JP7321453B2 - レーザー式ガス濃度計 - Google Patents
レーザー式ガス濃度計 Download PDFInfo
- Publication number
- JP7321453B2 JP7321453B2 JP2019195098A JP2019195098A JP7321453B2 JP 7321453 B2 JP7321453 B2 JP 7321453B2 JP 2019195098 A JP2019195098 A JP 2019195098A JP 2019195098 A JP2019195098 A JP 2019195098A JP 7321453 B2 JP7321453 B2 JP 7321453B2
- Authority
- JP
- Japan
- Prior art keywords
- optical path
- laser
- absorbance
- incident
- gas concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 230000003287 optical effect Effects 0.000 claims description 120
- 238000002835 absorbance Methods 0.000 claims description 77
- 238000004806 packaging method and process Methods 0.000 claims description 64
- 238000005259 measurement Methods 0.000 claims description 43
- 230000005540 biological transmission Effects 0.000 claims description 22
- 230000002238 attenuated effect Effects 0.000 claims description 12
- 238000002834 transmittance Methods 0.000 claims description 10
- 238000000862 absorption spectrum Methods 0.000 claims description 6
- 238000012937 correction Methods 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 138
- 238000002474 experimental method Methods 0.000 description 27
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 14
- 229910001882 dioxygen Inorganic materials 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 6
- 238000000041 tunable diode laser absorption spectroscopy Methods 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 238000007689 inspection Methods 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000010926 purge Methods 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001285 laser absorption spectroscopy Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000012858 packaging process Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/61—Non-dispersive gas analysers
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- Optics & Photonics (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
そして、ガス置換包装後の検査工程において、酸化原因ガス、特に酸素の濃度が既定値以下であるかどうか検査が行われている。
しかしながら、現在主流である酸素濃度の測定方法は、サンプルとして任意に選択した包装袋に注射針を刺し、包装袋内から吸引した少量のガスの組成を検査する抜き取り検査である。当該抜き取り検査では、注射痕が形成された包装袋は廃棄しなければならない。また、検査精度を上げるためにサンプル数を増やすと検査時間が長くなり、増加する廃棄量によって経済的、時間的損失が増大する不都合があった。
特開2010-107197に開示されている包装袋のガス濃度測定装置1は、図7に示すように、発信器を有するレーザー発生部2と、当該レーザー発生部2に連接し、レーザー光が射出される主ヘッド3、並びに受信器を有するレーザー受光部4と、当該レーザ受光部4に連接し、レーザー光が入射される副ヘッド5とからなる。相対的に接近及び離隔自在に設けられた主ヘッド3と副ヘッド5は、、一対のグリップ6,6に把持された検査対象の包装袋Bを挟んで、主ヘッド3に対して副ヘッド5が正対するように配置されている。これによって、主ヘッド3から副ヘッド5へ最短距離でレーザー光が包装袋を透過することができ、包装袋内に残留している酸素等の特定ガスの濃度を測定する際に、包装袋の全数について当該包装袋を一切損傷することなく迅速に測定することができるようになった。
