[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7302248B2 - Connector terminal materials and connector terminals - Google Patents

Connector terminal materials and connector terminals Download PDF

Info

Publication number
JP7302248B2
JP7302248B2 JP2019074191A JP2019074191A JP7302248B2 JP 7302248 B2 JP7302248 B2 JP 7302248B2 JP 2019074191 A JP2019074191 A JP 2019074191A JP 2019074191 A JP2019074191 A JP 2019074191A JP 7302248 B2 JP7302248 B2 JP 7302248B2
Authority
JP
Japan
Prior art keywords
silver
plating layer
tin alloy
nickel
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019074191A
Other languages
Japanese (ja)
Other versions
JP2020172675A (en
Inventor
圭栄 樽谷
慎太郎 樋口
清隆 中矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2019074191A priority Critical patent/JP7302248B2/en
Publication of JP2020172675A publication Critical patent/JP2020172675A/en
Application granted granted Critical
Publication of JP7302248B2 publication Critical patent/JP7302248B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Description

本発明は、微摺動が発生する自動車や民生機器等の電気配線の接続に使用される有用な皮膜が設けられたコネクタ用端子材及びコネクタ用端子に関する。 TECHNICAL FIELD The present invention relates to a connector terminal material provided with a film and a connector terminal which are useful for connecting electrical wiring in automobiles, consumer equipment, and the like, where microsliding occurs.

従来、自動車等の電気配線の接続に用いられるコネクタが知られている。この車載用コネクタ(車載用端子)には、メス端子に設けられた接触片が、メス端子内に挿入されたオス端子に所定の接触圧を有して接触することで、電気的に接続されるように設計された端子対を備えるものが用いられている。このようなコネクタ(端子)として、一般的に銅または銅合金板上に錫めっきを施し、リフロー処理を行った錫めっき付き端子が多く用いられていた。しかし、近年、自動車の高電流・高電圧化に伴い、より電流を多く流すことができる耐熱・耐摩耗性に優れた貴金属めっきを施した端子の用途が増加している。 2. Description of the Related Art Conventionally, connectors used for connecting electrical wiring in automobiles and the like are known. In this in-vehicle connector (in-vehicle terminal), a contact piece provided on a female terminal contacts a male terminal inserted into the female terminal with a predetermined contact pressure, whereby electrical connection is established. are used with terminal pairs designed to As such connectors (terminals), tin-plated terminals, which are generally obtained by plating a copper or copper alloy plate with tin and performing a reflow treatment, have been widely used. However, in recent years, with the increase in current and voltage in automobiles, the use of precious metal-plated terminals, which are excellent in heat resistance and wear resistance and which allow more current to flow, is increasing.

このような耐熱性及び耐摩耗性が求められる車載用端子のめっきとして、例えば、特許文献1に記載のように銀めっきを端子に施す方法がある。この点、銀めっき層は、加熱によって銀の結晶径が大きくなるため硬度が低下する。この硬度の低下を抑制するため、銀めっき膜厚を厚くすることが考えられるが、コスト面での問題がある。また、下地にニッケルめっき層を用いた場合、銀めっき層が剥離する問題もある。
一方、特許文献2のように、アンチモンをめっき層に添加することで耐摩耗性を上昇させることも考えられるが、初期硬度は高いものの、加熱によって硬度が低下し、また、アンチモンがめっき層最表面に濃化後、酸化して接触抵抗が増大する。さらに、ニッケルめっき層を下地として用いていた場合、加熱によってニッケルめっき層と銀めっき層との間にニッケル酸化物が生成され、このニッケル酸化物が原因となりめっき層が剥離することがあった。さらに、耐摩耗性については、めっき層の硬度が特定されているが、摺動時にはめっき層同士で凝着が発生するなど、硬度だけで耐摩耗性について評価するのは不十分であった。
As a method of plating a vehicle-mounted terminal that requires such heat resistance and wear resistance, there is a method of applying silver plating to the terminal as described in Patent Document 1, for example. In this respect, the hardness of the silver-plated layer decreases due to the increase in silver crystal diameter due to heating. In order to suppress this decrease in hardness, it is conceivable to increase the thickness of the silver plating film, but there is a problem in terms of cost. Moreover, when a nickel plating layer is used as a base, there is also a problem that the silver plating layer peels off.
On the other hand, as in Patent Document 2, antimony may be added to the plating layer to increase wear resistance, but although the initial hardness is high, the hardness decreases due to heating. After concentrating on the surface, it oxidizes and increases the contact resistance. Furthermore, when a nickel-plated layer is used as an underlayer, nickel oxide is generated between the nickel-plated layer and the silver-plated layer by heating, and the nickel oxide may cause peeling of the plated layer. Furthermore, with respect to wear resistance, the hardness of the plating layer is specified, but it was insufficient to evaluate the wear resistance only by the hardness, such as adhesion between the plating layers during sliding.

また、加熱による耐摩耗性低下を防ぐため、特許文献3のように、銀めっき層と錫めっき層とを順に積層してリフロー処理することにより表面を合金化する手法もあるが、めっき層の一部のみが合金化されるため、その合金化した部分が摺動により消耗されると、耐摩耗性の低下を抑制できない。
そこで、特許文献4のように、基材に対して直接銀錫合金めっきを施してめっき層全体の組成を均一に保つことが考えられている。
In addition, in order to prevent deterioration of wear resistance due to heating, as in Patent Document 3, there is a method of sequentially laminating a silver plating layer and a tin plating layer and performing a reflow treatment to alloy the surface. Since only a part is alloyed, if the alloyed part is worn out by sliding, the deterioration of wear resistance cannot be suppressed.
Therefore, as in Patent Document 4, it has been considered to apply silver-tin alloy plating directly to the base material to keep the composition of the entire plating layer uniform.

特開2008-169408号公報Japanese Patent Application Laid-Open No. 2008-169408 特開2009-79250公報Japanese Patent Application Laid-Open No. 2009-79250 特開2017-79143公報Japanese Patent Application Laid-Open No. 2017-79143 特開2015-183216号公報JP 2015-183216 A

しかしながら、特許文献4に記載の方法では、加熱環境下において、表面に錫の酸化膜が形成され、この酸化膜によって接触抵抗が低下する不具合がある。 However, in the method described in Patent Document 4, a tin oxide film is formed on the surface in a heating environment, and the contact resistance is lowered by this oxide film.

本発明は、このような事情に鑑みてなされたもので、耐摩耗性及び耐熱性を向上できるコネクタ用端子材及びコネクタ用端子を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a connector terminal material and a connector terminal that can improve wear resistance and heat resistance.

