state"), and The predicted states of the robot 5 and the peripheral device 8 (also referred to as "predicted states") are compared. Note that the integrated control unit 38 estimates the measurement state based on at least one of the state signal S6 and the state signal S7, or the state information Im. Then, when the above-described measured state does not match the predicted state, the integrated control unit 38 controls at least one of the robot 5 and the peripheral device 8 so that the above-described measured state and predicted state are brought closer to each other.

図9は、第2実施形態において制御装置1Aが実行するロボット5及び周辺装置8の制御処理を示すフローチャートの一例である。なお、図9のフローチャートでは、状態計測部30は、計測装置7から供給される出力信号S3に基づき、状態情報Imを常時生成しているものとする。 FIG. 9 is an example of a flowchart showing control processing of the robot 5 and the peripheral device 8 executed by the control device 1A in the second embodiment. In addition, in the flowchart of FIG. 9, the state measurement part 30 always generates the state information Im based on the output signal S3 supplied from the measuring device 7 .

まず、動作シーケンス生成部37は、状態情報Imと、アプリケーション情報とに基づき、ロボット動作シーケンスSr及び周辺装置動作シーケンスSpを夫々生成する。統合制御部38は、ロボット動作シーケンスSrを示す制御信号S4をロボット5に送信し、周辺装置動作シーケンスSpを示す制御信号S5を周辺装置8に送信する(ステップS21)。 First, the motion sequence generator 37 generates the robot motion sequence Sr and the peripheral device motion sequence Sp based on the state information Im and the application information. The integrated control unit 38 transmits a control signal S4 indicating the robot operation sequence Sr to the robot 5, and transmits a control signal S5 indicating the peripheral device operation sequence Sp to the peripheral device 8 (step S21).

その後、統合制御部38は、ロボット5及び周辺装置8の各状態を計測する(ステップS22)。この場合、統合制御部38は、状態信号S6又は状態情報Imの少なくとも一方によりロボット5の計測状態を認識し、状態信号S7又は状態情報Imの少なくとも一方により周辺装置8の計測状態を認識する。 After that, the integrated control unit 38 measures each state of the robot 5 and the peripheral device 8 (step S22). In this case, the integrated control unit 38 recognizes the measurement state of the robot 5 from at least one of the state signal S6 and the state information Im, and recognizes the measurement state of the peripheral device 8 from at least one of the state signal S7 and the state information Im.

次に、統合制御部38は、ロボット5及び周辺装置8の計測状態が動作シーケンスに基づき予測される予測状態と整合するか否か判定する(ステップS23)。この場合、第1の例では、統合制御部38は、上述の計測状態及び予測状態として、ロボット5及び周辺装置8の位置の計測及び予測を行う。そして、統合制御部38は、これらの位置の差(即ち距離)が所定差以内の場合に、計測状態が予測状態と整合すると判定する。この場合、ロボット5及び周辺装置8の位置に加えて、姿勢を勘案して計測状態が予測状態と整合するか否か判定してもよい。第2の例では、統合制御部38は、計測状態として、状態信号S6、S7に基づき、動作シーケンスの実際の進捗度合(例えばサブタスクが完了した数又は割合)を認識し、予測状態として、動作シーケンスの現在に相当するタイムステップでの予想される進捗度合を認識する。そして、統合制御部38は、これらの進捗度合が一致する場合に、計測状態が予測状態と整合すると判定する。 Next, the integrated control unit 38 determines whether or not the measured states of the robot 5 and the peripheral device 8 match the predicted states predicted based on the operation sequence (step S23). In this case, in the first example, the integrated control unit 38 measures and predicts the positions of the robot 5 and the peripheral device 8 as the aforementioned measurement state and prediction state. Then, the integrated control unit 38 determines that the measured state matches the predicted state when the difference between these positions (that is, the distance) is within a predetermined difference. In this case, in addition to the positions of the robot 5 and the peripheral device 8, it may be determined whether or not the measured state matches the predicted state in consideration of the posture. In a second example, the integrated control unit 38 recognizes the actual progress of the operation sequence (for example, the number or rate of completed subtasks) as the measurement state based on the state signals S6 and S7, and recognizes the operation sequence as the prediction state. Recognize the expected progress at the current timestep of the sequence. Then, the integrated control unit 38 determines that the measured state matches the predicted state when these progress degrees match.

そして、統合制御部38は、ロボット5及び周辺装置8の計測状態が動作シーケンスに基づく予測状態と整合しない場合(ステップS23;No)、制御信号S4又は制御信号S5の少なくともいずれかの生成及び出力を行う(ステップS25)。これにより、統合制御部38は、ロボット5及び周辺装置8の状態が動作シーケンスに基づく予測状態と整合するように、ロボット5又は周辺装置8の少なくともいずれかを制御する。ステップS25の具体的な態様については後述する。 If the measured states of the robot 5 and the peripheral device 8 do not match the predicted state based on the operation sequence (step S23; No), the integrated control unit 38 generates and outputs at least one of the control signal S4 and the control signal S5. (step S25). Thereby, the integrated control unit 38 controls at least one of the robot 5 and the peripheral device 8 so that the state of the robot 5 and the peripheral device 8 matches the predicted state based on the operation sequence. A specific aspect of step S25 will be described later.

一方、ロボット5及び周辺装置8の計測状態が動作シーケンスに基づく予測状態と整合する場合(ステップS23;Yes)、又はステップS25の実行後、制御装置1Aは、目的タスクが完了したか否か判定する(ステップS24)。制御装置1Aは、例えば、計測装置7から供給される出力信号S3に基づき対象物等の状態を認識することで、目的タスクの完了の有無を判定する。他の例では、制御装置1Aは、ロボット5からロボット動作シーケンスSrの正常終了を示す状態信号S6を受信した場合に、目的タスクが完了したと判定する。なお、制御装置1Aは、ロボット動作シーケンスSrの正常終了を示す状態信号S6及び周辺装置動作シーケンスSpの正常終了を示す状態信号S7の両方を受信した場合に、目的タスクが完了したと判定してもよい。 On the other hand, if the measured states of the robot 5 and the peripheral device 8 match the predicted states based on the operation sequence (step S23; Yes), or after step S25 is executed, the control device 1A determines whether the target task has been completed. (step S24). The control device 1A determines whether or not the target task has been completed, for example, by recognizing the state of the object based on the output signal S3 supplied from the measuring device 7 . In another example, the control device 1A determines that the target task has been completed when the state signal S6 indicating the normal completion of the robot operation sequence Sr is received from the robot 5 . The control device 1A determines that the target task has been completed when it receives both the state signal S6 indicating the normal end of the robot operation sequence Sr and the state signal S7 indicating the normal end of the peripheral device operation sequence Sp. good too.

ここで、ステップS25の処理について補足説明する。 Here, the processing of step S25 will be supplementarily explained.

第1の例では、統合制御部38は、ロボット5及び周辺装置8の少なくともいずれかの状態が動作シーケンスに基づき予測される状態よりも遅延している場合に、当該遅延分だけ全体の動作シーケンスの完了タイミングをずらすための制御信号S4又は制御信号S5の少なくともいずれかを生成する。これにより、統合制御部38は、ロボット5又は周辺装置8のいずれかの動作遅延が生じていることに起因してロボット5と周辺装置8のタイミングの同期が必要な作業が実行できなくなるのを好適に抑制する。この場合、例えば、統合制御部38は、上述の遅延分を考慮した新たな各サブタスクの実行タイミングを示す情報を制御信号S4又は制御信号S5に含める。この場合、統合制御部38は、ロボット5又は周辺装置8のうち他方よりも動作が進んでいる方に対し、ロボット5及び周辺装置8の動作遅延時間分だけ動作タイミングを遅延させることを指示してもよい。さらに別の例では、統合制御部38は、新たな各サブタスクの実行タイミングを反映した動作シーケンスを、制御信号S4又は制御信号S5によりロボット5及び周辺装置8に通知してもよい。なお、統合制御部38は、ロボット5と周辺装置8の動作タイミングの調整では目的タスクが完了できないと判定した場合には、動作シーケンス生成部37に対して動作シーケンスの再生成の指示を行ってもよい。 In the first example, when the state of at least one of the robot 5 and the peripheral device 8 is delayed from the state predicted based on the operation sequence, the integrated control unit 38 controls the entire operation sequence by the amount of the delay. At least one of the control signal S4 and the control signal S5 is generated for shifting the completion timing of . As a result, the integrated control unit 38 can prevent an operation that requires timing synchronization between the robot 5 and the peripheral device 8 from being unable to execute due to the operation delay of either the robot 5 or the peripheral device 8. Suppress preferably. In this case, for example, the integrated control unit 38 includes, in the control signal S4 or the control signal S5, information indicating the execution timing of each new subtask in consideration of the delay described above. In this case, the integrated control unit 38 instructs the one of the robot 5 and the peripheral device 8 whose motion is more advanced than the other to delay the motion timing by the motion delay time of the robot 5 and the peripheral device 8. may In still another example, the integrated control unit 38 may notify the robot 5 and the peripheral device 8 of the operation sequence reflecting the execution timing of each new subtask by using the control signal S4 or the control signal S5. When the integrated control unit 38 determines that the target task cannot be completed by adjusting the operation timings of the robot 5 and the peripheral device 8, it instructs the operation sequence generation unit 37 to regenerate the operation sequence. good too.

第2の例では、統合制御部38は、ロボット5又は周辺装置8のいずれかが停止したことを計測した場合、ロボット5及び周辺装置8の計測状態が動作シーケンスに基づく予測状態と整合しないと直ちに判定する。この場合、例えば、統合制御部38は、停止していない方に対して制御信号を送信し、動作の停止を指示する。他の例では、統合制御部38は、動作シーケンス生成部37に対して動作シーケンスの再生成の指示を行ってもよく、異常が発生した旨を管理者に対して通知するための警告を出力してもよい。 In the second example, when the integrated control unit 38 measures that either the robot 5 or the peripheral device 8 has stopped, the measured state of the robot 5 and the peripheral device 8 does not match the predicted state based on the operation sequence. Judge immediately. In this case, for example, the integrated control unit 38 transmits a control signal to the one that has not stopped, instructing it to stop the operation. In another example, the integrated control unit 38 may instruct the operation sequence generation unit 37 to regenerate the operation sequence, and output a warning to notify the administrator that an abnormality has occurred. You may

以上のように、第2実施形態によれば、制御装置1Aは、サブタスクシーケンスの生成後にロボット5及び周辺装置8が夫々与えられたサブタスクシーケンスに従い動作しているか否か監視し、サブタスクシーケンスに従い動作するようにロボット5及び周辺装置8を制御することができる。 As described above, according to the second embodiment, the control device 1A monitors whether the robot 5 and the peripheral device 8 are operating according to the given subtask sequences after generating the subtask sequences, and operates according to the subtask sequences. The robot 5 and the peripheral device 8 can be controlled to do so.

<第3実施形態>
図10は、第3実施形態における制御装置1Bの概略構成図である。第3実施形態における制御装置1Bは、サブタスクシーケンスの計算中も搬送機器82により対象物61及び障害物62が移動することを勘案し、サブタスクシーケンスの計算時間を考慮してサブタスクシーケンスの生成を行う点において、第1実施形態と異なる。以後では、第1実施形態と同一の構成要素については第1実施形態と同一の符号を付し、その説明を省略する。
<Third Embodiment>
FIG. 10 is a schematic configuration diagram of the control device 1B in the third embodiment. The control device 1B in the third embodiment generates a subtask sequence taking into account the fact that the object 61 and the obstacle 62 are moved by the transport device 82 even during the calculation of the subtask sequence, taking into account the calculation time of the subtask sequence. This differs from the first embodiment in that respect. Henceforth, the code|symbol same as 1st Embodiment is attached|subjected about the component same as 1st Embodiment, and the description is abbreviate|omitted.

制御装置1Bは、第1実施形態において説明した図2に示すハードウェア構成を有する。そして、図10に示すように、制御装置1Bのプロセッサ11は、機能的には、状態計測部30と、動作シーケンス生成部37と、状態予測部39とを有する。 The control device 1B has the hardware configuration shown in FIG. 2 described in the first embodiment. As shown in FIG. 10, the processor 11 of the control device 1B functionally includes a state measuring section 30, an operation sequence generating section 37, and a state predicting section 39. As shown in FIG.

状態計測部30は、出力信号S3と物体モデル情報I6とに基づき、第1実施形態の状態計測部30と同一処理を行うことで状態情報Imを生成し、状態情報Imを状態予測部39に供給する。なお、状態計測部30に相当する処理を、計測装置7が実行してもよい。 Based on the output signal S3 and the object model information I6, the state measurement unit 30 generates state information Im by performing the same processing as the state measurement unit 30 of the first embodiment, and sends the state information Im to the state prediction unit 39. supply. Note that the processing corresponding to the state measuring unit 30 may be executed by the measuring device 7 .

状態予測部39は、状態情報Imに基づき、所定時間(「計算考慮時間」とも呼ぶ。)経過後の作業空間6の物体の状態を示す情報(「予測状態情報Imp」とも呼ぶ。)を生成する。上述の計算考慮時間は、動作シーケンス生成部37によるサブタスクシーケンスの算出に要すると予測される計算時間であり、予めメモリ12又は記憶装置4に記憶されている。 Based on the state information Im, the state prediction unit 39 generates information (also called “predicted state information Imp”) indicating the state of the object in the work space 6 after a predetermined time (also called “calculation consideration time”) has elapsed. do. The calculation consideration time mentioned above is the calculation time expected to be required for calculation of the subtask sequence by the action sequence generator 37 and is stored in advance in the memory 12 or the storage device 4 .

この場合、状態予測部39は、状態情報Imが示す各物体の状態のうち、少なくとも搬送機器82に載っている物体(図1では対象物61及び障害物62であり、「載置物」とも呼ぶ。)の所定時間経過後の状態を予測する。そして、状態予測部39は、予測した載置物の状態に基づき状態情報Imを更新した予測状態情報Impを生成する。例えば、状態予測部39は、周辺装置8から供給される搬送速度に関する状態信号S7に基づき、サブタスクシーケンスの算出中での周辺装置8の搬送速度を予測し、予測した搬送速度と計算考慮時間とに基づき、載置物の計算考慮時間経過後の状態を予測する。 In this case, the state prediction unit 39 predicts at least the objects placed on the conveying device 82 (the object 61 and the obstacle 62 in FIG. ) after a predetermined time has elapsed. Then, the state prediction unit 39 generates predicted state information Imp by updating the state information Im based on the predicted state of the placed object. For example, the state prediction unit 39 predicts the transport speed of the peripheral device 8 during calculation of the subtask sequence based on the state signal S7 related to the transport speed supplied from the peripheral device 8, and calculates the estimated transport speed and the calculation consideration time. Based on this, the state of the placed object after the calculation consideration time has elapsed is predicted.

なお、状態予測部39は、上述の予測に用いる周辺装置8の搬送速度を、アプリケーション情報記憶部41に記憶された周辺装置8の搬送速度の限界値若しくは過去の平均値等に基づき決定してもよい。また、状態予測部39は、周辺装置8が動作中の状態情報Imに基づき周辺装置8の搬送速度を推定してもよい。また、状態予測部39は、搬送速度と同様に、搬送方向を、状態信号S7、状態情報Im、又はアプリケーション情報の少なくともいずれかに基づき認識する。また、状態予測部39は、載置物以外の物体(例えばロボット5)が移動中である場合には、当該物体についても所定時間後の状態を予測し、その予測結果を予測状態情報Impに反映してもよい。この場合、状態予測部39は、予測状態情報Impの生成前の所定時間内に計測装置7が取得した時系列の画像を用いて、画像の差分によるオプティカルフローなどに基づく動物体の検出及び移動速度の算出を行ってもよい。 The state prediction unit 39 determines the transport speed of the peripheral device 8 used for the above prediction based on the limit value or the past average value of the transport speed of the peripheral device 8 stored in the application information storage unit 41. good too. Further, the state prediction unit 39 may estimate the transport speed of the peripheral device 8 based on the state information Im when the peripheral device 8 is in operation. The state prediction unit 39 also recognizes the conveying direction based on at least one of the state signal S7, the state information Im, and the application information, like the conveying speed. Further, when an object other than the placed object (for example, the robot 5) is in motion, the state prediction unit 39 also predicts the state of the object after a predetermined period of time, and reflects the prediction result in the predicted state information Imp. You may In this case, the state prediction unit 39 uses time-series images acquired by the measuring device 7 within a predetermined period of time before generation of the predicted state information Imp to detect and move a moving object based on optical flow or the like based on image differences. A speed calculation may be performed.

動作シーケンス生成部37は、アプリケーション情報記憶部41に記憶された各種情報と、予測状態情報Impとに基づき、ロボット5に実行させるロボット動作シーケンスSrと、周辺装置8に実行させる周辺装置動作シーケンスSpとを夫々生成する。そして、動作シーケンス生成部37は、ロボット動作シーケンスSrを示す制御信号S4をロボット5に送信し、周辺装置動作シーケンスSpを示す制御信号S5を周辺装置8に送信する。動作シーケンス生成部37は、第1実施形態における図4に示す抽象状態設定部31、目標論理式生成部32、タイムステップ論理式生成部33、抽象モデル生成部34、制御入力生成部35及びサブタスクシーケンス生成部36に相当する機能を有する。 The motion sequence generation unit 37 generates a robot motion sequence Sr to be executed by the robot 5 and a peripheral device motion sequence Sp to be executed by the peripheral device 8 based on the various information stored in the application information storage unit 41 and the predicted state information Imp. and respectively. The operation sequence generator 37 then transmits a control signal S4 indicating the robot operation sequence Sr to the robot 5, and transmits a control signal S5 indicating the peripheral device operation sequence Sp to the peripheral device 8. FIG. The operation sequence generation unit 37 includes the abstract state setting unit 31, the target logical expression generation unit 32, the time step logical expression generation unit 33, the abstract model generation unit 34, the control input generation unit 35, and the subtasks shown in FIG. 4 in the first embodiment. It has a function corresponding to the sequence generator 36 .

図11は、第3実施形態において制御装置1Bが実行するロボット5及び周辺装置8の制御処理を示すフローチャートの一例である。 FIG. 11 is an example of a flowchart showing control processing of the robot 5 and the peripheral device 8 executed by the control device 1B in the third embodiment.

まず、状態計測部30は、計測装置7から供給される出力信号S3に基づき、作業空間6内の物体の計測結果を示す状態情報Imを生成する(ステップS31)。そして、状態予測部39は、状態情報Imに基づき、計算考慮時間経過後の作業空間6の各物体の状態を示す予測状態情報Impを生成する(ステップS32)。そして、動作シーケンス生成部37は、予測状態情報Imp及びアプリケーション情報に基づき、ロボット動作シーケンスSr及び周辺装置動作シーケンスSpを生成し、これらの動作シーケンスをロボット5及び周辺装置8に出力する(ステップS33)。この場合、動作シーケンス生成部37は、動作シーケンスの算出時間を考慮したロボット動作シーケンスSrを示す制御信号S4をロボット5に供給し、動作シーケンスの算出時間を考慮した周辺装置動作シーケンスSpを示す制御信号S5を周辺装置8に供給する。 First, based on the output signal S3 supplied from the measuring device 7, the state measurement unit 30 generates state information Im indicating the measurement result of the object in the work space 6 (step S31). Based on the state information Im, the state prediction unit 39 generates predicted state information Imp indicating the state of each object in the work space 6 after the calculation consideration time has elapsed (step S32). Then, the motion sequence generator 37 generates the robot motion sequence Sr and the peripheral device motion sequence Sp based on the predicted state information Imp and the application information, and outputs these motion sequences to the robot 5 and the peripheral device 8 (step S33). ). In this case, the operation sequence generator 37 supplies the robot 5 with a control signal S4 indicating the robot operation sequence Sr in which the operation sequence calculation time is taken into account, and controls the control signal S4 to indicate the peripheral device operation sequence Sp in consideration of the operation sequence calculation time. A signal S5 is provided to the peripheral device 8;

なお、第3実施形態は第2実施形態と組み合わせてもよい。この場合、図10に示すプロセッサ11は、統合制御部38としてさらに機能し、ロボット5及び周辺装置8の状態がサブタスクシーケンスに基づく予測状態と整合するためのロボット5及び周辺装置8の制御を行う。 Note that the third embodiment may be combined with the second embodiment. In this case, the processor 11 shown in FIG. 10 further functions as an integrated control unit 38 and controls the robot 5 and the peripheral device 8 so that the state of the robot 5 and the peripheral device 8 matches the predicted state based on the subtask sequence. .

<第4実施形態>
図12は、第4実施形態における制御装置1Cの概略構成図である。図12に示すように、制御装置1Cは、動作シーケンス生成手段37Cを有する。
<Fourth Embodiment>
FIG. 12 is a schematic configuration diagram of a control device 1C in the fourth embodiment. As shown in FIG. 12, the control device 1C has an operation sequence generator 37C.

動作シーケンス生成手段37Cは、タスクを実行するロボットの動き特性を示すロボット動作情報「Ir」と、タスクに関する物の受け渡しをロボットと行う周辺装置の動き特性を示す周辺装置情報「Ip」とに基づき、ロボット及び周辺装置の夫々が実行すべき動作を示す動作シーケンス「Sra」、「Spa」を生成する。 The motion sequence generating means 37C is based on the robot motion information "Ir" indicating the motion characteristics of the robot that executes the task, and the peripheral device information "Ip" indicating the motion characteristics of the peripheral device that performs the task-related transfer with the robot. , motion sequences “Sra” and “Spa” indicating motions to be executed by the robot and the peripheral device, respectively.

この場合、「ロボット」は、物を用いてタスクを実行する任意の種類のロボットである。また、「周辺装置」は、タスクに関する物の受け渡しをロボットと行う装置であり、物を搬送するコンベアなどの搬送装置又はAGVであってもよく、組立工場等においてロボットと工具又は部品の受け渡しを行う産業用装置であってもよい。「対象物」は、ロボットと周辺装置とで受け渡しが行われる物を指し、工具、部品(部材)、又はこれらを収容するケースなどが該当する。 In this context, a "robot" is any kind of robot that uses objects to perform tasks. In addition, the "peripheral device" is a device that transfers objects related to a task to a robot. It may be an industrial device that performs The "object" refers to an object to be transferred between the robot and the peripheral device, and corresponds to a tool, a part (member), or a case that accommodates these.

ロボット動作情報Irは、第1~第3実施形態におけるアプリケーション情報のうちロボット5の動き特性に関する情報(例えば、制約条件情報I2、動作限界情報I3、サブタスク情報I4、抽象モデル情報I5)である。また、周辺装置情報Ipは、第1~第3実施形態におけるアプリケーション情報のうち周辺装置8の動き特性に関する情報(例えば、制約条件情報I2、動作限界情報I3、サブタスク情報I4、抽象モデル情報I5)である。動作シーケンス生成手段37Cは、例えば、第1実施形態における抽象状態設定部31、目標論理式生成部32、タイムステップ論理式生成部33、抽象モデル生成部34、制御入力生成部35及びサブタスクシーケンス生成部36により構成される。また、動作シーケンス生成手段37Cは、第2実施形態または第3実施形態における動作シーケンス生成部37であってもよい。動作シーケンスSra、Spaは、第1実施形態においてサブタスクシーケンス生成部36が生成するサブタスクシーケンス、又は、第2実施形態又は第3実施形態において動作シーケンス生成部37が生成するロボット動作シーケンスSr、周辺装置動作シーケンスSpとすることができる。 The robot motion information Ir is information on the motion characteristics of the robot 5 among the application information in the first to third embodiments (for example, constraint information I2, motion limit information I3, subtask information I4, and abstract model information I5). Further, the peripheral device information Ip is information about motion characteristics of the peripheral device 8 among the application information in the first to third embodiments (for example, constraint condition information I2, motion limit information I3, subtask information I4, abstract model information I5). is. The operation sequence generating means 37C includes, for example, the abstract state setting unit 31, the target logical expression generating unit 32, the time step logical expression generating unit 33, the abstract model generating unit 34, the control input generating unit 35, and the subtask sequence generating unit in the first embodiment. It is composed of a part 36 . Also, the operation sequence generating means 37C may be the operation sequence generating section 37 in the second embodiment or the third embodiment. The motion sequences Sra and Spa are the subtask sequences generated by the subtask sequence generator 36 in the first embodiment, or the robot motion sequences Sr generated by the motion sequence generator 37 in the second or third embodiment, and the peripheral devices. It can be an operation sequence Sp.

図13は、第4実施形態において制御装置1Cが実行するフローチャートの一例である。動作シーケンス生成手段37Cは、ロボット動作情報Irと、周辺装置情報Ipとに基づき、ロボット及び周辺装置の夫々が実行すべき動作を示す動作シーケンスSra、Spaを生成する(ステップS31)。 FIG. 13 is an example of a flowchart executed by the control device 1C in the fourth embodiment. Based on the robot motion information Ir and the peripheral device information Ip, the motion sequence generating means 37C generates motion sequences Sra and Spa indicating motions to be executed by the robot and the peripheral device, respectively (step S31).

第4実施形態の構成によれば、制御装置1Cは、タスクを実行するために必要なロボット及び周辺装置の動作シーケンスを好適に生成することができる。 According to the configuration of the fourth embodiment, the control device 1C can suitably generate the motion sequence of the robot and peripheral devices necessary for executing the task.

なお、上述した各実施形態において、プログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータであるプロセッサ等に供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 Note that in each of the above-described embodiments, the program can be stored using various types of non-transitory computer readable media and supplied to a processor or the like that is a computer. Non-transitory computer-readable media include various types of tangible storage media. Examples of non-transitory computer-readable media include magnetic recording media (eg, flexible discs, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/W, semiconductor memory (eg, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be delivered to the computer on various types of transitory computer readable medium. Examples of transitory computer-readable media include electrical signals, optical signals, and electromagnetic waves. Transitory computer-readable media can deliver the program to the computer via wired channels, such as wires and optical fibers, or wireless channels.

その他、上記の各実施形態の一部又は全部は、以下の付記のようにも記載され得るが以下には限られない。 In addition, part or all of each of the above-described embodiments can be described as the following supplementary remarks, but is not limited to the following.

[付記1]
タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段
を有する制御装置。
[Appendix 1]
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. A control device having action sequence generating means for generating action sequences each indicating an action to be performed.

[付記2]
前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態と、前記動作シーケンスとに基づき、前記ロボットと前記周辺装置との動作を制御する統合制御手段をさらに有する、付記1に記載の制御装置。
[Appendix 2]
1. The method according to appendix 1, further comprising integrated control means for controlling the motion of the robot and the peripheral device based on the state of the robot and the peripheral device measured during execution of the motion sequence and the motion sequence. controller.

[付記3]
前記統合制御手段は、前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態が、前記動作シーケンスの通りに動作した場合の前記ロボット及び前記周辺装置の予測される状態と整合しない場合、前記ロボット及び前記周辺装置の少なくとも一方の動作タイミングを調整する、付記2に記載の制御装置。
[Appendix 3]
The integrated control means determines that the state of the robot and the peripheral devices measured during execution of the motion sequence does not match the predicted state of the robot and the peripheral devices when the motion sequence is followed. 3. The control device according to appendix 2, which adjusts the operation timing of at least one of the robot and the peripheral device, if the

[付記4]
前記ロボットの作業空間における所定時間後の状態を予測する状態予測手段をさらに有し、
前記動作シーケンス生成手段は、前記状態予測手段が予測した前記状態と、前記ロボット動作情報と、前記周辺装置動作情報とに基づき、前記動作シーケンスを生成する、付記1~3のいずれか一項に記載の制御装置。
[Appendix 4]
further comprising state prediction means for predicting the state of the robot in the work space after a predetermined time;
4. The action sequence generating means according to any one of Appendices 1 to 3, wherein the action sequence generating means generates the action sequence based on the state predicted by the state prediction means, the robot action information, and the peripheral device action information. Control device as described.

[付記5]
前記所定時間は、前記動作シーケンス生成手段が前記動作シーケンスの算出に要すると予測される計算時間に設定される、付記4に記載の制御装置。
[Appendix 5]
5. The control device according to appendix 4, wherein the predetermined time is set to a calculation time expected to be required for calculation of the action sequence by the action sequence generating means.

[付記6]
前記ロボット動作情報は、前記ロボットの動作限界に関する動作限界情報と、前記ロボットが実行可能なサブタスクを示すサブタスク情報と、前記ロボットに関わるダイナミクスを抽象化したモデルに関する抽象モデル情報と、の少なくともいずれかを含み、
前記周辺装置動作情報は、前記周辺装置の動作限界に関する動作限界情報と、前記周辺装置が実行可能なサブタスクを示すサブタスク情報と、前記周辺装置に関わるダイナミクスを抽象化したモデルに関する抽象モデル情報と、の少なくともいずれかを含む、請求項1~5のいずれか一項に記載の制御装置。
[Appendix 6]
The robot motion information is at least one of motion limit information about motion limits of the robot, subtask information indicating subtasks executable by the robot, and abstract model information about an abstracted model of dynamics related to the robot. including
The peripheral device operation information includes operation limit information about the operation limit of the peripheral device, subtask information indicating subtasks that the peripheral device can execute, and abstract model information about a model that abstracts the dynamics related to the peripheral device. The control device according to any one of claims 1 to 5, comprising at least one of

[付記7]
前記ロボット動作情報に含まれる前記抽象モデル情報は、前記ロボットに関わるダイナミクスの切り替わりの条件を示す情報を含み、
前記周辺装置動作情報に含まれる前記抽象モデル情報は、前記周辺装置に関わるダイナミクスの切り替わりの条件を示す情報を含む、付記6に記載の制御装置。
[Appendix 7]
The abstract model information included in the robot motion information includes information indicating conditions for switching dynamics related to the robot,
7. The control device according to appendix 6, wherein the abstract model information included in the peripheral device operation information includes information indicating a dynamics switching condition related to the peripheral device.

[付記8]
前記周辺装置は、前記対象物を搬送する搬送装置であり、
前記ロボットは、前記対象物をピックアップする動作を少なくとも行うロボットである、付記1~7のいずれか一項に記載の制御装置。
[Appendix 8]
The peripheral device is a transport device that transports the object,
8. The control device according to any one of appendices 1 to 7, wherein the robot is a robot that performs at least an operation of picking up the object.

[付記9]
前記動作シーケンス生成手段は、前記ロボットの作業空間を撮像した画像を表示装置に表示させることで、前記対象物又は当該対象物の種類を指定する入力を受け付け、当該入力に基づき前記動作シーケンスを生成する、付記1~8のいずれか一項に記載の制御装置。
[Appendix 9]
The action sequence generating means receives an input designating the object or the type of the object by displaying an image of the work space of the robot on a display device, and generates the action sequence based on the input. 9. The control device according to any one of appendices 1 to 8.

[付記10]
前記動作シーケンス生成手段は、
前記タスクを時相論理に基づく論理式に変換する論理式変換手段と、
前記論理式から、前記タスクを実行するためタイムステップ毎の状態を表す論理式であるタイムステップ論理式を生成するタイムステップ論理式生成手段と、
前記タイムステップ論理式に基づき、前記ロボット及び前記周辺装置の夫々が実行すべきサブタスクのシーケンスを、前記動作シーケンスとして生成するサブタスクシーケンス生成手段と、を有する、付記1~9のいずれか一項に記載の制御装置。
[Appendix 10]
The operation sequence generating means is
a logical formula conversion means for converting the task into a logical formula based on temporal logic;
a time step logical expression generation means for generating a time step logical expression, which is a logical expression representing the state of each time step for executing the task, from the logical expression;
Subtask sequence generation means for generating, as the operation sequence, a sequence of subtasks to be executed by each of the robot and the peripheral device based on the time step logical expression. Control device as described.

[付記11]
コンピュータにより、
タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する、制御方法。
[Appendix 11]
by computer
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. A control method that generates a sequence of actions, each indicating an action to be performed.

[付記12]
タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段
としてコンピュータを機能させるプログラムが格納された記録媒体。
[Appendix 12]
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. A recording medium storing a program that causes a computer to function as an action sequence generating means for generating an action sequence indicating actions to be executed.

以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。すなわち、本願発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。また、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。 Although the present invention has been described with reference to the embodiments, the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. That is, the present invention naturally includes various variations and modifications that a person skilled in the art can make according to the entire disclosure including the scope of claims and technical ideas. In addition, the disclosures of the cited patent documents and the like are incorporated herein by reference.

1、1A~1C 制御装置
2 入力装置
3 表示装置
4 記憶装置
5 ロボット
6 作業空間
7 計測装置
8 周辺装置
41 アプリケーション情報記憶部
100 ロボット制御システム
Reference Signs List 1, 1A to 1C control device 2 input device 3 display device 4 storage device 5 robot 6 work space 7 measurement device 8 peripheral device 41 application information storage unit 100 robot control system

Claims (9)

タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段と、
前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態が、前記動作シーケンスの通りに動作した場合の前記ロボット及び前記周辺装置の予測される状態と整合しない場合、前記ロボット及び前記周辺装置の少なくとも一方の動作タイミングを調整する統合制御手段と、
を有する制御装置。
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. an action sequence generating means for generating an action sequence indicating an action to be performed by each ;
When the states of the robot and the peripheral devices measured during execution of the motion sequence do not match the states expected of the robot and the peripheral devices when the robot and the peripheral devices operate according to the motion sequence, the robot and the peripheral devices Integrated control means for adjusting operation timing of at least one of the peripheral devices;
A control device having
タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段と、
前記ロボットの作業空間における所定時間後の状態を予測する状態予測手段と、を有し、
前記動作シーケンス生成手段は、前記状態予測手段が予測した前記状態と、前記ロボット動作情報と、前記周辺装置動作情報とに基づき、前記動作シーケンスを生成する、
制御装置。
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. an action sequence generating means for generating an action sequence indicating an action to be performed by each;
a state prediction means for predicting a state in the work space of the robot after a predetermined time;
The action sequence generating means generates the action sequence based on the state predicted by the state prediction means, the robot action information, and the peripheral device action information.
Control device.
前記所定時間は、前記動作シーケンス生成手段が前記動作シーケンスの算出に要すると予測される計算時間に設定される、請求項に記載の制御装置。 3. The control device according to claim 2 , wherein said predetermined time is set to a calculation time expected to be required for said operation sequence generation means to calculate said operation sequence. タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段を有し、
前記ロボット動作情報は、前記ロボットの動作限界に関する動作限界情報と、前記ロボットが実行可能なサブタスクを示すサブタスク情報と、前記ロボットに関わるダイナミクスを抽象化したモデルに関する抽象モデル情報と、の少なくともいずれかを含み、
前記周辺装置動作情報は、前記周辺装置の動作限界に関する動作限界情報と、前記周辺装置が実行可能なサブタスクを示すサブタスク情報と、前記周辺装置に関わるダイナミクスを抽象化したモデルに関する抽象モデル情報と、の少なくともいずれかを含み、
前記ロボット動作情報に含まれる前記抽象モデル情報は、前記ロボットに関わるダイナミクスの切り替わりの条件を示す情報を含み、
前記周辺装置動作情報に含まれる前記抽象モデル情報は、前記周辺装置に関わるダイナミクスの切り替わりの条件を示す情報を含む、
制御装置。
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. each having an operation sequence generating means for generating an operation sequence indicating an operation to be performed;
The robot motion information is at least one of motion limit information about motion limits of the robot, subtask information indicating subtasks executable by the robot, and abstract model information about an abstracted model of dynamics related to the robot. including
The peripheral device operation information includes operation limit information about the operation limit of the peripheral device, subtask information indicating subtasks that the peripheral device can execute, and abstract model information about a model that abstracts the dynamics related to the peripheral device. including at least one of
The abstract model information included in the robot motion information includes information indicating conditions for switching dynamics related to the robot,
The abstract model information included in the peripheral device operation information includes information indicating conditions for switching dynamics related to the peripheral device.
Control device.
前記周辺装置は、前記対象物を搬送する搬送装置であり、
前記ロボットは、前記対象物をピックアップする動作を少なくとも行うロボットである、請求項1~のいずれか一項に記載の制御装置。
The peripheral device is a transport device that transports the object,
The control device according to any one of claims 1 to 4 , wherein the robot is a robot that performs at least an action of picking up the object.
前記動作シーケンス生成手段は、前記ロボットの作業空間を撮像した画像を表示装置に表示させることで、前記対象物又は当該対象物の種類を指定する入力を受け付け、当該入力に基づき前記動作シーケンスを生成する、請求項1~5のいずれか一項に記載の制御装置。The action sequence generating means receives an input designating the object or the type of the object by displaying an image of the work space of the robot on a display device, and generates the action sequence based on the input. The control device according to any one of claims 1 to 5, wherein 前記動作シーケンス生成手段は、The operation sequence generating means is
前記タスクを時相論理に基づく論理式に変換する論理式変換手段と、a logical formula conversion means for converting the task into a logical formula based on temporal logic;
前記論理式から、前記タスクを実行するためタイムステップ毎の状態を表す論理式であるタイムステップ論理式を生成するタイムステップ論理式生成手段と、a time step logical expression generation means for generating a time step logical expression, which is a logical expression representing the state of each time step for executing the task, from the logical expression;
前記タイムステップ論理式に基づき、前記ロボット及び前記周辺装置の夫々が実行すべきサブタスクのシーケンスを、前記動作シーケンスとして生成するサブタスクシーケンス生成手段と、を有する、請求項1~6のいずれか一項に記載の制御装置。Subtask sequence generation means for generating a sequence of subtasks to be executed by each of said robot and said peripheral device as said operation sequence based on said time step logical expression. The control device according to .
コンピュータにより、
タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成し、
前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態が、前記動作シーケンスの通りに動作した場合の前記ロボット及び前記周辺装置の予測される状態と整合しない場合、前記ロボット及び前記周辺装置の少なくとも一方の動作タイミングを調整する、制御方法。
by computer
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. generating a sequence of actions each indicating an action to be performed;
When the states of the robot and the peripheral devices measured during execution of the motion sequence do not match the states expected of the robot and the peripheral devices when the robot and the peripheral devices operate according to the motion sequence, the robot and the peripheral devices A control method for adjusting operation timing of at least one of peripheral devices .
タスクを実行するロボットの動き特性を示すロボット動作情報と、前記タスクに関する対象物の受け渡しを前記ロボットと行う周辺装置の動き特性を示す周辺装置動作情報と、に基づき、前記ロボット及び前記周辺装置の夫々が実行すべき動作を示す動作シーケンスを生成する動作シーケンス生成手段と、
前記動作シーケンスの実行中に計測される前記ロボット及び前記周辺装置の状態が、前記動作シーケンスの通りに動作した場合の前記ロボット及び前記周辺装置の予測される状態と整合しない場合、前記ロボット及び前記周辺装置の少なくとも一方の動作タイミングを調整する統合制御手段
としてコンピュータを機能させるプログラム。
Based on robot motion information indicating motion characteristics of a robot that executes a task and peripheral device motion information indicating motion characteristics of a peripheral device that transfers an object related to the task to the robot, the robot and the peripheral device are controlled. an action sequence generating means for generating an action sequence indicating an action to be performed by each ;
When the states of the robot and the peripheral devices measured during execution of the motion sequence do not match the states expected of the robot and the peripheral devices when the robot and the peripheral devices operate according to the motion sequence, the robot and the peripheral devices Integrated control means for adjusting the operation timing of at least one of the peripheral devices
A program that makes a computer function as a
JP2022502356A 2020-02-25 2020-02-25 Control device, control method and program Active JP7323045B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/007420 WO2021171350A1 (en) 2020-02-25 2020-02-25 Control device, control method, and recording medium

Publications (3)

Publication Number Publication Date
JPWO2021171350A1 JPWO2021171350A1 (en) 2021-09-02
JPWO2021171350A5 JPWO2021171350A5 (en) 2022-10-06
JP7323045B2 true JP7323045B2 (en) 2023-08-08

Family

ID=77492090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022502356A Active JP7323045B2 (en) 2020-02-25 2020-02-25 Control device, control method and program

Country Status (3)

Country Link
US (1) US20230072244A1 (en)
JP (1) JP7323045B2 (en)
WO (1) WO2021171350A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340848A (en) 2004-05-25 2005-12-08 Asml Netherlands Bv Method of planning task in machine, method of controlling machine, supervisory machine control system, lithographic apparatus, lithographic processing cell and computer program
JP2017039170A (en) 2015-08-17 2017-02-23 ライフロボティクス株式会社 Robot device
JP2019177434A (en) 2018-03-30 2019-10-17 セイコーエプソン株式会社 Control device, robot and robot system
JP2019177429A (en) 2018-03-30 2019-10-17 セイコーエプソン株式会社 Control device, robot and robot system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458764B2 (en) * 2008-09-29 2014-04-02 日産自動車株式会社 Information presentation device
US10022867B2 (en) * 2014-11-11 2018-07-17 X Development Llc Dynamically maintaining a map of a fleet of robotic devices in an environment to facilitate robotic action
JP6411964B2 (en) * 2015-07-27 2018-10-24 ファナック株式会社 Real-time interference confirmation system for machine tools and robots
WO2018146687A1 (en) * 2017-02-12 2018-08-16 Commonsense Robotics Ltd. Human-assisted robotic picking apparatus ‎
JP6879009B2 (en) * 2017-03-30 2021-06-02 株式会社安川電機 Robot motion command generation method, robot motion command generator and computer program
EP3613548A4 (en) * 2017-04-19 2021-05-19 Kabushiki Kaisha Yaskawa Denki Programming assistance apparatus, robot system, programming assistance method and program-generating method
CN114408443A (en) * 2018-03-27 2022-04-29 株式会社日立产业机器 Warehouse system and method therein
JP7056613B2 (en) * 2019-03-08 2022-04-19 オムロン株式会社 Counter unit, counter unit control method, control device, and control system
US20230195083A1 (en) * 2019-09-30 2023-06-22 Paper Converting Machine Company Processing Line with Feed Forward Data Backlog Control and Method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340848A (en) 2004-05-25 2005-12-08 Asml Netherlands Bv Method of planning task in machine, method of controlling machine, supervisory machine control system, lithographic apparatus, lithographic processing cell and computer program
JP2017039170A (en) 2015-08-17 2017-02-23 ライフロボティクス株式会社 Robot device
JP2019177434A (en) 2018-03-30 2019-10-17 セイコーエプソン株式会社 Control device, robot and robot system
JP2019177429A (en) 2018-03-30 2019-10-17 セイコーエプソン株式会社 Control device, robot and robot system

Also Published As

Publication number Publication date
JPWO2021171350A1 (en) 2021-09-02
WO2021171350A1 (en) 2021-09-02
US20230072244A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
JP7264253B2 (en) Information processing device, control method and program
WO2022074823A1 (en) Control device, control method, and storage medium
JP7452619B2 (en) Control device, control method and program
JP7448024B2 (en) Control device, control method and program
JP7416197B2 (en) Control device, control method and program
JP7323045B2 (en) Control device, control method and program
US20230241770A1 (en) Control device, control method and storage medium
JP7485058B2 (en) Determination device, determination method, and program
WO2022244060A1 (en) Motion planning device, motion planning method, and storage medium
JP7364032B2 (en) Control device, control method and program
WO2022224449A1 (en) Control device, control method, and storage medium
WO2022224447A1 (en) Control device, control method, and storage medium
JP7491400B2 (en) Assistance control device, assistance device, robot control system, assistance control method and program
JP7276466B2 (en) Information processing device, control method and program
JP7456552B2 (en) Information processing device, information processing method, and program
JP7409474B2 (en) Control device, control method and program
JP7468694B2 (en) Information collection device, information collection method, and program
JP7416199B2 (en) Control device, control method and program
EP4300239A1 (en) Limiting condition learning device, limiting condition learning method, and storage medium
US20240165817A1 (en) Robot management device, control method, and recording medium
WO2022074827A1 (en) Proposition setting device, proposition setting method, and storage medium

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220812

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230710

R151 Written notification of patent or utility model registration

Ref document number: 7323045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151