当該レーザー式ガス濃度計は、
前記レーザー光を射出するレーザー発生部と、
前記レーザー光を受光するレーザー受光部と、
前記レーザー発生部から前記包装体類までの入射光路、前記レーザー光が前記包装体類を透過して減衰する減衰光路、及び前記包装体類から前記レーザー受光部までの透過光路からなる前記レーザー光の総光路を有する測定部と、
前記レーザー発生部における前記レーザー光の入射強度、及び前記レーザー受光部における前記レーザー光の透過光強度から求められる前記包装体類を透過したレーザー光の透過率に基づいて、前記減衰光路上で前記包装体類内部の前記特定ガスに吸収された前記特定波長の減衰吸光度を測定して、当該減衰吸光度に基づいて前記包装体類内部の前記特定ガスの濃度を算出する計測部とを有し、
当該計測部が、前記総光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の総吸光度から、
前記入射光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の入射吸光度と、
前記透過光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の透過吸光度とを除外して、
前記減衰光路上における前記特定波長の前記減衰吸光度を計測し、
当該減衰吸光度と前記減衰光路の光路長に基づいて、前記包装体類内部の前記特定ガスの濃度を算出するようにして、
前記入射吸光度と前記透過吸光度が、大気雰囲気下で所定の外乱によって変化するとき、
前記レーザー光を前記測定部へ複数回射出して、前記総光路上における前記特定ガスの総平均吸光度を求め、
当該総平均吸光度と複数回の測定回数、及び測定された実測値のバラツキに基づいて、前記入射吸光度と前記透過吸光度を補正する標準偏差及び補正吸光度を定めて、
前記包装体類内部の前記減衰光路上における前記特定波長の前記減衰吸光度を計測するとき、
前記補正吸光度で補正された前記入射吸光度と前記透過吸光度を適用するようにしたことを特徴とする。
これによって、包装体内部以外、すなわちレーザー光の入射光または透過光が特定ガスに吸収されるような場合であっても、ガス濃度を測定することができる。
また、入射光に係る入射吸光度と透過光に係る透過吸光度を含めた総吸光度を測定して、当該総吸光度から包装体内部に係る減衰吸光度を求めるようにしたので、入射光又は透過光が特定ガスに吸収された場合であっても、包装体内部の特定ガスのガス濃度を測定することができる。そのため、入射光又は透過光の光路上をガスパージして特定ガスを除去する必要が無くなるので、レーザー式ガス濃度計の構成をシンプルにすることができ、たとえば、包装機上に設置するとき、省スペース化を図ることができる。
さらに、レーザー光を複数回射出して総光路上における総平均吸光度を求めて、当該総平均吸光度から補正吸光度を求めるようにした。当該補正吸光度を入射吸光度又は透過吸光度に適用することによって、外乱によって測定値が乱れた場合であっても、所定の範囲内に収めることができ、包装体内部の特定ガスのガス濃度を測定することができる。
レーザー式ガス濃度計10は、レーザー光を射出するレーザー発生部11と、レーザー光を受光するレーザー受光部12と、レーザー発生部11とレーザー受光部12間に設置され、測定対象の特定ガスをガス濃度を測定可能な測定部13とからなる。
レーザー光源14は、波長が可変可能なダイオードからなる半導体レーザー素子を備え、近赤外領域のレーザー光を出力可能に形成されている。本実施例に係る半導体レーザー素子は、DFB(Distributed Feed Back:分布帰還形)レーザーと呼ばれる高出力の半導体レーザー素子である。
制御部15は、半導体レーザー素子から出力されるレーザー光の波長を測定対象の特定ガス固有の特定波長に調整して、レーザー光が所定の入射光強度で射出されるように増幅する制御を行うように形成されている。また制御部15は、計測部17に対して、射出する入射光強度に係る入射光信号を出力するように形成されている。
ここで、本実施例に係るレーザー式ガス濃度計が測定する特定ガスは、酸素ガス(O2)である。当該酸素ガス固有の吸収波長帯は760nm帯であり、当該吸収波長帯に含まれる複数の吸収線のうち、一の吸収線に係る特定波長がレーザー光の出力波長として選択される。
受光センサ16は、測定部13を透過したレーザー光の透過光強度を電気的な透過光信号に変換する素子、たとえば、フォトダイオードからなる。これによって、測定部13を透過して減衰したレーザー光の透過光強度を電気的に処理することができる。
計測部17は、透過光強度に係る透過光信号と、レーザー発生部11の制御部15から出力されたレーザー光の入射光強度に係る入射光信号に基づいて透過率を計算し、当該透過率に基づいてレーザー光の特定ガスによる吸光度を求め、当該吸光度に基づいて包装袋内の特定ガスのガス濃度を計測するように形成されている。
ここで、測定対象は、包装袋又は包装容器或いはこれらに類する包装体類50であって、たとえば、ポリ袋、パウチのような包装袋、又は瓶、プラスチックケース等のような包装容器のように、各種包装に供されるものである。本実施例において、これら包装体類50に係るレーザー光の透過率は、0.00001%以上、100%未満と想定されている。すなわち、本実施例に係るレーザー式ガス濃度計は、包装体類50が着色されている場合であってもレーザー光が透過するようであれば有効である。
