[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7397815B2 - Thermal switching elements and electrical circuits - Google Patents

Thermal switching elements and electrical circuits Download PDF

Info

Publication number
JP7397815B2
JP7397815B2 JP2021001617A JP2021001617A JP7397815B2 JP 7397815 B2 JP7397815 B2 JP 7397815B2 JP 2021001617 A JP2021001617 A JP 2021001617A JP 2021001617 A JP2021001617 A JP 2021001617A JP 7397815 B2 JP7397815 B2 JP 7397815B2
Authority
JP
Japan
Prior art keywords
thermally responsive
contact
switching element
movable
movable piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021001617A
Other languages
Japanese (ja)
Other versions
JP2022106539A (en
Inventor
圭太郎 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bourns KK
Original Assignee
Bourns KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bourns KK filed Critical Bourns KK
Priority to JP2021001617A priority Critical patent/JP7397815B2/en
Priority to PCT/JP2021/047674 priority patent/WO2022149475A1/en
Priority to CN202180082284.1A priority patent/CN116569296A/en
Publication of JP2022106539A publication Critical patent/JP2022106539A/en
Application granted granted Critical
Publication of JP7397815B2 publication Critical patent/JP7397815B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/02Details
    • H01H37/32Thermally-sensitive members
    • H01H37/52Thermally-sensitive members actuated due to deflection of bimetallic element
    • H01H37/54Thermally-sensitive members actuated due to deflection of bimetallic element wherein the bimetallic element is inherently snap acting

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Thermally Actuated Switches (AREA)

Description

本発明は、熱応動スイッチ素子等に関する。 The present invention relates to a thermally responsive switching element and the like.

従来、熱応動スイッチ素子の一例として、温度上昇に応じて電流を遮断するブレーカーが知られている(例えば、特許文献1参照)。 BACKGROUND ART Conventionally, as an example of a thermally responsive switching element, a breaker that cuts off current in response to a rise in temperature has been known (see, for example, Patent Document 1).

WO2011/105175号公報WO2011/105175 publication

上記特許文献1に開示されている熱応動スイッチ素子は、通常時に可動接点が固定接点に接触し、可動片と固定片との間で導通状態が維持されているため、可動片及び固定片にジュール熱が発生する。従って、熱応動素子の温度は、熱応動スイッチ素子の周辺温度に上記ジュール熱によって上昇する温度が加えられた温度となり、熱応動スイッチ素子の周辺温度を正確に感知できない虞がある。 In the thermally responsive switching element disclosed in Patent Document 1, the movable contact contacts the fixed contact during normal times, and a conductive state is maintained between the movable piece and the fixed piece. Joule heat is generated. Therefore, the temperature of the thermally responsive element becomes a temperature obtained by adding the temperature increased by the Joule heat to the ambient temperature of the thermally responsive switching element, and there is a possibility that the ambient temperature of the thermally responsive switching element cannot be accurately sensed.

本発明は、以上のような実状に鑑み案出されたもので、ジュール熱の影響を受けることなく、熱応動スイッチ素子の周辺の温度上昇に応じて正確に動作する熱応動スイッチ素子を提供することを主たる目的としている。 The present invention was devised in view of the above-mentioned circumstances, and provides a thermally responsive switching element that operates accurately in response to a rise in temperature around the thermally responsive switching element without being affected by Joule heat. That is the main purpose.

本発明の第1発明は、固定接点と、可動接点を有し、前記可動接点を前記固定接点に押圧して接触させる可動片と、前記可動片を弾性変形させることにより、前記固定接点から前記可動接点を離隔させ、温度変化に伴って変形することにより前記可動接点が前記固定接点に接触するように前記可動片を作動させる熱応動素子とを備え、前記熱応動素子は、第1熱膨張率の第1層と、前記第1熱膨張率より高い第2熱膨張率の第2層とを有し、前記熱応動素子の厚さ方向で、前記第1層は前記固定接点の側に、前記第2層は前記可動接点の側に配されている。 A first aspect of the present invention has a fixed contact and a movable contact, a movable piece that presses the movable contact to contact the fixed contact, and elastically deforms the movable piece, so that the movable contact is moved from the fixed contact to the movable piece. a thermally responsive element that separates the movable contact and operates the movable piece such that the movable contact contacts the fixed contact by deforming with temperature change, the thermally responsive element having a first thermal expansion a first layer having a coefficient of thermal expansion and a second layer having a second coefficient of thermal expansion higher than the first coefficient of thermal expansion, and the first layer is on the side of the fixed contact in the thickness direction of the thermally responsive element. , the second layer is disposed on the movable contact side.

本発明の第2発明は、固定接点と、可動接点を有し、前記可動接点を前記固定接点に押圧して接触させる可動片と、前記可動片を弾性変形させることにより、前記固定接点から前記可動接点を離隔させ、温度変化に伴って変形することにより前記可動接点が前記固定接点に接触するように前記可動片を作動させる熱応動素子とを備え、前記熱応動素子は、第1熱膨張率の第1層と、前記第1熱膨張率より高い第2熱膨張率の第2層とを有し、前記熱応動素子の厚さ方向で、前記第2層は前記可動片の側に配されている。 A second invention of the present invention has a fixed contact and a movable contact, and a movable piece that presses the movable contact to contact the fixed contact, and elastically deforms the movable piece, so that the movable contact is moved from the fixed contact to the a thermally responsive element that separates the movable contact and operates the movable piece such that the movable contact contacts the fixed contact by deforming with temperature change, the thermally responsive element having a first thermal expansion a first layer having a coefficient of thermal expansion, and a second layer having a second coefficient of thermal expansion higher than the first coefficient of thermal expansion, and the second layer is on the side of the movable piece in the thickness direction of the thermally responsive element. It is arranged.

本発明に係る前記熱応動スイッチ素子において、前記固定接点、前記可動片及び前記熱応動素子を収容する空間を有するケースを備え、前記ケースは、底壁と前記底壁から前記熱応動素子の側に突出し、前記第1層と接触する接触部を有する、ことが望ましい。 The thermally responsive switching element according to the present invention includes a case having a space for accommodating the fixed contact, the movable piece, and the thermally responsive element, and the case has a bottom wall and a side of the thermally responsive element from the bottom wall. It is desirable to have a contact portion that protrudes from the top and contacts the first layer.

本発明に係る前記熱応動スイッチ素子において、前記ケースには、前記熱応動素子の厚さ方向から視た平面視で、前記熱応動素子の一部と重複する領域に、前記ケースを貫通する貫通孔が形成されている、ことが望ましい。 In the thermally responsive switching element according to the present invention, the case includes a penetration penetrating through the case in a region that overlaps with a part of the thermally responsive element in a plan view viewed from the thickness direction of the thermally responsive element. Preferably, holes are formed.

本発明の第3発明は、前記熱応動スイッチ素子と、電源と、負荷とを含む電気回路であって、前記熱応動スイッチ素子は、前記電源と前記負荷とを接続するパワーラインに直列に接続されている。 A third aspect of the present invention is an electric circuit including the thermally responsive switching element, a power source, and a load, wherein the thermally responsive switching element is connected in series to a power line connecting the power source and the load. has been done.

本発明の第4発明は、前記熱応動スイッチ素子と、電源と、負荷とを含む電気回路であって、前記熱応動スイッチ素子は、前記電源と前記負荷とを接続するパワーラインで負荷に対して並列に接続されている。 A fourth aspect of the present invention is an electric circuit including the thermally responsive switching element, a power source, and a load, wherein the thermally responsive switching element is connected to the load through a power line connecting the power source and the load. are connected in parallel.

本第1発明の前記熱応動スイッチ素子は、前記熱応動素子は、ジュール熱が生じない状態で前記可動片を弾性変形させることにより、前記固定接点から前記可動接点を離隔させ、温度変化に伴って変形することにより前記可動接点が前記固定接点に接触するように前記可動片を作動させる。これにより、前記熱応動スイッチ素子は、前記固定接点、前記可動接点及び前記可動片で生ずるジュール熱の影響を受けることなく、前記熱応動スイッチ素子の周辺の温度上昇に応じて正確に動作する。さらに、前記熱応動素子は、前記第1熱膨張率の前記第1層と、前記第1熱膨張率より高い前記第2熱膨張率の前記第2層とを有し、前記熱応動素子の厚さ方向で、前記第1層は前記固定接点の側に、前記第2層は前記可動接点の側に配されている。従って、前記熱応動スイッチ素子の厚さを肥大させることなく、正確な上記動作が得られる。 In the thermally responsive switching element of the first aspect of the present invention, the thermally responsive element separates the movable contact from the fixed contact by elastically deforming the movable piece in a state where Joule heat is not generated. The movable piece is actuated so that the movable contact contacts the fixed contact by deforming the movable piece. Thereby, the thermally responsive switching element operates accurately in response to a rise in temperature around the thermally responsive switching element without being affected by Joule heat generated by the fixed contact, the movable contact, and the movable piece. Further, the thermally responsive element includes the first layer having the first coefficient of thermal expansion and the second layer having the second coefficient of thermal expansion higher than the first coefficient of thermal expansion, In the thickness direction, the first layer is disposed on the fixed contact side, and the second layer is disposed on the movable contact side. Therefore, the above-mentioned accurate operation can be obtained without increasing the thickness of the thermally responsive switching element.

本第1発明の前記熱応動スイッチ素子は、前記熱応動素子は、ジュール熱が生じない状態で前記可動片を弾性変形させることにより、前記固定接点から前記可動接点を離隔させ、温度変化に伴って変形することにより前記可動接点が前記固定接点に接触するように前記可動片を作動させる。これにより、前記熱応動スイッチ素子は、ジュール熱の影響を受けることなく、前記熱応動スイッチ素子の周辺の温度上昇に応じて正確に動作する。さらに、前記熱応動素子は、前記第1熱膨張率の前記第1層と、前記第1熱膨張率より高い前記第2熱膨張率の前記第2層とを有し、前記熱応動素子の厚さ方向で、前記第2層は前記可動片の側に配されている。従って、前記熱応動スイッチ素子の厚さを肥大させることなく、正確な上記動作が得られる。 In the thermally responsive switching element of the first aspect of the present invention, the thermally responsive element separates the movable contact from the fixed contact by elastically deforming the movable piece in a state where Joule heat is not generated. The movable piece is actuated so that the movable contact contacts the fixed contact by deforming the movable piece. Thereby, the thermally responsive switching element operates accurately in response to a rise in temperature around the thermally responsive switching element without being affected by Joule heat. Further, the thermally responsive element includes the first layer having the first coefficient of thermal expansion and the second layer having the second coefficient of thermal expansion higher than the first coefficient of thermal expansion, The second layer is arranged on the side of the movable piece in the thickness direction. Therefore, the above-mentioned accurate operation can be obtained without increasing the thickness of the thermally responsive switching element.

本発明の一実施形態による熱応動スイッチ素子の概略構成を示す組立て前の状態を示す斜視図。1 is a perspective view showing a schematic configuration of a thermally responsive switching element according to an embodiment of the present invention before assembly; FIG. 接点が開状態における上記熱応動スイッチ素子を示す断面図。FIG. 3 is a cross-sectional view showing the thermally responsive switching element with its contacts in an open state. 接点が閉状態における上記熱応動スイッチ素子を示す断面図。FIG. 3 is a cross-sectional view showing the thermally responsive switching element with its contacts in a closed state. 図1のケース本体の変形例の構成を示す斜視図。FIG. 2 is a perspective view showing the configuration of a modified example of the case body in FIG. 1; 図4のケース本体における熱応動素子と貫通孔との関係を示す平面図。FIG. 5 is a plan view showing the relationship between the thermally responsive element and the through hole in the case body of FIG. 4; 図1の熱応動スイッチ素子を含む電気回路を示す回路図。FIG. 2 is a circuit diagram showing an electric circuit including the thermally responsive switching element of FIG. 1. FIG. 図6の電気回路とは別の電気回路を示す回路図。7 is a circuit diagram showing an electric circuit different from the electric circuit of FIG. 6. FIG.

本発明の一実施形態による熱応動スイッチ素子について図面を参照して説明する。図1乃至図3は、熱応動スイッチ素子1の構成を示している。熱応動スイッチ素子1は、固定接点21と、可動接点41を有する可動片4と、温度変化に伴って変形する熱応動素子5とを備える。本実施形態の熱応動スイッチ素子1では、固定接点21、可動接点41、可動片4及び熱応動素子5は、ケース10の内部に設けられている。ケース10は、ケース本体(第1ケース)7とケース本体7に装着される蓋部材(第2ケース)8等によって構成されている。 A thermally responsive switching element according to an embodiment of the present invention will be described with reference to the drawings. 1 to 3 show the configuration of a thermally responsive switching element 1. FIG. The thermally responsive switching element 1 includes a fixed contact 21, a movable piece 4 having a movable contact 41, and a thermally responsive element 5 that deforms with temperature changes. In the thermally responsive switch element 1 of this embodiment, the fixed contact 21, the movable contact 41, the movable piece 4, and the thermally responsive element 5 are provided inside the case 10. The case 10 includes a case body (first case) 7, a lid member (second case) 8 attached to the case body 7, and the like.

固定接点21は、固定片2に設けられている。固定片2は、例えば、銅等を主成分とする金属板(この他、銅-チタニウム合金、洋白、黄銅などの金属板)をプレス加工することにより形成され、ケース本体7にインサート成形により埋め込まれている。固定片2は、外部回路と電気的に接続される端子22を有している。端子22は、ケース本体7の端縁の側壁から外側に突出している。 The fixed contact 21 is provided on the fixed piece 2. The fixing piece 2 is formed, for example, by pressing a metal plate mainly composed of copper or the like (in addition, a metal plate of copper-titanium alloy, nickel silver, brass, etc.), and is inserted into the case body 7 by insert molding. embedded. The fixed piece 2 has a terminal 22 that is electrically connected to an external circuit. The terminal 22 protrudes outward from the side wall at the edge of the case body 7.

固定接点21は、銀、ニッケル、ニッケル-銀合金の他、銅-銀合金、金-銀合金などの導電性の良い材料のクラッド、メッキ又は塗布等により可動接点41に対向する位置に形成され、ケース本体7の内部に形成されている開口73aの一部から露出されている。 The fixed contact 21 is formed at a position facing the movable contact 41 by cladding, plating, or coating with a highly conductive material such as silver, nickel, nickel-silver alloy, copper-silver alloy, or gold-silver alloy. , is exposed through a part of an opening 73a formed inside the case body 7.

本出願においては、特に断りのない限り、固定片2において、固定接点21が形成されている側の面(すなわち図2において上側の面)を第1面、その反対側の面を第2面として説明している。固定接点21から可動接点41に向く方向を第1方向と、第1方向とは反対の方向を第2方向とそれぞれ定義した場合、第1面は第1方向を向き、第2面は第2方向を向く。他の部品、例えば、可動片4及び熱応動素子5等についても同様である。 In this application, unless otherwise specified, the surface of the fixed piece 2 on which the fixed contact 21 is formed (i.e., the upper surface in FIG. 2) is the first surface, and the opposite surface is the second surface. It is explained as. When the direction from the fixed contact 21 to the movable contact 41 is defined as a first direction, and the direction opposite to the first direction is defined as a second direction, the first surface faces the first direction, and the second surface faces the second direction. Turn in the direction. The same applies to other parts, such as the movable piece 4 and the thermally responsive element 5.

可動接点41は、可動片4の長手方向の先端部に形成されている。可動接点41は、例えば、固定接点21と同等の材料によって形成され、溶接の他、クラッド、かしめ(crimping)等の手法によって可動片4の先端部に接合されている。 The movable contact 41 is formed at the tip of the movable piece 4 in the longitudinal direction. The movable contact 41 is made of the same material as the fixed contact 21, for example, and is joined to the tip of the movable piece 4 by welding, cladding, crimping, or other methods.

可動片4は、銅等を主成分とする板状の金属材料をプレス加工することにより、長手方向の中心線に対して対称なアーム状に形成されている。可動片4は、可動接点41を固定接点21に押圧して接触させる。 The movable piece 4 is formed into an arm shape symmetrical with respect to a longitudinal center line by pressing a plate-shaped metal material whose main component is copper or the like. The movable piece 4 presses the movable contact 41 against the fixed contact 21 to bring it into contact.

可動片4の長手方向の他端部には、外部回路と電気的に接続される端子42が形成されている。端子42はケース本体7の端縁の側壁から外側に突出している。可動片4は、可動接点41と端子42との間に、固定部43及び弾性部44を有している。 A terminal 42 electrically connected to an external circuit is formed at the other end of the movable piece 4 in the longitudinal direction. The terminal 42 protrudes outward from the side wall at the edge of the case body 7. The movable piece 4 has a fixed part 43 and an elastic part 44 between the movable contact 41 and the terminal 42.

固定部43は、端子42と弾性部44との間に設けられ、ケース本体7と蓋部材8とによって裏表両面側から挟み込まれて固定される。これにより、ケース本体7に対する可動片4の位置及び姿勢が安定する。 The fixing part 43 is provided between the terminal 42 and the elastic part 44, and is fixed by being sandwiched between the case body 7 and the lid member 8 from both sides. This stabilizes the position and posture of the movable piece 4 with respect to the case body 7.

弾性部44は、固定部43から可動接点41の側に延出されている。すなわち、固定部43から延びる弾性部44の先端部に可動接点41が設けられている。 The elastic portion 44 extends from the fixed portion 43 to the movable contact 41 side. That is, the movable contact 41 is provided at the tip of the elastic part 44 extending from the fixed part 43.

固定部43においてケース本体7と蓋部材8によって可動片4が固定され、弾性部44が弾性変形することにより、その先端に形成されている可動接点41が可動片4の厚さ方向に移動し、固定接点21と可動接点41との距離が変動し、熱応動スイッチ素子1の開閉が実現される。 The movable piece 4 is fixed by the case body 7 and the lid member 8 in the fixed part 43, and the elastic part 44 is elastically deformed, so that the movable contact 41 formed at the tip thereof moves in the thickness direction of the movable piece 4. , the distance between the fixed contact 21 and the movable contact 41 changes, and the opening and closing of the thermally responsive switching element 1 is realized.

可動片4は、弾性部44において、プレス加工により湾曲又は屈曲されている。湾曲又は屈曲の度合いは、熱応動素子5を収納できる限り特に限定はなく、作動温度及び復帰温度における弾性力、接点の押圧力などを考慮して適宜設定すればよい。また、弾性部44の第2面には、熱応動素子5に対向して一対の突起(接触部)44a,44bが形成されている。突起44a,44bと熱応動素子5とは接触して、突起44a,44bを介して熱応動素子5の変形が弾性部44に伝達される(図2及び3参照)。 The movable piece 4 is curved or bent at the elastic portion 44 by press working. The degree of curvature or bending is not particularly limited as long as the thermally responsive element 5 can be accommodated, and may be appropriately set in consideration of the elastic force at the operating temperature and return temperature, the pressing force of the contact points, etc. Further, a pair of protrusions (contact parts) 44a and 44b are formed on the second surface of the elastic part 44 so as to face the thermally responsive element 5. The projections 44a, 44b and the thermally responsive element 5 are in contact with each other, and the deformation of the thermally responsive element 5 is transmitted to the elastic portion 44 via the projections 44a, 44b (see FIGS. 2 and 3).

熱応動素子5は、温度変化に伴って変形することにより、可動片4を作動させる。熱応動素子5は、熱膨張率の異なる2種類の材料が積層されることにより構成される。 The thermally responsive element 5 operates the movable piece 4 by deforming with temperature changes. The thermally responsive element 5 is constructed by laminating two types of materials having different coefficients of thermal expansion.

熱応動素子5は、円弧状に湾曲した初期形状をなし、熱膨張率の異なる薄板材を積層することにより形成される。過熱により作動温度に達すると、熱応動素子5の湾曲形状は、スナップモーションを伴って逆反りし、冷却により復帰温度を下回ると復元する。熱応動素子5の初期形状は、プレス加工により形成することができる。熱応動素子5の材質及び形状は特に限定されるものでないが、生産性及び逆反り動作の効率性の観点から矩形状が望ましく、小型でありながら弾性部44を効率的に押し上げるために正方形に近い長方形であるのが望ましい。 The thermally responsive element 5 has an initial shape curved into an arc, and is formed by laminating thin plates having different coefficients of thermal expansion. When the operating temperature is reached due to overheating, the curved shape of the thermally responsive element 5 is reversely warped with a snap motion, and is restored when the temperature drops below the return temperature due to cooling. The initial shape of the thermally responsive element 5 can be formed by press working. The material and shape of the thermally responsive element 5 are not particularly limited, but a rectangular shape is desirable from the viewpoint of productivity and efficiency of the reverse warping operation. It is desirable that it be a close rectangle.

ケース10を構成するケース本体7及び蓋部材8は、難燃性のポリアミド、耐熱性に優れたポリフェニレンサルファイド(PPS)、液晶ポリマー(LCP)、ポリブチレンテレフタレート(PBT)などの熱可塑性樹脂により成形されている。上述した樹脂と同等以上の特性が得られるのであれば、樹脂以外の絶縁材料を適用してもよい。 The case body 7 and lid member 8 that make up the case 10 are molded from thermoplastic resin such as flame-retardant polyamide, polyphenylene sulfide (PPS) with excellent heat resistance, liquid crystal polymer (LCP), and polybutylene terephthalate (PBT). has been done. Insulating materials other than resins may be used as long as they can provide properties equivalent to or better than those of the resins described above.

ケース本体7には、固定接点21、可動片4及び熱応動素子5などを収容するための内部空間である収容凹部73が形成されている。収容凹部73は、可動片4を収容するための開口73a,73b、可動片4及び熱応動素子5を収容するための開口73c等を有している。なお、ケース本体7に組み込まれた熱応動素子5の端縁は、収容凹部73の内部に形成されている枠によって適宜当接され、熱応動素子5の熱変形時に案内される。 The case body 7 is formed with an accommodation recess 73 which is an internal space for accommodating the fixed contact 21, the movable piece 4, the thermally responsive element 5, and the like. The accommodation recess 73 has openings 73a and 73b for accommodating the movable piece 4, an opening 73c for accommodating the movable piece 4 and the thermally responsive element 5, and the like. Note that the edge of the thermally responsive element 5 incorporated into the case body 7 is appropriately abutted by a frame formed inside the housing recess 73, and is guided when the thermally responsive element 5 is thermally deformed.

蓋部材8には、カバー片9がインサート成形によって埋め込まれている(図2参照)。カバー片9は、上述した銅等を主成分とする金属又はステンレス鋼等の金属をプレス加工することにより板状に形成される。カバー片9は、図2及び図3が示すように、可動片4の第1面と適宜当接し、可動片4の動きを規制すると共に、蓋部材8のひいては筐体としてのケース10の剛性・強度を高めつつ熱応動スイッチ素子1の小型化に貢献する。 A cover piece 9 is embedded in the lid member 8 by insert molding (see FIG. 2). The cover piece 9 is formed into a plate shape by press-working a metal whose main component is copper or the like mentioned above or a metal such as stainless steel. As shown in FIGS. 2 and 3, the cover piece 9 appropriately contacts the first surface of the movable piece 4 to regulate the movement of the movable piece 4, and also to maintain the rigidity of the lid member 8 and, ultimately, the case 10 as a housing. - Contributes to miniaturization of the thermally responsive switching element 1 while increasing strength.

図1に示されるように、固定接点21、可動片4及び熱応動素子5等を収容したケース本体7の開口73a、73b、73c等を塞ぐように、蓋部材8が、ケース本体7に装着される。ケース本体7と蓋部材8とは、例えば超音波溶着によって接合される。このとき、ケース本体7と蓋部材8とは、それぞれの外縁部の全周にわたって連続的に接合され、ケース10の気密性が向上する。これにより、収容凹部73がもたらすケース10の内部空間は密閉され、固定接点21、可動片4及び熱応動素子5等の部品がケース10の外部の雰囲気から遮断され、保護されうる。また、超音波溶着によって、可動片4の固定部43がケース本体7及び蓋部材8と溶着される。 As shown in FIG. 1, the lid member 8 is attached to the case body 7 so as to close the openings 73a, 73b, 73c, etc. of the case body 7 that accommodates the fixed contact 21, the movable piece 4, the thermally responsive element 5, etc. be done. The case body 7 and the lid member 8 are joined by, for example, ultrasonic welding. At this time, the case body 7 and the lid member 8 are continuously joined over the entire circumference of their respective outer edges, and the airtightness of the case 10 is improved. As a result, the internal space of the case 10 provided by the accommodation recess 73 is sealed, and components such as the fixed contact 21, the movable piece 4, and the thermally responsive element 5 are isolated from the atmosphere outside the case 10 and can be protected. Further, the fixed portion 43 of the movable piece 4 is welded to the case body 7 and the lid member 8 by ultrasonic welding.

図2は、通常温度における熱応動スイッチ素子1の動作を示している。通常温度の熱応動素子5は、図1及び2に示されるように、第2方向の側に凸となる初期形状を維持している。初期形状の熱応動素子5は、熱応動スイッチ素子1の長手方向での両端部において突起44a及び44bと当接する。このとき、熱応動素子5は、可動片4の弾性部44が発生する弾性力より大きい弾性力を発生し、可動片4の先端部の突起44bを第1方向の側に押し上げて、可動片4を可動接点41が固定接点21から離隔する遮断状態に維持している。従って、固定片2と可動片4との間の通電に伴うジュール熱は生じないため、熱応動素子5の温度は、熱応動スイッチ素子1の周辺の温度を正確に反映した温度となる。 FIG. 2 shows the operation of the thermally responsive switching element 1 at normal temperature. As shown in FIGS. 1 and 2, the thermally responsive element 5 at the normal temperature maintains its initial shape convex toward the second direction. The thermally responsive element 5 in its initial shape contacts the protrusions 44a and 44b at both ends of the thermally responsive switching element 1 in the longitudinal direction. At this time, the thermally responsive element 5 generates an elastic force greater than the elastic force generated by the elastic part 44 of the movable piece 4, and pushes up the protrusion 44b at the tip of the movable piece 4 toward the first direction. 4 is maintained in a cut-off state in which the movable contact 41 is separated from the fixed contact 21. Therefore, since Joule heat is not generated due to energization between the fixed piece 2 and the movable piece 4, the temperature of the thermally responsive element 5 becomes a temperature that accurately reflects the temperature around the thermally responsive switching element 1.

図3は、異常温度における熱応動スイッチ素子1の動作を示している。熱応動スイッチ素子1の周辺温度が過度に上昇すると、作動温度に達した熱応動素子5は第1方向の側に凸となる形状に変形する。熱応動素子5の上記作動温度は、例えば、70℃~90℃である。熱応動素子5の変形に伴い熱応動素子5が弾性部44を押し上げていた力が消滅または著しく減少し、弾性部44の弾性力によって、可動接点41が固定接点21の側に押圧されて固定接点21に接触する。これにより、可動片4が導通状態に移行する。 FIG. 3 shows the operation of the thermally responsive switching element 1 at abnormal temperatures. When the ambient temperature of the thermally responsive switching element 1 rises excessively, the thermally responsive element 5 that has reached the operating temperature deforms into a shape that is convex toward the first direction. The operating temperature of the thermally responsive element 5 is, for example, 70°C to 90°C. As the thermally responsive element 5 deforms, the force with which the thermally responsive element 5 was pushing up the elastic part 44 disappears or significantly decreases, and the elastic force of the elastic part 44 pushes the movable contact 41 toward the fixed contact 21 and fixes it. Contact point 21 is contacted. As a result, the movable piece 4 transitions to a conductive state.

熱応動スイッチ素子1では、熱応動素子5はジュール熱が生じない状態で可動片4を弾性変形させることにより、固定接点21から可動接点41を離隔させ、温度変化に伴って変形することにより可動接点41が固定接点21に接触するように可動片4を作動させる。これにより、熱応動スイッチ素子1は、固定接点21、可動接点41及び可動片4で生ずるジュール熱の影響を受けることなく、熱応動スイッチ素子1の周辺の温度上昇に応じて正確に動作する。 In the thermally responsive switching element 1, the thermally responsive element 5 separates the movable contact 41 from the fixed contact 21 by elastically deforming the movable piece 4 in the absence of Joule heat, and is movable by deforming with temperature changes. The movable piece 4 is operated so that the contact 41 contacts the fixed contact 21. Thereby, the thermally responsive switching element 1 is not affected by Joule heat generated by the fixed contact 21, the movable contact 41, and the movable piece 4, and operates accurately in accordance with the temperature rise around the thermally responsive switching element 1.

図2及び図3に示されるように、熱応動素子5は、第1熱膨張率の第1層51と、第1熱膨張率より高い第2熱膨張率の第2層52とを有する、いわゆるバイメタルによって構成されている。第1層51には、例えば、鉄-ニッケル合金をはじめとする、洋白、黄銅、ステンレス鋼などの合金からなる材料が採用される。第2層52には、例えば、銅-ニッケル-マンガン合金又はニッケル-クロム-鉄合金などの合金からなる材料が採用される。熱応動素子5は、三層以上の積層構造のトリメタル等によって構成されていてもよい。 As shown in FIGS. 2 and 3, the thermally responsive element 5 includes a first layer 51 having a first coefficient of thermal expansion, and a second layer 52 having a second coefficient of thermal expansion higher than the first coefficient of thermal expansion. It is composed of so-called bimetal. The first layer 51 is made of, for example, an alloy of iron-nickel alloy, nickel silver, brass, stainless steel, or the like. The second layer 52 is made of a material made of an alloy such as a copper-nickel-manganese alloy or a nickel-chromium-iron alloy. The thermally responsive element 5 may be formed of a trimetal or the like having a laminated structure of three or more layers.

本熱応動スイッチ素子1では、熱応動素子5の厚さ方向で、第1層51は固定接点21の側に、第2層52は可動接点41の側に配されている。すなわち、第1層51は第2方向の側、第2層52は第1方向の側に配されている。このような配置により、固定接点21及び可動接点41と熱応動素子5とを熱応動スイッチ素子1の長手方向に並べて位置させることが可能となり、熱応動スイッチ素子1の厚さを肥大させることなく、正確な上記動作が得られる。 In the present thermally responsive switching element 1, the first layer 51 is disposed on the fixed contact 21 side and the second layer 52 is disposed on the movable contact 41 side in the thickness direction of the thermally responsive element 5. That is, the first layer 51 is arranged on the second direction side, and the second layer 52 is arranged on the first direction side. This arrangement makes it possible to position the fixed contact 21, the movable contact 41, and the thermally responsive element 5 side by side in the longitudinal direction of the thermally responsive switching element 1, without increasing the thickness of the thermally responsive switching element 1. , the above operation can be obtained accurately.

また、本熱応動スイッチ素子1では、熱応動素子5の厚さ方向で、第2層52は可動片4の側に配されている。このような配置により、固定接点21及び可動接点41と熱応動素子5とを熱応動スイッチ素子1の長手方向に並べて位置させることが可能となり、熱応動スイッチ素子1の厚さを肥大させることなく、正確な上記動作が得られる。 Furthermore, in the present thermally responsive switching element 1, the second layer 52 is disposed on the movable piece 4 side in the thickness direction of the thermally responsive element 5. This arrangement makes it possible to position the fixed contact 21, the movable contact 41, and the thermally responsive element 5 side by side in the longitudinal direction of the thermally responsive switching element 1, without increasing the thickness of the thermally responsive switching element 1. , the above operation can be obtained accurately.

図1ないし図3に示されるように、ケース本体7は、底壁75と、熱応動素子5と接触する接触部76とを有している、のが望ましい。接触部76は、底壁75から熱応動素子5の側に突出し、熱応動素子5の第1層51と接触する。すなわち、熱応動素子5は、図1において、接触部76の上方に載置される。 As shown in FIGS. 1 to 3, the case body 7 preferably has a bottom wall 75 and a contact portion 76 that contacts the thermally responsive element 5. As shown in FIGS. The contact portion 76 protrudes from the bottom wall 75 toward the thermally responsive element 5 and comes into contact with the first layer 51 of the thermally responsive element 5 . That is, the thermally responsive element 5 is placed above the contact portion 76 in FIG.

図2に示されるように、初期形状の熱応動素子5は、その中央部において接触部76と接触する。これにより、熱応動素子5が底壁75よりも第1方向の側に位置され、遮断状態での固定接点21からの可動接点41の距離が十分に確保される。従って、熱応動スイッチ素子1が何らかの事情により衝撃を受けた場合等であっても、固定接点21から可動接点41が離隔した状態が容易に維持されるようになり、熱応動スイッチ素子1の動作が安定する。 As shown in FIG. 2, the thermally responsive element 5 in its initial shape contacts the contact portion 76 at its center. Thereby, the thermally responsive element 5 is positioned closer to the first direction than the bottom wall 75, and a sufficient distance between the movable contact 41 and the fixed contact 21 in the cut-off state is ensured. Therefore, even if the thermally responsive switching element 1 is subjected to a shock for some reason, the state in which the movable contact 41 is separated from the fixed contact 21 can be easily maintained, and the operation of the thermally responsive switching element 1 can be easily maintained. becomes stable.

図4は、ケース本体7の変形例であるケース本体7Aを示している。ケース本体7Aのうち、以下で説明されてない部分については、上述したケース本体7の構成が採用されうる。 ケース本体7Aには、底壁75を貫通する貫通孔77が形成されている。 FIG. 4 shows a case body 7A that is a modification of the case body 7. As shown in FIG. For parts of the case body 7A that are not explained below, the configuration of the case body 7 described above may be adopted. A through hole 77 passing through the bottom wall 75 is formed in the case body 7A.

ケース本体7Aの底壁75に貫通孔77が設けられることにより、熱応動スイッチ素子1の外部の熱が放射・対流により熱応動素子5に伝わりやすくなり、熱応動スイッチ素子1の応答性能、感度特性などが向上する。そして、熱応動スイッチ素子1の応答性能が向上すると、熱応動スイッチ素子1の外部環境の温度と熱応動素子5の動作温度との差が小さくなり、より安全に電気回路を保護することができる。 By providing the through hole 77 in the bottom wall 75 of the case body 7A, external heat of the thermally responsive switching element 1 is easily transmitted to the thermally responsive element 5 through radiation and convection, thereby improving the response performance and sensitivity of the thermally responsive switching element 1. Characteristics etc. will improve. When the response performance of the thermally responsive switching element 1 improves, the difference between the temperature of the external environment of the thermally responsive switching element 1 and the operating temperature of the thermally responsive element 5 becomes smaller, making it possible to more safely protect the electric circuit. .

図2、図3に示されるように、固定片2が底壁75の領域までのびている形態では、貫通孔77は、固定片2を貫通していてもよい。貫通孔77が固定片2を貫通することにより、熱応動スイッチ素子1の外部の熱が放射・対流により熱応動素子5に伝わりやすくなる。一方、貫通孔77が固定片2を貫通しない構成では、ケース10内の収容凹部73の機密性が高められる。また、熱応動スイッチ素子1の外部の熱が端子22を介して熱応動素子5に伝わりやすくなる。 As shown in FIGS. 2 and 3, in the case where the fixing piece 2 extends to the area of the bottom wall 75, the through hole 77 may pass through the fixing piece 2. By penetrating the fixed piece 2 with the through hole 77, external heat of the thermally responsive switching element 1 is easily transmitted to the thermally responsive element 5 by radiation and convection. On the other hand, in a configuration in which the through hole 77 does not penetrate the fixed piece 2, the airtightness of the housing recess 73 in the case 10 is enhanced. Further, heat outside the thermally responsive switching element 1 is easily transmitted to the thermally responsive element 5 via the terminal 22.

図5は、熱応動素子5と貫通孔77との関係を示している。貫通孔77は、熱応動素子5の厚さ方向から視た平面視で、熱応動素子5の一部と重複する領域に形成されている。このような配置により、熱応動スイッチ素子1の外部の熱が、より一層、熱応動素子5に伝わりやすくなる。 FIG. 5 shows the relationship between the thermally responsive element 5 and the through hole 77. The through hole 77 is formed in a region that overlaps a part of the thermally responsive element 5 when viewed in plan from the thickness direction of the thermally responsive element 5 . Such an arrangement allows heat from outside the thermally responsive switching element 1 to be transmitted to the thermally responsive element 5 even more easily.

ケース本体7Aでは、同一形状の3個の貫通孔77が形成されている。貫通孔77の形状及び個数は任意である。各貫通孔77の間には、底壁75と接触部76とをつなぐブリッヂ部78が設けられている。ブリッヂ部78によって接触部76の位置が安定し、固定接点21に対する可動接点41の位置も安定する。 In the case body 7A, three through holes 77 having the same shape are formed. The shape and number of through holes 77 are arbitrary. A bridge portion 78 connecting the bottom wall 75 and the contact portion 76 is provided between each through hole 77 . The position of the contact portion 76 is stabilized by the bridge portion 78, and the position of the movable contact 41 relative to the fixed contact 21 is also stabilized.

図6は、熱応動スイッチ素子1を含む電気回路100を示している。電気回路100は、熱応動スイッチ素子1と、電源101と、負荷102とを含んでいる。電源101は、パワーライン103を介して負荷102に駆動電圧を印加する。電気回路100では、熱応動スイッチ素子1は、電源101と負荷102とを接続するパワーライン103に直列に接続されている。 FIG. 6 shows an electrical circuit 100 including the thermally responsive switching element 1. As shown in FIG. Electric circuit 100 includes thermally responsive switching element 1 , power source 101 , and load 102 . A power supply 101 applies a driving voltage to a load 102 via a power line 103. In the electric circuit 100, the thermally responsive switching element 1 is connected in series to a power line 103 that connects a power source 101 and a load 102.

熱応動スイッチ素子1は、熱源(図示せず)の一部または近傍に設けられている。熱源は、電気回路100内の負荷102とは別の負荷であってもよく、電気回路100とは独立したものであってもよい。負荷102は、熱源を冷却するための冷却装置である。冷却装置の一例としては、熱源を冷却するための電動ファンが挙げられる。冷却装置は、電動ファンの他、熱源から熱を奪うための熱交換装置であってもよい。 The thermally responsive switching element 1 is provided at or near a heat source (not shown). The heat source may be a load different from load 102 within electrical circuit 100 or may be independent of electrical circuit 100. The load 102 is a cooling device for cooling a heat source. An example of a cooling device is an electric fan for cooling a heat source. The cooling device may be an electric fan or a heat exchange device for removing heat from a heat source.

通常動作時の電気回路100では、熱応動スイッチ素子1は、固定接点21から可動接点41が離隔した開状態である。このとき、負荷102には電源101の駆動電圧が印加されない。 In the electric circuit 100 during normal operation, the thermally responsive switching element 1 is in an open state in which the movable contact 41 is separated from the fixed contact 21. At this time, the drive voltage of the power supply 101 is not applied to the load 102.

一方、電気回路100において、熱源が過熱すると、熱応動素子5の熱変形に伴い、可動接点41が固定接点21に接触し、熱応動スイッチ素子1は、閉状態に移行する。このとき、冷却装置である負荷102に駆動電圧が印加され、熱源が冷却される。そして、熱源の温度低下に伴い、熱応動素子5が元の形状に復元すると、熱応動スイッチ素子1は、開状態に復帰する。このような電気回路100によって熱源の温度が制御される。 On the other hand, in the electric circuit 100, when the heat source overheats, the movable contact 41 comes into contact with the fixed contact 21 due to thermal deformation of the thermally responsive element 5, and the thermally responsive switching element 1 shifts to the closed state. At this time, a driving voltage is applied to the load 102, which is a cooling device, and the heat source is cooled. When the thermally responsive element 5 restores its original shape as the temperature of the heat source decreases, the thermally responsive switching element 1 returns to the open state. The temperature of the heat source is controlled by such an electric circuit 100.

図7は、電気回路100の変形例である電気回路100Aの回路図を示している。電気回路100と同様に、電気回路100Aは、熱応動スイッチ素子1と、電源101と、負荷102とを含んでいる。電源101は、パワーライン103を介して負荷102に駆動電圧を印加する。電気回路100では、熱応動スイッチ素子1は、電源101と負荷102とを接続するパワーライン103で負荷102に対して並列に接続されている。また、負荷102とは別の負荷(例えば、抵抗104)が、熱応動スイッチ素子1に対して直列に接続されている。 FIG. 7 shows a circuit diagram of an electric circuit 100A that is a modification of the electric circuit 100. Similar to the electric circuit 100, the electric circuit 100A includes a thermally responsive switching element 1, a power source 101, and a load 102. A power supply 101 applies a driving voltage to a load 102 via a power line 103. In the electric circuit 100, the thermally responsive switching element 1 is connected in parallel to the load 102 via a power line 103 that connects the power source 101 and the load 102. Further, a load other than the load 102 (for example, a resistor 104) is connected in series to the thermally responsive switching element 1.

電気回路100Aでは、熱源は、電気回路100A内の負荷102を含んでいる。そして、熱応動スイッチ素子1は、熱源である負荷102の一部または近傍に設けられている。 In electrical circuit 100A, the heat source includes load 102 within electrical circuit 100A. The thermally responsive switching element 1 is provided at or near a load 102 that is a heat source.

通常動作時の電気回路100Aでは、熱応動スイッチ素子1は、固定接点21から可動接点41が離隔した開状態である。このとき、負荷102には電源101の駆動電圧が印加される。 In the electric circuit 100A during normal operation, the thermally responsive switching element 1 is in an open state in which the movable contact 41 is separated from the fixed contact 21. At this time, the drive voltage of the power supply 101 is applied to the load 102.

一方、電気回路100において、熱源が過熱すると、熱応動素子5の熱変形に伴い、可動接点41が固定接点21に接触し、熱応動スイッチ素子1は、閉状態に移行する。このとき、熱応動スイッチ素子1にも電源101の駆動電圧が印加され、負荷102に流れる電流の一部がバイパスされる。従って、負荷102に流れる電流が制限され、熱源である負荷102の過熱が抑制される。そして、負荷102の温度低下に伴い、熱応動素子5が元の形状に復元すると、熱応動スイッチ素子1は、開状態に復帰する。このような電気回路100によって熱源の温度が制御される。 On the other hand, in the electric circuit 100, when the heat source overheats, the movable contact 41 comes into contact with the fixed contact 21 due to thermal deformation of the thermally responsive element 5, and the thermally responsive switching element 1 shifts to the closed state. At this time, the drive voltage of the power supply 101 is also applied to the thermally responsive switching element 1, and a portion of the current flowing through the load 102 is bypassed. Therefore, the current flowing through the load 102 is limited, and overheating of the load 102, which is a heat source, is suppressed. Then, when the thermally responsive element 5 restores its original shape as the temperature of the load 102 decreases, the thermally responsive switching element 1 returns to the open state. The temperature of the heat source is controlled by such an electric circuit 100.

以上、本発明の熱応動スイッチ素子1が詳細に説明されたが、本発明は上記の具体的な実施形態に限定されることなく種々の態様に変更して実施される。すなわち、熱応動スイッチ素子1は、少なくとも、固定接点21と、可動接点41を有し、可動接点41を固定接点21に押圧して接触させる可動片4と、可動片4を弾性変形させることにより、固定接点21から可動接点41を離隔させ、温度変化に伴って変形することにより可動接点41が固定接点21に接触するように可動片4を作動させる熱応動素子5とを備え、熱応動素子5は、第1熱膨張率の第1層51と、第1熱膨張率より高い第2熱膨張率の第2層52とを有し、熱応動素子5の厚さ方向で、第1層51は固定接点21の側に、第2層52は可動接点41の側に配されていればよい。 Although the thermally responsive switching element 1 of the present invention has been described in detail above, the present invention is not limited to the above-described specific embodiments, but can be implemented by changing various aspects. That is, the thermally responsive switch element 1 has at least a fixed contact 21 and a movable contact 41, and a movable piece 4 that presses the movable contact 41 into contact with the fixed contact 21, and a movable piece 4 that elastically deforms. , a thermally responsive element 5 that separates the movable contact 41 from the fixed contact 21 and operates the movable piece 4 so that the movable contact 41 comes into contact with the fixed contact 21 by deforming with temperature change, the thermally responsive element 5 5 has a first layer 51 having a first coefficient of thermal expansion and a second layer 52 having a second coefficient of thermal expansion higher than the first coefficient of thermal expansion. 51 may be disposed on the fixed contact 21 side, and the second layer 52 may be disposed on the movable contact 41 side.

また、熱応動スイッチ素子1は、少なくとも、固定接点21と、可動接点41を有し、可動接点41を固定接点21に押圧して接触させる可動片4と、可動片4を弾性変形させることにより、固定接点21から可動接点41を離隔させ、温度変化に伴って変形することにより可動接点41が固定接点21に接触するように可動片4を作動させる熱応動素子5とを備え、熱応動素子5は、第1熱膨張率の第1層51と、第1熱膨張率より高い第2熱膨張率の第2層52とを有し、熱応動素子5の厚さ方向で、第2層52は可動片4の側に配されていればよい。 The thermally responsive switch element 1 has at least a fixed contact 21 and a movable contact 41, and a movable piece 4 that presses the movable contact 41 into contact with the fixed contact 21, and a movable piece 4 that elastically deforms. , a thermally responsive element 5 that separates the movable contact 41 from the fixed contact 21 and operates the movable piece 4 so that the movable contact 41 comes into contact with the fixed contact 21 by deforming with temperature change, the thermally responsive element 5 5 has a first layer 51 having a first coefficient of thermal expansion and a second layer 52 having a second coefficient of thermal expansion higher than the first coefficient of thermal expansion. 52 may be disposed on the side of the movable piece 4.

1 熱応動スイッチ素子
4 可動片
5 熱応動素子
10 ケース
21 固定接点
41 可動接点
51 第1層
52 第2層
75 底壁
76 接触部
77 貫通孔
100 電気回路
100A 電気回路
101 電源
102 負荷
103 パワーライン
1 Thermal response switch element 4 Movable piece 5 Thermal response element 10 Case 21 Fixed contact 41 Movable contact 51 First layer 52 Second layer 75 Bottom wall 76 Contact portion 77 Through hole 100 Electric circuit 100A Electric circuit 101 Power supply 102 Load 103 Power line

Claims (6)

固定接点と、
可動接点を有し、前記可動接点を前記固定接点に押圧して接触させる可動片と、
前記可動片を弾性変形させることにより、前記固定接点から前記可動接点を離隔させ、温度変化に伴って変形することにより前記可動接点が前記固定接点に接触するように前記可動片を作動させる熱応動素子とを備え、
前記熱応動素子は、第1熱膨張率の第1層と、前記第1熱膨張率より高い第2熱膨張率の第2層とを有し、
前記熱応動素子の厚さ方向で、前記第1層は前記固定接点の側に、前記第2層は前記可動接点の側に配されている、
熱応動スイッチ素子。
fixed contacts,
a movable piece having a movable contact and pressing the movable contact against the fixed contact;
A thermal response in which the movable piece is elastically deformed to separate the movable contact from the fixed contact, and the movable piece is actuated so that the movable contact comes into contact with the fixed contact by deforming with a temperature change. Equipped with an element,
The thermally responsive element has a first layer having a first coefficient of thermal expansion and a second layer having a second coefficient of thermal expansion higher than the first coefficient of thermal expansion,
In the thickness direction of the thermally responsive element, the first layer is disposed on the fixed contact side, and the second layer is disposed on the movable contact side.
Thermal response switching element.
固定接点と、
可動接点を有し、前記可動接点を前記固定接点に押圧して接触させる可動片と、
前記可動片を弾性変形させることにより、前記固定接点から前記可動接点を離隔させ、温度変化に伴って変形することにより前記可動接点が前記固定接点に接触するように前記可動片を作動させる熱応動素子とを備え、
前記熱応動素子は、第1熱膨張率の第1層と、前記第1熱膨張率より高い第2熱膨張率の第2層とを有し、
前記熱応動素子の厚さ方向で、前記第2層は前記可動片の側に配されている、
熱応動スイッチ素子。
fixed contacts,
a movable piece having a movable contact and pressing the movable contact against the fixed contact;
A thermal response in which the movable piece is elastically deformed to separate the movable contact from the fixed contact, and the movable piece is actuated so that the movable contact comes into contact with the fixed contact by deforming with a temperature change. Equipped with an element,
The thermally responsive element has a first layer having a first coefficient of thermal expansion and a second layer having a second coefficient of thermal expansion higher than the first coefficient of thermal expansion,
The second layer is disposed on the movable piece side in the thickness direction of the thermally responsive element.
Thermal response switching element.
前記固定接点、前記可動片及び前記熱応動素子を収容する空間を有するケースを備え、
前記ケースは、底壁と前記底壁から前記熱応動素子の側に突出し、前記第1層と接触する接触部を有する、請求項1又は2に記載の熱応動スイッチ素子。
comprising a case having a space for accommodating the fixed contact, the movable piece, and the thermally responsive element;
The thermally responsive switching element according to claim 1, wherein the case has a bottom wall and a contact portion that protrudes from the bottom wall toward the thermally responsive element and contacts the first layer.
前記ケースには、前記熱応動素子の厚さ方向から視た平面視で、前記熱応動素子の一部と重複する領域に、前記ケースを貫通する貫通孔が形成されている、請求項3に記載の熱応動スイッチ素子。 According to claim 3, the case is formed with a through hole that penetrates the case in a region that overlaps with a part of the thermally responsive element when viewed in a plan view from the thickness direction of the thermally responsive element. The thermally responsive switching element described. 請求項1ないし請求項4のいずれかに記載の熱応動スイッチ素子と、電源と、負荷とを含む電気回路であって、
前記熱応動スイッチ素子は、前記電源と前記負荷とを接続するパワーラインに直列に接続されている、
電気回路。
An electric circuit comprising the thermally responsive switching element according to any one of claims 1 to 4, a power source, and a load,
The thermally responsive switching element is connected in series to a power line connecting the power source and the load.
electric circuit.
請求項1ないし請求項4のいずれかに記載の熱応動スイッチ素子と、電源と、負荷とを含む電気回路であって、
前記熱応動スイッチ素子は、前記電源と前記負荷とを接続するパワーラインで前記負荷に対して並列に接続されている、
電気回路。
An electric circuit comprising the thermally responsive switching element according to any one of claims 1 to 4, a power source, and a load,
The thermally responsive switching element is connected in parallel to the load through a power line connecting the power source and the load.
electric circuit.
JP2021001617A 2021-01-07 2021-01-07 Thermal switching elements and electrical circuits Active JP7397815B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021001617A JP7397815B2 (en) 2021-01-07 2021-01-07 Thermal switching elements and electrical circuits
PCT/JP2021/047674 WO2022149475A1 (en) 2021-01-07 2021-12-22 Heat-responsive switch element, and electric circuit
CN202180082284.1A CN116569296A (en) 2021-01-07 2021-12-22 Thermally responsive switching element and circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021001617A JP7397815B2 (en) 2021-01-07 2021-01-07 Thermal switching elements and electrical circuits

Publications (2)

Publication Number Publication Date
JP2022106539A JP2022106539A (en) 2022-07-20
JP7397815B2 true JP7397815B2 (en) 2023-12-13

Family

ID=82357288

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021001617A Active JP7397815B2 (en) 2021-01-07 2021-01-07 Thermal switching elements and electrical circuits

Country Status (3)

Country Link
JP (1) JP7397815B2 (en)
CN (1) CN116569296A (en)
WO (1) WO2022149475A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311352A (en) 2003-04-10 2004-11-04 Alps Electric Co Ltd Thermal protector
CN201421806Y (en) 2009-04-20 2010-03-10 谭才考 Bimetal-element temperature control switch
JP2018190514A (en) 2017-04-28 2018-11-29 ボーンズ株式会社 Thermally-actuated switch element and electric circuit including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS489724Y1 (en) * 1970-05-12 1973-03-14
JPS518472U (en) * 1974-07-06 1976-01-22
DE3234373A1 (en) * 1982-09-16 1984-05-10 Peter 7530 Pforzheim Hofsäss DEVICE FOR TEMPERATURE AND / OR ELECTRICAL SWITCHING OF AN ELECTRICAL CONNECTION
JPS63187520A (en) * 1987-01-27 1988-08-03 松下電工株式会社 Bimetal switch
JP2005149724A (en) * 1999-05-10 2005-06-09 Masaaki Tone Current breaker
JP2017103118A (en) * 2015-12-02 2017-06-08 ボーンズ株式会社 Breaker, safety circuit with the same, and secondary battery circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004311352A (en) 2003-04-10 2004-11-04 Alps Electric Co Ltd Thermal protector
CN201421806Y (en) 2009-04-20 2010-03-10 谭才考 Bimetal-element temperature control switch
JP2018190514A (en) 2017-04-28 2018-11-29 ボーンズ株式会社 Thermally-actuated switch element and electric circuit including the same

Also Published As

Publication number Publication date
JP2022106539A (en) 2022-07-20
CN116569296A (en) 2023-08-08
WO2022149475A1 (en) 2022-07-14

Similar Documents

Publication Publication Date Title
JP6408822B2 (en) Breaker, safety circuit including the same, and secondary battery circuit
JP7017874B2 (en) A breaker and a safety circuit equipped with it.
WO2020184298A1 (en) Method for manufacturing breaker
JP6967878B2 (en) A breaker and a safety circuit equipped with it.
JP7064350B2 (en) Breaker and safety circuit with it
JP7397815B2 (en) Thermal switching elements and electrical circuits
JP6997689B2 (en) Breaker, safety circuit and rechargeable battery pack
JP6967932B2 (en) A breaker and a safety circuit equipped with it.
JP2018190514A (en) Thermally-actuated switch element and electric circuit including the same
JP2017103118A (en) Breaker, safety circuit with the same, and secondary battery circuit
JP6560548B2 (en) Breaker and safety circuit equipped with it.
WO2020027052A1 (en) Current interrupter, safety circuit, and secondary battery pack
JP2006031955A (en) Thermal switch
JP7280848B2 (en) Breaker, safety circuit and secondary battery pack
WO2023120197A1 (en) Breaker, safety circuit, and secondary battery pack
JP7492495B2 (en) Breakers, safety circuits and secondary battery packs
WO2023119887A1 (en) Breaker, safety circuit, and secondary battery pack
JP6401550B2 (en) Breaker, safety circuit including the same, and secondary battery circuit.
JP7425710B2 (en) Breaker and safety circuit equipped with it, secondary battery pack
WO2021024700A1 (en) Breaker and safety circuit
JP2015015150A (en) Breaker and safety circuit including the same and secondary battery circuit
JP6085107B2 (en) Breaker, safety circuit including the same, and secondary battery circuit
CN113811973B (en) Circuit breaker, safety circuit including the same, and secondary battery circuit
WO2020235431A1 (en) Insert molding method, breaker manufacturing method, insert molded article, and breaker
JP2022181450A (en) Breaker, safety circuit, and secondary battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231201

R150 Certificate of patent or registration of utility model

Ref document number: 7397815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150