本発明のコネクタ用端子材は、少なくとも表面が銅又は銅合金からなる基材と、該基材の表面の少なくとも一部に被覆された銀錫合金からなる銀錫合金めっき層と、該銀錫合金めっき層の上に形成された純度99質量%以上の銀からなる銀めっき層とを備え、前記銀錫合金めっき層は、Agを70at%以上85at%以下の範囲で含み、かつ、銀錫系金属間化合物を主成分としており、前記銀錫合金めっき層の膜厚は0.5μm以上10μm以下であり、前記銀めっき層の膜厚は0.05μm以上2.0μm以下である。 The terminal material for a connector of the present invention comprises a substrate having at least a surface made of copper or a copper alloy, a silver-tin alloy plating layer made of a silver-tin alloy coated on at least a part of the surface of the substrate, and the silver-tin a silver-plated layer made of silver having a purity of 99% by mass or more formed on the alloy-plated layer, wherein the silver-tin alloy-plated layer contains Ag in a range of 70 at% or more and 85 at% or less; The silver-tin alloy plating layer has a thickness of 0.5 μm or more and 10 μm or less, and the thickness of the silver plating layer is 0.05 μm or more and 2.0 μm or less.

このコネクタ用端子材は、銀錫合金めっき層の上に銀めっき層が形成されているので、加熱環境下においても表面が酸化しにくく、接触抵抗の増大を抑制できる。
なお、銀錫合金めっき層中のAgが70at%未満では、その上の銀めっき層が十分に成膜されず、加熱後の接触抵抗が増加し、Agが85at%を超えると硬い銀錫合金に対する軟らかい銀の割合が増えるため、耐摩耗性が低下する。また、銀錫系金属間化合物としては、AgSn及びAgSnの金属間化合物を例示できる。
銀錫合金めっき層が0.5μm未満では、コネクタでの使用時の耐摩耗性向上の効果に乏しくなり、耐摩耗性が低下する。10μmを超える膜厚としても問題はないが、コストの面から10μm以下とするのが好ましい。銀めっき層の膜厚が0.05μm未満では薄すぎるため、早期に摩耗して消失し易い。2.0μmを超える厚さでは、軟らかい銀めっき層が厚いため、摩擦係数が増大する。
Since the silver-plated layer is formed on the silver-tin alloy-plated layer in this connector terminal material, the surface is not easily oxidized even in a heated environment, and an increase in contact resistance can be suppressed.
When Ag in the silver-tin alloy plating layer is less than 70 at%, the silver plating layer thereon is not formed sufficiently, and the contact resistance after heating increases. Abrasion resistance decreases due to the increase in the proportion of soft silver in the Examples of silver-tin-based intermetallic compounds include intermetallic compounds of Ag 3 Sn and Ag 4 Sn.
If the silver-tin alloy plating layer has a thickness of less than 0.5 μm, the effect of improving wear resistance during use in a connector is poor, and the wear resistance decreases. There is no problem even if the film thickness exceeds 10 μm, but it is preferable to set the film thickness to 10 μm or less from the viewpoint of cost. If the film thickness of the silver plating layer is less than 0.05 μm, it is too thin and is likely to be worn away at an early stage. If the thickness exceeds 2.0 μm, the soft silver plating layer is thick and the coefficient of friction increases.

コネクタ用端子材の一つの態様としては、前記基材と前記銀錫合金めっき層との間には、ニッケル又はニッケル合金からなるニッケルめっき層が設けられ、該ニッケルめっき層の膜厚は0.5μm以上2μm以下であるとよい。 In one aspect of the connector terminal material, a nickel plating layer made of nickel or a nickel alloy is provided between the base material and the silver-tin alloy plating layer, and the thickness of the nickel plating layer is 0.05. It is good that it is 5 micrometers or more and 2 micrometers or less.

ニッケルめっき層は基材からのCu成分の拡散を防止する効果がある。ニッケル層の厚さが0.5μm未満であると、高温環境下では銅又は銅合金からなる基材からCu成分が銀錫合金めっき層内に拡散して該銀錫合金めっき層の抵抗値が大きくなり、耐熱性が低下する可能性があり、2μmを超えると、曲げ加工時に割れが発生する可能性がある。
また、銀錫合金めっき層がニッケルめっき層上に形成されていることにより、銀錫合金とニッケルとが相互拡散し、かつ錫とニッケルが金属間化合物を生成するので、銀錫合金めっき層が剥離することを抑制できる。
The nickel plating layer has the effect of preventing diffusion of the Cu component from the base material. When the thickness of the nickel layer is less than 0.5 μm, the Cu component diffuses into the silver-tin alloy plating layer from the substrate made of copper or copper alloy in a high-temperature environment, and the resistance value of the silver-tin alloy plating layer increases. If the thickness exceeds 2 μm, cracks may occur during bending.
In addition, since the silver-tin alloy plating layer is formed on the nickel plating layer, the silver-tin alloy and nickel interdiffuse, and tin and nickel form an intermetallic compound. Peeling can be suppressed.

本発明のコネクタ用端子は、上記コネクタ用端子材からなるコネクタ用端子であって、相手方コネクタ用端子との接点部分の表面が前記銀めっき層である。 The connector terminal of the present invention is a connector terminal made of the connector terminal material described above, and the surface of the contact portion with the mating connector terminal is the silver plating layer.

本発明によれば、コネクタ用端子材及びコネクタ用端子の耐摩耗性及び耐熱性を向上できる。 ADVANTAGE OF THE INVENTION According to this invention, the abrasion resistance and heat resistance of the terminal material for connectors and the terminal for connectors can be improved.

本発明の一実施形態に係るコネクタ用端子材を模式的に示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows typically the terminal material for connectors which concerns on one Embodiment of this invention. 実施例における加熱前のコネクタ用端子材の断面のSIM像(傾斜角60°)である。It is a SIM image (60 degrees of inclination angles) of the cross section of the terminal material for connectors before heating in an Example.

以下、本発明の実施形態について図面を用いて説明する。
[コネクタ用端子材の構成]
図1は一実施形態のコネクタ用端子材の断面を模式的に示したものである。このコネクタ用端子材は、少なくとも表面が銅又は銅合金からなる板状の基材2と、該基材2の表面に被覆されたニッケル又はニッケル合金からなるニッケルめっき層3と、ニッケルめっき層3の表面の少なくとも一部(本実施形態では、ニッケル層3の上面全域)に被覆された銀錫合金めっき層4と、この銀錫合金めっき層4の上に形成された銀めっき層5とを備えている。
基材2は、銅または銅合金からなるものであれば、特に、その組成が限定されるものではない。また、母材の表面に銅又は銅合金からなる銅めっき層が施されためっき材により構成されてもよい。この場合、母材としては銅以外の金属材料であってもよい。
An embodiment of the present invention will be described below with reference to the drawings.
[Configuration of terminal material for connector]
FIG. 1 schematically shows a cross section of a connector terminal material according to one embodiment. This connector terminal material comprises a plate-shaped base material 2 whose surface is at least made of copper or a copper alloy, a nickel plating layer 3 made of nickel or a nickel alloy coated on the surface of the base material 2, and a nickel plating layer 3. A silver-tin alloy plating layer 4 covering at least part of the surface of (in this embodiment, the entire upper surface of the nickel layer 3), and a silver-plating layer 5 formed on the silver-tin alloy plating layer 4 I have.
The composition of the base material 2 is not particularly limited as long as it is made of copper or a copper alloy. Alternatively, it may be composed of a plated material in which a copper-plated layer made of copper or a copper alloy is applied to the surface of the base material. In this case, the base material may be a metal material other than copper.

ニッケルめっき層3は、基材2上にニッケル又はニッケル合金めっきを施すことにより被覆される。このニッケルめっき層3は、その上に被覆される銀錫合金めっき層4への基材2からのCu成分の拡散を抑制する機能を有する。このニッケルめっき層3の厚さは、0.5μm以上2μm以下であることが好ましい。ニッケルめっき層3の厚さが0.5μm未満であると、高温環境下では銅又は銅合金からなる基材2からCu成分が銀錫合金めっき層4内に拡散して銀錫合金めっき層4の抵抗値が大きくなり、耐熱性が低下する可能性があり、2μmを超えると、曲げ加工時に割れが発生する可能性がある。なお、ニッケルめっき層3は、ニッケル又はニッケル合金からなるものであれば、特に、その組成が限定されるものではない。 The nickel plating layer 3 is coated by plating the base material 2 with nickel or a nickel alloy. This nickel plating layer 3 has the function of suppressing the diffusion of the Cu component from the substrate 2 to the silver-tin alloy plating layer 4 coated thereon. The thickness of this nickel plating layer 3 is preferably 0.5 μm or more and 2 μm or less. When the thickness of the nickel plating layer 3 is less than 0.5 μm, the Cu component diffuses into the silver-tin alloy plating layer 4 from the base material 2 made of copper or a copper alloy in a high-temperature environment, and the silver-tin alloy plating layer 4 is formed. The resistance value of is increased, and the heat resistance may be lowered. If the thickness exceeds 2 μm, cracks may occur during bending. The composition of the nickel plating layer 3 is not particularly limited as long as it is made of nickel or a nickel alloy.

銀錫合金めっき層4は、ニッケルめっき層3上に銀ストライクめっきが施された後、その上面に被覆される。この銀錫合金めっき層4は、AgSn及びAgSnの金属間化合物を主成分とし、Agを70at%以上85at%以下の範囲で含んでいる。このような金属間化合物を含んでいるため、耐摩耗性が向上する。 The silver-tin alloy plating layer 4 is coated on the upper surface of the nickel plating layer 3 after silver strike plating is applied. This silver-tin alloy plating layer 4 is mainly composed of intermetallic compounds of Ag 3 Sn and Ag 4 Sn and contains Ag in a range of 70 at % or more and 85 at % or less. Since it contains such an intermetallic compound, wear resistance is improved.

また、銀錫合金めっき層4は、その上に形成される軟らかい銀めっき層5を支持して、コネクタでの使用時に滑り性を向上させる効果がある。この銀錫合金めっき層4の厚さは、0.5μm以上10μm以下であることが好ましい。銀錫合金めっき層4が0.5μm未満であると、滑り性向上の効果に乏しくなり、耐摩耗性が低下する。10μを超える膜厚としても問題はないが、コストの面から10μm以下とするのが好ましい。 In addition, the silver-tin alloy plating layer 4 has the effect of supporting the soft silver plating layer 5 formed thereon and improving the lubricity when used in the connector. The thickness of the silver-tin alloy plating layer 4 is preferably 0.5 μm or more and 10 μm or less. If the thickness of the silver-tin alloy plating layer 4 is less than 0.5 μm, the effect of improving slipperiness is poor, and wear resistance is lowered. Although there is no problem even if the film thickness exceeds 10 μm, it is preferable to set the film thickness to 10 μm or less from the viewpoint of cost.

銀めっき層5は、加熱環境下においても表面が酸化しにくく、接触抵抗の増大を抑制できる。この銀めっき層5は、純度99質量%以上、好ましくは99.9質量%以上の純銀からなり、また炭素は0.1質量%以上0.6質量%以下の含有率で共析している。残部にはS,N,Hなどの軽元素が含まれる。純度が99質量%以上としたのは、銀めっき層5のAg濃度が99質量%未満であると不純物が多く含まれることとなり、接触抵抗が高くなるからである。
また、銀めっき層5中に炭素が共析していることにより、コネクタとして摺動したときに銀めっき層5同士の凝着が発生しがたくなり、摩擦係数が低下する。この場合、炭素の含有量が0.1質量%未満では摩擦係数を低減する効果が乏しく、0.6質量%を超えると銀めっき層5が脆くなり加工性が悪化するおそれがある。
銀めっき層5の膜厚は0.05μm以上2.0μm以下である。銀めっき層5の膜厚が0.05μm未満では薄すぎるため、早期に摩耗して消失し易い。2.0μmを超える膜厚では、軟らかい銀めっき層5が厚いため、摩擦係数が増大する。
The surface of the silver plating layer 5 is not easily oxidized even in a heating environment, and an increase in contact resistance can be suppressed. This silver plating layer 5 is made of pure silver with a purity of 99% by mass or more, preferably 99.9% by mass or more, and carbon is co-precipitated at a content of 0.1% by mass or more and 0.6% by mass or less. . The remainder contains light elements such as S, N, and H. The reason why the purity is set to 99% by mass or more is that if the Ag concentration of the silver plating layer 5 is less than 99% by mass, a large amount of impurities will be included, resulting in an increase in contact resistance.
In addition, since carbon is co-deposited in the silver plating layer 5, adhesion between the silver plating layers 5 is less likely to occur when sliding as a connector, and the coefficient of friction is lowered. In this case, if the carbon content is less than 0.1% by mass, the effect of reducing the coefficient of friction is poor, and if it exceeds 0.6% by mass, the silver plating layer 5 becomes brittle and workability may deteriorate.
The film thickness of the silver plating layer 5 is 0.05 μm or more and 2.0 μm or less. If the film thickness of the silver plating layer 5 is less than 0.05 μm, it is too thin and is likely to be worn away early. When the film thickness exceeds 2.0 μm, the soft silver plating layer 5 is thick, so the coefficient of friction increases.

次に、このコネクタ用端子材1の製造方法について説明する。このコネクタ用端子材1の製造方法は、基材2となる銅又は銅合金からなる板材を洗浄する前処理工程と、ニッケルめっき層3を基材2に形成するニッケルめっき層形成工程と、ニッケルめっき層3上に、銀ストライクめっきを施す銀ストライクめっき工程と、銀ストライクめっきが施されたニッケルめっき層3上に銀錫合金めっき層4を形成する銀錫合金めっき層形成工程と、銀めっき層5を銀錫合金めっき層4上に形成する銀めっき層形成工程と、を備える。 Next, a method for manufacturing the connector terminal material 1 will be described. The method for manufacturing the connector terminal material 1 includes a pretreatment step of washing a plate material made of copper or a copper alloy to be the base material 2, a nickel plating layer forming step of forming the nickel plating layer 3 on the base material 2, and a nickel plating layer forming step. A silver strike plating step of applying silver strike plating on the plating layer 3, a silver-tin alloy plating layer forming step of forming a silver-tin alloy plating layer 4 on the nickel plating layer 3 to which the silver strike plating has been applied, and silver plating. and a silver plating layer forming step of forming the layer 5 on the silver-tin alloy plating layer 4 .

[前処理工程]
まず、基材2として、銅又は銅合金からなる板材を用意し、この板材に脱脂、酸洗等をすることによって表面を清浄する前処理を行う。
[Pretreatment process]
First, a plate material made of copper or a copper alloy is prepared as the base material 2, and pretreatment is performed to clean the surface of the plate material by degreasing, pickling, or the like.

[ニッケルめっき層形成工程]
この基材2の表面の少なくとも一部に対して、ニッケル又はニッケル合金めっきを施してニッケルめっき層3を基材2に形成する。例えば、スルファミン酸ニッケル300g/L、塩化ニッケル30g/L、ホウ酸30g/Lからなるニッケルめっき液を用いて、浴温45℃、電流密度3A/dmの条件下でニッケルめっきを施して形成される。なお、ニッケル層3を形成するニッケルめっきは、緻密なニッケル主体の膜が得られるものであれば特に限定されず、公知のワット浴を用いて電気めっきにより形成してもよい。
[Nickel plating layer forming step]
At least part of the surface of the base material 2 is plated with nickel or a nickel alloy to form a nickel plating layer 3 on the base material 2 . For example, using a nickel plating solution containing 300 g/L of nickel sulfamate, 30 g/L of nickel chloride, and 30 g/L of boric acid, nickel plating is performed under the conditions of a bath temperature of 45° C. and a current density of 3 A/dm 2 to form. be done. The nickel plating for forming the nickel layer 3 is not particularly limited as long as a dense nickel-based film can be obtained, and may be formed by electroplating using a known Watt bath.

[銀ストライクめっき工程]
基材2に形成されたニッケルめっき層3の表面に5質量%~10質量%の水酸化カリウム水溶液を用いて活性化処理を行った後、銀ストライクめっきを施す。この銀ストライクめっきは、ニッケルめっき層3上に形成される銀錫合金めっき層4とニッケルめっき層3との密着性を高めるために実行される。この銀ストライクめっきを施すためのめっき液の組成は、ノーシアン浴(シアン化物であるシアン化銀、シアン化銀カリウム、シアン化ナトリウム、シアン化カリウム等を含まないめっき浴)であれば特に限定されないが、メタンスルホン酸銀浴を主体としたものが望ましい。
[Silver strike plating process]
The surface of the nickel plating layer 3 formed on the base material 2 is subjected to an activation treatment using a potassium hydroxide aqueous solution of 5% to 10% by mass, and then subjected to silver strike plating. This silver strike plating is performed to improve adhesion between the silver-tin alloy plating layer 4 formed on the nickel plating layer 3 and the nickel plating layer 3 . The composition of the plating solution for applying this silver strike plating is not particularly limited as long as it is a non-cyanide bath (a plating bath that does not contain cyanide such as silver cyanide, potassium silver cyanide, sodium cyanide, potassium cyanide, etc.). A bath mainly composed of a silver methanesulfonate bath is desirable.

[銀錫合金めっき層形成工程]
そして、銀ストライクめっきを施したニッケルめっき層3上に銀錫合金めっきを施して銀錫合金めっき層4を形成する。この銀錫合金めっきのためのめっき浴としては、例えば、メタンスルホン酸、メタンスルホン酸錫、メタンスルホン酸銀、硫黄を含有した有機添加剤を含む組成とする。具体的には、遊離メタンスルホン酸濃度を40g/L、Ag濃度を40g/Lを超えて90g/L以下、Sn濃度を5~35g/Lの範囲で調整した銀錫合金めっき液を用いるとよい。なお、この銀錫合金めっき液は、シアン化銀、シアン化銀カリウム、シアン化ナトリウム、シアン化カリウム等のシアン化物を含んでいない。また、錫陽極は、AgとPt/Ti不溶性電極との両方を用い、これらの面積は、陰極の2倍以上、AgとPt/Tiの電流配分はAg:Pt/Ti=4:1とすることが好ましい。さらに、浴温は40℃~60℃、電流密度1~15A/dmとし、銀錫合金めっき層4を形成する。
[Silver-tin alloy plating layer forming process]
Then, a silver-tin alloy plating layer 4 is formed by applying silver-tin alloy plating on the nickel plating layer 3 to which silver strike plating has been applied. A plating bath for this silver-tin alloy plating has a composition containing, for example, methanesulfonic acid, tin methanesulfonate, silver methanesulfonate, and an organic additive containing sulfur. Specifically, a silver-tin alloy plating solution adjusted to have a free methanesulfonic acid concentration of 40 g/L, an Ag concentration of more than 40 g/L but not more than 90 g/L, and an Sn concentration of 5 to 35 g/L is used. good. This silver-tin alloy plating solution does not contain cyanides such as silver cyanide, potassium silver cyanide, sodium cyanide and potassium cyanide. In addition, both Ag and Pt/Ti insoluble electrodes are used for the tin anode, the area of which is at least twice that of the cathode, and the current distribution between Ag and Pt/Ti is set to Ag:Pt/Ti=4:1. is preferred. Furthermore, the bath temperature is set to 40° C. to 60° C. and the current density is set to 1 to 15 A/dm 2 to form the silver-tin alloy plating layer 4 .

[銀めっき層形成工程]
銀錫合金めっき層4の上に、銀めっきを施す。この銀めっきのためのめっき浴の組成は、特に限定されないが、例えば、シアン化銀カリウム(K[Ag(CN)])30g/L~60g/L、シアン化カリウム(KCN)120g/L~160g/L、炭酸カリウム(KCO)10g/L~20g/L、めっき層中に取り込まれやすい有機添加剤からなるめっき浴が好適である。有機添加剤としては、例えば、2,2チオエタノールなどのチオアルコール類、ベンゾチアゾール類、ベンゾトリアゾールなどのアゾール類、イミダゾールなどのイミダゾール類を用いることができる。この有機添加剤の添加濃度は0.1g/L以上10g/L以下とするのがよい。メタンスルホン酸、またはヨウ化カリウムと主体にしたノーシアン浴も使用可能である。
そして、この銀めっき浴に対してアノードとして純銀板を用いて、浴温10℃以上40℃以下、電流密度1A/dm以上10A/dm以下の条件下で銀めっきを1秒~7分程度施すことにより銀めっき層が形成される。
[Silver plating layer forming step]
The silver-tin alloy plating layer 4 is plated with silver. Although the composition of the plating bath for this silver plating is not particularly limited, for example, potassium silver cyanide (K[Ag(CN) 2 ]) 30 g/L to 60 g/L, potassium cyanide (KCN) 120 g/L to 160 g /L, 10 g/L to 20 g/L of potassium carbonate (K 2 CO 3 ), and an organic additive that is easily incorporated into the plating layer. Examples of organic additives that can be used include thioalcohols such as 2,2-thioethanol, azoles such as benzothiazoles and benzotriazoles, and imidazoles such as imidazole. The addition concentration of this organic additive is preferably 0.1 g/L or more and 10 g/L or less. A non-cyanide bath based on methanesulfonic acid or potassium iodide can also be used.
Then, using a pure silver plate as an anode for this silver plating bath, silver plating is performed for 1 second to 7 minutes under the conditions of a bath temperature of 10° C. or higher and 40° C. or lower and a current density of 1 A/dm 2 or higher and 10 A/dm 2 or lower. A silver plating layer is formed by applying a certain amount.

このようにして基材2の表面にニッケルめっき層3が形成され、その表面の少なくとも一部に銀錫合金めっき層4及び銀めっき層5が形成されたコネクタ用端子材1に対してプレス加工等を施し、接点として用いられる部分の表面に銀めっき層5が配置されるコネクタ用端子を形成する。 In this way, the nickel plating layer 3 is formed on the surface of the base material 2, and press working is performed on the connector terminal material 1 having the silver-tin alloy plating layer 4 and the silver plating layer 5 formed on at least a part of the surface. etc., to form a connector terminal in which a silver plating layer 5 is arranged on the surface of a portion used as a contact.

本実施形態では、表面に銀めっき層5が形成されているので、加熱環境下においても表面が酸化しにくい。このため、150℃で250時間加熱後でも接触抵抗が1mΩ以下と小さく、耐熱性を向上できる。銀錫合金めっき層4はニッケル層3上に銀ストライクめっき層を介して形成されているので、銀錫合金めっき層4がニッケルめっき層3から剥離することを抑制できる。なお、銀錫合金めっき層4中のAgが70at%未満では、加熱後の接触抵抗が低下し、Agが85at%を超えると銀錫合金めっき層の粒径が大きくなり、耐摩耗性が低下する。 In this embodiment, since the silver plating layer 5 is formed on the surface, the surface is not easily oxidized even in a heating environment. Therefore, even after heating at 150° C. for 250 hours, the contact resistance is as low as 1 mΩ or less, and the heat resistance can be improved. Since the silver-tin alloy plating layer 4 is formed on the nickel layer 3 via the silver strike plating layer, the separation of the silver-tin alloy plating layer 4 from the nickel plating layer 3 can be suppressed. If the Ag content in the silver-tin alloy plating layer 4 is less than 70 at%, the contact resistance after heating decreases, and if the Ag content exceeds 85 at%, the grain size of the silver-tin alloy plating layer increases, and the wear resistance decreases. do.

本実施形態の銀錫合金めっき層4は、収束イオンビーム装置(FIB)にて端子材の断面加工を行った後、断面の銀錫合金めっき層4のめっき表面からニッケルめっき層3に向かって0.3μmの深さ位置P1と、ニッケル層3との界面から銀錫合金めっき層4の表面側に向かって0.3μmの深さ位置P2とについて、それぞれEPMAにて組成分析を行い、錫(Sn)と銀(Ag)の組成比をAg/(Sn+Ag)×100(at%)で計算した際の(P1-P2)の差分の絶対値が5以下となる。すなわち、銀錫合金めっき層4は、上記めっき処理により形成されているため、AgSn及びAgSnの金属間化合物の上記位置P1及び上記位置P2における組成が略同じとなる。このため、銀錫合金めっき層4の耐摩耗性及び耐熱性(接続信頼性)に優れたコネクタ用端子材1を提供できる。
また、銀ストライクめっき、銀錫合金めっきにシアン化物を含まないめっき液を用いており、排水処理が容易になるなど、環境負荷を低減できる。銀めっき層5を形成する際にもノーシアン浴とすれば、さらに環境負荷を低減できる。
The silver-tin alloy plating layer 4 of the present embodiment is obtained by processing the cross section of the terminal material with a focused ion beam device (FIB), and then from the plating surface of the silver-tin alloy plating layer 4 in the cross section toward the nickel plating layer 3. A composition analysis is performed by EPMA on a depth position P1 of 0.3 μm and a depth position P2 of 0.3 μm from the interface with the nickel layer 3 toward the surface side of the silver-tin alloy plating layer 4, respectively. The absolute value of the difference of (P1−P2) when the composition ratio of (Sn) and silver (Ag) is calculated by Ag/(Sn+Ag)×100 (at %) is 5 or less. That is, since the silver-tin alloy plated layer 4 is formed by the above-described plating process, the compositions of the intermetallic compounds of Ag 3 Sn and Ag 4 Sn at the positions P1 and P2 are substantially the same. Therefore, it is possible to provide the connector terminal material 1 in which the silver-tin alloy plating layer 4 is excellent in wear resistance and heat resistance (connection reliability).
In addition, a plating solution that does not contain cyanide is used for silver strike plating and silver-tin alloy plating, which facilitates wastewater treatment and reduces environmental impact. If a non-cyanide bath is used when forming the silver plating layer 5, the environmental load can be further reduced.

その他、細部構成は実施形態の構成のものに限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記実施形態では、基材2と銀錫合金めっき層4との間にニッケルめっき層3が設けられていることとしたが、これに限らず、必ずしもニッケルめっき層3は含まれていなくてもよい。すなわち、基材2上に直接銀錫合金めっき層4が形成されてもよく、この場合、ニッケルめっき層形成工程及び銀ストライクめっき工程を行わなくてもよい。
また、端子材の表面の一部、具体的にはコネクタ端子として接点部となる部分に銀錫合金めっき層、銀めっき層を形成したが、表面全体に銀錫合金めっき層、銀めっき層を形成することは妨げない。
In addition, detailed configurations are not limited to those of the embodiments, and various modifications can be made without departing from the scope of the present invention. For example, in the above embodiment, the nickel plating layer 3 is provided between the base material 2 and the silver-tin alloy plating layer 4, but this is not limiting and the nickel plating layer 3 is not necessarily included. may That is, the silver-tin alloy plating layer 4 may be formed directly on the base material 2, and in this case, the nickel plating layer forming step and the silver strike plating step may not be performed.
In addition, although a silver-tin alloy plating layer and a silver plating layer were formed on a part of the surface of the terminal material, specifically, on the contact portion of the connector terminal, the silver-tin alloy plating layer and the silver plating layer were formed on the entire surface. It does not prevent forming.

銅合金からなる厚さ0.25mmの基材上にニッケルめっきを施して、膜厚1.0μmのニッケルめっき層を形成し、該ニッケルめっき層を形成した試料に対して、5質量%の水酸化カリウム水溶液を用いてニッケルめっき層表面を清浄化する活性化処理を行った。この活性化処理後に、ニッケルめっき層が被覆された基材に対して銀ストライクめっきを施した後、その上に銀錫合金めっき層及び銀めっき層を順に形成した各試料(試料1~10)を作製した。この際、銀錫合金めっき液におけるAgの量(g/L)、Snの量(g/L)及び電流密度は、表1に示す値とした。 A base material made of a copper alloy and having a thickness of 0.25 mm was plated with nickel to form a nickel plating layer with a thickness of 1.0 μm, and the sample on which the nickel plating layer was formed was added with 5% by mass of water. An activation treatment was performed to clean the surface of the nickel plating layer using an aqueous potassium oxide solution. After this activation treatment, silver strike plating was applied to the base material coated with the nickel plating layer, and then a silver-tin alloy plating layer and a silver plating layer were sequentially formed on each sample (samples 1 to 10). was made. At this time, the amount of Ag (g/L), the amount of Sn (g/L) and the current density in the silver-tin alloy plating solution were the values shown in Table 1.

また、比較のため、ニッケルめっき層の上に銀錫合金めっき層を形成せずに、銀めっき層のみ膜厚2μmで形成したもの(試料11)、ニッケルめっき層の上に銀錫合金めっき層のみ膜厚2μmで形成し、銀めっき層を形成しなかったもの(試料12)、ニッケルめっき層の上にアンチモンが添加された銀合金めっき層を膜厚2μmで形成したもの(試料13)も作製した。
なお、各めっきの条件は以下のとおりとした。
For comparison, a silver-tin alloy plating layer was formed on the nickel plating layer without forming the silver-tin alloy plating layer (Sample 11), and a silver-tin alloy plating layer was formed on the nickel plating layer. There was also a sample in which a 2 μm-thick silver plating layer was not formed (Sample 12), and a 2 μm-thick silver alloy plating layer to which antimony was added was formed on a nickel plating layer (Sample 13). made.
In addition, the conditions of each plating were as follows.

<ニッケルめっき条件>
・めっき浴組成
スルファミン酸ニッケル:300g/L
塩化ニッケル:30g/L
ホウ酸:30g/L
・浴温:45℃
・電流密度:3A/dm
<Nickel plating conditions>
・Plating bath composition Nickel sulfamate: 300 g / L
Nickel chloride: 30g/L
Boric acid: 30g/L
・Bath temperature: 45℃
・Current density: 3 A/dm 2

<銀ストライクめっき条件>
・めっき浴組成
大和化成株式会社製 ダインシルバーGPE-ST
・アノード
IrO/Ti不溶性アノード
・浴温:25℃
・電流密度:1A/dm
<Silver strike plating conditions>
・Plating bath composition Dyne Silver GPE-ST manufactured by Daiwa Kasei Co., Ltd.
・Anode: IrO 2 /Ti insoluble anode ・Bath temperature: 25°C
・Current density: 1 A/dm 2

<銀錫合金めっき条件>
・めっき浴組成
遊離メタンスルホン酸:40g/L
メタンスルホン酸錫:20g/L
メタンスルホン酸銀:60g/L
有機添加剤:5mg/L
・浴温:50℃
・電流密度:10A/dm
<Silver-tin alloy plating conditions>
・Plating bath composition Free methanesulfonic acid: 40 g / L
Tin methanesulfonate: 20 g/L
Silver methanesulfonate: 60 g/L
Organic additive: 5mg/L
・Bath temperature: 50℃
・Current density: 10 A/dm 2

<銀めっき条件>
・めっき浴組成
シアン化銀カリウム:55g/L
シアン化カリウム:130g/L
炭酸カリウム:15g/L
非イオン性界面活性剤:1g/L
2,2チオエタノール:5g/L
・アノード
純銀板
・浴温:25℃
・電流密度:5A/dm
<Silver plating conditions>
・Plating bath composition Potassium silver cyanide: 55 g / L
Potassium cyanide: 130g/L
Potassium carbonate: 15g/L
Nonionic surfactant: 1 g/L
2,2 thioethanol: 5 g/L
・Anode pure silver plate ・Bath temperature: 25℃
・Current density: 5 A/dm 2

なお、試料13のアンチモン入り銀合金めっき層は、日進化成株式会社製のアンチモンが添加されたニッシンブライトN浴を用いて、光沢銀めっきを実施することにより作製した。めっき浴の組成は、標準組成を用い、浴温25℃、電流密度1A/dmとし、アノードとして純銀板を用い、膜厚2μmの銀合金めっき層(AgSb合金層)を形成した。 The antimony-containing silver alloy plating layer of Sample 13 was produced by bright silver plating using Nissin Bright N bath containing antimony (manufactured by Nisshin Seisaku Co., Ltd.). A standard composition of the plating bath was used at a bath temperature of 25° C. and a current density of 1 A/dm 2 , and a pure silver plate was used as the anode to form a silver alloy plating layer (AgSb alloy layer) having a thickness of 2 μm.

得られた試料について、銀錫合金めっき層中のAg濃度(at%)、銀錫合金めっき層の膜厚、銀めっき層中のAg濃度(質量%)、銀めっき層の膜厚を測定し、耐摩耗性及び接触抵抗、耐熱剥離性を評価した。 The Ag concentration (at%) in the silver-tin alloy plating layer, the film thickness of the silver-tin alloy plating layer, the Ag concentration (mass%) in the silver-plating layer, and the film thickness of the silver-plating layer were measured for the obtained sample. , abrasion resistance and contact resistance, and heat peeling resistance were evaluated.

[銀錫合金めっき中のAg濃度(at%)]
収束イオンビーム装置(FIB)にてめっき材を加工して断面試料を作製し、銀錫合金めっき中のAg濃度は、日本電子株式会社製の電子線マイクロアナライザー:EPMA(型番JXA-8530F)を用いて、加速電圧10kV、ビーム径φ30μmとし、各試料の断面を測定した。
[銀めっき層中のAg濃度(質量%)]
アメテック株式会社製グロー放電質量分析計(Astrum)を用いて、以下の条件で測定した。
積分時間:160msec/Ch
放電電流:2.0mA
放電電圧:1.0kV
放電ガス:Ar(>99.9999)
予備放電:20min
[Ag concentration in silver-tin alloy plating (at%)]
The plated material is processed with a focused ion beam device (FIB) to prepare a cross-sectional sample, and the Ag concentration in the silver-tin alloy plating is measured using an electron beam microanalyzer: EPMA (model number JXA-8530F) manufactured by JEOL Ltd. The cross section of each sample was measured with an acceleration voltage of 10 kV and a beam diameter of 30 μm.
[Ag concentration in silver plating layer (% by mass)]
Using a glow discharge mass spectrometer (Astrum) manufactured by Ametech Co., Ltd., measurement was performed under the following conditions.
Integration time: 160msec/Ch
Discharge current: 2.0mA
Discharge voltage: 1.0 kV
Discharge gas: Ar (>99.9999)
Preliminary discharge: 20min

[各めっき層の膜厚]
収束イオンビーム装置(FIB)にてめっき材を加工して断面試料を作製し、その断面表面を走査イオン顕微鏡(SIM)で観察して測定した。
[耐摩耗性]
各試料を60mm×10mmの試験片に切り出し、平板サンプルをオス端子の代用とし、この平板サンプルに曲率半径2.5mmの凸加工を行ったサンプルをメス端子の代用とした。摺動試験は、ブルカー・エイエックスエス株式会社の摩擦摩耗試験機(UMT-Tribolab)を用い、水平に設置したオス端子試験片にメス試験片の凸面を接触させ、5Nの荷重を負荷した状態で、オス端子試験片を水平に移動距離5mm、摺動速度1Hzで摺動させ、摺動50回後の摩耗深さを、摺動試験後に平板サンプルの下地(ニッケル層)が露出しているか否かで判定した。この際、摩耗深さが2.5μm未満(摺動試験後に下地が露出していない)のものを良好「A」、摺動試験後に下地が露出しているものを不可「B」とした。
[Film thickness of each plating layer]
A cross-sectional sample was prepared by processing the plated material with a focused ion beam device (FIB), and the cross-sectional surface was observed and measured with a scanning ion microscope (SIM).
[Abrasion resistance]
Each sample was cut into a test piece of 60 mm×10 mm, a flat plate sample was used as a substitute for a male terminal, and a sample obtained by subjecting the flat plate sample to convex processing with a radius of curvature of 2.5 mm was used as a substitute for a female terminal. In the sliding test, a friction wear tester (UMT-Tribolab) manufactured by Bruker AXS Co., Ltd. was used, and the convex surface of the female test piece was brought into contact with the male terminal test piece installed horizontally, and a load of 5 N was applied. Then, slide the male terminal test piece horizontally at a moving distance of 5 mm and a sliding speed of 1 Hz, and check the wear depth after sliding 50 times. determined by no. At this time, those with a wear depth of less than 2.5 μm (the base was not exposed after the sliding test) were rated as good “A”, and those with the base exposed after the sliding test were rated as unsatisfactory “B”.

[接触抵抗]
各試料のそれぞれを60mm×10mmの試験片に切り出し、平板サンプルをオス端子の代用とし、この平板サンプルに曲率半径2.5mmの凸加工を行ったサンプルをメス端子の代用とした。これらを加熱前及び150℃で250時間加熱後について、それぞれ接触抵抗を測定した。ブルカー・エイエックスエス株式会社の摩擦摩耗試験機(UMT-Tribolab)を用い、水平に設置したオス端子試験片にメス試験片の凸面を接触させ、オス端子試験片を荷重負荷速度1/15N/secで、0Nから10Nまで荷重をかけた時の10Nの時の接触抵抗値を4端子法により測定した。
[Contact resistance]
Each sample was cut into a test piece of 60 mm×10 mm, and the flat plate sample was used as a substitute for a male terminal, and a sample obtained by subjecting the flat plate sample to convex processing with a radius of curvature of 2.5 mm was used as a substitute for a female terminal. The contact resistance was measured before heating and after heating at 150° C. for 250 hours. Using a friction wear tester (UMT-Tribolab) of Bruker AXS Co., Ltd., the convex surface of the female test piece is brought into contact with the male terminal test piece placed horizontally, and the male terminal test piece is loaded at a load rate of 1/15N/ A contact resistance value at 10 N when a load was applied from 0 N to 10 N in sec was measured by a four-probe method.

[耐熱剥離性]
耐熱剥離試験は、大気加熱炉にて150℃で1000時間加熱後、JISK5600-5-6に記載のクロスカット法にて試験を行い、皮膜が剥がれなかったものを良好「A」、1マスでも剥がれたものを不可「B」とした。
[Heat peelability]
In the heat-resistant peeling test, after heating at 150 ° C. for 1000 hours in an atmospheric heating furnace, the test was performed by the cross-cut method described in JISK5600-5-6. A sample that was peeled off was rated as "B".

Figure 0007302248000001
Figure 0007302248000001

Figure 0007302248000002
Figure 0007302248000002

表1及び表2から明らかなように、銀錫合金めっき層の上に銀めっき層が形成され、銀錫合金めっき層のAg濃度がAgを70at%以上85at%以下で、銀錫合金めっき層の膜厚が0.5μm以上10μm以下、銀めっき層の膜厚が0.05μm以上2.0μm以下である試料1~4、6、7は、150℃で250時間加熱後でも接触抵抗が1mΩ以下と小さく、耐摩耗性、耐熱剥離性ともに良好であった。なお、図2は試料3の傾斜角60°の断面SIM像であり、基材(Cuと表記)表面のニッケルめっき層(Niと表記)の上に、銀錫合金めっき層(AgSnと表記)、銀めっき層(Agと表記)が形成されている。なお、ニッケルめっき層はすべて1.0μmの膜厚であった。また、銀めっき層はすべて99質量%以上の銀からなる銀めっき層であった。
これに対して、試料5は、銀錫合金めっき層の膜厚が0.4μmと小さいため、耐摩耗性が劣っていた。
試料8は、銀錫合金めっき層中のAg濃度が65at%であったことから、銀錫合金めっき層の析出が粗雑となり、その上の銀めっき層が成膜できなかった。
試料9は、銀錫合金めっき層中のAg濃度が95at%と高かったため、耐摩耗性に劣っていた。
試料10は、銀めっき層の膜厚が0.02μmと小さいため、加熱後の接触抵抗が増加した。
As is clear from Tables 1 and 2, the silver-plated layer was formed on the silver-tin alloy plated layer, and the Ag concentration of the silver-tin alloy plated layer was 70 at% or more and 85 at% or less. Samples 1 to 4, 6, and 7 with a thickness of 0.5 μm or more and 10 μm or less and a thickness of the silver plating layer of 0.05 μm or more and 2.0 μm or less had a contact resistance of 1 mΩ even after heating at 150 ° C. for 250 hours. It was as small as below, and both wear resistance and heat-resistant peelability were good. FIG. 2 is a cross-sectional SIM image of sample 3 at an inclination angle of 60°. , a silver plating layer (denoted as Ag) is formed. All nickel plating layers had a film thickness of 1.0 μm. Moreover, all of the silver plating layers were silver plating layers containing 99% by mass or more of silver.
On the other hand, in sample 5, since the film thickness of the silver-tin alloy plating layer was as small as 0.4 μm, the wear resistance was inferior.
In sample 8, since the Ag concentration in the silver-tin alloy plating layer was 65 at %, the deposition of the silver-tin alloy plating layer was rough, and a silver plating layer could not be formed thereon.
Sample 9 had a high Ag concentration of 95 at % in the silver-tin alloy plating layer, and thus was inferior in wear resistance.
In sample 10, since the film thickness of the silver plating layer was as small as 0.02 μm, the contact resistance after heating increased.

1 コネクタ用端子材
2 基材
3 ニッケルめっき層
4 銀錫合金めっき層
5 銀めっき層
1 Terminal Material for Connector 2 Base Material 3 Nickel Plating Layer 4 Silver Tin Alloy Plating Layer 5 Silver Plating Layer

Claims (3)

少なくとも表面が銅又は銅合金からなる基材と、該基材の表面の少なくとも一部に被覆された銀錫合金からなる銀錫合金めっき層と、該銀錫合金めっき層の上に形成された純度99質量%以上の銀からなる銀めっき層とを備え、前記銀錫合金めっき層は、Agを70at%以上85at%以下の範囲で含み、かつ、銀錫系金属間化合物を主成分としており、前記銀錫合金めっき層の膜厚は0.5μm以上10μm以下であり、前記銀めっき層の膜厚は0.05μm以上2.0μm以下であり、
さらに前記銀めっき層では、炭素が0.1質量%以上0.6質量%以下の含有率で共析していることを特徴とするコネクタ用端子材。
A base material having at least a surface made of copper or a copper alloy, a silver-tin alloy plating layer made of a silver-tin alloy covering at least a part of the surface of the base material, and a silver-tin alloy plating layer formed on the silver-tin alloy plating layer and a silver plating layer made of silver with a purity of 99% by mass or more, wherein the silver-tin alloy plating layer contains Ag in a range of 70 at% or more and 85 at% or less, and is mainly composed of a silver-tin-based intermetallic compound. , the film thickness of the silver-tin alloy plating layer is 0.5 μm or more and 10 μm or less, the film thickness of the silver plating layer is 0.05 μm or more and 2.0 μm or less,
Further, the terminal material for a connector, wherein the silver plating layer contains carbon co-deposited at a content of 0.1% by mass or more and 0.6% by mass or less .
前記基材と前記銀錫合金めっき層との間には、ニッケル又はニッケル合金からなるニッケルめっき層が設けられ、該ニッケルめっき層の膜厚は0.5μm以上2μm以下であることを特徴とする請求項1に記載のコネクタ用端子材。 A nickel plating layer made of nickel or a nickel alloy is provided between the base material and the silver-tin alloy plating layer, and the thickness of the nickel plating layer is 0.5 μm or more and 2 μm or less. The connector terminal material according to claim 1 . 請求項1又は2に記載のコネクタ用端子材からなるコネクタ用端子であって、相手方コネクタ用端子との接点部分の表面が前記銀めっき層からなることを特徴とするコネクタ用端子。 3. A connector terminal made of the connector terminal material according to claim 1, wherein a surface of a contact portion with a mating connector terminal is formed of the silver plating layer.
JP2019074191A 2019-04-09 2019-04-09 Connector terminal materials and connector terminals Active JP7302248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019074191A JP7302248B2 (en) 2019-04-09 2019-04-09 Connector terminal materials and connector terminals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019074191A JP7302248B2 (en) 2019-04-09 2019-04-09 Connector terminal materials and connector terminals

Publications (2)

Publication Number Publication Date
JP2020172675A JP2020172675A (en) 2020-10-22
JP7302248B2 true JP7302248B2 (en) 2023-07-04

Family

ID=72830069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019074191A Active JP7302248B2 (en) 2019-04-09 2019-04-09 Connector terminal materials and connector terminals

Country Status (1)

Country Link
JP (1) JP7302248B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023079476A (en) * 2021-11-29 2023-06-08 矢崎総業株式会社 Plated material for terminal, terminal using the same, and electric wire with terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270192A (en) 2007-03-27 2008-11-06 Furukawa Electric Co Ltd:The Silver coating material for movable contact component, and manufacturing method thereof
JP2013032588A (en) 2011-07-26 2013-02-14 Rohm & Haas Electronic Materials Llc High temperature resistant silver coated substrate
JP2014005549A (en) 2012-04-06 2014-01-16 Auto Network Gijutsu Kenkyusho:Kk Method for producing plated member, and method for producing plated terminal for connector
JP2015219975A (en) 2014-05-14 2015-12-07 株式会社オートネットワーク技術研究所 Connector terminal
JP2016173889A (en) 2015-03-16 2016-09-29 株式会社オートネットワーク技術研究所 Electrical contact pair and terminal pair for connector

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008270192A (en) 2007-03-27 2008-11-06 Furukawa Electric Co Ltd:The Silver coating material for movable contact component, and manufacturing method thereof
JP2013032588A (en) 2011-07-26 2013-02-14 Rohm & Haas Electronic Materials Llc High temperature resistant silver coated substrate
JP2014005549A (en) 2012-04-06 2014-01-16 Auto Network Gijutsu Kenkyusho:Kk Method for producing plated member, and method for producing plated terminal for connector
JP2015219975A (en) 2014-05-14 2015-12-07 株式会社オートネットワーク技術研究所 Connector terminal
JP2016173889A (en) 2015-03-16 2016-09-29 株式会社オートネットワーク技術研究所 Electrical contact pair and terminal pair for connector

Also Published As

Publication number Publication date
JP2020172675A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
JP4402132B2 (en) Reflow Sn plating material and electronic component using the same
JP5280957B2 (en) Conductive member and manufacturing method thereof
JP4940081B2 (en) Reflow Sn plating material and electronic component using the same
JP2004068026A (en) Conducting material for connecting parts and manufacturing method therefor
CN110997985A (en) Silver-coated membrane terminal material and silver-coated membrane terminal
JP7302248B2 (en) Connector terminal materials and connector terminals
JP7302364B2 (en) Connector terminal materials and connector terminals
JP5101235B2 (en) Sn plating material for electronic parts and electronic parts
JP4090488B2 (en) Conductive material plate for connecting part forming process and manufacturing method thereof
JP6743998B1 (en) Connector terminal material and connector terminal
JP7313600B2 (en) Connector terminal materials and connector terminals
JP7040544B2 (en) Terminal material for connectors
JP7494618B2 (en) Connector terminal material
JP4090483B2 (en) Conductive connection parts
JP7059877B2 (en) Terminal material for connectors and terminals for connectors
JP2019011504A (en) Anticorrosion terminal material, manufacturing method thereof, anticorrosion terminal and wire terminal part structure
JP2020117770A (en) Terminal material for connector, and terminal for connector
JP2018016878A (en) Manufacturing method of tin plating copper terminal material
JP2020128575A (en) Terminal material for connector, terminal for connector, and method of producing terminal material for connector
US11901659B2 (en) Terminal material for connectors
JP2020056057A (en) Terminal material for connector, terminal for connector, and manufacturing method of terminal material for connector
WO2021029254A1 (en) Terminal material for connectors
JP2021063249A (en) Terminal material for connectors
TW202217078A (en) Anti-corrosion terminal material for aluminum core wire and manufacturing method thereof, anti-corrosion terminal and wire terminal structure
JP2020117769A (en) Terminal material for connector, and terminal for connector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230605

R150 Certificate of patent or registration of utility model

Ref document number: 7302248

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150