測定部13におけるレーザー光に係る光路は、図1に示すように、レーザー発生部11からレーザー受光部12までの光路を総光路20とし、当該総光路20は、レーザー発生部11から包装体類50まで入射光に係る入射光路21、包装体類50内部でレーザー光が特定ガスに吸収されて減衰する減衰光路22、包装体類50からレーザー受光部12まで透過光に係る透過光路23からなる。
波長可変半導体レーザー吸収分光法(Tunable Diode Laser Absorption Spectroscopy:TDLAS)とは、半導体レーザー素子から出力されたレーザー光に係る所定の入射光強度と、測定対象となる特定ガス含んだ気体を封じたセルを透過して、当該特定ガスに吸収された透過後のレーザー光に係る透過光強度とから透過率を求めて、透過率に基づくレーザー光の吸光度からガス濃度を測定する方法である。
特定ガスを含めて気体はそれぞれ固有の吸収波長帯を有し、当該吸収波長帯にはより強く光を吸収する波長に係る吸収線が複数本含まれていることが知られている。TDLASは、出力するレーザー光の近赤外領域の波長を、測定対象となる特定ガスの複数本の吸収線のうち、一本の吸収線に係る特定波長に合致するように変調し、増幅するように構成されている。そして、セルの透過前後で変化する特定波長の吸収スペクトルに基づいてレーザー光の吸光度を求めてガス濃度を測定している。
したがって、入射光路21上の特定ガスのガス濃度をC0、透過光路23上の特定ガスのガス濃度をCtとすると、減衰光路22上、すなわち包装体類50内部のガス濃度をCaは、数式2で求めることができる。
したがって、たとえば、レーザー発生部11とレーザー受光部12を接離自在に構成して、測定対象の包装体類50の長さ、すなわち減衰光路長Laに対して入射光路長L0と透過光路長Ltが相対的に極めて短くなるように調整可能にすれば良い。これによって、包装体類50内部の特定ガスのガス濃度Caの測定精度を向上させることができる。
また、測定部13全体を窒素ガス(N2)でガスパージして特定ガスを除去するような構成の場合、或いは測定部13が大気雰囲気下にある場合、入射光路21上のガス濃度C0と透過光路23上のガス濃度Ctは、同一値か或いは互いに近似した値であるとみなすことができるから、透過光路23上のガス濃度をC0と置いて、入射光路21上のガス濃度C0でまとめることができる。
これによって、ガスパージされた環境だけではなく、大気雰囲気下であっても包装体類50内部のガス濃度Caを計測することができる。
さらに、入射光路長L0と透過光路長Ltが減衰光路長Laに対して相対的に無視できるほど短い場合であって、入射光路21上のガス濃度C0と透過光路23上のガス濃度Ctが総光路20上のガス濃度Cと同一値又は近似することができる場合、包装体類50内部のガス濃度Caは、総光路長Lに対する減衰光路長Laの比で求めることができる。
このとき、減衰光路Laが一定、すなわち、包装体類50の大きさが一定であって、包装体類50内部の減衰光路22が一定であることが好ましい。これによって、包装体類内部のガス濃度Caを安定して求めることができる。
また、包装体類50が所定の包装袋であるような場合には、当該包装袋に密封されている不活性ガスの量や内圧に応じて、包装袋の厚さ、すなわち、減衰光路長Laが変化し、これに伴って、総光路長Lに対する入射光路長L0と透過光路長Ltもまた変化する。
そこで、本実施例に係るレーザー式ガス濃度計10は、測定時間を所定の長さに定め、当該測定時間内で複数回レーザー光を総光路20上へ射出することによって、複数の実測値を得るように構成されている。
さらに、標準偏差に基づく補正吸光度Acを総吸光度Aの実測値に対して適用することによって、実測値を補正した計測値を所定の範囲内に収めることができる。ここで、補正吸光度Acは、総光路20上全ての吸光度に影響を及ぼすものであるから、総吸光度Aに対する補正吸光度Acの補正率を求めて、当該補正率を入射光路21上の入射吸光度A0、及び透過光路23上の透過吸光度Atに対して適用することによって、包装体類50内部のガス濃度Caの測定精度を向上させることができる。
第1実験は、測定部13上の減衰光路22に係る減衰光路長Laを17mmに設定したものである。ここで、上記したように、入射光路長L0と透過光路長Ltは、減衰光路長Laに対して相対的に十分短くなるように、すなわち、レーザー発生部11と包装体類50、又は包装体類50とレーザー受光部12の距離が、包装体類50の長さよりも短くなるように設置した。これによって、入射光路長L0と透過光路長Ltは、本第1実験では無視するものとする。
そして、測定時間は300msに設定し、当該測定時間内で1000回、測定部13上にレーザー光を照射した。
図2は、測定部13に包装体類50を設置していない場合の測定結果を示すグラフである。すなわち、総光路長Lと減衰光路長Laが一致しているとみなせる場合の測定結果である。このとき、酸素ガスのガス濃度に係る測定値の標準偏差は、0.05%であった。
また、測定部13に減衰光路長Laを十分に確保できる透明なポリエチレン製の包装袋を設置して、同様の実験を行ったところ、酸素ガスのガス濃度に係る測定値の標準偏差は、0.08%を示し、包装体類50を設置していないときと比べて測定値のバラツキが大きくなった。これは、レーザー光が包装体類50へ入射するとき、及び当該レーザー光が包装体類50を透過するとき、測定部13の雰囲気と包装体類50との境界面上で、レーザー光の反射或いは散乱が発生したためと考えられる。
第2実験は、第1実験の減衰光路長Laの長さを17mmとしたこと対して、減衰光路長Laを38mmとした点が相違する。また、第1実験と同様に、上記したように、入射光路長L0と透過光路長Ltは、減衰光路長Laに対して相対的に十分短くなるように、すなわち、レーザー発生部11と包装体類50、又は包装体類50とレーザー受光部12の距離が、包装体類50の長さよりも短くなるように設置した。これによって、入射光路長L0と透過光路長Ltは、本第2実験では無視するものとする。
そして、第1実験と同様に、測定時間を300msに設定し、当該測定時間内で1000回、測定部13上にレーザー光を照射した。
図3は、測定部13に包装体類50を設置した場合の測定結果を示すグラフである。ここで、包装体類50は、第1実験において補助的に行った実験で使用した包装袋であって、減衰光路長Laを十分に確保できる透明なポリエチレン製の包装袋とする。
このとき、酸素ガスのガス濃度に係る測定値の標準偏差は、0.031%であった。第1実験に係る図3と比べて、測定値が所定の範囲内に収まっていることが明らかである。
また、測定部13に包装体類50を設置せずに同様の実験を行ったところ、酸素ガスのガス濃度に係る測定値の標準偏差は、0.028%を示した。
すなわち、総光路20を長くすると共に、包装体類50内部の減衰光路22もまた長くすることによって、測定値のバラツキを抑えることができ、測定精度を向上させることができるということを確認することが出来た。
第3実験は、第2実験と同様に、減衰光路長Laを38mmに設定している。そして、第2実験と同様に、入射光路長L0と透過光路長Ltは、減衰光路長Laに対して相対的に十分短くなるように、すなわち、レーザー発生部11と包装体類50、又は包装体類50とレーザー受光部12の距離が、包装体類50の長さよりも短くなるように設置した。これによって、入射光路長L0と透過光路長Ltは、本第3実験では無視するものとする。
第3実験では、既に包装体類50内部の酸素ガスのガス濃度を所定の低酸素濃度に調整した包装袋を5個用意した。それらのガス濃度は、包装袋B1が0.3%、包装袋B2が0.25%、包装袋B3が0.5%、包装袋B4が0.2%、包装袋B5が0.35%となるように調整されている。
そして、測定部13に対し、各包装袋の位置を変えてそれぞれ20回測定することを5回繰り返した。したがって、測定回数は各包装袋ごとに100回となっている。図4に示すグラフは、包装袋B1~包装袋B5について、測定した結果を示すものである。
それぞれ異なる低酸素濃度に調整された包装袋を変え、当該包装袋の位置を変えて測定した総測定回数500回の標準偏差は0.04%であった。
また、図4のグラフから明らかなように、酸素ガスのガス濃度を0.5%に調整した包装袋B3を第3実験で検出することが出来ていることを確認することができた。
図4から明らかなように、ガス濃度が0.5%である包装袋Bを検出することができていることから、本実施例に係るレーザー式ガス濃度計10は、大気雰囲気下であってもガス濃度を測定することができる。
しかしながら、求める標準偏差に対して、第3実験では十分な標準偏差を得ることが出来ていない。
したがって、目標とする標準偏差0.033%以内に納めるためには、たとえば、総光路長Lと減衰光路長Laを延ばして検知感度を向上させると共に、減衰光路長Laに対してさらに入射光路長L0及び透過光路長Ltを相対的に短く納めるように包装体類50を保持する装置を設けた場合、さらに標準偏差に係る値を改善することができるものと思われる。
11…レーザー発生部、12…レーザー受光部、13…測定部、
14…レーザー光源、15…制御部、16…受光センサ、17…計測部、
20…総光路、21…入射光路、22…減衰光路、23…透過光路、
50…包装体類、
1…従来のガス濃度測定装置、2…従来のレーザー発生部、3…主ヘッド、4…従来のレーザー受光部、5…副ヘッド、6…グリップ、
B…包装袋。
Claims (5)
- 特定波長のレーザー光を、ガス置換されて密封された包装容器又は包装袋或いはこれらに類する包装体類に透過させて、前記包装体類の透過前後で変化する特定波長の吸収スペクトルに基づいて前記包装体類の内部に残留している特定ガスのガス濃度を測定するようにしたレーザー式ガス濃度計であって、
当該レーザー式ガス濃度計は、
前記レーザー光を射出するレーザー発生部と、
前記レーザー光を受光するレーザー受光部と、
前記レーザー発生部から前記包装体類までの入射光路、前記レーザー光が前記包装体類を透過して減衰する減衰光路、及び前記包装体類から前記レーザー受光部までの透過光路からなる前記レーザー光の総光路を有する測定部と、
前記レーザー発生部における前記レーザー光の入射強度、及び前記レーザー受光部における前記レーザー光の透過光強度から求められる前記包装体類を透過したレーザー光の透過率に基づいて、前記減衰光路上で前記包装体類内部の前記特定ガスに吸収された前記特定波長の減衰吸光度を測定して、当該減衰吸光度に基づいて前記包装体類内部の前記特定ガスの濃度を算出する計測部とを有し、
当該計測部が、前記総光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の総吸光度から、
前記入射光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の入射吸光度と、
前記透過光路上で前記レーザー光が前記特定ガスに吸収された前記特定波長の透過吸光度とを除外して、
前記減衰光路上における前記特定波長の前記減衰吸光度を計測し、
当該減衰吸光度と前記減衰光路の光路長に基づいて、前記包装体類内部の前記特定ガスの濃度を算出するようにして、
前記入射吸光度と前記透過吸光度が、大気雰囲気下で所定の外乱によって変化するとき、
前記レーザー光を前記測定部へ複数回射出して、前記総光路上における前記特定ガスの総平均吸光度を求め、
当該総平均吸光度と複数回の測定回数、及び測定された実測値のバラツキに基づいて、前記入射吸光度と前記透過吸光度を補正する標準偏差及び補正吸光度を定めて、
前記包装体類内部の前記減衰光路上における前記特定波長の前記減衰吸光度を計測するとき、
前記補正吸光度で補正された前記入射吸光度と前記透過吸光度を適用するようにしたことを特徴とするレーザー式ガス濃度計。 - 前記減衰光路の光路長が所定の長さで一定であることを特徴とする請求項1に記載のレーザー式ガス濃度計。
- 前記入射光路と前記透過光路が大気雰囲気下であることを特徴とする請求項1に記載のレーザー式ガス濃度計。
- 前記減衰光路の光路長が、前記入射光路又は前記透過光路の光路長よりも長いことを特徴とする請求項1に記載のレーザー式ガス濃度計。
- 前記外乱が、前記大気雰囲気の気温又は気圧、或いは前記入射光路又は前記透過光路の光路長の変化によるものであることを特徴とする請求項1に記載のレーザー式ガス濃度計。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019195098A JP7321453B2 (ja) | 2019-10-28 | 2019-10-28 | レーザー式ガス濃度計 |
PCT/JP2020/039933 WO2021085331A1 (ja) | 2019-10-28 | 2020-10-23 | レーザー式ガス濃度計 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019195098A JP7321453B2 (ja) | 2019-10-28 | 2019-10-28 | レーザー式ガス濃度計 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021067635A JP2021067635A (ja) | 2021-04-30 |
JP7321453B2 true JP7321453B2 (ja) | 2023-08-07 |
Family
ID=75637881
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019195098A Active JP7321453B2 (ja) | 2019-10-28 | 2019-10-28 | レーザー式ガス濃度計 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7321453B2 (ja) |
WO (1) | WO2021085331A1 (ja) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230166115A (ko) | 2021-04-13 | 2023-12-06 | 캐논 가부시끼가이샤 | 발광 장치, 표시장치, 촬상 장치, 및 전자기기 |
JP2022173623A (ja) * | 2021-05-10 | 2022-11-22 | ゼネラルパッカー株式会社 | ピロー包装袋のガス濃度測定方法 |
JP2022176603A (ja) * | 2021-05-17 | 2022-11-30 | ゼネラルパッカー株式会社 | 包装袋のガス濃度測定装置および包装袋のガス濃度測定方法 |
CN113820103B (zh) * | 2021-09-15 | 2024-07-30 | 中钢安科睿特(武汉)科技有限公司 | 一种激光器吸收幅度测定装置及测定方法 |
CN113758899B (zh) * | 2021-11-11 | 2022-04-08 | 国网湖北省电力有限公司超高压公司 | 一种基于tdlas技术的微水测量方法及其装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100067012A1 (en) | 2006-10-30 | 2010-03-18 | Universita Degli Studi Di Padova | Method for the automated measurement of gas pressure and concentration inside sealed containers |
JP2016520838A (ja) | 2013-05-27 | 2016-07-14 | ガスポロックス エービー | 容器中の気体の濃度を判定するためのシステムおよび方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5124719B2 (ja) * | 2007-07-06 | 2013-01-23 | ゼネラルパッカー株式会社 | 包装機におけるガス濃度測定方法 |
JP5137740B2 (ja) * | 2008-08-08 | 2013-02-06 | 日立造船株式会社 | 袋状容器内における酸素濃度の非破壊検査装置 |
JP5309349B2 (ja) * | 2008-10-28 | 2013-10-09 | ゼネラルパッカー株式会社 | 包装袋のガス濃度測定装置 |
SE538814C2 (sv) * | 2015-04-02 | 2016-12-13 | Gasporox Ab | System and method for determining the integrity of containers by optical measurement |
-
2019
- 2019-10-28 JP JP2019195098A patent/JP7321453B2/ja active Active
-
2020
- 2020-10-23 WO PCT/JP2020/039933 patent/WO2021085331A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100067012A1 (en) | 2006-10-30 | 2010-03-18 | Universita Degli Studi Di Padova | Method for the automated measurement of gas pressure and concentration inside sealed containers |
JP2016520838A (ja) | 2013-05-27 | 2016-07-14 | ガスポロックス エービー | 容器中の気体の濃度を判定するためのシステムおよび方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2021085331A1 (ja) | 2021-05-06 |
JP2021067635A (ja) | 2021-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7321453B2 (ja) | レーザー式ガス濃度計 | |
US20100067012A1 (en) | Method for the automated measurement of gas pressure and concentration inside sealed containers | |
KR20170063862A (ko) | 밀폐 용기 내 압력 측정 기기 및 방법과, 상기 기기를 이용하는 자동 충전 및/또는 포장 기계 | |
US10324029B2 (en) | Concentration measurement device | |
US10101239B2 (en) | System and method for determining the integrity of containers by optical measurement | |
JP2021067634A (ja) | 包装袋内のガス濃度測定装置 | |
US20120288409A1 (en) | Analysis device | |
JP2010107197A (ja) | 包装袋のガス濃度測定装置 | |
US20220276154A1 (en) | Method for analysing a gas using an optical sensor | |
US9007592B2 (en) | Gas analyzer | |
JP7357918B2 (ja) | 包装袋内のガス濃度測定装置 | |
EP1305599B1 (en) | A method and an apparatus for producing a gaseous medium | |
JP4034920B2 (ja) | 妨害材料が存在する試料中の物質濃度の決定方法および装置 | |
JP2016070686A (ja) | Tdlas法による濃度測定装置。 | |
WO2012173562A1 (en) | System and method for in-situ online measurement of hydrogen peroxide concentration | |
JP7350312B2 (ja) | 包装容器内のガス濃度測定方法 | |
JP2021096133A (ja) | 包装袋用ガス濃度測定装置 | |
JP2021067633A (ja) | 包装袋内のガス濃度測定方法 | |
JP2021067631A (ja) | 包装袋内のガス濃度測定方法 | |
US20240328940A1 (en) | System and method for measuring a property of a gas in a container | |
JP7355381B2 (ja) | 密封包装容器 | |
JP7343169B2 (ja) | 密封包装容器のガス濃度測定方法およびガス濃度測定装置 | |
JP2021096097A (ja) | 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置 | |
JP2021096098A (ja) | 密封包装容器のガス濃度測定方法およびそれに用いるガス濃度測定装置 | |
JP2024504351A (ja) | ガスセンサの校正方法およびその校正を用いたガスの測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220906 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230516 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230718 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230718 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7321453 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |