JP7300656B2 - Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method - Google Patents
Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method Download PDFInfo
- Publication number
- JP7300656B2 JP7300656B2 JP2021091115A JP2021091115A JP7300656B2 JP 7300656 B2 JP7300656 B2 JP 7300656B2 JP 2021091115 A JP2021091115 A JP 2021091115A JP 2021091115 A JP2021091115 A JP 2021091115A JP 7300656 B2 JP7300656 B2 JP 7300656B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- soil
- activated carbon
- metallic iron
- groundwater
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Processing Of Solid Wastes (AREA)
- Water Treatment By Sorption (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Description
本発明は、土壌又は地下水に含まれる有機ハロゲン化合物を分解し土壌又は地下水を浄化する土壌・地下水浄化処理用浄化剤及びその製造方法、並びに浄化処理方法に関する。 TECHNICAL FIELD The present invention relates to a soil/groundwater purification agent that decomposes organic halogen compounds contained in soil or groundwater to purify the soil or groundwater , a method for producing the same, and a purification method.
トリクロロエチレン、テトラクロロエチレン等の脂肪族有機ハロゲン化合物は、半導体工場での洗浄用や金属加工金属の脱脂用として幅広く用いられている。 Aliphatic organic halogen compounds such as trichlorethylene and tetrachlorethylene are widely used for cleaning in semiconductor factories and for degreasing metal processing.
また、都市ごみや産業廃棄物を焼却するごみ焼却炉から発生する排ガスや飛灰、主灰中には、微量ではあるが人体に対して極めて強い毒性を持つ芳香族有機ハロゲン化合物であるダイオキシン類が含まれている。ダイオキシン類は、ジベンゾ-p-ジオキシン、ジベンゾフラン等の水素が塩素で置換された化合物の総称である。排ガスや飛灰はごみ焼却炉周辺に滞留し周辺地域の土壌中にダイオキシン類が残存することとなる。 Dioxins, which are aromatic organic halogen compounds that are extremely toxic to the human body, are found in exhaust gas, fly ash, and bottom ash generated from garbage incinerators that incinerate municipal and industrial waste. It is included. Dioxins is a general term for compounds such as dibenzo-p-dioxin and dibenzofuran in which hydrogen is substituted with chlorine. Exhaust gas and fly ash remain around the incinerator and dioxins remain in the soil of the surrounding area.
さらに、PCB(ポリ塩化ビフェニル)は化学的、熱的に安定であり、電気絶縁性にも優れており、トランス、コンデンサーの絶縁油、可塑剤、熱媒体として多用されていたが、有害であることから製造及び使用が禁止されている。しかしながら、過去において使用されていたPCBの有効な処理方法は確立されておらず、大部分が処理されずにそのまま保存されている。 Furthermore, PCB (polychlorinated biphenyl) is chemically and thermally stable and has excellent electrical insulation properties. Therefore, its manufacture and use are prohibited. However, no effective treatment method has been established for PCBs used in the past, and most of them are stored as they are without being treated.
脂肪族有機ハロゲン化合物及び芳香族有機ハロゲン化合物等の有機ハロゲン化合物は難分解性であるうえに発癌性物質又は強い毒性を有する物質であるため、土壌・地下水の有機ハロゲン化合物による汚染が深刻な環境問題になっている。 Since organic halogen compounds such as aliphatic organic halogen compounds and aromatic organic halogen compounds are persistent and carcinogenic or highly toxic, environments where soil and groundwater are seriously contaminated by organic halogen compounds. it's a problem.
即ち、前記有機ハロゲン化合物が排出された場合、有機ハロゲン化合物は難分解性であるため、排出された土壌中に蓄積され有機ハロゲン化合物で汚染された状態となり、また、地下水も有機ハロゲン化合物によって汚染されることとなる。さらに、地下水は汚染土壌以外の周辺地域についても広がるため、広範な領域で有機ハロゲン化合物による汚染が問題となる。 That is, when the organic halogen compounds are discharged, since the organic halogen compounds are persistent, they accumulate in the discharged soil and become contaminated with the organic halogen compounds, and groundwater is also contaminated with the organic halogen compounds. It will be done. Furthermore, since groundwater spreads to surrounding areas other than contaminated soil, contamination by organic halogen compounds becomes a problem over a wide area.
有機ハロゲン化合物によって汚染された土壌では土地の再利用・再開発を行うことができないため、有機ハロゲン化合物によって汚染された土壌・地下水の浄化処理方法として様々な技術手段の提案がなされているが、有機ハロゲン化合物は難分解性であり、しかも、多量の土壌・地下水が処理対象となるため、効率的、且つ、経済的な浄化技術は未だ十分に確立されていない。 Since soil contaminated with organic halogen compounds cannot be reused or redeveloped, various technical means have been proposed as methods for purifying soil and groundwater contaminated with organic halogen compounds. Organic halogen compounds are difficult to decompose, and a large amount of soil and groundwater are subject to treatment, so an efficient and economical purification technology has not yet been fully established.
有機ハロゲン化合物によって汚染された土壌の浄化方法として、各種触媒を用いて浄化処理する方法、有機ハロゲン化合物の揮発性を利用して吸引除去する方法、土壌を掘削して加熱処理によって無害化する熱分解法、微生物を利用する方法等が知られている。また、有機ハロゲン化合物によって汚染された地下水の浄化方法として、汚染地下水を土壌外に抽出して無害化する方法、地下水を揚水することによって有機ハロゲン化合物を除去する方法等が知られている。 Methods for remediation of soil contaminated with organic halogen compounds include a method of purification using various catalysts, a method of suction removal using the volatility of organic halogen compounds, and a method of excavating and detoxifying soil through heat treatment. A decomposition method, a method using microorganisms, and the like are known. Further, as a method for purifying groundwater contaminated with organic halogen compounds, a method of extracting contaminated groundwater from the soil to render it harmless, a method of pumping groundwater to remove organic halogen compounds, and the like are known.
有機ハロゲン化合物で汚染された土壌・地下水・廃水の浄化方法として提案されている技術手段のうち、有機ハロゲン化合物で汚染された土壌・地下水・廃水と鉄系粒子を用いた浄化剤とを混合接触させて無害化する技術手段が提案されている(特許文献1~11)。 Among the technical means proposed as a method for purifying soil, groundwater, and wastewater contaminated with organic halogen compounds, mixing and contacting soil, groundwater, and wastewater contaminated with organic halogen compounds with a purification agent using iron-based particles. There have been proposed technical means for detoxification by detoxification (Patent Documents 1 to 11).
土壌又は地下水に含まれる有機ハロゲン化合物類を効率よく、経済的に分解できる浄化剤は、現在最も要求されているところであるが、未だ得られていない。 A cleaning agent capable of efficiently and economically decomposing organic halogen compounds contained in soil or groundwater is currently most demanded, but has not yet been obtained.
即ち、前出特許文献1には銅を含有した鉄粉を用いて土壌中の有機ハロゲン化合物を無害化する技術が開示されているが、有機ハロゲン化合物の分解に長時間を必要とするため効率よく有機ハロゲン化合物を無害化できるとは言い難いものである。 That is, the aforementioned Patent Document 1 discloses a technique for detoxifying organic halogen compounds in soil using iron powder containing copper. It is difficult to say that organic halogen compounds can be rendered harmless.
また、前出特許文献2には、ニッケル、銅、コバルト及びモリブデンから選ばれる金属が表面に付着し、付着金属以外の表面が鉄酸化被膜で覆われている有機ハロゲン化合物分解用鉄粉が記載されているが、ミルスケールで得られた鉄粉や溶鋼を水アトマイズした鉄粉を用いており、記載されている鉄粉の比表面積から、鉄粉の粒子サイズが大きいと思われ、有機ハロゲン化合物を十分に低減できるとは言い難いものである。 In addition, the aforementioned Patent Document 2 describes an iron powder for decomposition of an organic halogen compound, in which a metal selected from nickel, copper, cobalt and molybdenum is attached to the surface, and the surface other than the attached metal is covered with an iron oxide film. However, iron powder obtained on a mill scale or iron powder obtained by water atomizing molten steel is used, and from the specific surface area of the iron powder described, it seems that the particle size of the iron powder is large, and organic halogen It is difficult to say that the compounds can be sufficiently reduced.
また、前出特許文献3には、黒鉛とFe-Niから成り、黒鉛含有量が1~20重量%、Ni含有量が0.1~15重量%である有機ハロゲン化合物の無害化処理剤が記載されているが、粒子サイズが大きいと思われ、有機ハロゲン化合物を十分に低減できるとは言い難いものである。 In addition, in the aforementioned Patent Document 3, an organic halogen compound detoxifying agent composed of graphite and Fe—Ni and having a graphite content of 1 to 20% by weight and a Ni content of 0.1 to 15% by weight is disclosed. Although it is described, the particle size seems to be large, and it is difficult to say that the organic halogen compounds can be sufficiently reduced.
また、前出特許文献4には、鉄を主成分とする相を母材金属相とし、ニッケルを主成分とする相を付着金属相としたニッケル付着鉄粒子からなる有機ハロゲン化合物分解用金属粉が記載されているが、粒子径が1~500μmと大きく、有機ハロゲン化合物を十分に低減できるとは言い難いものである。 Further, in Patent Document 4 mentioned above, a metal powder for decomposing an organic halogen compound, which is composed of nickel-adhered iron particles having a phase containing iron as a main component as a base metal phase and a phase containing nickel as a main component as an adhering metal phase, However, the particle size is as large as 1 to 500 μm, and it is difficult to say that the amount of organic halogen compounds can be sufficiently reduced.
また、前出特許文献5には、α-Feとマグネタイトとからなる鉄複合粒子粉末を有機ハロゲン化合物で汚染された土壌・地下水に用いて浄化処理を行うことが記載されているが、少量の添加量で短期間に効率よく分解するためには未だ十分とは言い難いものである。 In addition, the aforementioned Patent Document 5 describes that iron composite particles composed of α-Fe and magnetite are used for purification treatment of soil and groundwater contaminated with organic halogen compounds. The amount added is still not sufficient for efficient decomposition in a short period of time.
また、前出特許文献6には、鉄を主成分とする鉄粉の表面に、平均粒径1~50nmのNi微粒子を付着させた浄化用鉄系粉末が記載されているが、鉄系粒子の平均粒子径が65μmと大きく、有機ハロゲン化合物を十分に低減できるとは言い難いものである。 In addition, the aforementioned Patent Document 6 describes an iron-based powder for purification in which Ni fine particles having an average particle size of 1 to 50 nm are attached to the surface of iron powder containing iron as a main component. has a large average particle size of 65 μm, and it is difficult to say that the amount of organic halogen compounds can be sufficiently reduced.
また、前出特許文献7には、鉄粉末及び当該鉄粉に対して0.1重量%未満の硫酸ニッケル及び/又は塩化ニッケルを有機ハロゲン化物で汚染された土壌、排水又は地下水に混合する有機ハロゲン化物の浄化方法が記載されており、前出特許文献8には、鉄粉の内部及び/又は表面に鉄とニッケルの部分合金相を有する部分合金粉末と当該部分合金粉末に対して0.1重量%未満の硫酸ニッケル及び/又は塩化ニッケルを有機ハロゲン化物で汚染された土壌、排水又は地下水に混合する有機ハロゲン化物の浄化方法が記載されている。しかしながら、上記鉄粉末および部分合金粉末の粒子径が比較的大きく、少量の添加量で有機ハロゲン化合物を十分に低減できるとは言い難いものである。 In addition, in the above-mentioned Patent Document 7, an organic A method for purifying halides is described, and the aforementioned Patent Document 8 discloses a partially alloyed powder having a partially alloyed phase of iron and nickel inside and/or on the surface of the iron powder, and for the partially alloyed powder, A process for remediation of organic halides is described in which less than 1% by weight of nickel sulfate and/or nickel chloride is admixed with organic halide-contaminated soil, wastewater or groundwater. However, the particle sizes of the iron powder and the partially alloyed powder are relatively large, and it is difficult to say that a small amount of addition can sufficiently reduce the organic halogen compounds.
また、前出特許文献9には、ニッケル等の鉄より貴な金属で表面被覆した鉄粉からなる有機ハロゲン化合物の分解材が記載されているが、鉄粉粒子径が大きく、少量の添加量で有機ハロゲン化合物を十分に低減できるとは言い難いものである。 In addition, the aforementioned Patent Document 9 describes a decomposing material for an organic halogen compound composed of iron powder whose surface is coated with a metal such as nickel that is more noble than iron, but the iron powder has a large particle size and is added in a small amount. It is difficult to say that organic halogen compounds can be sufficiently reduced with
また、前出特許文献10には、鉄粉と水溶性ニッケル水溶液を粉砕、又は強攪拌することによって、表面にニッケルが析出し、さらに当該ニッケルを鉄と部分合金化した鉄粉からなる有機ハロゲン化物分解用処理剤が記載されているが、鉄粉粒子径が大きく、少量の添加量で有機ハロゲン化合物を十分に低減できるとは言い難いものである。 In addition, in Patent Document 10 mentioned above, by pulverizing or strongly stirring iron powder and a water-soluble nickel aqueous solution, nickel is precipitated on the surface, and furthermore, organic halogen made of iron powder in which the nickel is partially alloyed with iron Although a compound-decomposing treatment agent is described, the particle size of the iron powder is large, and it is difficult to say that a small amount of addition can sufficiently reduce the amount of organic halogen compounds.
また、前出特許文献11には、Ni及び/又はCuが、粒子表面近傍に金属状態で被覆・担持されたα-Feとマグネタイトとからなる鉄複合粒子粉末を、有機ハロゲン化合物で汚染された土壌・地下水に用いて浄化処理を行うことが記載されているが、短期間に効率よく分解するためには未だ十分とは言い難いものである。 In addition, in the aforementioned Patent Document 11, iron composite particle powder composed of α-Fe and magnetite, in which Ni and/or Cu are coated and supported in the vicinity of the particle surface in a metallic state, is contaminated with an organic halogen compound. Although it is described that it is used in soil and groundwater for purification treatment, it is still difficult to say that it is sufficient for efficient decomposition in a short period of time.
本発明は、土壌又は地下水中に含まれる有機ハロゲン化合物類を効率よく、また経済的に処理できる土壌・地下水浄化処理用浄化剤及びその製造方法、並びに該土壌・地下水浄化処理用浄化剤を用いた浄化方法を提供することを目的とする。 The present invention provides a soil/groundwater purification agent capable of efficiently and economically treating organic halogen compounds contained in soil or groundwater , a method for producing the same, and the use of the soil/groundwater purification agent. It is an object of the present invention to provide a method for purifying waste.
前記技術的課題は以下の通りの本発明により達成できる。
即ち、本発明は、平均粒子径が0.05~0.30μmであってBET比表面積が10~60m2/gである金属鉄粒子と、BET比表面積500~1400m2/gの活性炭粒子とからなる複合粒子を有効成分として含有する水懸濁液からなる土壌・地下水浄化処理用浄化剤であって、該複合粒子のマクロ孔の全細孔容積が0.20mL/g以上であり、該金属鉄粒子と該活性炭粒子との配合割合が重量比で10:90~70:30であり、該複合粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(B)との比率(A)/(B)が0.50~0.90であり、該金属鉄粒子が該活性炭粒子の表面及びマクロ孔に陥入・担持されていることを特徴とする土壌・地下水浄化処理用浄化剤である(本発明1)。
The above technical problems can be achieved by the present invention as follows.
That is, the present invention provides metallic iron particles having an average particle size of 0.05 to 0.30 μm and a BET specific surface area of 10 to 60 m 2 /g and activated carbon particles having a BET specific surface area of 500 to 1400 m 2 /g. A cleaning agent for soil and groundwater purification treatment, which is an aqueous suspension containing composite particles consisting of The mixing ratio of the metal iron particles and the activated carbon particles is 10:90 to 70:30 by weight, and the ratio (A) of the pore volume with a pore diameter of 1 μm or more to the total pore volume of the macropores of the composite particles. and the ratio (B) of the pore volume with a pore diameter of 1 μm or more to the total pore volume of the macropores of the activated carbon particles (A)/(B) is 0.50 to 0.90 , and the metal A purification agent for soil and groundwater purification, characterized in that iron particles are invaginated and supported on the surfaces and macropores of the activated carbon particles (Invention 1).
また本発明は、平均粒子径が0.05~0.30μmであってBET比表面積が10~60m2/gである金属鉄粒子と、BET比表面積500~1400m2/gの活性炭粒子とを、該金属鉄粒子と該活性炭粒子との配合割合を重量比で10:90~70:30とし、該金属鉄粒子と該活性炭粒子との合計量が水懸濁液に対して10~40重量%となるよう水中に投入し、湿式粉砕装置を用いて粉砕・分散処置し、複合粒子を有効成分として含有する水懸濁液からなる土壌・地下水浄化処理用浄化剤を製造する方法であって、該複合粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(B)との比率(A)/(B)が0.50~0.90であることを特徴とする土壌・地下水浄化処理用浄化剤の製造方法である(本発明3)。 In addition, the present invention comprises metal iron particles having an average particle diameter of 0.05 to 0.30 μm and a BET specific surface area of 10 to 60 m 2 /g and activated carbon particles having a BET specific surface area of 500 to 1400 m 2 /g. , the mixing ratio of the metallic iron particles and the activated carbon particles is 10:90 to 70:30 by weight, and the total amount of the metallic iron particles and the activated carbon particles is 10 to 40% by weight with respect to the water suspension. %, pulverized and dispersed using a wet pulverizer , and producing a cleaning agent for soil and groundwater purification treatment comprising an aqueous suspension containing composite particles as an active ingredient. , the ratio (A) of the pore volume with a pore diameter of 1 μm or more to the total pore volume of the macropores of the composite particle, and the ratio of the pore volume of the pore diameter of 1 μm or more to the total pore volume of the macropores of the activated carbon particle. A method for producing a cleaning agent for soil/groundwater purification, characterized in that the ratio (A)/(B) to (B) is 0.50 to 0.90 (Invention 3 ).
また本発明は、平均粒子径が0.05~0.30μmであってBET比表面積が10~60m2/gである金属鉄粒子を水中に投入し、湿式粉砕装置を用いて粉砕・分散処置することによって得られる液と、BET比表面積500~1400m2/gの活性炭粒子を水中に投入し、湿式粉砕装置を用いて粉砕・分散処置することによって得られる液とを混合し、複合粒子を有効成分として含有し、該複合粒子の含有量が10~40重量%である水懸濁液からなる土壌・地下水浄化処理用浄化剤を製造する方法であって、該複合粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(B)との比率(A)/(B)が0.50~0.90であることを特徴とする土壌・地下水浄化処理用浄化剤の製造方法である(本発明4)。 In the present invention, metallic iron particles having an average particle diameter of 0.05 to 0.30 μm and a BET specific surface area of 10 to 60 m 2 /g are put into water and pulverized and dispersed using a wet pulverizer. and a liquid obtained by putting activated carbon particles having a BET specific surface area of 500 to 1400 m 2 /g into water and pulverizing and dispersing them using a wet pulverizer , and mixed to form composite particles. A method for producing a cleaning agent for soil/groundwater purification treatment comprising an aqueous suspension containing 10 to 40% by weight of the composite particles as an active ingredient, wherein all of the macropores of the composite particles are The ratio (A) of the pore volume with a pore diameter of 1 μm or more to the pore volume and the ratio (B) of the pore volume with a pore diameter of 1 μm or more to the total pore volume of the macropores of the activated carbon particles (A) A method for producing a cleaning agent for cleaning soil and groundwater, characterized in that /(B) is from 0.50 to 0.90 (Invention 4 ).
また本発明は、前記金属鉄粒子の表面がマグネタイト相を形成しており、前記金属鉄粒子のX線回折スペクトルにおいて、α-Feの(110)面の回折強度D110とFe3O4の(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30~0.95であり、S含有量が3500~10000ppmであることを特徴とする請求項1に記載の土壌・地下水浄化処理用浄化剤である(本発明2)。 Further, in the present invention, the surface of the metal iron particles forms a magnetite phase, and in the X-ray diffraction spectrum of the metal iron particles, the diffraction intensity D110 of the (110) plane of α-Fe and the ( 311) The intensity ratio (D110/(D311+D110)) to the diffraction intensity D311 of the plane is 0.30 to 0.95, and the S content is 3500 to 10000 ppm. Soil according to claim 1. - It is a purification agent for groundwater purification treatment (this invention 2 ).
また本発明は、有機ハロゲン化合物類で汚染された土壌又は有機ハロゲン化合物類で汚染された地下水に対して、請求項1又は2に記載の土壌・地下水浄化処理用浄化剤、または請求項3又は4に記載の土壌・地下水浄化処理用浄化剤の製造方法により得られる土壌・地下水浄化処理用浄化剤を用いて浄化処理を行うことを特徴とする土壌・地下水の浄化処理方法である(本発明5)。 Further, the present invention provides the soil/groundwater purification agent according to claim 1 or 2 , or the cleaning agent for soil/groundwater purification according to claim 3 or 4. A soil/groundwater purification method characterized by carrying out purification treatment using a soil/groundwater purification treatment purification agent obtained by the method for producing a soil/groundwater purification treatment purification agent described in 4 (the present invention 5).
本発明によれば土壌又は地下水中に含まれる有機ハロゲン化合物類を効率よく、また経済的に処理できる土壌・地下水浄化処理用浄化剤及びその製造方法、並びに該土壌・地下水浄化処理用浄化剤を用いた浄化方法を提供することができる。 According to the present invention, a soil/groundwater purification agent capable of efficiently and economically treating organic halogen compounds contained in soil or groundwater , a method for producing the same, and the soil/groundwater purification agent. A method of purification using the method can be provided.
本発明の構成を詳しく説明すれば、次の通りである。 The detailed configuration of the present invention is as follows.
本発明1から4に係る土壌・地下水浄化処理用浄化剤は、金属鉄-活性炭複合粒子を有効成分として含有する水懸濁液である。まず、土壌・地下水浄化処理用浄化剤の有効成分である金属鉄-活性炭複合粒子(以下、「浄化処理用金属鉄-活性炭複合粒子」という)について述べる。本実施形態において、有機ハロゲン化合物類の水素化脱ハロゲンと有機ハロゲン化合物類の分解とは同義である。 The soil/groundwater purification agent according to the present inventions 1 to 4 is an aqueous suspension containing metallic iron-activated carbon composite particles as an active ingredient. First, metallic iron-activated carbon composite particles (hereinafter referred to as "metallic iron-activated carbon composite particles for purification treatment"), which is an active ingredient of a cleaning agent for soil/groundwater purification treatment, will be described. In the present embodiment, hydrodehalogenation of organic halogen compounds and decomposition of organic halogen compounds are synonymous.
浄化処理用金属鉄-活性炭複合粒子のBET比表面積値は、250~1400m2/gが好ましい。BET比表面積値が250m2/g未満の場合には、有機ハロゲン化合物類の初期分解速度は速いが、早期に分解性能が劣化し、持続性の低下を生じ好ましくない。BET比表面積値が1400m2/gを超える場合には、分解性能の早期劣化は少ないが、有機ハロゲン化合物類の分解に長時間要する。より好ましくは300~1300m2/g、さらにより好ましくは400~1300m2/gである。 The BET specific surface area value of the metallic iron-activated carbon composite particles for purification treatment is preferably 250 to 1400 m 2 /g. When the BET specific surface area value is less than 250 m 2 /g, the initial decomposition rate of the organic halogen compounds is high, but the decomposition performance deteriorates early, resulting in a decrease in sustainability, which is not preferable. When the BET specific surface area value exceeds 1400 m 2 /g, early deterioration of decomposition performance is small, but decomposition of organic halogen compounds takes a long time. More preferably 300 to 1300 m 2 /g, still more preferably 400 to 1300 m 2 /g.
浄化処理用金属鉄-活性炭複合粒子のマクロ孔の細孔容積は、0.20mL/g以上が好ましい。0.20mL/g未満の場合、結果的に金属鉄粒子の活性炭粒子のマクロ孔内への担持量が少なくなり、有機ハロゲン化合物類の分解速度が小さくなる。より好ましくは0.25mL/g以上である。尚、マクロ孔とは、直径50nm以上の細孔のことを示すものである。 The pore volume of the macropores of the metallic iron-activated carbon composite particles for purification treatment is preferably 0.20 mL/g or more. If it is less than 0.20 mL/g, the amount of metal iron particles carried in the macropores of the activated carbon particles is reduced, and the decomposition rate of organic halogen compounds is reduced. More preferably, it is 0.25 mL/g or more. Incidentally, macropores refer to pores having a diameter of 50 nm or more.
浄化処理用金属鉄-活性炭複合粒子の細孔径1μm以上のマクロ孔の細孔容積は、0.08mL/g以上が好ましい。0.08mL/g未満の場合、全金属鉄粒子に対する活性炭粒子マクロ孔内への金属鉄粒子の担持割合が低くなり、有機ハロゲン化合物類の分解速度が小さくなる傾向がある。より好ましくは0.10mL/g以上である。 The pore volume of macropores having a pore diameter of 1 μm or more in the metallic iron-activated carbon composite particles for purification treatment is preferably 0.08 mL/g or more. If it is less than 0.08 mL/g, the ratio of the metallic iron particles supported in the macropores of the activated carbon particles to the total metallic iron particles tends to be low, and the decomposition rate of the organic halogen compounds tends to be low. More preferably, it is 0.10 mL/g or more.
浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子の平均粒子径は0.05~0.30μmが好ましい。平均粒子径が0.05μm未満の場合には、金属鉄粒子と水との反応性が高すぎて、急速に酸化が起こり、金属鉄粒子表層にゲータイトが生成してしまい、有機ハロゲン化合物類との水素化脱ハロゲン反応を阻害するため好ましくない。平均粒子径が0.30μmを超える場合には、金属鉄粒子と水との反応性が遅く、有機ハロゲン化合物類との水素化脱ハロゲンの反応速度が小さくなる。また、浄化剤調製時の湿式粉砕処理によって、活性炭粒子のマクロ孔へ金属鉄粒子が陥入・担持され難くなる。より好ましくは0.05~0.25μm、さらにより好ましくは0.05~0.20μmである。 The average particle size of the metallic iron particles used for the metallic iron-activated carbon composite particles for purification treatment is preferably 0.05 to 0.30 μm. If the average particle size is less than 0.05 μm, the reactivity between the metallic iron particles and water is too high, causing rapid oxidation and formation of goethite on the surface of the metallic iron particles. is not preferred because it inhibits the hydrodehalogenation reaction of If the average particle size exceeds 0.30 μm, the reactivity between the metallic iron particles and water is low, and the reaction rate of hydrodehalogenation with organic halogen compounds is low. In addition, the wet pulverization process at the time of preparation of the purifying agent makes it difficult for the metallic iron particles to invade and be carried in the macropores of the activated carbon particles. More preferably 0.05 to 0.25 μm, still more preferably 0.05 to 0.20 μm.
浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子のBET比表面積は10~60m2/gが好ましい。BET比表面積値が60m2/gを超える場合には、浄化処理用金属鉄-活性炭複合粒子による有機ハロゲン化合物類の初期分解速度は速いが、早期に分解性能が劣化し、持続性の低下を生じる。BET比表面積値が10m2/g未満の場合には、浄化処理用金属鉄-活性炭複合粒子による有機ハロゲン化合物類の分解性能の早期劣化は少ないが、有機ハロゲン化合物類の分解に長時間要し、本発明の目的とする課題を容易に解決することができない。より好ましくは10~50m2/g、さらにより好ましくは15~50m2/gである。 The BET specific surface area of the metallic iron particles used for the metallic iron-activated carbon composite particles for purification treatment is preferably 10 to 60 m 2 /g. When the BET specific surface area value exceeds 60 m 2 /g, the initial decomposition rate of organic halogen compounds by the metallic iron-activated carbon composite particles for purification treatment is fast, but the decomposition performance deteriorates early, and the sustainability decreases. occur. When the BET specific surface area value is less than 10 m 2 /g, the decomposition performance of the organic halogen compounds by the metallic iron-activated carbon composite particles for purification treatment does not deteriorate early, but it takes a long time to decompose the organic halogen compounds. , the problem to which the present invention is directed cannot be easily solved. More preferably 10 to 50 m 2 /g, still more preferably 15 to 50 m 2 /g.
浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子の形状は、粒状、球状、りん片状等、特に制限されないが、好ましくは粒状、球状である。 The shape of the metallic iron particles used in the metallic iron-activated carbon composite particles for purification treatment is not particularly limited and may be granular, spherical, scaly or the like, but preferably granular or spherical.
浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子は、粒子表面が空気あるいは水中等で表面が酸化されてFe3O4相を形成しているものが好ましい。 It is preferable that the metallic iron particles used for the metallic iron-activated carbon composite particles for purification treatment have an Fe 3 O 4 phase formed by oxidizing the surface of the particles in air or water.
浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子のFeの含有量は金属鉄粒子に対して75重量%以上が好ましく、より好ましくは76~98重量%であり、さらにより好ましくは77~95重量%である。また、浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子のX線回折スペクトルにおいて、α-Feの(110)面の回折強度D110とFe3O4の(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30~0.95が好ましい。前記強度比が0.30未満の場合には、浄化処理用金属鉄-活性炭複合粒子による有機ハロゲン化合物類の浄化性能が十分ではなく本発明の目的とする効果が得られ難い。前記強度比が0.95を越える場合には、粒子サイズが極端に大きいか又はBET比表面積が極端に小さく空気中で安定な状態であり、有機ハロゲン化合物類の分解性能が著しく劣るものとなる。好ましくは0.40~0.93である。 The Fe content of the metallic iron particles used for the metallic iron-activated carbon composite particles for purification treatment is preferably 75% by weight or more, more preferably 76 to 98% by weight, and even more preferably 77% by weight relative to the metallic iron particles. ~95% by weight. In addition, in the X-ray diffraction spectrum of the metallic iron particles used for the metallic iron-activated carbon composite particles for purification treatment, the diffraction intensity D110 of the (110) plane of α-Fe and the diffraction intensity D311 of the (311) plane of Fe 3 O 4 and the intensity ratio (D110/(D311+D110)) is preferably 0.30 to 0.95. If the intensity ratio is less than 0.30, the purification performance of the organic halogen compounds by the metal iron-activated carbon composite particles for purification treatment is insufficient, and the intended effects of the present invention are difficult to obtain. If the intensity ratio exceeds 0.95, the particle size is extremely large or the BET specific surface area is extremely small and the particles are stable in the air, resulting in significantly inferior decomposition performance of organic halogen compounds. . It is preferably 0.40 to 0.93.
浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子には、微量のSを含有させることが好ましく、S含有量は3500~10000ppmが好ましく、より好ましくは3500~7000ppmである。 The metallic iron particles used in the metallic iron-activated carbon composite particles for purification treatment preferably contain a small amount of S, and the S content is preferably 3500 to 10000 ppm, more preferably 3500 to 7000 ppm.
浄化処理用金属鉄-活性炭複合粒子に用いられる活性炭粒子のBET比表面積値は、500~1400m2/gである。BET比表面積値が500m2/g未満の場合には、有機ハロゲン化合物類の吸着作用が低くなるとともに、活性炭粒子のマクロ孔の容積が小さくなり、マクロ孔内への金属鉄粒子の担持がされ難くなる。BET比表面積値が1400m2/gを越える場合には、有機ハロゲン化合物類の吸着作用が高くなるものの、金属鉄粒子による水素化脱ハロゲンは起こり難くなる。より好ましくは600~1380m2/g、さらにより好ましくは700~1350m2/gである。 The BET specific surface area value of the activated carbon particles used for the metallic iron-activated carbon composite particles for purification treatment is 500 to 1400 m 2 /g. When the BET specific surface area value is less than 500 m 2 /g, the adsorbing action of the organic halogen compounds becomes low, the volume of the macropores of the activated carbon particles becomes small, and the metallic iron particles are not supported in the macropores. it gets harder. If the BET specific surface area exceeds 1400 m 2 /g, the adsorption action of organic halogen compounds is enhanced, but hydrodehalogenation by metallic iron particles is difficult to occur. More preferably 600 to 1380 m 2 /g, still more preferably 700 to 1350 m 2 /g.
浄化処理用金属鉄-活性炭複合粒子に用いられる活性炭粒子のマクロ孔の細孔容積は、0.30mL/g以上が好ましい。0.30mL/g未満の場合、金属鉄粒子の活性炭粒子のマクロ孔内への担持量が少なくなり、有機ハロゲン化合物類の分解速度が小さくなる。より好ましくは0.35mL/g以上である。 The pore volume of the macropores of the activated carbon particles used for the metallic iron-activated carbon composite particles for purification treatment is preferably 0.30 mL/g or more. If it is less than 0.30 mL/g, the amount of metallic iron particles supported in the macropores of the activated carbon particles is reduced, and the decomposition rate of organic halogen compounds is reduced. More preferably, it is 0.35 mL/g or more.
浄化処理用金属鉄-活性炭複合粒子に用いられる活性炭粒子の細孔径1μm以上の細孔容積は、0.10mL/g以上が好ましい。0.10mL/g未満の場合、金属鉄粒子が活性炭粒子のマクロ孔内へ陥入し難くなり、結果的に金属的粒子の担持量が減少してしまい、有機ハロゲン化合物類の分解速度が小さくなる。より好ましくは0.15mL/g以上である。 The pore volume with a pore diameter of 1 μm or more in the activated carbon particles used for the metallic iron-activated carbon composite particles for purification treatment is preferably 0.10 mL/g or more. If it is less than 0.10 mL/g, it becomes difficult for the metallic iron particles to invade into the macropores of the activated carbon particles, resulting in a decrease in the amount of metallic particles supported and a low decomposition rate of the organic halogen compounds. Become. More preferably, it is 0.15 mL/g or more.
浄化処理用金属鉄-活性炭複合粒子に用いられる金属鉄粒子と活性炭粒子の配合割合は、重量比で10/90~70/30である。該重量比が10/90未満の場合は、金属鉄粒子による有機ハロゲン化合物類の分解速度が十分でない。該重量比が70/30を超える場合は、活性炭粒子による有機ハロゲン化合物類の吸着作用が小さくなり、結果的に金属鉄粒子による水素化脱ハロゲンの反応が遅くなってしまう。より好ましくは10/90~60/40、さらにより好ましくは10/90~50/50である。 The mixing ratio of the metallic iron particles and the activated carbon particles used for the metallic iron-activated carbon composite particles for purification treatment is 10/90 to 70/30 by weight. If the weight ratio is less than 10/90, the metal iron particles do not decompose organic halogen compounds at a sufficient rate. If the weight ratio exceeds 70/30, the adsorption action of the organic halogen compounds by the activated carbon particles is reduced, resulting in a slow hydrodehalogenation reaction by the metallic iron particles. More preferably 10/90 to 60/40, still more preferably 10/90 to 50/50.
浄化処理用金属鉄-活性炭複合粒子は、該複合粒子粉末のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積比(B)との比率(A)/(B)が0.50~0.90である。比率(A)/(B)が0.50未満の場合、該活性炭粒子のマクロ孔への有機ハロゲン化合物類の吸着量が小さくなり、該金属鉄粒子による効率的な有機ハロゲン化合物類の分解効果が得られ難くなる。比率(A)/(B)が0.90を超えると、該活性炭粒子のマクロ孔内への該金属鉄粒子の担持量が少なく、該金属鉄粒子による効率的な有機ハロゲン化合物類の分解効果が得られ難くなる。比率(A)/(B)は好ましくは0.60~0.88、より好ましくは0.62~0.85である。 The metal iron-activated carbon composite particles for purification treatment have a pore volume ratio (A) with a pore diameter of 1 μm or more to the total pore volume of the macropores of the composite particle powder, and the total pore volume of the macropores of the activated carbon particles. The ratio (A)/(B) to the pore volume ratio (B) having a pore diameter of 1 μm or more is 0.50 to 0.90. When the ratio (A)/(B) is less than 0.50, the amount of organic halogen compounds adsorbed to the macropores of the activated carbon particles is small, and the metal iron particles effectively decompose organic halogen compounds. is difficult to obtain. When the ratio (A)/(B) exceeds 0.90, the amount of the metallic iron particles supported in the macropores of the activated carbon particles is small, and the metallic iron particles effectively decompose organic halogen compounds. is difficult to obtain. The ratio (A)/(B) is preferably 0.60-0.88, more preferably 0.62-0.85.
次に、本発明に係る土壌・地下水浄化処理用浄化剤(以下、「浄化剤」という)について述べる。 Next, the cleaning agent for soil/groundwater purification treatment (hereinafter referred to as "cleaning agent") according to the present invention will be described.
本発明に係る浄化剤は、前記浄化処理用金属鉄-活性炭複合粒子を有効成分として含有する水懸濁液であり、浄化処理用金属鉄-活性炭複合粒子の水懸濁液中の含有量は10~40重量%の範囲内で適宜選択することができ、より好ましくは10~30重量%である。40重量%を越える場合、浄化剤が増粘するため、撹拌時の機械的負荷が伝わり難く、均一に混合することが難しいため、濃度の調整が困難となる。 The purification agent according to the present invention is an aqueous suspension containing the metallic iron-activated carbon composite particles for purification treatment as an active ingredient, and the content of the metallic iron-activated carbon composite particles for purification treatment in the aqueous suspension is It can be appropriately selected within the range of 10 to 40% by weight, more preferably 10 to 30% by weight. If the content exceeds 40% by weight, the clarifier is thickened, so that it is difficult to transfer the mechanical load during stirring, and it is difficult to uniformly mix the clarifier, making it difficult to adjust the concentration.
本発明に係る浄化剤の浄化処理用金属鉄-活性炭複合粒子のpH7におけるゼータ電位が-5mV以下であることが好ましい。より好ましくは-10mV以下である。 The zeta potential at pH 7 of the metallic iron-activated carbon composite particles for purification treatment of the purification agent of the present invention is preferably -5 mV or less. More preferably -10 mV or less.
次に、本発明に係る浄化剤の製造法について述べる。 Next, a method for producing the cleaning agent according to the present invention will be described.
本発明に係る浄化剤に用いられる金属鉄粒子の平均粒子径は0.05~0.30μmが好ましい。平均粒子径が0.05μm未満の場合には、金属鉄粒子と水との反応性が高すぎて、急速に酸化が起こり、金属鉄粒子表層にゲータイトが生成してしまい、有機ハロゲン化合物類との水素化脱ハロゲン反応を阻害するため好ましくない。0.30μmを超える場合には、金属鉄粒子と水との反応性が遅く、有機ハロゲン化合物類との水素化脱ハロゲンの反応速度が小さくなる。より好ましくは0.05~0.25μm、さらにより好ましくは0.05~0.20μmである。 The average particle size of the metallic iron particles used in the cleaning agent according to the present invention is preferably 0.05 to 0.30 μm. If the average particle size is less than 0.05 μm, the reactivity between the metallic iron particles and water is too high, causing rapid oxidation and formation of goethite on the surface of the metallic iron particles. is not preferred because it inhibits the hydrodehalogenation reaction of If the particle size exceeds 0.30 μm, the reactivity of the metallic iron particles with water is low, and the reaction rate of hydrodehalogenation with organic halogen compounds is low. More preferably 0.05 to 0.25 μm, still more preferably 0.05 to 0.20 μm.
本発明に係る浄化剤に用いられる金属鉄粒子のBET比表面積値は10~60m2/gが好ましい。BET比表面積値が60m2/gを超える場合には、該浄化剤による有機ハロゲン化合物類の初期分解速度は速いが、早期に分解性能が劣化し、持続性の低下を生じる。BET比表面積値が10m2/g未満の場合には、該浄化剤による有機ハロゲン化合物類の分解性能の早期劣化は少ないが、有機ハロゲン化合物類の分解に長時間要し、本発明の目的とする課題を容易に解決することができない。より好ましくは10~50m2/g、さらにより好ましくは15~50m2/gである。 The BET specific surface area of the metallic iron particles used in the cleaning agent according to the present invention is preferably 10 to 60 m 2 /g. When the BET specific surface area value exceeds 60 m 2 /g, the initial decomposition rate of organic halogen compounds by the cleaning agent is high, but the decomposition performance deteriorates early, resulting in a decrease in sustainability. When the BET specific surface area value is less than 10 m 2 /g, early deterioration of the decomposition performance of the organic halogen compounds by the cleaning agent is small, but it takes a long time to decompose the organic halogen compounds, which is not the object of the present invention. problems to be solved cannot be easily solved. More preferably 10 to 50 m 2 /g, still more preferably 15 to 50 m 2 /g.
本発明に係る浄化剤に用いられる金属鉄粒子の形状は、粒状、球状、りん片状等、特に制限されないが、好ましくは粒状、球状である。 The shape of the metallic iron particles used in the cleaning agent according to the present invention is not particularly limited and may be granular, spherical, scaly or the like, but preferably granular or spherical.
本発明に係る浄化剤に用いられる金属鉄粒子は、粒子表面が空気あるいは水中等で表面が酸化されてFe3O4相を形成しているものが好ましい。 The metallic iron particles used in the cleaning agent according to the present invention preferably have surfaces that are oxidized in air, water, or the like to form an Fe 3 O 4 phase.
本発明に係る浄化剤に用いられる金属鉄粒子のFeの含有量は金属鉄粒子に対して75重量%以上が好ましく、より好ましくは76~98重量%であり、さらにより好ましくは77~95重量%である。また、本発明に係る浄化剤に用いられる金属鉄粒子のX線回折スペクトルにおいて、α-Feの(110)面の回折強度D110とFe3O4の(311)面の回折強度D311との強度比(D110/(D311+D110))が0.30~0.95が好ましい。前記強度比が0.30未満の場合には、本浄化剤による有機ハロゲン化合物類の浄化性能が十分ではなく本発明の目的とする効果が得られ難い。前記強度比が0.95を越える場合には、粒子サイズが極端に大きいか又はBET比表面積が極端に小さく空気中で安定な状態であり、有機ハロゲン化合物類の分解性能が著しく劣るものとなる。好ましくは0.40~0.93である。 The Fe content of the metallic iron particles used in the cleaning agent according to the present invention is preferably 75% by weight or more, more preferably 76 to 98% by weight, and even more preferably 77 to 95% by weight relative to the metallic iron particles. %. In addition, in the X-ray diffraction spectrum of the metallic iron particles used in the cleaning agent according to the present invention, the intensity of the diffraction intensity D110 of the (110) plane of α-Fe and the diffraction intensity D311 of the (311) plane of Fe 3 O 4 The ratio (D110/(D311+D110)) is preferably 0.30 to 0.95. If the intensity ratio is less than 0.30, the purification performance of the organic halogen compounds by the present cleaning agent is not sufficient, and it is difficult to obtain the intended effect of the present invention. If the intensity ratio exceeds 0.95, the particle size is extremely large or the BET specific surface area is extremely small and the particles are stable in the air, resulting in significantly inferior decomposition performance of organic halogen compounds. . It is preferably 0.40 to 0.93.
本発明に係る浄化剤に用いられる金属鉄粒子には、微量のSを含有させることが好ましく、S含有量は3500~10000ppmが好ましく、より好ましくは3500~7000ppmである。 The metallic iron particles used in the cleaning agent according to the present invention preferably contain a small amount of S, and the S content is preferably 3500 to 10000 ppm, more preferably 3500 to 7000 ppm.
本発明に係る浄化剤に用いられる活性炭粒子のBET比表面積値は500~1400m2/gである。BET比表面積値が500m2/g未満の場合には、有機ハロゲン化合物類の吸着作用が低くなるとともに、活性炭粒子のマクロ孔の容積が小さくなり、マクロ孔内への金属鉄粒子の担持がされ難くなる。BET比表面積値が1400m2/gを越える場合には、有機ハロゲン化合物類の吸着作用が高くなるものの、金属鉄粒子による水素化脱ハロゲンは起こり難くなる。より好ましくは600~1380m2/g、さらにより好ましくは700~1350m2/gである。 The BET specific surface area of the activated carbon particles used in the cleaning agent according to the present invention is 500-1400 m 2 /g. When the BET specific surface area value is less than 500 m 2 /g, the adsorbing action of the organic halogen compounds becomes low, the volume of the macropores of the activated carbon particles becomes small, and the metallic iron particles are not supported in the macropores. it gets harder. If the BET specific surface area exceeds 1400 m 2 /g, the adsorption action of organic halogen compounds is enhanced, but hydrodehalogenation by metallic iron particles is difficult to occur. More preferably 600 to 1380 m 2 /g, still more preferably 700 to 1350 m 2 /g.
本発明に係る浄化剤に用いられる活性炭粒子のマクロ孔の細孔容積は、0.30mL/g以上が好ましい。0.30mL/g未満の場合、金属鉄粒子の活性炭粒子のマクロ孔内への担持量が少なくなり、有機ハロゲン化合物類の分解速度が小さくなる。より好ましくは0.35mL/g以上である。 The pore volume of the macropores of the activated carbon particles used in the cleaning agent according to the present invention is preferably 0.30 mL/g or more. If it is less than 0.30 mL/g, the amount of metallic iron particles supported in the macropores of the activated carbon particles is reduced, and the decomposition rate of organic halogen compounds is reduced. More preferably, it is 0.35 mL/g or more.
本発明に係る浄化剤に用いられる活性炭粒子の細孔径1μm以上の細孔容積は、0.10mL/gである。0.10mL/g未満の場合、金属鉄粒子が活性炭粒子のマクロ孔内へ陥入し難くなり、結果的に金属的粒子の担持量が減少してしまい、有機ハロゲン化合物類の分解速度が小さくなる。より好ましくは0.15mL/g以上である。 The pore volume of the activated carbon particles having a pore diameter of 1 μm or more, which is used in the cleaning agent according to the present invention, is 0.10 mL/g. If it is less than 0.10 mL/g, it becomes difficult for the metallic iron particles to invade into the macropores of the activated carbon particles, resulting in a decrease in the amount of metallic particles supported and a low decomposition rate of the organic halogen compounds. Become. More preferably, it is 0.15 mL/g or more.
本発明に係る浄化剤に用いられる金属鉄粒子と活性炭粒子の配合割合は、重量比で10/90~70/30である。該重量比が10/90未満の場合は、金属鉄粒子による有機ハロゲン化合物類の分解速度が十分でない。該重量比が70/30を超える場合は、活性炭粒子による有機ハロゲン化合物類の吸着作用が小さくなり、結果的に金属鉄粒子による水素化脱ハロゲンの反応が遅くなってしまう。より好ましくは10/90~60/40、さらにより好ましくは10/90~50/50である。 The mixing ratio of the metallic iron particles and the activated carbon particles used in the cleaning agent according to the present invention is 10/90 to 70/30 by weight. If the weight ratio is less than 10/90, the metal iron particles do not decompose organic halogen compounds at a sufficient rate. If the weight ratio exceeds 70/30, the adsorption action of the organic halogen compounds by the activated carbon particles is reduced, resulting in a slow hydrodehalogenation reaction by the metallic iron particles. More preferably 10/90 to 60/40, still more preferably 10/90 to 50/50.
本発明に係る浄化剤は、前記金属鉄粒子と活性炭粒子との合計固形分濃度が10~40重量%となるように水中に投入し、湿式粉砕装置を用いて粉砕・分散処理することによって得られる。この粉砕・分散処理によって、金属鉄粒子が衝撃的に活性炭表面及びマクロ孔へ陥入・担持され、金属鉄粒子と活性炭粒子が複合された状態の金属鉄-活性炭複合粒子となっている。 The cleaning agent according to the present invention is obtained by putting the metal iron particles and the activated carbon particles into water so that the total solid content concentration is 10 to 40% by weight, and pulverizing and dispersing using a wet pulverizer. be done. By this pulverization and dispersion treatment, the metallic iron particles are impulsively invaded into and supported on the surface of the activated carbon and the macropores to form metallic iron-activated carbon composite particles in which the metallic iron particles and the activated carbon particles are combined.
湿式粉砕に用いる粉砕装置としては、メディアを用いる場合、転動ミル(ポットミル、チューブミル、コニカルミル)や振動ミル(ファイン・バイブレーションミル)等の容器駆動式、塔型(タワーミル)、攪拌槽型(アトライター)、流通管型(サンドグラインドミル)及びアニュラー型(アニュラーミル)等の媒体攪拌式を用いることができる。メディアを用いない場合、容器回転型(オングミル)、湿式高速回転型(コロイドミル、ホモミキサー、ラインミキサー)等のせん断・摩擦式を用いることができる。特に好ましいのは、メディアによる剪断力・破砕力により金属鉄粒子を衝撃的に活性炭表面及びマクロ孔へ陥入・担持させ、メカノケミカル的に金属鉄粒子と活性炭粒子を複合化が可能な媒体攪拌式粉砕装置である。 As the grinding equipment used for wet grinding, when using media, there are container-driven types such as rolling mills (pot mills, tube mills, conical mills) and vibration mills (fine vibration mills), tower mills, and stirring tank types ( Attritor), circulation tube type (sand grind mill), and annular type (annular mill) can be used. When media are not used, a shear/friction type such as a container rotation type (Ang mill) or a wet high-speed rotation type (colloid mill, homomixer, line mixer) can be used. Especially preferred is media agitation capable of mechanochemically combining the metallic iron particles and the activated carbon particles by causing the metallic iron particles to impactally invade and support the activated carbon surface and macropores by the shearing force and crushing force of the media. It is a type pulverizer.
本発明に係る浄化剤の該金属鉄-活性炭複合粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積比(B)との比率(A)/(B)が0.50~0.90である。該比率比率(A)/(B)が0.50未満の場合、該活性炭粒子のマクロ孔への有機ハロゲン化合物類の吸着量が小さくなり、該金属鉄粒子による効率的な有機ハロゲン化合物類の分解効果が得られ難くなる。該比率(A)/(B)が0.90を超えると、該活性炭粒子のマクロ孔内への該金属鉄粒子の担持量が少なく、該金属鉄粒子による効率的な有機ハロゲン化合物類の分解効果が得られ難くなる。比率(A)/(B)は好ましくは0.60~0.88、より好ましくは0.62~0.85である。 The pore volume ratio (A) with a pore diameter of 1 μm or more to the total pore volume of the macropores of the metal iron-activated carbon composite particles of the cleaning agent according to the present invention, and the micropore volume to the total pore volume of the macropores of the activated carbon particles The ratio (A)/(B) to the pore volume ratio (B) having a pore diameter of 1 μm or more is 0.50 to 0.90. When the ratio (A)/(B) is less than 0.50, the amount of organic halogen compounds adsorbed to the macropores of the activated carbon particles becomes small, and the metallic iron particles efficiently adsorb organic halogen compounds. It becomes difficult to obtain the decomposition effect. When the ratio (A)/(B) exceeds 0.90, the amount of the metallic iron particles supported in the macropores of the activated carbon particles is small, and the metallic iron particles efficiently decompose organic halogen compounds. It becomes difficult to obtain the effect. The ratio (A)/(B) is preferably 0.60-0.88, more preferably 0.62-0.85.
本発明に係る他の浄化剤の製造法について述べる。 A method for producing another cleaning agent according to the present invention will be described.
前記本発明に係る浄化剤の製造法では、金属鉄粒子と活性炭粒子とを水中に投入し、金属鉄粒子と活性炭粒子とが共存する状態でこれらを湿式粉砕装置を用いて粉砕・分散処理するが、ここでは前記金属鉄粒子と前記活性炭粒子とを別々に水中に投入し、湿式粉砕装置を用いてこれらを別々に粉砕・分散処理し、その後これら2つの液を混合し、浄化剤を得る。このようにして得られる浄化剤及び該浄化剤の有効成分である金属鉄-活性炭複合粒子の特性は、先に示した金属鉄粒子と活性炭粒子とを一緒に水中に投入し、金属鉄粒子と活性炭粒子とが共存する状態でこれらを湿式粉砕装置を用いて粉砕・分散処理して得られる浄化剤及び該浄化剤の有効成分である金属鉄-活性炭複合粒子の特性と基本的に同じである。 In the method for producing a purifying agent according to the present invention, metallic iron particles and activated carbon particles are put into water, and the metallic iron particles and activated carbon particles are pulverized and dispersed using a wet pulverizer in a state where they coexist. However, here, the metallic iron particles and the activated carbon particles are separately put into water, and they are separately pulverized and dispersed using a wet pulverizer, and then these two liquids are mixed to obtain a purifying agent. . The properties of the purifying agent thus obtained and the metallic iron-activated carbon composite particles which are the active ingredient of the purifying agent are obtained by putting the metallic iron particles and the activated carbon particles together into water, and The characteristics are basically the same as those of the purifying agent obtained by pulverizing and dispersing the activated carbon particles in the presence of them using a wet pulverizer and the metallic iron-activated carbon composite particles that are the active ingredient of the purifying agent. .
次に、本発明に係る浄化剤を用いた、有機ハロゲン化合物類で汚染された土壌又は有機ハロゲン化合物類で汚染された地下水の浄化処理方法について述べる。 Next, a method for purifying soil contaminated with organic halogen compounds or groundwater contaminated with organic halogen compounds using the cleaning agent according to the present invention will be described.
有機ハロゲン化合物類で汚染された土壌又は有機ハロゲン化合物類で汚染された地下水の浄化処理は、一般的に、含有される汚染物質を直接地下で分解する原位置分解法を用いて行うのが好ましい。 Purification of soil contaminated with organic halogen compounds or groundwater contaminated with organic halogen compounds is generally preferably carried out using an in situ decomposition method in which the contained contaminants are decomposed directly underground. .
原位置分解法においては、浄化剤を高圧の空気、窒素等のガスあるいは水を媒体にしてそのまま浸透もしくはボーリング孔から地下に導入する方法、或いは掘削攪拌混合機を用いて浄化剤と汚染土壌と攪拌混合する方法が取られる。本発明の浄化剤は水懸濁液であるのでそのまま使用するか必要に応じて希釈すれば良い。 In the in-situ decomposition method, the purifying agent is introduced into the ground through a boring hole or a borehole using high-pressure air, a gas such as nitrogen, or water as a medium, or a purifying agent and contaminated soil are separated by using an excavation agitating mixer. A method of stirring and mixing is adopted. Since the cleaning agent of the present invention is an aqueous suspension, it may be used as it is or diluted as necessary.
本発明に係る浄化剤は、浄化処理に用いる際に浄化処理用金属鉄-活性炭複合粒子の固形分濃度が0.01~10重量%となるように希釈することが好ましい。 The cleaning agent according to the present invention is preferably diluted so that the solid content concentration of the metallic iron-activated carbon composite particles for cleaning treatment is 0.01 to 10% by weight when used for cleaning treatment.
浄化剤(固形分換算)の添加量は、土壌・地下水の有機ハロゲン化合物類の汚染の程度に応じて適宜選択することができるが、汚染土壌を対象とする場合には、通常土壌100重量部に対して0.01~20重量部が好ましく、より好ましくは0.05~10重量部である。0.01重量部未満の場合には、本発明の目的とする効果が充分得られない。20重量部を超える場合には、浄化効果は向上するが経済的ではない。また、汚染地下水を対象とする場合には、地下水100重量部に対して0.01~20重量部添加することが好ましく、より好ましくは0.05~10重量部である。 The amount of the cleaning agent (in terms of solid content) to be added can be appropriately selected according to the degree of contamination of the organic halogen compounds in the soil and groundwater. is preferably 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight. If the amount is less than 0.01 part by weight, the intended effects of the present invention cannot be obtained sufficiently. If it exceeds 20 parts by weight, the purification effect is improved, but it is not economical. In the case of contaminated groundwater, it is preferable to add 0.01 to 20 parts by weight, more preferably 0.05 to 10 parts by weight, per 100 parts by weight of groundwater.
本発明に係る浄化剤を用いた土壌・地下水の浄化処理方法は、活性炭の有機ハロゲン化合物類の吸着作用と、金属鉄粒子による水素化脱ハロゲン反応がほぼ同時に活性炭粒子表面とマクロ孔内で起こり、金属鉄粒子単体よりも迅速、確実に土壌・地下水汚染が浄化される。金属鉄粒子による浄化で律速であった金属鉄粒子の有機ハロゲン化合物類への効率的物質移動が、活性炭粒子と複合化することで、活性炭粒子の有機ハロゲン化合物類の吸着作用によりその律速が解消され、迅速に金属鉄粒子による水素化脱ハロゲン反応が実現される。 In the soil/groundwater purification method using the purification agent according to the present invention, the adsorption action of the organic halogen compounds by the activated carbon and the hydrodehalogenation reaction by the metallic iron particles occur almost simultaneously on the surface of the activated carbon particles and in the macropores. , soil and groundwater contamination are purified more quickly and reliably than metal iron particles alone. Efficient mass transfer of metallic iron particles to organic halogen compounds, which was rate-limiting in purification by metallic iron particles, is eliminated by the adsorption action of organic halogen compounds on activated carbon particles by compositing with activated carbon particles. and the hydrodehalogenation reaction by the metallic iron particles is rapidly realized.
<作用>
本発明において重要な点は、本発明に係る浄化剤を用いることによって、土壌・地下水中の有機ハロゲン化合物類を効率よく、経済的に分解処理できるという点である。
<Action>
An important point in the present invention is that organic halogen compounds in soil and groundwater can be efficiently and economically decomposed by using the cleaning agent according to the present invention.
本発明者は、土壌・地下水中の有機ハロゲン化合物類を効果的に分解できる理由は未だ明らかではないが、下記のように推定している。 Although the reason why organic halogen compounds in soil and groundwater can be effectively decomposed is not yet clear, the inventor presumes as follows.
即ち、本発明に係る土壌・地下水浄化処理用浄化剤及びこの処理剤を用いた土壌・地下水の浄化処理方法においては、活性炭の有機ハロゲン化合物類の吸着作用と、金属鉄粒子による水素化脱ハロゲン反応がほぼ同時に活性炭粒子表面とマクロ孔内で起こり、金属鉄粒子単体よりも迅速、確実に土壌・地下水汚染が浄化される。金属鉄粒子による浄化で律速であった金属鉄粒子の有機ハロゲン化合物類への効率的物質移動が、活性炭粒子と複合化することで、活性炭粒子の有機ハロゲン化合物類の吸着作用によりその律速が解消され、迅速に金属鉄粒子による水素化脱ハロゲン反応が進行するものと思われる。 That is, in the soil/groundwater purification agent and the soil/groundwater purification method using the agent according to the present invention, the adsorption of organic halogen compounds by activated carbon and the hydrodehalogenation by metallic iron particles Reactions occur almost simultaneously on the surface of the activated carbon particles and inside the macropores, and soil and groundwater contamination are purified more quickly and reliably than with metallic iron particles alone. Efficient mass transfer of metallic iron particles to organic halogen compounds, which was rate-limiting in purification by metallic iron particles, is eliminated by the adsorption action of organic halogen compounds on activated carbon particles by compositing with activated carbon particles. It is thought that the hydrodehalogenation reaction by the metallic iron particles proceeds rapidly.
以上のように、金属鉄粒子と活性炭粒子とを複合化することで金属鉄粒子の有機ハロゲン化合物類への物質移動、さらには有機ハロゲン化合物類の分解速度が速まり、効率的かつ経済的に短期間で浄化処理を行うことが可能となり、特に高濃度の有機ハロゲン化合物類で汚染された土壌・地下水の浄化に好適である。 As described above, by combining the metallic iron particles and the activated carbon particles, the mass transfer of the metallic iron particles to the organic halogen compounds and the decomposition rate of the organic halogen compounds are accelerated. It is possible to carry out purification treatment in a short period of time, and it is particularly suitable for the purification of soil and groundwater contaminated with high-concentration organic halogen compounds.
本発明の代表的な実施の形態は次の通りである。 A representative embodiment of the invention is as follows.
<本発明の実施の形態>
ゲータイト粒子粉末の平均長軸径及び軸比は、「透過型電子顕微鏡:JEM-F200」(日本電子製)を用いて倍率30000倍の写真で測定した。ヘマタイト粒子粉末及び浄化処理用金属鉄-活性炭複合粒子粉末の平均粒子径は「走査型電子顕微鏡:S-4800」(日立ハイテク製)による倍率30000倍の写真を用いて測定した。
<Embodiment of the present invention>
The average major axis diameter and axial ratio of the goethite particle powder were measured using a "transmission electron microscope: JEM-F200" (manufactured by JEOL Ltd.) with a photograph at a magnification of 30,000. The average particle size of the hematite particle powder and the metallic iron-activated carbon composite particle powder for purification treatment was measured using a photograph at a magnification of 30,000 times with a "scanning electron microscope: S-4800" (manufactured by Hitachi High-Tech).
浄化処理用金属鉄-活性炭複合粒子粉末のFe量、Al量は、「誘導結合プラズマ発光分光分析装置SPS4000」(セイコー電子工業(株)製)を使用して測定した。 The Fe content and Al content of the metallic iron-activated carbon composite particles for purification treatment were measured using an "inductively coupled plasma atomic emission spectrometer SPS4000" (manufactured by Seiko Electronics Industry Co., Ltd.).
各粒子粉末のS含有量は、「炭素・硫黄分析装置:EMIA-920V2」(堀場製作所製)を使用して測定した。 The S content of each particle powder was measured using a “carbon/sulfur analyzer: EMIA-920V2” (manufactured by Horiba, Ltd.).
各粒子粉末の比表面積は、「比表面積測定装置:マルチソーブ16」(カンタクローム社製)を使用し、BET法により測定した値で示した。 The specific surface area of each particle powder is shown as a value measured by the BET method using a "specific surface area measuring device: Multisorb 16" (manufactured by Quantachrome).
各粒子粉末の結晶相は、「X線回折装置:NEW D8 ADVANCE」(Bruker AXS社製)によって10~90°の範囲で測定して同定した。 The crystal phase of each particle powder was identified by measuring in the range of 10 to 90° with an "X-ray diffractometer: NEW D8 ADVANCE" (manufactured by Bruker AXS).
浄化処理用金属鉄-活性炭複合粒子粉末のピーク強度比は、前記の通りX線回折の結果から、α-Feの(110)面の回折強度D110及びマグネタイトの(311)面の回折強度D311を測定し、D110/(D311+D110)として強度比を求めた。 As for the peak intensity ratio of the metallic iron-activated carbon composite particles for purification treatment, the diffraction intensity D110 of the (110) plane of α-Fe and the diffraction intensity D311 of the (311) plane of magnetite are obtained from the results of X-ray diffraction as described above. The intensity ratio was determined as D110/(D311+D110).
各粒子粉末のマクロ孔(50nm以上)の細孔分布測定は、「細孔径分布測定装置:オートポアV9620」(micromeritics社製)を用いて測定した。 The pore size distribution of macropores (50 nm or more) of each particle powder was measured using a "pore size distribution measurement device: Autopore V9620" (manufactured by Micromeritics).
<模擬地下水、排水中有機ハロゲン化合物の浄化処理評価>
<検量線の作製:有機ハロゲン化合物類の定量>
有機ハロゲン化合物類の濃度は、下記手順に従ってあらかじめ検量線を作成し、得られた検量線に基づいて濃度を算出した。
トリクロロエチレン(TCE:C2HCl3):分子量131.39
試薬特級(99.5%)、密度(20℃)1.461~1.469g/mL
トリクロロエチレンを1.0μL、2.0μL及び3.5μLの3水準とし、褐色バイアル瓶100mLにイオン交換水40mLを添加し、次いで、トリクロロエチレンを各水準量注入し、直ちにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付ける。バイアル瓶を30℃、20分静置した後、ヘッドスペースのガスをシリンジで0.5mL分取し、「SRI8610C」(SRI社製)を用いてトリクロロエチレンを測定する。トリクロロエチレンは全く分解されないものとして、添加量とピーク面積との関係を求める。このときのカラムはキャピラリーカラム(Ultra Alloy-624:Frontier Laboratories社製、液相:シアノプロピルフェニルメチルポリシロキサン)とし、キャリアガスにはHeガス(25mL/min)を使用し、50℃、1分間保持した後、10℃/minの速度で120℃まで昇温してガスを分析する。
<Purification treatment evaluation of organic halogen compounds in simulated groundwater and wastewater>
<Preparation of Calibration Curve: Quantification of Organic Halogen Compounds>
Concentrations of the organic halogen compounds were calculated based on the obtained calibration curve, which was prepared in advance using the following procedure.
Trichlorethylene (TCE: C2HCl3 ): molecular weight 131.39
Reagent special grade (99.5%), density (20°C) 1.461-1.469 g/mL
Three levels of trichlorethylene, 1.0 μL, 2.0 μL, and 3.5 μL, were added to 100 mL of brown vial bottle with 40 mL of ion-exchanged water, then trichlorethylene was injected into each level, and immediately covered with a rubber stopper with a fluororesin liner. and firmly tighten it with an aluminum seal. After allowing the vial to stand at 30° C. for 20 minutes, 0.5 mL of the gas in the headspace is sampled with a syringe, and trichlorethylene is measured using “SRI8610C” (manufactured by SRI). Assuming that trichlorethylene is not decomposed at all, the relationship between the added amount and the peak area is obtained. The column at this time is a capillary column (Ultra Alloy-624: manufactured by Frontier Laboratories, liquid phase: cyanopropylphenylmethylpolysiloxane), He gas (25 mL / min) is used as the carrier gas, and the temperature is maintained at 50 ° C. for 1 minute. After that, the temperature is raised to 120° C. at a rate of 10° C./min, and the gas is analyzed.
<有機ハロゲン化合物類測定用試料調製>
褐色バイアル瓶100mLに浄化処理用金属鉄-活性炭複合粒子として0.132gとなる量の浄化剤と該浄化剤中の水含有量とあわせて40.0mLとなる量のイオン交換水とを注入し、次いで、トリクロロエチレン1.3μLを注入し、直ぐにフッ素樹脂ライナー付きゴム栓で蓋をし、その上からアルミシールで強固に締め付けて静置反応させる。
<Sample preparation for measuring organic halogen compounds>
Into a 100-mL brown vial, 0.132 g of a purifying agent as the metal iron-activated carbon composite particles for purification treatment and an amount of ion-exchanged water, including the water content in the purifying agent, of 40.0 mL were injected. Next, 1.3 μL of trichlorethylene is injected, immediately capped with a rubber plug with a fluororesin liner, tightly tightened with an aluminum seal, and left to react.
<有機ハロゲン化合物類の分解反応の評価方法(トリクロロエチレン分解率の測定)>
前記バイアル瓶を30℃で静置し、所定反応時間後にバイアル瓶中のヘッドスペースからシリンジで0.5mLのガスを分取した。なお、ガスの分取は、回分法によって所定時間におけるトリクロロエチレンの残存濃度を、前記「SRI8610C」(SRI社製)を用いて測定し、トリクロロエチレンの分解率(1-(反応後の濃度/反応前<静置後0時間>の濃度))を算出した。
<Evaluation Method for Decomposition Reaction of Organic Halogen Compounds (Measurement of Trichlorethylene Decomposition Rate)>
The vial was allowed to stand at 30° C., and after a predetermined reaction time, 0.5 mL of gas was collected from the headspace in the vial with a syringe. In addition, the fractionation of the gas is performed by measuring the residual concentration of trichlorethylene at a predetermined time by the batch method using the above "SRI8610C" (manufactured by SRI), and the decomposition rate of trichlorethylene (1 - (concentration after reaction / before reaction The concentration at <0 hours after standing>)) was calculated.
分解生成物の定性分析については、前記「SRI8610C」(SRI社製)と「GC-2014」(島津製作所社製)を用いて測定した。尚、「GC-2014」のGC充填剤は、「Porapak Q」(Waters社製)を用いた。 The qualitative analysis of the decomposition products was carried out using the aforementioned "SRI8610C" (manufactured by SRI) and "GC-2014" (manufactured by Shimadzu Corporation). "Porapak Q" (manufactured by Waters) was used as the GC filler of "GC-2014".
<金属鉄粒子粉末1の製造>
毎秒3.4cmの割合でN2ガスを流すことによって非酸化性雰囲気に保持された反応容器中に、1.16mol/LのNa2CO3水溶液704Lを添加した後、Fe2+1.35mol/Lを含む硫酸第一鉄水溶液296Lを添加、混合(Na2CO3量は、Feに対し2.0倍当量に該当する。)し、温度47℃においてFeCO3を生成させた。
<Production of Metallic Iron Particle Powder 1>
After adding 704 L of 1.16 mol/L Na 2 CO 3 aqueous solution into a reaction vessel maintained in a non-oxidizing atmosphere by flowing N 2 gas at a rate of 3.4 cm/s, Fe 2+ 1.35 mol/ 296 L of ferrous sulfate aqueous solution containing L was added and mixed (the amount of Na 2 CO 3 corresponds to 2.0 times the equivalent of Fe) to generate FeCO 3 at a temperature of 47°C.
ここに得たFeCO3を含む水溶液中に、引き続き、N2ガスを毎秒3.4cmの割合で吹き込みながら、温度47℃で70分間保持した後、当該FeCO3を含む水溶液中に、温度47℃において毎秒2.8cmの空気を5.0時間通気してゲータイト粒子を生成させた。なお、空気通気中におけるpHは8.5~9.5であった。 Into the aqueous solution containing FeCO 3 obtained here, continuously, while blowing N 2 gas at a rate of 3.4 cm per second, the temperature was kept at 47 ° C. for 70 minutes. 2.8 cm/s of air was passed through the chamber for 5.0 hours to form goethite particles. The pH during air ventilation was 8.5 to 9.5.
ここに得たゲータイト粒子を含有する懸濁液に、Al3+0.3mol/Lを含む硫酸Al水溶液20Lを添加、十分撹拌した後フィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末の造粒物とした。 To the obtained suspension containing goethite particles, 20 L of an Al sulfate aqueous solution containing 0.3 mol/L of Al 3+ was added, thoroughly stirred and then washed with water using a filter press. The powder was extruded with a molding plate having a hole diameter of 4 mm and dried at 120° C. to obtain granules of goethite particle powder.
ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.30μm、軸比(長軸径/短軸径)12.5の紡錘状を呈した粒子であった。BET比表面積は85m2/g、Al含有量は0.13重量%、S含有量は400ppmであった。 The goethite particles contained in the obtained granules were spindle-shaped particles having an average major axis diameter of 0.30 μm and an axial ratio (major axis diameter/minor axis diameter) of 12.5. The BET specific surface area was 85 m 2 /g, the Al content was 0.13% by weight, and the S content was 400 ppm.
前記造粒物を300℃で加熱しヘマタイト粒子とし乾式粉砕する。その後水に邂逅し70%硫酸を10mL/kgの割合で添加し攪拌する。その後、脱水しプレスケーキとし、圧縮成型機を用いて孔径3mmの成型板で押し出し成型して120℃で乾燥してヘマタイト粒子粉末の造粒物とした。 The granules are heated at 300° C. to form hematite particles and dry pulverized. After that, water is encountered and 70% sulfuric acid is added at a rate of 10 mL/kg and stirred. Thereafter, the cake was dehydrated to obtain a press cake, extruded using a compression molding machine through a molding plate having a hole diameter of 3 mm, and dried at 120° C. to obtain granules of hematite particle powder.
ここに得た造粒物を構成するヘマタイト粒子粉末は、平均長軸径0.24μm、軸比(長軸径/短軸径)10.7の紡錘形を呈した粒子であった。S含有量は3300ppmであった。 The hematite particles constituting the obtained granules were spindle-shaped particles having an average major axis diameter of 0.24 μm and an axial ratio (major axis diameter/minor axis diameter) of 10.7. The S content was 3300 ppm.
前記ヘマタイト粒子粉末の造粒物100gを固定層還元装置に導入し、H2ガスを通気させながら、450℃で180分間、完全にα-Feとなるまで還元した。次に、N2ガスに切替え室温まで冷却した後、酸素分圧を徐々に増加させて空気と同じ比率として粒子表面に安定な酸化被膜を形成し、金属鉄粒子粉末1を得た。ここに得た金属鉄粒子粉末1は、α-Feを主体としており、平均粒子径0.09μm、BET比表面積25m2/g、Fe含有量87.2wt%、Al含有量0.22wt%、S含有量は4000ppmであった。X線回折の結果、α-FeとFe3O4とが存在することが確認された。そのD110(α-Fe)とD311(Fe3O4)の強度比D110/(D110+D311)は0.90であった。 100 g of the granules of the hematite particle powder was introduced into a fixed bed reduction apparatus and reduced to complete α-Fe at 450° C. for 180 minutes while passing H 2 gas. Next, after switching to N 2 gas and cooling to room temperature, the oxygen partial pressure was gradually increased to the same ratio as air to form a stable oxide film on the particle surface, and metallic iron particle powder 1 was obtained. The metallic iron particle powder 1 obtained here is mainly composed of α-Fe, and has an average particle diameter of 0.09 μm, a BET specific surface area of 25 m 2 /g, an Fe content of 87.2 wt%, an Al content of 0.22 wt%, The S content was 4000 ppm. X-ray diffraction confirmed the presence of α-Fe and Fe 3 O 4 . The intensity ratio D110/(D110+D311) between D110 (α-Fe) and D311 (Fe 3 O 4 ) was 0.90.
<金属鉄粒子粉末2の製造>
Fe2+1.50mol/Lを含む硫酸第一鉄水溶液12.8Lと0.44-NのNaOH水溶液30.2L(硫酸第一鉄水溶液中のFe2+に対し0.35当量に該当する。)とを混合し、pH6.7、温度38℃においてFe(OH)2を含む硫酸第一鉄水溶液の生成を行なった。次いで、Fe(OH)2を含む硫酸第一鉄水溶液に温度40℃において毎分130Lの空気を3.0時間通気してゲータイト核粒子を生成させた。
<Production of Metallic Iron Particle Powder 2>
12.8 L of ferrous sulfate aqueous solution containing 1.50 mol/L of Fe 2+ and 30.2 L of 0.44-N NaOH aqueous solution (corresponding to 0.35 equivalents to Fe 2+ in the ferrous sulfate aqueous solution) were mixed to produce a ferrous sulfate aqueous solution containing Fe(OH) 2 at pH 6.7 and temperature 38°C. Then, air was passed through the ferrous sulfate aqueous solution containing Fe(OH) 2 at a temperature of 40° C. at a rate of 130 L/min for 3.0 hours to generate goethite core particles.
前記ゲータイト核粒子を含む硫酸第一鉄水溶液(ゲータイト核粒子の存在量は生成ゲータイト粒子に対し35mol%に該当する。)に、5.4NのNa2CO3水溶液7.0L(残存硫酸第一鉄水溶液中のFe2+に対し1.5当量に該当する。)を加え、pH9.4、温度42℃において毎分130Lの空気を4時間通気してゲータイト粒子を生成させた。ここに得たゲータイト粒子を含有する懸濁液にAl3+0.3mol/Lを含む硫酸Al水溶液を0.96Lを添加、十分撹拌した後をフィルタープレスで水洗し、得られたプレスケーキを圧縮成型機を用いて孔径4mmの成型板で押し出し成型して120℃で乾燥してゲータイト粒子粉末の造粒物とした。 7.0 L of 5.4N Na 2 CO 3 aqueous solution (remaining ferrous sulfate 1.5 equivalents to Fe 2+ in the aqueous iron solution) was added, and air was passed at 130 L/min for 4 hours at a pH of 9.4 and a temperature of 42° C. to generate goethite particles. To the obtained suspension containing goethite particles, 0.96 L of an Al sulfate aqueous solution containing 0.3 mol/L of Al 3+ was added, thoroughly stirred, washed with water using a filter press, and the obtained press cake was compressed. Using a molding machine, the product was extruded with a molding plate having a hole diameter of 4 mm and dried at 120° C. to obtain granules of goethite particle powder.
ここに得た造粒物を構成する含有するゲータイト粒子粉末は、平均長軸径0.33μm、軸比(長軸径/短軸径)25.0の針状を呈した粒子であった。BET比表面積は70m2/g、Al含有量は0.42重量%、S含有量は4000ppmであった。 The goethite particles contained in the obtained granules were acicular particles with an average major axis diameter of 0.33 μm and an aspect ratio (major axis diameter/minor axis diameter) of 25.0. The BET specific surface area was 70 m 2 /g, the Al content was 0.42% by weight, and the S content was 4000 ppm.
前記ゲータイト造粒物を330℃で加熱しヘマタイト粒子とした後、そのヘマタイト造粒物100gを固定層還元装置に導入し、H2ガスを通気させながら、400℃で180分間、完全にα-Feとなるまで還元した。次に、N2ガスに切替え室温まで冷却した後、酸素分圧を徐々に増加させて空気と同じ比率として粒子表面に安定な酸化被膜を形成し、金属鉄粒子2を得た。ここに得た金属鉄粒子2は、α-Feを主体としており、平均粒子径0.11μm、BET比表面積20m2/g、Al含有量0.68wt%、Fe含有量85.9wt%、S含有量は5500ppmであった。X線回折の結果、α-FeとFe3O4とが存在することが確認された。そのD110(α-Fe)とD311(Fe3O4)の強度比D110/(D110+D311)は0.88であった。 After heating the goethite granules at 330° C. to form hematite particles, 100 g of the hematite granules were introduced into a fixed bed reduction apparatus, and completely α- It was reduced to Fe. Next, after switching to N 2 gas and cooling to room temperature, the oxygen partial pressure was gradually increased to the same ratio as air to form a stable oxide film on the particle surface, and metal iron particles 2 were obtained. The metallic iron particles 2 obtained here are mainly composed of α-Fe, and have an average particle diameter of 0.11 μm, a BET specific surface area of 20 m 2 /g, an Al content of 0.68 wt%, an Fe content of 85.9 wt%, S The content was 5500 ppm. X-ray diffraction confirmed the presence of α-Fe and Fe 3 O 4 . The intensity ratio D110/(D110+D311) between D110 (α-Fe) and D311 (Fe 3 O 4 ) was 0.88.
<金属鉄粒子粉末3>
純鉄の旋盤屑をボールミルで機械的に破砕した平均粒子径75μm、BET比表面積0.88m2/gのりん片状ものを用いた。
<Metal iron particle powder 3>
Scaly pieces having an average particle size of 75 μm and a BET specific surface area of 0.88 m 2 /g were used, which were obtained by mechanically pulverizing pure iron lathe chips with a ball mill.
<活性炭粒子粉末>
下記表1の特性を有する活性炭粒子粉末(市販品)1、2を用いた。また、活性炭粒子粉末3として木炭粒子粉末を用いた。
<Activated carbon particle powder>
Activated carbon particle powders (commercial products) 1 and 2 having properties shown in Table 1 below were used. Charcoal particle powder was used as the activated carbon particle powder 3 .
<浄化剤1の製造>
金属鉄粒子粉末1 25g、活性炭粒子粉末1 64g、イオン交換水226gを先ずジャーテスターにて1分間一次混合を行い、続いてその混合品を、縦型のバッチ式湿式ビーズミル(アイメックス製、有効体積 800mL、粉砕メディア 2mmφガラスビーズ)で粉砕混合処理を60分間行うことによって、複合化された浄化処理用金属鉄-活性炭複合粒子を28重量%(固形分濃度)含む浄化剤1を調製した。浄化剤1を5Cろ紙(アドバンテック製、孔径1μm)で固液分離した後、40℃で乾燥して浄化処理用金属鉄-活性炭複合粒子を取り出し、構造・物性評価を行った。
<Production of cleaning agent 1>
First, 125 g of metal iron particle powder, 164 g of activated carbon particle powder, and 226 g of ion-exchanged water were first mixed in a jar tester for 1 minute, and then the mixture was passed through a vertical batch-type wet bead mill (manufactured by Imex, effective volume Purification agent 1 containing 28% by weight (solid content concentration) of composite metal iron-activated carbon composite particles for purification treatment was prepared by performing pulverization and mixing treatment for 60 minutes with 800 mL of pulverization media (2 mm diameter glass beads). Purification agent 1 was subjected to solid-liquid separation using 5C filter paper (manufactured by Advantech, pore size 1 μm), dried at 40° C., and metallic iron-activated carbon composite particles for purification treatment were taken out and evaluated for structure and physical properties.
<浄化剤2~11の製造>
金属鉄粒子粉末の種類、活性炭粒子粉末の種類、金属鉄粒子粉末と活性炭粒子粉末の配合比率および浄化剤中の浄化処理用金属鉄-活性炭複合粒子の含有量を種々変化させた以外は、前記発明の実施の形態と同様にして浄化剤を得た。
<Production of purification agents 2 to 11>
Except for varying the type of metallic iron particle powder, the type of activated carbon particle powder, the mixing ratio of the metallic iron particle powder and the activated carbon particle powder, and the content of the metallic iron-activated carbon composite particles for purification treatment in the purification agent, the above-mentioned A cleaning agent was obtained in the same manner as in the embodiment of the invention.
このときの製造条件を表2に、得られた浄化剤の諸特性を表3に示す。 Table 2 shows the production conditions at this time, and Table 3 shows various characteristics of the obtained cleaning agent.
<模擬地下水、排水中有機ハロゲン化合物の浄化処理評価結果>
使用例1
前記評価方法によれば、前記浄化剤1を用いた場合、トリクロロエチレンの分解率は、2日後で99.9%、7日後で100.0%であった。反応による主要分解生成物としては、エチレンが確認できた。
<Evaluation results for purification treatment of organic halogen compounds in simulated groundwater and wastewater>
Usage example 1
According to the evaluation method, when the cleaning agent 1 was used, the decomposition rate of trichlorethylene was 99.9% after 2 days and 100.0% after 7 days. Ethylene was confirmed as the main decomposition product by the reaction.
使用例2~4、比較使用例1~7
使用例1と同様に、実施例2~4、比較例1~7の浄化剤を用いて、2日後と7日後のトリクロロエチレン分解率を測定した。
Usage Examples 2-4, Comparative Usage Examples 1-7
As in Use Example 1, using the cleaning agents of Examples 2 to 4 and Comparative Examples 1 to 7, the trichlorethylene decomposition rate was measured after 2 days and 7 days.
このときの処理条件及び測定結果を表4に示す。尚、比較使用例1、3、5、6においては、有害副生成物である1、2-ジクロロエチレン(DCE)が検出された。また、比較使用例7においては、分解生成物が全く検出されなかった(トリクロロエチレンの吸着のみ)。 Table 4 shows the processing conditions and measurement results at this time. In Comparative Use Examples 1, 3, 5 and 6, 1,2-dichloroethylene (DCE), which is a harmful by-product, was detected. In Comparative Example 7, no decomposition products were detected (only trichlorethylene adsorption).
Claims (5)
該複合粒子のマクロ孔の全細孔容積が0.20mL/g以上であり、
該金属鉄粒子と該活性炭粒子との配合割合が重量比で10:90~70:30であり、
該複合粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(B)との比率(A)/(B)が0.50~0.90であり、
該金属鉄粒子が該活性炭粒子の表面及びマクロ孔に陥入・担持されていることを特徴とする土壌・地下水浄化処理用浄化剤。 Composite particles composed of metallic iron particles having an average particle diameter of 0.05 to 0.30 μm and a BET specific surface area of 10 to 60 m 2 /g and activated carbon particles having a BET specific surface area of 500 to 1400 m 2 /g are effective. A cleaning agent for soil and groundwater purification treatment comprising a water suspension containing as a component,
The total pore volume of the macropores of the composite particles is 0.20 mL/g or more,
The mixing ratio of the metallic iron particles and the activated carbon particles is 10:90 to 70:30 by weight,
The ratio (A) of the pore volume with a pore diameter of 1 μm or more to the total pore volume of the macropores of the composite particles, and the ratio of the pore volume of the pore diameters of 1 μm or more to the total pore volume of the macropores of the activated carbon particles ( The ratio (A)/(B) with B) is 0.50 to 0.90 ,
A cleaning agent for cleaning soil and groundwater , wherein the metallic iron particles are invaginated and supported on the surfaces and macropores of the activated carbon particles .
該複合粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(B)との比率(A)/(B)が0.50~0.90であることを特徴とする土壌・地下水浄化処理用浄化剤の製造方法。 Metallic iron particles having an average particle size of 0.05 to 0.30 μm and a BET specific surface area of 10 to 60 m 2 /g, and activated carbon particles having a BET specific surface area of 500 to 1400 m 2 /g, are combined with the metallic iron particles. and the activated carbon particles in a weight ratio of 10:90 to 70:30, and the total amount of the metallic iron particles and the activated carbon particles is 10 to 40% by weight with respect to the water suspension. and pulverized and dispersed using a wet pulverizer to produce a soil/groundwater purification agent comprising an aqueous suspension containing composite particles as an active ingredient,
The ratio (A) of the pore volume with a pore diameter of 1 μm or more to the total pore volume of the macropores of the composite particles, and the ratio of the pore volume of the pore diameters of 1 μm or more to the total pore volume of the macropores of the activated carbon particles ( A method for producing a cleaning agent for soil/groundwater purification, wherein the ratio (A)/(B) to B) is 0.50 to 0.90.
該複合粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(A)と、該活性炭粒子のマクロ孔の全細孔容積に対する細孔径1μm以上の細孔容積の比(B)との比率(A)/(B)が0.50~0.90であることを特徴とする土壌・地下水浄化処理用浄化剤の製造方法。 Metallic iron particles having an average particle diameter of 0.05 to 0.30 μm and a BET specific surface area of 10 to 60 m 2 /g are put into water and pulverized and dispersed using a wet pulverizer. A liquid and a liquid obtained by putting activated carbon particles having a BET specific surface area of 500 to 1400 m 2 /g into water and pulverizing and dispersing them using a wet pulverizer are mixed with each other to contain composite particles as an active ingredient. , A method for producing a cleaning agent for soil and groundwater purification treatment comprising an aqueous suspension containing 10 to 40% by weight of the composite particles,
The ratio (A) of the pore volume with a pore diameter of 1 μm or more to the total pore volume of the macropores of the composite particles, and the ratio of the pore volume of the pore diameters of 1 μm or more to the total pore volume of the macropores of the activated carbon particles ( A method for producing a cleaning agent for soil/groundwater purification, wherein the ratio (A)/(B) to B) is 0.50 to 0.90.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021091115A JP7300656B2 (en) | 2021-05-31 | 2021-05-31 | Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021091115A JP7300656B2 (en) | 2021-05-31 | 2021-05-31 | Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022183674A JP2022183674A (en) | 2022-12-13 |
JP7300656B2 true JP7300656B2 (en) | 2023-06-30 |
Family
ID=84437519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021091115A Active JP7300656B2 (en) | 2021-05-31 | 2021-05-31 | Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7300656B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017192254A1 (en) | 2016-05-05 | 2017-11-09 | Remediation Products, Inc. | Composition with a time release material for removing halogenated hydrocarbons from contaminated environments |
JP2020110801A (en) | 2018-06-19 | 2020-07-27 | 株式会社アドール | Activated carbon |
JP2021122787A (en) | 2020-02-05 | 2021-08-30 | 株式会社フジタ | Adsorption system and adsorption method |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2636171B2 (en) * | 1994-05-16 | 1997-07-30 | 工業技術院長 | Method for reducing and removing dissolved organic halogen compounds in contaminated water |
-
2021
- 2021-05-31 JP JP2021091115A patent/JP7300656B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017192254A1 (en) | 2016-05-05 | 2017-11-09 | Remediation Products, Inc. | Composition with a time release material for removing halogenated hydrocarbons from contaminated environments |
JP2020110801A (en) | 2018-06-19 | 2020-07-27 | 株式会社アドール | Activated carbon |
JP2021122787A (en) | 2020-02-05 | 2021-08-30 | 株式会社フジタ | Adsorption system and adsorption method |
Non-Patent Citations (2)
Title |
---|
Journal of Hazardous Materials,2015年12月30日,Vol.300,443-450 |
水環境学会誌,2004年07月10日,Vol.27 No.7,481-485 |
Also Published As
Publication number | Publication date |
---|---|
JP2022183674A (en) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100921261B1 (en) | Iron Particles for Purifying Contaminated Soil or Ground Water, Process for Producing the Iron Particles, Purifying Agent Comprising the Iron Particles, Process for Producing the Purifying Agent and Method of Purifying Contaminated Soil or Ground Water | |
Lee et al. | Steel dust catalysis for Fenton-like oxidation of polychlorinated dibenzo-p-dioxins | |
AU2013320366A1 (en) | New powder, powder composition, method for use thereof and use of the powder and powder composition | |
JP7300656B2 (en) | Soil/Groundwater Purification Agent, Production Method Thereof, and Soil/Groundwater Purification Method | |
JP4258622B2 (en) | Purification agent for soil and groundwater contaminated with organic halogen compounds, its production method, and purification method for soil and groundwater contaminated with organic halogen compounds | |
CN101181660A (en) | Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same | |
Yang et al. | Graphite-modified zero-valent aluminum prepared by mechanical ball milling for selective removal of hydrophobic carbon tetrachloride | |
Fu et al. | Removal of decabromodiphenyl ether (BDE-209) by sepiolite-supported nanoscale zerovalent iron | |
JP4377657B2 (en) | Organochlorine compound removing agent and organochlorine compound removing method | |
JP4352215B2 (en) | Iron composite particle powder for purification treatment of soil and groundwater containing aromatic halogen compounds, its production method, purification agent containing said iron composite particle powder, its production method, and purification treatment of soil and groundwater containing aromatic halogen compounds Method | |
TW200823154A (en) | Iron powder for organic chlorinated compound decomposition and detoxifying treatment method using the same | |
JP2004057881A (en) | Agent for making material polluted with organic halogen compound harmless, method of producing the agent, and method of making harmless using the agent | |
KR20060051936A (en) | Purifying agent for purifying soil or ground water, process for producing the same, and method for purifying soil or ground water using the same | |
Xingu-Contreras et al. | Characterization of natural zeolite clinoptilolite for sorption of contaminants | |
JP4433173B2 (en) | Iron composite particle powder for purification treatment of soil and groundwater, production method thereof, purification agent containing the iron composite particle powder, production method thereof, and purification treatment method of soil and groundwater | |
Cai et al. | Effect of humic acid and metal ions on the debromination of BDE209 by nZVM prepared from steel pickling waste liquor | |
JP2007296408A (en) | Metal iron-magnetite mixed particle powder for purifying soil/groundwater, purification agent containing metal iron-magnetite mixed particle powder, and method for cleaning soil/groundwater | |
JP2013208527A (en) | Iron composite particle powder for purifying soil, ground water, and waste water, purifying agent including the iron composite particle powder, and method for purifying soil, ground water, and waste water contaminated by organic halogen compound | |
WO2024095801A1 (en) | Amorphous carbon-metal iron composite and production method therefor | |
JP2004305235A (en) | Method for rendering object to be treated contaminated with organic halogen compound harmless | |
JP4626762B2 (en) | Noble metal-carrying iron complex for soil and groundwater purification treatment, purification agent containing noble metal-carrying iron complex, and soil and groundwater purification method | |
JP2005131569A (en) | Soil cleaning agent and soil cleaning method | |
JP4557126B2 (en) | Iron composite particle powder for purification treatment of soil and groundwater contaminated with organic halogen compounds, its production method, purification agent containing the iron composite particle powder, its production method and purification treatment of soil and groundwater contaminated with organic halogen compounds Method | |
JP2004305792A (en) | Detoxication method for object to be treated contaminated with organic halogen compound | |
JP2008194542A (en) | Noble metal-carrying metal iron particle for purification of soil and ground water and purification method of soil and ground water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221222 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20221222 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230302 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230419 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230609 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7300656 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |