JP7396621B2 - Thermoelectric cells and thermoelectric modules - Google Patents
Thermoelectric cells and thermoelectric modules Download PDFInfo
- Publication number
- JP7396621B2 JP7396621B2 JP2019161839A JP2019161839A JP7396621B2 JP 7396621 B2 JP7396621 B2 JP 7396621B2 JP 2019161839 A JP2019161839 A JP 2019161839A JP 2019161839 A JP2019161839 A JP 2019161839A JP 7396621 B2 JP7396621 B2 JP 7396621B2
- Authority
- JP
- Japan
- Prior art keywords
- comb
- thermoelectric
- power generation
- thin plate
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910052751 metal Inorganic materials 0.000 claims description 135
- 239000002184 metal Substances 0.000 claims description 135
- 238000010248 power generation Methods 0.000 claims description 87
- 239000010949 copper Substances 0.000 claims description 35
- 229910001006 Constantan Inorganic materials 0.000 claims description 30
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 27
- 229910052802 copper Inorganic materials 0.000 claims description 27
- 239000007769 metal material Substances 0.000 claims description 19
- 239000000945 filler Substances 0.000 claims description 12
- 238000001816 cooling Methods 0.000 claims description 10
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 239000000956 alloy Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229910000809 Alumel Inorganic materials 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 229910001179 chromel Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 230000003647 oxidation Effects 0.000 claims description 3
- 238000007254 oxidation reaction Methods 0.000 claims description 3
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 239000000463 material Substances 0.000 description 34
- 238000005259 measurement Methods 0.000 description 20
- 230000000052 comparative effect Effects 0.000 description 19
- 239000004065 semiconductor Substances 0.000 description 19
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 12
- 238000010586 diagram Methods 0.000 description 9
- 238000005304 joining Methods 0.000 description 9
- 239000000969 carrier Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 150000002739 metals Chemical class 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 244000126211 Hericium coralloides Species 0.000 description 4
- 230000005678 Seebeck effect Effects 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 229910000881 Cu alloy Inorganic materials 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 238000009529 body temperature measurement Methods 0.000 description 2
- 238000005219 brazing Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910001215 Te alloy Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- UTICYDQJEHVLJZ-UHFFFAOYSA-N copper manganese nickel Chemical compound [Mn].[Ni].[Cu] UTICYDQJEHVLJZ-UHFFFAOYSA-N 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910002058 ternary alloy Inorganic materials 0.000 description 1
- 230000000476 thermogenic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 239000002918 waste heat Substances 0.000 description 1
Landscapes
- Measuring Temperature Or Quantity Of Heat (AREA)
Description
本発明は、金属の熱電材料を用いた熱発電セル及び熱発電モジュールに関するものである。 TECHNICAL FIELD The present invention relates to a thermoelectric generating cell and a thermoelectric generating module using a metal thermoelectric material.
廃熱を利用して環境負荷を軽減することは時代の要請であり、異種金属または半導体の両端に温度差をつけると起電力が発生するゼーベック効果は、熱エネルギーをダイレクトに電気に変換する省エネ技術として知られており、ゼーベック効果の大きい熱電材料が求められている。 The need of the times is to use waste heat to reduce environmental impact, and the Seebeck effect, which generates an electromotive force when a temperature difference is created between the ends of dissimilar metals or semiconductors, is an energy-saving method that directly converts thermal energy into electricity. There is a need for thermoelectric materials with a large Seebeck effect.
熱電材料には、ゼーベック効果の大きさを表すゼーベック係数が大きいことに加え、電子は電気のキャリアであると同時に熱を運ぶキャリアになるので、熱伝導率が小さく、且つ電気伝導率が大きいトレードオフ関係にある特性が必要であり、それらの特性を有するビスマス・テルル合金(Bi2Te3)が有害であるにも拘わらず熱電材料として使われている。 Thermoelectric materials have a large Seebeck coefficient, which indicates the magnitude of the Seebeck effect, and because electrons are carriers of electricity as well as carriers of heat, thermoelectric materials have low thermal conductivity and high electrical conductivity. Off-related properties are required, and a bismuth-tellurium alloy (Bi 2 Te 3 ) having these properties is used as a thermoelectric material even though it is harmful.
例えば、半導体の熱電材料では、高温部で運動エネルギーの大きくなったキャリア(電子と正孔)が、温度の低い方に拡散して起電力が発生する。n型とp型半導体では電位差が逆になるため、金属電極を介してn型とp型半導体を交互に接続したp-n-pのπ型構造を複数接続して熱発電するのが一般的である(例えば、特許文献1)。 For example, in a semiconductor thermoelectric material, carriers (electrons and holes) that have increased kinetic energy in a high temperature region diffuse to a lower temperature region, generating an electromotive force. Since the potential difference between n-type and p-type semiconductors is opposite, it is common to generate thermal power by connecting multiple pn-p π-type structures in which n-type and p-type semiconductors are alternately connected via metal electrodes. (for example, Patent Document 1).
一方、金属のキャリアは電子だけなので、金属では、半導体のようなπ型構造にできない。金属の複数の熱電対を直列に接続すると、起電力が正の部分と負の部分が交互に発生する。更に、金属のゼーベック係数は半導体に比べ非常に小さい。そのため、金属の熱電材料は、特殊用途を除いて熱発電には使われなく、温度を測定する熱電対の材料として汎用的に使われている。 On the other hand, since the only carriers in metals are electrons, metals cannot have a π-type structure like semiconductors. When multiple metal thermocouples are connected in series, positive and negative electromotive force parts are generated alternately. Furthermore, the Seebeck coefficient of metals is much smaller than that of semiconductors. Therefore, metal thermoelectric materials are not used for thermal power generation except for special purposes, but are generally used as materials for thermocouples that measure temperature.
原理的には、金属の高温部で電子の運動エネルギーが大きくなって低温側に拡散してゼーベック効果が起きることは半導体と同じであり、熱電対の金属材料を用いて熱発電することはできる。しかし、熱電対を複数接続すると内部抵抗が増加して電流は余り増加しない。つまり、内部抵抗を小さくする技術開発ができれば、熱電対の金属材料を用いた熱発電が可能になる。 In principle, the kinetic energy of electrons increases in the high temperature part of the metal and diffuses to the low temperature side, causing the Seebeck effect, which is the same as in semiconductors, and it is possible to generate thermal power using the metal material of the thermocouple. . However, when multiple thermocouples are connected, the internal resistance increases and the current does not increase much. In other words, if technology can be developed to reduce internal resistance, it will become possible to generate thermal power using metal materials for thermocouples.
温度測定に使われる熱電対に必要な特性は、温度に比例した電圧が安定して発生すること、測定範囲が広いこと、耐久性があること等であり、電流が少ないことは問題にならない。そのため、電流が少ない原因である熱電対の内部抵抗を小さくする技術開発は行われてこなかった。
上記の状況下にあって、地球温暖化対策として環境に優しい熱発電を普及させるためには、Bi2Te3のような高価で毒性のある材料ではなく、熱電対に使われるような安全で汎用的な熱電材料を用いた熱発電が必要である。
The characteristics required for thermocouples used for temperature measurement include stable generation of a voltage proportional to temperature, wide measurement range, and durability, and low current is not a problem. Therefore, no technology has been developed to reduce the internal resistance of thermocouples, which is the cause of low current flow.
Under the above circumstances, in order to popularize environmentally friendly thermal power generation as a countermeasure against global warming, it is necessary to use safe materials such as those used in thermocouples instead of expensive and toxic materials such as Bi 2 Te 3 . Thermoelectric power generation using general-purpose thermoelectric materials is necessary.
金属の熱電材料を用いた熱発電の先行技術として、例えば特許文献2では、二つの異種金属部材を交互に配してジグザグ状に連結し、複数個の熱電対素子が連結した直列型熱電対を形成し、その高温側を赤外線ストーブで加熱し、熱発電した電力で駆動する小型ファンで低温側を冷却して温風を発生する温風式赤外線ストーブを提案している。その技術的な工夫は、絶縁体のスペーサを用いて隣の熱電対との接触を防ぐと同時に、熱電対の間に空間を形成してファンによる冷却効果を高め、低温側の温度上昇を抑えて温度差を確保し、ファンの駆動に必要な電力を熱発電することであり、内部抵抗を低減する特段の工夫はされてない。
特許文献3では、高温端の接合面積を大きくして内部抵抗を低減することで効果的に接続数を増やす構造を提案している。しかし、その効果は限定的であり、接続数を100対以上に増やすと内部抵抗が大きくなって電力増加が頭打ちになる問題がある。
As a prior art of thermoelectric power generation using metal thermoelectric materials, for example, Patent Document 2 discloses a series thermocouple in which two different metal members are arranged alternately and connected in a zigzag shape, and a plurality of thermocouple elements are connected. We are proposing a hot-air infrared stove that generates hot air by heating the high-temperature side with an infrared stove and cooling the low-temperature side with a small fan driven by thermally generated electricity. This technical innovation uses an insulating spacer to prevent contact with neighboring thermocouples, and at the same time creates a space between the thermocouples to increase the cooling effect of the fan and suppress the temperature rise on the low-temperature side. The purpose of this is to secure a temperature difference between the fans and generate the electricity necessary to drive the fan, and no special measures have been taken to reduce internal resistance.
Patent Document 3 proposes a structure that effectively increases the number of connections by increasing the bonding area at the high temperature end and reducing internal resistance. However, the effect is limited, and if the number of connections is increased to 100 or more pairs, the internal resistance increases, causing a problem in which the increase in power reaches a ceiling.
温度測定に使う熱電対を直列接続すると、電圧が増加するが、同時に内部抵抗が増加して電流は余り増加しないため、熱電対では有効な熱発電はできないとの認識が当業者間の通説とされてきた。
本発明は上述した課題を解決するため、原理に遡って熱発電のデバイス構造を見直し、熱電対に使用されている安全で汎用的な金属の熱電材料を用いた熱電変換デバイスを提供することを目的とする。
When thermocouples used for temperature measurement are connected in series, the voltage increases, but at the same time the internal resistance increases and the current does not increase much, so it is generally accepted among those skilled in the art that thermocouples cannot effectively generate heat. It has been.
In order to solve the above-mentioned problems, the present invention aims to review the device structure of thermoelectric power generation by going back to its principles, and to provide a thermoelectric conversion device using a safe and general-purpose metal thermoelectric material used in thermocouples. purpose.
発明者らは、熱電対に使う金属の熱電材料を用いて熱発電を行う手段として、金属のゼーベック係数が小さい弱点を補うため、先ず、通常の熱電対が0.1~3.5mmφの素線であるのに対し、厚さ0.1~1mm、幅3~6mmの帯状薄板を用い、次に、高温端の長さ9~12cmの範囲を3層接合した櫛歯構造にして接合面積を増やして内部抵抗を小さくすることによって、熱電対の接続数を増やすことで電圧と電流を増加させて起電力を増加することを可能にした。
続いて、金属の熱伝導率が大きいため、低温端の温度が上昇して高温端との温度差が小さくなって起電力が小さくなる弱点を補うため、表1に示すように、金属の電気抵抗が半導体のBiTe系などに比べて3桁小さいことに着目し、高温端と低温端の間を半導体の場合の10倍以上に長くし、且つ、中間部の板幅を高温端の板幅の1/10に狭くすることで実質的に熱伝導を抑え、低温端を空冷して60℃以下になる構造にした。
加えて、金属の熱電材料のゼーベック係数が高温で低下しないことを活かし、高温端を500℃以上にすることで半導体の熱電材料を超える起電力を得ることを可能にした。
In order to compensate for the weak point of metal's small Seebeck coefficient, the inventors first developed a method for generating thermoelectric power using metal thermoelectric materials used in thermocouples. In contrast to the wire, we used a strip-shaped thin plate with a thickness of 0.1 to 1 mm and a width of 3 to 6 mm, and then created a comb-like structure in which three layers were bonded at the high-temperature end with a length of 9 to 12 cm to increase the bonding area. By increasing the number of thermocouples and reducing the internal resistance, it was possible to increase the voltage and current and increase the electromotive force by increasing the number of thermocouples connected.
Next, as shown in Table 1, in order to compensate for the weakness that metals have high thermal conductivity, the temperature at the low temperature end rises and the temperature difference with the high temperature end becomes small, resulting in a small electromotive force, we Focusing on the fact that the resistance is three orders of magnitude lower than that of semiconductors such as BiTe, we made the distance between the high-temperature end and the low-temperature end more than 10 times longer than in the case of semiconductors, and made the board width at the middle part the same as the board width at the high-temperature end. By narrowing the tube to 1/10 of that, the structure substantially suppresses heat conduction and cools the low-temperature end to below 60 degrees Celsius.
In addition, by taking advantage of the fact that the Seebeck coefficient of metal thermoelectric materials does not decrease at high temperatures, it was possible to obtain an electromotive force that exceeds that of semiconductor thermoelectric materials by raising the high temperature end to 500°C or higher.
つまり、熱電材料に要求される“ゼーベック係数が大きく、熱伝導率が小さく、且つ、電気伝導率が大きい”条件を材料の特性で満たすのではなく、金属の優れた加工性と電気伝導率が大きいことを活かした構造にすることによって、上記の条件を構造の機能によって満たし、更に、金属材料のゼーベック係数が高温で低下しないことを活かして高温で使用することによって高出力な熱発電を行うことが本発明の特徴である。 In other words, rather than satisfying the conditions of "large Seebeck coefficient, low thermal conductivity, and high electrical conductivity" required for thermoelectric materials by material properties, we rely on the excellent workability and electrical conductivity of metals. By creating a structure that takes advantage of its large size, the above conditions are met through the function of the structure, and furthermore, by taking advantage of the fact that the Seebeck coefficient of metal materials does not decrease at high temperatures, high-output thermal power generation can be achieved by using it at high temperatures. This is a feature of the present invention.
[1] 本発明の熱発電セルは、熱電対の+脚となる金属材料よりなる櫛歯型金属薄板と、前記熱電対の-脚となる金属材料よりなる櫛歯型中間金属薄板と、前記櫛歯型金属薄板と同じ金属材料よりなる裏打ち金属薄板を3層接合した三層積層体よりなる高温端接合部であって、
前記櫛歯型金属薄板、前記櫛歯型中間金属薄板及び前記裏打ち金属薄板は、各々に設けられた基部に対してスリットを入れた複数の歯部を有する櫛歯構造であって、各々の複数の歯部は互いに重なり合う形状であって、各々の厚さは0.1~2mmであり、
前記櫛歯型金属薄板の各々の歯部は、前記裏打ち金属薄板の対応する各々の歯部と電気的に導通する導通部を有し、
前記櫛歯型金属薄板、前記櫛歯型中間金属薄板及び前記裏打ち金属薄板の各々に設けられた基部は直接的には互いに電気的に絶縁されている前記高温端接合部と、
前記櫛歯型金属薄板と前記櫛歯型中間金属薄板の前記基部に一端が設けられ、前記基部の前記複数の歯部が設けられる側と反対側に細長く伸長した連結部と、
前記連結部の先端で前記櫛歯型金属薄板と前記櫛歯型中間金属薄板を、電気的に絶縁すると共に熱的には接合してなる低温端と、
を単位ユニットとし、前記単位ユニットにおける前記高温端接合部と前記低温端を含む電気的接続が直列的、並列的、もしくは直列的且つ並列的に繰り返されることを特徴とする。
[1] The thermoelectric generation cell of the present invention comprises: a comb-shaped metal thin plate made of a metal material that serves as the + leg of the thermocouple; a comb-teeth shaped intermediate metal thin plate made of a metal material that serves as the - leg of the thermocouple; A high-temperature end joint made of a three-layer laminate formed by joining three layers of a comb-shaped metal thin plate and a backing metal thin plate made of the same metal material,
The comb-shaped metal thin plate, the comb-shaped intermediate metal thin plate, and the backing metal thin plate each have a comb-shaped structure having a plurality of teeth with slits formed in a base provided therein, The tooth portions have a shape that overlaps each other, and the thickness of each tooth portion is 0.1 to 2 mm ,
Each tooth of the comb-shaped thin metal plate has a conductive portion that is electrically connected to each corresponding tooth of the backing thin metal plate,
the base portions provided on each of the comb-shaped metal thin plate, the comb-shaped intermediate metal thin plate, and the backing metal thin plate are directly electrically insulated from each other;
a connecting portion having one end provided at the base of the comb-tooth-shaped metal thin plate and the comb-tooth-shaped intermediate metal thin plate, and extending into an elongate on a side of the base opposite to the side where the plurality of teeth are provided;
a low-temperature end formed by electrically insulating and thermally bonding the comb-shaped metal thin plate and the comb-shaped intermediate metal thin plate at the tip of the connecting portion;
is a unit, and the electrical connection including the high-temperature end joint and the low-temperature end in the unit is repeated in series, in parallel, or in series and parallel.
[2] 本発明の熱発電セルにおいて、好ましくは、前記導通部は、前記櫛歯型金属薄板の各々の歯部の先端部と、前記裏打ち金属薄板の対応する各々の歯部の先端部とが、U字状又はコの字状に接続され、又は一体的に屈曲しているとよい。
[3] 本発明の熱発電セルにおいて、好ましくは、前記導通部は、前記櫛歯型金属薄板の各々の歯部のスリット側側面と、前記裏打ち金属薄板の対応する各々の歯部のスリット側側面とが、U字状又はコの字状に接続され、若しくは一体的に屈曲又は湾曲しているとよい。
[4] 本発明の熱発電セルにおいて、好ましくは、前記熱電対の+脚となる金属材料は、銅、鉄、アルミ若しくはこれらの合金から選択される金属材料であり、前記熱電対の-脚となる金属材料は、コンスタンタン系合金であるとよい。
[5] 本発明の熱発電セルにおいて、好ましくは、前記熱電対の+脚となる金属材料はクロメルであり、前記熱電対の-脚となる金属材料は、アルメルであるとよい。
[6] 本発明の熱発電セルにおいて、好ましくは、前記単位ユニットは、更に前記櫛歯型金属薄板の前記低温端を超えて延長した領域に位置する冷却フィンを有するとよい。
[2] In the thermoelectric power generation cell of the present invention, preferably, the conductive portion is connected to a tip of each tooth of the comb-shaped metal thin plate and a tip of each corresponding tooth of the lining metal thin plate. are connected in a U-shape or a U-shape, or are preferably bent integrally.
[3] In the thermoelectric power generation cell of the present invention, preferably, the conductive portion is between the slit-side side surface of each tooth of the comb-shaped metal thin plate and the slit side of each corresponding tooth of the backing metal thin plate. The side surfaces may be connected in a U-shape or U-shape, or may be bent or curved integrally.
[4] In the thermoelectric generation cell of the present invention, preferably, the metal material serving as the + leg of the thermocouple is a metal material selected from copper, iron, aluminum, or an alloy thereof, and the - leg of the thermocouple The metal material used is preferably a constantan alloy.
[5] In the thermoelectric generation cell of the present invention, preferably, the metal material forming the + leg of the thermocouple is chromel, and the metal material forming the - leg of the thermocouple is preferably alumel.
[6] In the thermoelectric power generation cell of the present invention, preferably, the unit further includes cooling fins located in a region extending beyond the low temperature end of the comb-shaped thin metal plate.
[7] 本発明の熱発電モジュールは、前記単位ユニットが、前記三層積層体よりなる高温端接合部の積層方向に積層された前記熱発電セルを複数有することを特徴とする。
[8] 本発明の熱発電モジュールにおいて、好ましくは、複数の前記熱発電セルを収容する筐体と、この筐体と前記熱発電セルとの隙間を充填する絶縁充填材であって、前記熱発電セルの相互を絶縁すると共に、前記熱発電セルの熱変位を吸収する可塑性を有する前記絶縁充填材を用いて一体化することとよい。
[9] 本発明の熱発電モジュールにおいて、好ましくは、前記筐体は耐熱ケースであり、前記熱発電セルを前記絶縁充填材と共に前記耐熱ケースに収容して、高温酸化を防止するとよい。
[10] 本発明の熱発電モジュールにおいて、好ましくは、前記連結部の幅を前記高温端接合部の幅の1/50以上1/5以下とし、前記連結部の長さを5cm以上50cm以下とし、前記連結部を連結部用断熱ケースに収容するとよい。
前記連結部の幅を前記高温端接合部の幅の1/50以上1/5以下にして熱流を抑制するもので、好ましくは1/20以上1/8以下とし、更に好ましくは1/12以上1/10以下とするとよい。前記連結部の長さを5cm以上50cm以下にして低温端の温度を常温に近い温度に維持するもので、好ましくは10cm以上20cm以下とする。前記連結部を連結部用断熱ケースに収容することで、熱損失を少なくできる。
[7] The thermoelectric power generation module of the present invention is characterized in that the unit unit includes a plurality of the thermoelectric power generation cells stacked in the stacking direction of the high-temperature end joint made of the three-layer laminate.
[8] The thermoelectric generation module of the present invention preferably includes a casing that accommodates a plurality of the thermoelectric cells, and an insulating filler that fills a gap between the casing and the thermoelectric cells, It is preferable that the power generation cells be integrated using the insulating filler having plasticity that insulates each other and absorbs thermal displacement of the thermoelectric power generation cells.
[9] In the thermoelectric generation module of the present invention, preferably, the casing is a heat-resistant case, and the thermoelectric generating cell is housed in the heat-resistant case together with the insulating filler to prevent high-temperature oxidation.
[10] In the thermoelectric power generation module of the present invention, preferably, the width of the connecting portion is 1/50 or more and 1/5 or less of the width of the high temperature end joint, and the length of the connecting portion is 5 cm or more and 50 cm or less. It is preferable that the connecting portion is housed in a heat insulating case for the connecting portion.
The width of the connecting portion is set to 1/50 or more and 1/5 or less of the width of the high-temperature end joint to suppress heat flow, preferably 1/20 or more and 1/8 or less, and more preferably 1/12 or more. It is preferable to set it to 1/10 or less. The length of the connecting portion is set to 5 cm or more and 50 cm or less to maintain the temperature at the low temperature end close to room temperature, and preferably 10 cm or more and 20 cm or less. By accommodating the connecting portion in the connecting portion heat insulating case, heat loss can be reduced.
本発明の熱発電モジュールによれば、従来の半導体熱電材料が越えられなかった600℃の壁を超えて、900℃の高温エネルギーを利用した高出力・熱発電の熱発電モジュールが得られる。 According to the thermoelectric power generating module of the present invention, it is possible to obtain a high output thermoelectric power generating module that utilizes high temperature energy of 900° C., exceeding the 600° C. barrier that conventional semiconductor thermoelectric materials have not been able to overcome.
本発明は、熱発電に必要な材料特性の一部をデバイス構造の機能によって代替し、安全で安価な熱電材料を用いた熱発電を可能にするものであり、従来から進められている熱発電の材料開発と競合するものではなく、汎用的な熱電材料の性能を最大限に発揮するデバイス構造によって、熱発電の発展と普及を図るものである。 The present invention enables thermal power generation using safe and inexpensive thermoelectric materials by replacing some of the material properties necessary for thermal power generation with the functions of the device structure. Rather than competing with other material developments, the goal is to develop and popularize thermoelectric power generation through a device structure that maximizes the performance of general-purpose thermoelectric materials.
本明細書における技術用語の定義
熱電対に関してはJIS C1602で標準規格が定められている。
・ゼーベック係数 金属や半導体の両端に温度差を与えると温度差に比例した電圧が生じるが、その温度差と電圧の比例係数をゼーベック係数という。ゼーベック係数は温度によって変化する性質があり、電気を運ぶ主なキャリアが電子の場合には符号はマイナスとなり、正孔の場合にはプラスとなる。単位はV/Kであるが、金属のゼーベック係数は10-6V/K程度、半導体では10-4V/K程度であるため、単位としては通常μV/Kを使用する。
・絶対ゼーベック係数とは、測定対象の材料単体のゼーベック係数をいう。熱電対のワイヤの1つを超伝導にすることにより、他のワイヤの絶対ゼーベック係数を直接測定できる。
・相対ゼーベック係数とは、測定対象の材料と測定電極の材料のゼーベック係数からの寄与を含めたものをいう。熱電電圧を測定するために、電圧計に取り付けられた電極を材料上に配置する必要があるため、温度勾配によって、電圧計の測定電極の一方の端子にも熱電電圧を誘導する為である。
Definition of technical terms used in this specification Regarding thermocouples, the standard is defined by JIS C1602.
・Seebeck coefficient When a temperature difference is applied across a metal or semiconductor, a voltage proportional to the temperature difference is generated, and the proportional coefficient between the temperature difference and the voltage is called the Seebeck coefficient. The Seebeck coefficient has the property of changing depending on temperature, and the sign is negative when the main carriers that carry electricity are electrons, and positive when the main carriers are holes. The unit is V/K, but since the Seebeck coefficient for metals is about 10 −6 V/K and for semiconductors about 10 −4 V/K, μV/K is usually used as the unit.
・Absolute Seebeck coefficient refers to the Seebeck coefficient of a single material to be measured. By making one of the thermocouple wires superconducting, the absolute Seebeck coefficient of the other wire can be directly measured.
・The relative Seebeck coefficient includes contributions from the Seebeck coefficients of the material to be measured and the material of the measurement electrode. This is because in order to measure thermoelectric voltage, it is necessary to place the electrode attached to the voltmeter on the material, and the temperature gradient also induces thermoelectric voltage at one terminal of the measuring electrode of the voltmeter.
以下、図1を用いて本発明に係る熱発電セルの構造を以下に説明する。
図1Aは、本発明の一実施例を示す櫛歯型熱発電ユニットの要部部品展開図で、櫛歯型金属薄板1、櫛歯型中間金属薄板2、及び裏打ち金属薄板3を含んで示している。
図1Aにおいて、本発明に係る熱発電単位ユニットは、櫛歯型金属薄板1、櫛歯型中間金属薄板2、及び裏打ち金属薄板3を有している。
Hereinafter, the structure of the thermoelectric power generation cell according to the present invention will be explained using FIG. 1.
FIG. 1A is an exploded view of the main parts of a comb-tooth type thermoelectric power generation unit showing an embodiment of the present invention, including a comb-tooth type metal thin plate 1, a comb-teeth type intermediate metal thin plate 2, and a backing metal thin plate 3. ing.
In FIG. 1A, the thermoelectric power generation unit according to the present invention includes a comb-shaped metal thin plate 1, a comb-shaped intermediate metal thin plate 2, and a backing metal thin plate 3.
櫛歯型金属薄板1は、例えば銅製の薄板で、薄板の長さLは100~500mm、厚さtは0.1~2mmになっている。厚さについて数値限定の理由は、厚さ0.1mm以下では接合加工が困難になり、2mm以上では積層数が少なくなるために有効な熱電流が得られないためである。櫛歯型金属薄板1は、歯部(高温側接合部)1a、基部1b、連結部1c、低温側接合部1d、扇状拡大部1eを有している。
歯部1aは、裏打ち金属薄板3の長さLHから基部1bの幅を控除した長さを有するもので、例えば基部1bの幅を5mmとすると、歯部1aの長さは45~95mmとなっている。歯部1aの厚さは、櫛歯型金属薄板1の厚さtと同じ程度になっている。隣接する歯部1aの間にスリットを設けることで、渦電流の発生を防止している。
基部1bは歯部1aを保持する剛性を有するもので、歯部1aは例えば5本から25本程度とするのがよい。歯部1aと歯部1aの隣接する間隔は、例えば1mm幅のスリットを入れた櫛歯構造にする。連結部1cは、歯部(高温側接合部)1aの温度(例えば700℃から900℃)と、低温側接合部1dの温度(例えば室温)との間で、過度の熱貫流が生じるのを防止するため、例えば歯部(高温側接合部)1aと同じ程度の断面形状とするのがよいが、これに限定されない。低温側接合部1dは、熱電対の低温側接点に相当する。扇状拡大部1eは、低温側接合部1dの先端側に位置して、空冷フィン6を形成する。
なお、櫛歯型金属薄板1は、銅製の薄板に限定されるものではなく、例えば鉄、クロメル等の熱電対用となる金属製の薄板でもよい。ここで、クロメルはニッケル(Ni)89%,クロム(Cr)9.8%,鉄(Fe)1%,マンガン(Mn)0.2%の組成からなる合金である。櫛歯型金属薄板1は、銅合金、鉄合金若しくはアルミ合金でもよい。
The comb-shaped metal thin plate 1 is a thin plate made of copper, for example, and has a length L of 100 to 500 mm and a thickness t of 0.1 to 2 mm. The reason why the thickness is limited to a numerical value is that if the thickness is 0.1 mm or less, bonding becomes difficult, and if the thickness is 2 mm or more, the number of laminated layers decreases, so that an effective thermoelectric current cannot be obtained. The comb-shaped metal thin plate 1 has a tooth portion (high temperature side joint portion) 1a, a base portion 1b, a connecting portion 1c, a low temperature side joint portion 1d, and a fan-shaped enlarged portion 1e.
The tooth portion 1a has a length obtained by subtracting the width of the base portion 1b from the length LH of the thin metal backing plate 3. For example, if the width of the base portion 1b is 5 mm, the length of the tooth portion 1a is 45 to 95 mm. It has become. The thickness of the tooth portion 1a is approximately the same as the thickness t of the comb-shaped thin metal plate 1. By providing slits between adjacent teeth 1a, generation of eddy currents is prevented.
The base 1b has the rigidity to hold the teeth 1a, and the number of teeth 1a is preferably about 5 to 25, for example. The spacing between adjacent teeth 1a is, for example, a comb structure with 1 mm wide slits. The connecting portion 1c prevents excessive heat flow between the temperature of the tooth portion (high temperature side joint) 1a (for example, 700°C to 900°C) and the temperature of the low temperature side joint 1d (for example, room temperature). In order to prevent this, it is preferable to have a cross-sectional shape that is approximately the same as the tooth portion (high-temperature side joint portion) 1a, for example, but the present invention is not limited to this. The low temperature side junction portion 1d corresponds to a low temperature side contact of a thermocouple. The fan-shaped enlarged portion 1e is located on the tip side of the low temperature side joint portion 1d, and forms an air cooling fin 6.
The comb-shaped thin metal plate 1 is not limited to a thin plate made of copper, but may be a thin plate made of a metal used for a thermocouple, such as iron or chromel. Here, chromel is an alloy consisting of 89% nickel (Ni), 9.8% chromium (Cr), 1% iron (Fe), and 0.2% manganese (Mn). The comb-shaped metal thin plate 1 may be made of copper alloy, iron alloy, or aluminum alloy.
櫛歯型中間金属薄板2は、例えばコンスタンタンやアルメルの薄板で、薄板の長さLは100~500mm、厚さtは0.1~2mmになっている。櫛歯型中間金属薄板2の厚さについて数値限定の理由は、櫛歯型金属薄板1の歯部(高温側接合部)1aと同様である。
櫛歯型中間金属薄板2は、歯部(高温側接合部)2a、基部2b、連結部2c、低温側接合部2dを有している。歯部2aと基部2bは、歯部1aと基部1bとは、重なり合う形状になっている。コンスタンタンとは、銅55%、ニッケル45%の組成からなる合金である。コンスタンタンは、熱電対用に定められた元素組成であるが、熱発電用にはコンスタンタンを含む組成のコンスタンタン系合金でもよい。コンスタンタン系合金では、銅ニッケル系の二元合金としてはCuxNi1-x(0.5≦x≦0.6:mass比率)であればよく、銅ニッケルマンガン系の三元合金としてはCuxNi1-x-yMny(0.5≦x≦0.6、0.005≦y≦0.03:mass比率)でもよい。アルメルとは、ニッケル(Ni)94%,マンガン(Mn)2.5%,アルミニウム(Al)2%,(ケイ素)Si1%,鉄(Fe)0.5%の組成からなる合金である。
The comb-shaped intermediate metal thin plate 2 is a thin plate of constantan or alumel, for example, and has a length L of 100 to 500 mm and a thickness t of 0.1 to 2 mm. The reason why the thickness of the comb-shaped intermediate metal thin plate 2 is limited to a numerical value is the same as the tooth portion (high temperature side joint portion) 1a of the comb-shaped metal thin plate 1.
The comb-shaped intermediate metal thin plate 2 has a tooth portion (high temperature side joint portion) 2a, a base portion 2b, a connecting portion 2c, and a low temperature side joint portion 2d. The tooth portion 2a and the base portion 2b are shaped so that the tooth portion 1a and the base portion 1b overlap each other. Constantan is an alloy consisting of 55% copper and 45% nickel. Constantan has an elemental composition determined for thermocouples, but constantan-based alloys containing constantan may be used for thermoelectric power generation. For constantan-based alloys, Cu x Ni 1-x (0.5≦x≦0.6: mass ratio) is sufficient as a copper-nickel-based binary alloy, and Cu as a copper-nickel-manganese-based ternary alloy. It may be x Ni 1-xy Mn y (0.5≦x≦0.6, 0.005≦y≦0.03: mass ratio). Alumel is an alloy having a composition of 94% nickel (Ni), 2.5% manganese (Mn), 2% aluminum (Al), 1% Si (silicon), and 0.5% iron (Fe).
裏打ち金属薄板3は、例えば銅製の薄板で、長さLHは50~100mm、厚さは0.1~2mmになっている。裏打ち金属薄板3の厚さtについて数値限定の理由は、裏打ち金属薄板3の歯部(高温側接合部)1aと同様である。裏打ち金属薄板3は、歯部(高温側接合部)3aと基部3b有している。裏打ち金属薄板3の長さLHは三層積層体4の長さに相当するもので、この長さLHの全体が高温側接合部を構成している。
なお、裏打ち金属薄板3は、櫛歯型金属薄板1と同じ材料であるのがよい。力学的設計としては、櫛歯型金属薄板1と櫛歯型中間金属薄板2の銅・コンスタンタンによる2層構造では、高温になるとバイメタルのように熱変形する。そこで、コンスタンタン薄板の裏表側に銅薄板を接合した3層構造にすると共に、櫛歯型金属薄板1と櫛歯型中間金属薄板2により生ずる熱変形を補償するように、裏打ち金属薄板3の板厚を定めて、バイメタル状の熱変形を抑える。また、裏打ち金属薄板3では、歯部3aの間にスリットを設けることで、渦電流の発生を防止している。
The backing thin metal plate 3 is a thin plate made of copper, for example, and has a length LH of 50 to 100 mm and a thickness of 0.1 to 2 mm. The reason for limiting the numerical value to the thickness t of the thin metal backing plate 3 is the same as that for the tooth portion (high temperature side joint portion) 1a of the thin metal backing plate 3. The thin metal backing plate 3 has a tooth portion (high temperature side joint portion) 3a and a base portion 3b. The length LH of the thin metal backing plate 3 corresponds to the length of the three-layer laminate 4, and the entire length LH constitutes the high-temperature side joint.
Note that the backing metal thin plate 3 is preferably made of the same material as the comb-shaped metal thin plate 1. In terms of mechanical design, the two-layer structure of the comb-shaped metal thin plate 1 and the comb-shaped intermediate metal thin plate 2 made of copper and constantan thermally deforms like a bimetal when exposed to high temperatures. Therefore, we created a three-layer structure in which copper thin plates are bonded to the front and back sides of the constantan thin plate, and we designed the lining metal thin plate 3 to compensate for the thermal deformation caused by the comb-shaped metal thin plate 1 and the comb-shaped intermediate metal thin plate 2. Determine the thickness to suppress bimetal-like thermal deformation. Further, in the thin metal backing plate 3, slits are provided between the teeth 3a to prevent generation of eddy currents.
櫛歯型金属薄板の三層積層体4は、歯部1a、歯部2a、歯部3aが一体に積層されたものである。歯部1a、歯部2a、歯部3aを一体的に接合することで、銅・コンスタンタンによる2層構造の接合面で発生する熱発電面積が、歯部1aと歯部2aの接合面と、歯部2aと歯部3aの接合面の二面となっている。そこで、これら両方の接合面が導通していると、熱発電の電力が歯部1aと歯部2aの片面接合と比較すると、例えば2倍に増加する。
この両方の接合面を導通する導通部としては、例えば、歯部1aと歯部3aについて、対応する各々の歯部の先端部がU字状又はコの字状に接続されているものでもよい。また、歯部1aと歯部3aについて、一枚の金属薄板が櫛歯型中間金属薄板2の歯部2aの先端部を挟むように、一体的に屈曲しているものでもよい。
また、この両方の接合面を導通する導通部としては、例えば、櫛歯型金属薄板1の各々の歯部1aのスリット側側面と、裏打ち金属薄板3の対応する各々の歯部3aのスリット側側面とが、U字状又はコの字状に接続されているものでもよい。また、歯部1aと歯部3aについて、一枚の金属薄板が櫛歯型中間金属薄板2の歯部2aのスリット側側面を挟むように、一体的に屈曲又は湾曲しているものでもよい。歯型中間金属薄板2の歯部2aの挟まれるスリット側側面は、両方の側面でもよく、また片方の側面でもよい。
The three-layer laminate 4 of comb-shaped metal thin plates is one in which tooth portions 1a, tooth portions 2a, and tooth portions 3a are integrally laminated. By integrally joining the teeth 1a, 2a, and 3a, the thermoelectric power generation area generated at the bonding surface of the two-layer structure made of copper and constantan is the same as that of the bonding surface of the teeth 1a and 2a. There are two joining surfaces of the toothed portion 2a and the toothed portion 3a. Therefore, when both of these joint surfaces are electrically connected, the electric power generated by thermoelectric generation increases, for example, twice as much as when compared to a one-sided contact between the tooth portions 1a and 2a.
As the conductive portion that conducts these two joint surfaces, for example, for the tooth portion 1a and the tooth portion 3a, the tips of the corresponding tooth portions may be connected in a U-shape or a U-shape. . Alternatively, the tooth portions 1a and 3a may be bent integrally so that one metal thin plate sandwiches the tip of the tooth portion 2a of the comb-shaped intermediate metal thin plate 2.
Further, the conductive portions that conduct the two joint surfaces are, for example, the slit-side side surface of each tooth portion 1a of the comb-shaped thin metal plate 1 and the slit side of each corresponding tooth portion 3a of the backing thin metal plate 3. The side surfaces may be connected in a U-shape or a U-shape. Alternatively, the tooth portions 1a and 3a may be bent or curved integrally so that one metal thin plate sandwiches the slit-side side surface of the tooth portion 2a of the comb-shaped intermediate metal thin plate 2. The slit-side side surfaces of the toothed intermediate thin metal plate 2 between which the toothed portions 2a are sandwiched may be either both sides or one side.
歯部1a、歯部2a、歯部3aの接合には、各種の接合技術が採用でき、例えば固相拡散、ロウ付け、接着剤、溶接、圧着等が採用しうる。しかし、熱発電セルの高温側接合部をなす関係で、接合界面に第3の元素が存在しないものが望ましい関係で、銅と銅合金が完全固溶体を形成することに注目し、固相拡散がよい。ロウ付けでは、通常は耐熱温度が600℃と低い課題がある。接着剤では、有機化合物などの不純物の影響が不明、溶接では、界面形状のバラつきが大きい、通常の圧着では強度不足で高温で剥離する恐れがある、等の問題がある。
なお、櫛歯型金属薄板の三層積層体4は、基部1b、基部2b、基部3bを直接的には互いに電気的に絶縁された構造とするため、互いに直接的には接合されてはいない。基部1b、基部2b及び基部3bが互いに電気的に絶縁された構造なので、渦電流の発生を防止できる。櫛歯型金属薄板の三層積層体4は、基部1b、基部2b、基部3bが互いに直接的には接合されていなくても、歯部1a、歯部2a、歯部3aの接合を介して機械的に一体的な構造になっている。
Various joining techniques can be employed to join the tooth portions 1a, 2a, and 3a, such as solid phase diffusion, brazing, adhesive, welding, and pressure bonding. However, since copper and copper alloy form a perfect solid solution, it is desirable that no third element is present at the bonding interface because they form the high-temperature side bond of the thermoelectric power generation cell. good. Brazing has a problem in that the heat resistance is usually as low as 600°C. With adhesives, the effects of impurities such as organic compounds are unknown, with welding, there are large variations in the shape of the interface, and with ordinary pressure bonding, there is a risk of delamination due to insufficient strength at high temperatures.
Note that the three-layer laminate 4 of the comb-shaped metal thin plates has a structure in which the base portion 1b, the base portion 2b, and the base portion 3b are directly electrically insulated from each other, so that they are not directly joined to each other. . Since the base portions 1b, 2b, and 3b are electrically insulated from each other, generation of eddy currents can be prevented. The three-layer laminate 4 of comb-shaped metal thin plates has a structure in which the base 1b, the base 2b, and the base 3b are not directly joined to each other, but through the joining of the teeth 1a, the teeth 2a, and the teeth 3a. It has a mechanically integrated structure.
図1Bは、本発明の一実施例を示す熱発電セルを示す構成斜視図で、櫛歯型熱発電ユニットを積層した熱発電セルを示している。
図1Bにおいて、本発明に係る熱発電セル7は、熱発電単位ユニットの加熱される櫛歯型金属薄板の三層積層体4(高温端接合部4)と、低温端接点5と、放熱部に設けられた空冷フィン6を備える。
櫛歯型金属薄板の三層積層体4は、櫛歯型金属薄板1、櫛歯型中間金属薄板2、及び裏打ち金属薄板3の歯部(高温側接合部)1a、歯部(高温側接合部)2a、歯部(高温側接合部)3aが一体に積層されたもので、熱発電ユニットの高温端・接合部を構成している。また、櫛歯型中間金属薄板2の低温側接合部2dは、隣接する熱発電ユニットの櫛歯型金属薄板1の低温側接合部1dに接合されて低温端接点5を形成する。櫛歯型金属薄板1の扇状拡大部1eは、空冷フィン6を形成して低温端を例えば60℃以下、好ましくは室温程度に自然冷却する。
FIG. 1B is a perspective view showing a thermoelectric power generation cell according to an embodiment of the present invention, and shows a thermoelectric power generation cell in which comb-shaped thermoelectric power generation units are stacked.
In FIG. 1B, a thermoelectric power generation cell 7 according to the present invention includes a three-layer laminate 4 (high-temperature end joint 4) of comb-shaped thin metal plates to be heated of a thermoelectric power generation unit, a low-temperature end contact 5, and a heat dissipation section. The air cooling fins 6 are provided in the air cooling fins 6.
The three-layer laminate 4 of comb-shaped metal thin plates includes a comb-shaped metal thin plate 1, a comb-shaped intermediate metal thin plate 2, and a tooth portion (high-temperature side joint) 1a of a comb-shaped metal thin plate 2, and a tooth portion (high-temperature side joint) part) 2a and tooth part (high temperature side joint part) 3a are integrally laminated, and constitute the high temperature end/joint part of the thermoelectric power generation unit. Further, the low-temperature side joint portion 2d of the comb-shaped intermediate metal thin plate 2 is joined to the low-temperature side joint portion 1d of the comb-shaped metal thin plate 1 of the adjacent thermoelectric generation unit to form a low-temperature end contact 5. The fan-shaped enlarged portion 1e of the comb-shaped thin metal plate 1 forms air cooling fins 6 to naturally cool the low temperature end to, for example, 60° C. or lower, preferably to about room temperature.
櫛歯型金属薄板の三層積層体4において、単一のセル状三層積層体4は、歯部(高温側接合部)1a、歯部(高温側接合部)2a、歯部(高温側接合部)3aが一体的に積層されたもので、厚みt、幅wとなっている。単一のセル状三層積層体4と隣接するセル状三層積層体4との間隔は、厚み方向に関してはΔt、幅方向に関してはΔwとなっている。単一のセル状三層積層体4と隣接するセル状三層積層体4との間隔には、絶縁充填材8を充填するのがよい。
なお、櫛歯型金属薄板の三層積層体4において、単一のセル状三層積層体4は、基部1b、基部2b、基部3bが互いに直接的には機械的に接合されていなくても、歯部1a、歯部2a、歯部3aの接合を介して機械的に一体的な構造になっている。他の接合態様としては、単一のセル状三層積層体4において、基部1b、基部2b、基部3bが互いに直接的に機械的に接合されてはいるが、電気的な絶縁状態を確保するため、基部1b、基部2b、基部3bの各層の間に絶縁膜を形成したものでもよい。
In the three-layer laminate 4 of comb-shaped metal thin plates, the single cellular three-layer laminate 4 has teeth (high temperature side joint) 1a, teeth (high temperature side joint) 2a, teeth (high temperature side The joint portion 3a is integrally laminated and has a thickness t and a width w. The distance between a single cellular three-layer laminate 4 and the adjacent cellular three-layer laminate 4 is Δt in the thickness direction and Δw in the width direction. It is preferable that an insulating filler 8 be filled in the space between a single cellular three-layer laminate 4 and an adjacent cellular three-layer laminate 4.
In addition, in the three-layer laminate 4 of comb-shaped metal thin plates, the single cell-shaped three-layer laminate 4 has a structure in which the base 1b, the base 2b, and the base 3b are not directly mechanically joined to each other. , has a mechanically integrated structure through the joining of the tooth portions 1a, 2a, and 3a. As another joining mode, in the single cellular three-layer laminate 4, the base 1b, the base 2b, and the base 3b are directly mechanically joined to each other, but an electrically insulated state is ensured. Therefore, an insulating film may be formed between each layer of the base 1b, the base 2b, and the base 3b.
このように構成された装置において、熱発電セルの各発明特定事項は、次の作用をする。
高温端接合部4は、図1Aに示す櫛歯型金属薄板1/櫛歯型中間金属薄板2/裏打ち金属薄板3の順序で3層に重ねて接合した部分に複数本(図1Aでは10本)の1mm幅のスリットを入れた櫛歯構造にすることによって、銅とコンスタンタンの接合面積を増やして内部抵抗を小さくする。また、スリットを入れた細長い面積の銅とコンスタンタンの接合面とすることで、渦電流の発生を防止できる。
In the device configured as described above, each feature specific to the invention of the thermoelectric generating cell has the following effects.
A plurality of high-temperature end joints 4 (10 in FIG. 1A) are formed in a part where three layers of the comb-shaped metal thin plate 1/comb-shaped intermediate metal thin plate 2/backing metal thin plate 3 are stacked and bonded in the order shown in FIG. 1A. ) By creating a comb structure with 1 mm wide slits, the bonding area between copper and constantan is increased and the internal resistance is reduced. Furthermore, by forming a slit in the long and narrow area of the bonding surface between copper and constantan, it is possible to prevent the generation of eddy currents.
図1Cは、本発明の一実施例を示す熱発電モジュールの断面図である。
図1Cに示す熱発電モジュールでは、熱発電単位ユニットを複数(図1Bでは8ユニット)接続した熱発電セル7を耐熱ケース9に入れて、絶縁充填材8を充填して固定して構成されている。
FIG. 1C is a cross-sectional view of a thermoelectric power generation module showing one embodiment of the present invention.
In the thermoelectric power generation module shown in FIG. 1C, a thermoelectric power generation cell 7 in which a plurality of thermoelectric power generation units (eight units in FIG. 1B) are connected is placed in a heat-resistant case 9, filled with an insulating filler 8, and fixed. There is.
絶縁充填材8は、可塑性を有するものがよく、高温端接合部4の温度(例えば700℃から900℃)でも変性しないものがよい。絶縁充填材8としては、マグネシア、ジルコニア、アルミナ等の無機材料で、1kV/mm程度の絶縁性に加え、積層間の熱変形を吸収する可塑性と耐熱性を有する絶縁充填材が好ましい。 The insulating filler 8 is preferably one that has plasticity and does not degenerate even at the temperature of the high-temperature end joint 4 (eg, 700° C. to 900° C.). The insulating filler 8 is preferably an inorganic material such as magnesia, zirconia, alumina, etc., which has an insulating property of about 1 kV/mm, as well as plasticity and heat resistance to absorb thermal deformation between laminated layers.
このように構成された装置の動作を次に説明する。
図1Bに示す高温端接合部4で受熱した熱は、銅とコンスタンタンの接合面で熱起電力を発生し、櫛歯型中間金属薄板2を通って低温端接点5を経由して空冷フィン6から大気放散される。発生した熱電子は、次の熱発電ユニットの櫛歯型金属薄板1を経由して高温端接合部4に流れて熱起電力の発生を繰り返す。熱発電セルにおいては、上記のメカニズムが積層ユニット数と同じ数だけ繰り返し、増加した熱電流が正極から外部の負荷回路に流れる。
そこで、本発明の熱発電セルにおいては、熱発電セルを構成する単位ユニットにおける高温端接合部と低温端を含む電気的接続が直列的、並列的、もしくは直列的且つ並列的に繰り返されることが可能になる。そこで、熱発電における出力電圧や出力電流が最適な値となるように、熱発電セルを構成する単位ユニットの電気的接続を選択することで、要求される発電量に対して最適な熱発電特性を有する熱発電セルを構成できる。
The operation of the device configured in this manner will be described next.
The heat received at the high-temperature end joint 4 shown in FIG. is emitted into the atmosphere. The generated thermoelectrons flow to the high-temperature end joint 4 via the comb-shaped thin metal plate 1 of the next thermoelectric power generation unit, and repeat the generation of thermoelectromotive force. In the thermoelectric power generation cell, the above mechanism is repeated as many times as the number of stacked units, and an increased thermal current flows from the positive electrode to the external load circuit.
Therefore, in the thermoelectric generation cell of the present invention, the electrical connection including the high temperature end joint and the low temperature end in the unit constituting the thermoelectric generation cell may be repeated in series, in parallel, or in series and parallel. It becomes possible. Therefore, by selecting the electrical connections of the units that make up the thermoelectric power generation cell so that the output voltage and output current in thermoelectric power generation are optimal values, the optimal thermoelectric power generation characteristics can be achieved for the required amount of power generation. It is possible to construct a thermoelectric power generation cell having the following.
図2は、図1Cに示す本発明の熱発電モジュールと、従来例の半導体の熱電材料である1対のBiTe系半導体との起電力を比較するもので、横軸は温度、縦軸は熱起電力を示している。
BiTe系は400℃で熱起電力が低下するのに対し、本発明の熱発電モジュールは900℃まで熱起電力が増加する。接続した対数が異なるが、400℃以下の(A)低温域ではBiTe系の熱起電力の方が大きいが、500℃以上の(B)高温域では30対からなる本発明の熱発電モジュールの熱起電力の方が大きくなり、今までの半導体熱電材料が越えられなかった600℃の壁を超えて、900℃の高温エネルギーを利用した高出力・熱発電が可能になる。
FIG. 2 compares the electromotive force between the thermoelectric power generation module of the present invention shown in FIG. 1C and a pair of BiTe-based semiconductors, which are conventional semiconductor thermoelectric materials. Shows electromotive force.
Whereas the thermoelectromotive force of the BiTe system decreases at 400°C, the thermoelectromotive force of the thermoelectric generation module of the present invention increases up to 900°C. Although the number of connected logs is different, the thermoelectromotive force of the BiTe system is larger in the (A) low temperature range of 400°C or lower, but in the (B) high temperature range of 500°C or higher, the thermoelectric power generation module of the present invention consisting of 30 pairs The thermoelectromotive force will be larger, and it will become possible to generate high-output thermal power generation using high-temperature energy at 900°C, exceeding the 600°C barrier that conventional semiconductor thermoelectric materials have been unable to overcome.
図3Aは、本発明の一実施例を示す熱発電セル内における起電力と逆起電力の測定例を示す図である。図3Aでは、熱発電セル内の起電力の発生状況が、各単位ユニットの測定端子毎に示されている。 FIG. 3A is a diagram illustrating an example of measurement of electromotive force and back electromotive force within a thermoelectric generation cell according to an embodiment of the present invention. In FIG. 3A, the generation status of electromotive force within the thermoelectric generation cell is shown for each measurement terminal of each unit.
図3Bは、図3Aに示す測定端子番号の説明図である。符号#1は熱発電セルの負極に接続された一対目の熱発電単位ユニットにおける櫛歯型金属薄板1の連結部1cの当該負極近傍に設けられた測定端子である。符号#2は、一対目の熱発電単位ユニットにおける櫛歯型金属薄板1の高温端接合部4に設けられた測定端子である。符号#3は、一対目の熱発電単位ユニットにおける櫛歯型中間金属薄板2の連結部2cの高温端接合部4近傍に設けられた測定端子である。符号#4は、一対目の熱発電単位ユニットにおける櫛歯型中間金属薄板2の連結部2cの低温端接点5近傍に設けられた測定端子である。 FIG. 3B is an explanatory diagram of measurement terminal numbers shown in FIG. 3A. Reference numeral #1 denotes a measurement terminal provided near the negative electrode of the connecting portion 1c of the comb-shaped thin metal plate 1 in the first pair of thermoelectric power generating units connected to the negative electrode of the thermoelectric generating cell. Reference numeral #2 is a measurement terminal provided at the high-temperature end joint 4 of the comb-shaped metal thin plate 1 in the first pair of thermoelectric generation units. Reference numeral #3 is a measurement terminal provided near the high-temperature end joint 4 of the connecting portion 2c of the comb-shaped intermediate metal thin plate 2 in the first pair of thermoelectric power generation units. Reference numeral #4 is a measurement terminal provided in the vicinity of the low-temperature end contact 5 of the connecting portion 2c of the comb-shaped intermediate metal thin plate 2 in the first pair of thermoelectric generation units.
符号#5は熱発電セルの負極に接続された2対目の熱発電単位ユニットにおける櫛歯型金属薄板1の連結部1cの低温端接点5近傍に設けられた測定端子である。符号#6は、2対目の熱発電単位ユニットにおける櫛歯型金属薄板1の高温端接合部4に設けられた測定端子である。符号#7は、2対目の熱発電単位ユニットにおける櫛歯型中間金属薄板2の連結部2cの高温端接合部4近傍に設けられた測定端子である。符号#8は、2対目の熱発電単位ユニットにおける櫛歯型中間金属薄板2の連結部2cの低温端接点5近傍に設けられた測定端子である。
符号#9は熱発電セルの負極に接続された3対目の熱発電単位ユニットにおける櫛歯型金属薄板1の連結部1cの低温端接点5近傍に設けられた測定端子である。なお、3対目の熱発電単位ユニット以降の測定端子については、図示を省略する。
Reference numeral #5 denotes a measurement terminal provided near the low-temperature end contact 5 of the connecting portion 1c of the comb-shaped thin metal plate 1 in the second pair of thermoelectric generator units connected to the negative electrode of the thermoelectric generator cell. Reference numeral #6 is a measurement terminal provided at the high-temperature end joint 4 of the comb-shaped thin metal plate 1 in the second pair of thermoelectric generation units. Reference numeral #7 is a measurement terminal provided in the vicinity of the high-temperature end joint portion 4 of the connecting portion 2c of the comb-shaped intermediate metal thin plate 2 in the second pair of thermoelectric generation units. Reference numeral #8 is a measurement terminal provided near the low-temperature end contact 5 of the connecting portion 2c of the comb-shaped intermediate metal thin plate 2 in the second pair of thermoelectric generation units.
Reference numeral #9 denotes a measurement terminal provided near the low-temperature end contact 5 of the connecting portion 1c of the comb-shaped thin metal plate 1 in the third pair of thermoelectric generator units connected to the negative electrode of the thermoelectric generator cell. Note that the measurement terminals after the third pair of thermoelectric power generation units are omitted from illustration.
このように構成された装置において、熱発電セルの正極と各単位ユニットの測定端子との間の電圧と電流は、図3Aに示す端子番号の#2-#4、#6-#8で階段状に増加する。即ち、図3Aに示す端子番号の#2-#4、#6-#8では、銅/コンスタンタンの接合面とコンスタンタンの薄板部に相当し、熱起電力が発生する(22.4mV+2.16mV)。他方、図3Aに示す端子番号の#1-#2、#4-#6、#8-#9では、コンスタンタン/銅の接合面と銅の薄板部に相当し、逆起電力が僅かに発生する(-0.06mV-0.34mV)。熱起電力と逆熱起電力との比は、1:0.016となっている。 In the device configured in this way, the voltage and current between the positive electrode of the thermoelectric power generation cell and the measurement terminal of each unit are determined stepwise by the terminal numbers #2-#4 and #6-#8 shown in FIG. 3A. It increases as follows. That is, terminal numbers #2-#4 and #6-#8 shown in FIG. 3A correspond to the copper/constantan bonding surface and the constantan thin plate part, and thermoelectromotive force is generated (22.4 mV + 2.16 mV). . On the other hand, terminal numbers #1-#2, #4-#6, and #8-#9 shown in Figure 3A correspond to the constantan/copper joint surface and the thin copper plate, and a slight back electromotive force is generated. (-0.06mV-0.34mV). The ratio of thermoelectromotive force to reverse thermoelectromotive force is 1:0.016.
半導体の熱電材料のキャリアは、電子とホールがあるが、金属のキャリアは電子だけである。そのため、複数の熱発電ユニットを接続すると、原理的に起電力が正の部分と負の部分が交互に発生し、正負の起電力が打ち消し合う。しかし、本発明のデバイス構造では、表1のように、銅とコンスタンタンの相対ゼーベック係数(43μV)が小さいことが奏効し、図3Aに示す測定例では、低温端で発生する逆起電力(-0.06mV)は、高温端で発生する起電力(24.4mV)に比べて非常に小さく無視できる。同様に、銅の絶対ゼーベック係数(4μV)がコンスタンタンの絶対ゼーベック係数(47μV)に比べ1/10と小さいことが奏効し、銅の部分で発生する逆起電力(-0.34mV)はコンスタンタンの部分で発生する起電力(2.16mV)に比べて十分に小さい。その結果、図3に示す2対の熱発電ユニットを接続した測定例のように、電圧と電流が階段状に増加し、原理的に発生する逆起電力は、実用上問題にならなくなる。 Semiconductor thermoelectric materials have electrons and holes as carriers, but metals have only electrons as carriers. Therefore, when a plurality of thermoelectric power generation units are connected, in principle, positive and negative electromotive force parts are generated alternately, and the positive and negative electromotive forces cancel each other out. However, in the device structure of the present invention, as shown in Table 1, the relative Seebeck coefficient (43 μV) between copper and constantan is small, and in the measurement example shown in FIG. 3A, the back electromotive force (- 0.06 mV) is very small compared to the electromotive force (24.4 mV) generated at the high temperature end and can be ignored. Similarly, the fact that the absolute Seebeck coefficient of copper (4 μV) is 1/10 smaller than that of constantan (47 μV) is effective, and the back electromotive force (-0.34 mV) generated in the copper part is smaller than that of constantan. This is sufficiently small compared to the electromotive force (2.16 mV) generated in the area. As a result, as in the measurement example shown in FIG. 3 in which two pairs of thermoelectric power generation units are connected, the voltage and current increase stepwise, and the back electromotive force that is generated in principle no longer poses a problem in practice.
以上説明したように、低温端を60℃以下、さらに好ましくは室温に冷却すれば、高温端の接続数に比例して電圧と電流が増加し、熱発電モジュールの起電力が単位ユニットの積層数に比例するスケールアップ可能な設計指針になる。 As explained above, if the low-temperature end is cooled to below 60°C, more preferably to room temperature, the voltage and current increase in proportion to the number of connections at the high-temperature end, and the electromotive force of the thermoelectric power generation module increases with the number of stacked units. It becomes a design guideline that can be scaled up in proportion to.
以下に本発明の特徴を具体的に説明する。
(あ) 高温端を銅/コンスタンタン/銅の3層接合の櫛歯構造にすることにより、接合面積は、通常の0.3mmΦの熱電対の点接触に比べ、3桁以上大きくなる。
(い) 接合面積を大きくすると内部抵抗が低下するが、接合長(LH)は、図4に示すように、80~110mmの範囲で内部抵抗が小さくなる。接合幅を50mm以上にすると内部抵抗が低下しなくなり、渦電流が発生するためと考えられる。
(う) 高温端から低温端への熱流を少なくし、熱損失を減少させて熱電変換率を高くするため、中間部の帯状薄板の幅を高温端の幅の1/10程度に小さくし、抵抗が増加しない範囲で18cm程度に長くして低温端に熱が伝わり難くすることによって自然空冷で低温端を60℃以下にする。
The features of the present invention will be specifically explained below.
(A) By making the high-temperature end a comb-toothed structure of three-layer bonding of copper/constantan/copper, the bonding area becomes more than three orders of magnitude larger than the point contact of a normal 0.3 mmΦ thermocouple.
(b) The internal resistance decreases as the bonding area increases, but the internal resistance decreases when the bonding length (L H ) is in the range of 80 to 110 mm, as shown in FIG. This is believed to be because when the bonding width is 50 mm or more, the internal resistance does not decrease and eddy currents occur.
(c) In order to reduce the heat flow from the high temperature end to the low temperature end, reduce heat loss, and increase the thermoelectric conversion rate, the width of the strip-shaped thin plate in the middle part is made smaller to about 1/10 of the width of the high temperature end. By making the length about 18 cm within a range that does not increase the resistance and making it difficult for heat to be transferred to the low temperature end, the low temperature end is lowered to 60° C. or less by natural air cooling.
<比較例1>
従来例である0.3mmΦの銅とコンスタンタンの10cm長さの素線の熱電対4対を接続した発電特性(温度450℃)は、図5Aに示すように、内部抵抗:2.0Ω、無負荷電圧:44mVであり、最大出力は僅か250μWである。
<Comparative example 1>
As shown in Figure 5A, the power generation characteristics (temperature 450°C) of a conventional example in which four pairs of thermocouples made of 0.3 mmΦ copper and constantan wires of 10 cm length are connected are as follows: internal resistance: 2.0 Ω; Load voltage: 44 mV, maximum output is only 250 μW.
<比較例2>
0.3mmΦの素線の代わりに、0.3mm厚の銅とコンスタンタンの幅3mmの帯状薄板を用い、長さ12cmの部分をレーザ溶接で接合して高温端とし、高温端から18cm離れた個所をハンダ付けして低温端にした熱発電ユニット4対からなる熱発電セルを比較例2として試作した。
<Comparative example 2>
Instead of the 0.3mmΦ wire, a 3mm wide strip of copper and constantan with a thickness of 0.3mm was used, and a 12cm long part was joined by laser welding to form a high temperature end, and a point 18cm away from the high temperature end was used. As Comparative Example 2, a thermoelectric power generation cell consisting of four pairs of thermoelectric power generation units each having a low-temperature end soldered was fabricated.
比較例2の発電特性(温度700℃)は、図5Bに示すように、内部抵抗:0.4Ω、最大出力:3500μW、無負荷電圧:79mVになり、比較例1に比べ、内部抵抗が1/5に低減し、最大出力は14倍、無負荷電圧は1.8倍に増加した。しかし、単位ユニットの積層数が4対と少ないため、熱発電モジュールの起電力が3500μWと小さく、比較例に留まっている。 As shown in Figure 5B, the power generation characteristics of Comparative Example 2 (temperature 700°C) are as follows: internal resistance: 0.4Ω, maximum output: 3500μW, no-load voltage: 79mV, compared to Comparative Example 1, the internal resistance is 1 /5, the maximum output increased by 14 times, and the no-load voltage increased by 1.8 times. However, since the number of laminated units is as small as 4 pairs, the electromotive force of the thermoelectric power generation module is as small as 3500 μW, and remains a comparative example.
<比較例3>
比較例2と同じ熱発電ユニットを144対に増やして接続した発電特性(温度900℃)は、図5Cに示すように、内部抵抗:5.8Ω、最大出力:450mW、無負荷電圧:3197mVになり、比較例2に比べ、最大出力は128倍、無負荷電圧は40倍に増加したが、内部抵抗が5Ω以上に大きくなる問題が再発した。
<Comparative example 3>
The power generation characteristics (at a temperature of 900°C) when 144 pairs of the same thermoelectric power generation units as in Comparative Example 2 were connected were as shown in Figure 5C: internal resistance: 5.8Ω, maximum output: 450mW, and no-load voltage: 3197mV. Compared to Comparative Example 2, the maximum output increased 128 times and the no-load voltage increased 40 times, but the problem of internal resistance increasing to 5Ω or more recurred.
<比較例4>
比較例3の内部抵抗を小さくするため、比較例2と同じ熱発電ユニット144対を3組に分割して並列接続した熱発電モジュールにした。その発電特性(温度900℃)は、図5Dに示すように、内部抵抗:1.0Ω、最大出力:372mW、無負荷電圧:1217mVになり、比較例2に比べ、最大出力は106倍、無負荷電圧は15倍になり、内部抵抗は1Ωに低下し、熱発電ユニットの並列化による効果を確認した。つまり、複数の熱発電ユニットを直列と並列を組み合わせた熱発電モジュールにすることによって、本発明は、ニーズに即した発電量にスケールアップ可能な汎用性を有する発明になる。
<Comparative example 4>
In order to reduce the internal resistance of Comparative Example 3, the same 144 pairs of thermoelectric power generating units as in Comparative Example 2 were divided into three sets and connected in parallel to form a thermoelectric generating module. Its power generation characteristics (temperature 900°C) are as shown in Figure 5D: internal resistance: 1.0Ω, maximum output: 372mW, no-load voltage: 1217mV, and compared to Comparative Example 2, the maximum output is 106 times, The load voltage increased 15 times and the internal resistance decreased to 1Ω, confirming the effect of paralleling the thermoelectric power generation units. In other words, by forming a thermoelectric generation module in which a plurality of thermoelectric power generating units are combined in series and parallel, the present invention has versatility that can be scaled up to generate power according to needs.
<実施例1>
比較例4は、熱発電ユニットの並列化により内部抵抗が低下することを実証したが、デバイスがコンパクトでなくなる。その解決のため、図1に示す高温端・接合部にスリットを入れて10本の櫛歯構造にすると、10組の熱発電ユニットを並列化したのと同じ効果を発揮する。実施例1では、10本の櫛歯構造の熱発電ユニット60組を積層した熱発電モジュール構成にした。その発電特性(温度900℃)は、内部抵抗が0.4Ωに低下し、最大出力0.6W、無負荷電圧1.5Vの実用レベルになり、櫛歯構造は、デバイスのコンパクト化と内部抵抗の低下に有効であることを実証した。更に、比較例2,3,4の高温端・接合部は、Cuとコンスタンタンの2層接合であったため、高温にするとバイメタル状に曲がって変形する問題があった。そのため、実施例1では、Cu/コンスタンタン/Cuの3層接合にして熱変形を防止し、高温端・接合部を耐熱ケースに入れて絶縁充填材で固定することによって熱変形と高温酸化の問題を解決した。
<Example 1>
Comparative Example 4 demonstrated that the internal resistance was reduced by paralleling the thermoelectric power generation units, but the device became less compact. To solve this problem, creating a 10-comb tooth structure by making slits in the high-temperature end/junction shown in Figure 1 produces the same effect as arranging 10 sets of thermoelectric power generation units in parallel. In Example 1, a thermoelectric power generation module configuration was adopted in which 60 sets of thermoelectric power generation units having a 10 comb structure were stacked. Its power generation characteristics (at a temperature of 900°C) have internal resistance reduced to 0.4Ω, a maximum output of 0.6W, and a no-load voltage of 1.5V, which is a practical level. It has been demonstrated that it is effective in reducing Furthermore, since the high-temperature ends/junctions of Comparative Examples 2, 3, and 4 were two-layer junctions of Cu and constantan, there was a problem that they bent and deformed into a bimetallic shape when heated to high temperatures. Therefore, in Example 1, the problem of thermal deformation and high-temperature oxidation was solved by using three-layer bonding of Cu/constantan/Cu to prevent thermal deformation, and by putting the high-temperature end/joint part in a heat-resistant case and fixing it with an insulating filler. solved.
<実施例2>
実施例1では、熱電材として、Cuとコンスタンタンを用いたが、Cuの代わりにAlを用いた実施例2では、表1のように、Alの絶対ゼーベック係数(2μV/K)がCuの絶対ゼーベック係数(4μV/K)の1/2と小さいため、Alの部分で発生する逆起電力が半減する効果がある。一方、Al/コンスタンタンの相対ゼーベック係数(45μV/K)がCu/コンスタンタンの相対ゼーベック係数(43μV/K)より大きいため、高温端の起電力が5%大きくなるが、低温端の逆起電力も同程度大きくなって差分は殆ど変わらない。Alとコンスタンタンを用いた実施例1と同じ構造の熱発電ユニット60組を積層した熱発電モジュールの550℃における最大出力は、0.27Wになり、実施例1の45%に低下する。つまり、Alを使うと軽量化することができるが、融点が低いため、熱源が550℃に制限されて出力が大幅低下する。そのため、実施例2は、熱源が550℃程度の場合に限定して有効であり、本発明の効果は、半導体の熱電材料が使えない900℃程度の高温で使用する実施例1によって発揮される。
<Example 2>
In Example 1, Cu and constantan were used as the thermoelectric materials, but in Example 2, in which Al was used instead of Cu, as shown in Table 1, the absolute Seebeck coefficient (2 μV/K) of Al was the same as that of Cu. Since it is as small as 1/2 of the Seebeck coefficient (4 μV/K), it has the effect of halving the back electromotive force generated in the Al portion. On the other hand, since the relative Seebeck coefficient of Al/constantan (45 μV/K) is larger than the relative Seebeck coefficient of Cu/constantan (43 μV/K), the electromotive force at the high temperature end increases by 5%, but the back electromotive force at the low temperature end also increases. The difference is almost the same, and the difference is almost the same. The maximum output at 550°C of a thermoelectric power generation module in which 60 sets of thermoelectric power generation units having the same structure as in Example 1 using Al and constantan were stacked was 0.27 W, which is 45% of that in Example 1. In other words, the weight can be reduced by using Al, but because of its low melting point, the heat source is limited to 550°C, resulting in a significant drop in output. Therefore, Example 2 is effective only when the heat source is about 550°C, and the effects of the present invention are exhibited by Example 1, which is used at a high temperature of about 900°C, where semiconductor thermoelectric materials cannot be used. .
金属薄板の接合方法として、実施例ではレーザ接合を用いたが、熱変形に対する耐久性があり、接合界面に形成される合金層が300nm以下になる方法であれば、拡散接合、下地処理したメッキ法、圧延クラッド法が利用できる。例えば、大面積の金属薄板を拡散接合し、接合界面にダメージを与えないレーザ加工等で切断して櫛歯構造にすることで工業的生産が可能になる。 Laser bonding was used in the example as a method for bonding thin metal plates, but diffusion bonding and plating with surface treatment can be used as long as the method is durable against thermal deformation and the alloy layer formed at the bonding interface is 300 nm or less. method, rolled clad method can be used. For example, industrial production becomes possible by diffusion bonding large-area thin metal plates and cutting them into a comb-tooth structure using laser processing or the like that does not damage the bonded interface.
本発明によれば、有害なビスマス・テルル(Bi2Te3)合金を用いることなく、安価で安全な銅、ニッケル、アルミニウムを用いた熱電変換デバイスが可能になり、熱発電が広く普及する技術基盤になる。 According to the present invention, it is possible to create a thermoelectric conversion device using inexpensive and safe copper, nickel, and aluminum without using the harmful bismuth-tellurium (Bi 2 Te 3 ) alloy, and this technology enables thermal power generation to become widely popular. It becomes the foundation.
1 櫛歯型金属薄板(銅の薄板、L:薄板の長さ)
1a 歯部(高温側接合部)
1b 基部
1c 連結部
1d 低温側接合部
1e 扇状拡大部
2 櫛歯型中間金属薄板(コンスタンタンの薄板、L:薄板の長さ)
2a 歯部(高温側接合部)
2b 基部
2c 連結部
2d 低温側接合部
3 裏打ち金属薄板(銅の薄板、LH:薄板の長さ)
3a 歯部(高温側接合部)
3b 基部
3c 連結部
4 高温端接合部(櫛歯型金属薄板の三層積層体(LH:接合長さ))
5 低温端接点
6 空冷フィン(銅の薄板)
7 熱発電セル
8 絶縁充填材
9 耐熱ケース
10 連結部用断熱ケース
1 Comb-shaped metal thin plate (thin copper plate, L: length of the thin plate)
1a Teeth (high temperature side joint)
1b Base portion 1c Connecting portion 1d Low-temperature side joint portion 1e Fan-shaped enlarged portion 2 Comb-shaped intermediate metal thin plate (constantan thin plate, L: length of thin plate)
2a Teeth (high temperature side joint)
2b Base portion 2c Connecting portion 2d Low temperature side joint portion 3 Backing thin metal plate (thin copper plate, L H : length of thin plate)
3a Teeth (high temperature side joint)
3b Base 3c Connecting portion 4 High-temperature end joint (three-layer laminate of comb-shaped metal thin plates (L H : joining length))
5 Low temperature end contact 6 Air cooling fin (thin copper plate)
7 Thermoelectric power generation cell 8 Insulating filler 9 Heat-resistant case 10 Insulating case for connection part
Claims (10)
前記櫛歯型金属薄板、前記櫛歯型中間金属薄板及び前記裏打ち金属薄板は、各々に設けられた基部に対してスリットを入れた複数の歯部を有する櫛歯構造であって、各々の複数の歯部は互いに重なり合う形状であって、各々の厚さは0.1~2mmであり、
前記櫛歯型金属薄板の各々の歯部は、前記裏打ち金属薄板の対応する各々の歯部と電気的に導通する導通部を有し、
前記櫛歯型金属薄板、前記櫛歯型中間金属薄板及び前記裏打ち金属薄板の各々に設けられた基部は直接的には互いに電気的に絶縁されている前記高温端接合部と、
前記櫛歯型金属薄板と前記櫛歯型中間金属薄板の前記基部に一端が設けられ、前記基部の前記複数の歯部が設けられる側と反対側に細長く伸長した連結部と、
前記連結部の先端で前記櫛歯型金属薄板と前記櫛歯型中間金属薄板を、電気的に絶縁すると共に熱的には接合してなる低温端と、
を単位ユニットとし、前記単位ユニットにおける前記高温端接合部と前記低温端を含む電気的接続が直列的、並列的、もしくは直列的且つ並列的に繰り返されることを特徴とする熱発電セル。 A comb-shaped intermediate metal thin plate made of a metal material that serves as the + leg of the thermocouple, a comb-teeth intermediate metal thin plate made of a metal material that serves as the - leg of the thermocouple, and a comb-teeth shaped intermediate thin metal plate made of the same metal material as the comb-teeth shaped thin metal plate. A high-temperature end joint made of a three-layer laminate in which three layers of backing metal sheets are joined,
The comb-shaped metal thin plate, the comb-shaped intermediate metal thin plate, and the backing metal thin plate each have a comb-shaped structure having a plurality of teeth with slits formed in a base provided therein, The tooth portions have a shape that overlaps each other, and the thickness of each tooth portion is 0.1 to 2 mm ,
Each tooth of the comb-shaped thin metal plate has a conductive portion that is electrically connected to each corresponding tooth of the backing thin metal plate,
the base portions provided on each of the comb-shaped metal thin plate, the comb-shaped intermediate metal thin plate, and the backing metal thin plate are directly electrically insulated from each other;
a connecting portion having one end provided at the base of the comb-tooth-shaped metal thin plate and the comb-tooth-shaped intermediate metal thin plate, and extending into an elongate on a side of the base opposite to the side where the plurality of teeth are provided;
a low-temperature end formed by electrically insulating and thermally bonding the comb-shaped metal thin plate and the comb-shaped intermediate metal thin plate at the tip of the connecting portion;
A thermoelectric power generation cell characterized in that the electrical connection including the high temperature end junction and the low temperature end in the unit unit is repeated in series, in parallel, or in series and parallel.
前記熱電対の-脚となる金属材料は、コンスタンタン系合金であることを特徴とする請求項1乃至3の何れか1項に記載の熱発電セル。 The metal material serving as the + leg of the thermocouple is a metal material selected from copper, iron, aluminum, or an alloy thereof,
4. The thermoelectric power generation cell according to claim 1, wherein the metal material forming the negative leg of the thermocouple is a constantan alloy.
前記熱電対の-脚となる金属材料は、アルメルであることを特徴とする請求項1乃至3の何れか1項に記載の熱発電セル。 The metal material serving as the + leg of the thermocouple is chromel,
4. The thermoelectric power generation cell according to claim 1, wherein the metal material forming the negative leg of the thermocouple is alumel.
この筐体と前記熱発電セルとの隙間を充填する絶縁充填材であって、前記熱発電セルの相互を絶縁すると共に、前記熱発電セルの熱変位を吸収する可塑性を有する前記絶縁充填材を用いて一体化することを特徴とする請求項7に記載の熱発電モジュール。 a casing that accommodates a plurality of the thermoelectric generation cells;
An insulating filler that fills a gap between the casing and the thermoelectric cells, the insulating filler having plasticity that insulates the thermoelectric cells from each other and absorbs thermal displacement of the thermoelectric cells. 8. The thermoelectric power generation module according to claim 7, characterized in that the thermoelectric power generation module is integrated using a thermoelectric generator.
前記熱発電セルを前記絶縁充填材と共に前記耐熱ケースに収容して、高温酸化を防止することを特徴とする請求項8に記載の熱発電モジュール。 The housing is a heat-resistant case,
9. The thermoelectric generating module according to claim 8, wherein the thermoelectric generating cell is housed in the heat-resistant case together with the insulating filler to prevent high-temperature oxidation.
前記連結部の長さを5cm以上50cm以下とし、
前記連結部を連結部用断熱ケースに収容することを特徴とする請求項7乃至9の何れか1項に記載の熱発電モジュール。
The width of the connecting portion is 1/50 or more and 1/5 or less of the width of the high temperature end joint,
The length of the connecting part is 5 cm or more and 50 cm or less,
The thermoelectric power generation module according to any one of claims 7 to 9, wherein the connecting portion is housed in a heat insulating case for the connecting portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019161839A JP7396621B2 (en) | 2019-09-05 | 2019-09-05 | Thermoelectric cells and thermoelectric modules |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019161839A JP7396621B2 (en) | 2019-09-05 | 2019-09-05 | Thermoelectric cells and thermoelectric modules |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021040084A JP2021040084A (en) | 2021-03-11 |
JP7396621B2 true JP7396621B2 (en) | 2023-12-12 |
Family
ID=74847402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019161839A Active JP7396621B2 (en) | 2019-09-05 | 2019-09-05 | Thermoelectric cells and thermoelectric modules |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7396621B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051948A (en) | 2003-07-30 | 2005-02-24 | National Institute Of Advanced Industrial & Technology | Heat exchanger with power-generating function, and manufacturing method therefor |
JP2018046275A (en) | 2016-09-08 | 2018-03-22 | 国立研究開発法人産業技術総合研究所 | Thermoelectric power generation device and manufacturing method thereof |
WO2018180131A1 (en) | 2017-03-28 | 2018-10-04 | 国立研究開発法人物質・材料研究機構 | Thermoelectric power generation cell and thermoelectric power generation module |
-
2019
- 2019-09-05 JP JP2019161839A patent/JP7396621B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005051948A (en) | 2003-07-30 | 2005-02-24 | National Institute Of Advanced Industrial & Technology | Heat exchanger with power-generating function, and manufacturing method therefor |
JP2018046275A (en) | 2016-09-08 | 2018-03-22 | 国立研究開発法人産業技術総合研究所 | Thermoelectric power generation device and manufacturing method thereof |
WO2018180131A1 (en) | 2017-03-28 | 2018-10-04 | 国立研究開発法人物質・材料研究機構 | Thermoelectric power generation cell and thermoelectric power generation module |
Also Published As
Publication number | Publication date |
---|---|
JP2021040084A (en) | 2021-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6958443B2 (en) | Low power thermoelectric generator | |
JP4255691B2 (en) | Electronic component cooling device using thermoelectric conversion material | |
US8841540B2 (en) | High temperature thermoelectrics | |
JP6791357B2 (en) | Thermoelectric generator and temperature measurement method | |
JP5197954B2 (en) | Thermoelectric element | |
JP5653455B2 (en) | Thermoelectric conversion member | |
JP2004273489A (en) | Thermoelectric conversion module and its manufacturing method | |
JP6778968B2 (en) | Thermoelectric cell and thermoelectric module | |
JP2007109942A (en) | Thermoelectric module and manufacturing method thereof | |
JP7396621B2 (en) | Thermoelectric cells and thermoelectric modules | |
JP6278879B2 (en) | Thermoelectric module | |
JP7552023B2 (en) | Thermoelectric conversion structure | |
JP7313660B2 (en) | Thermoelectric conversion module | |
TWI570972B (en) | Thermoelectric conversion device and thermoelectric converter | |
JP6858379B2 (en) | Calibration thermoelectric power generation module | |
JPWO2012120572A1 (en) | Power generation method using thermoelectric power generation element, thermoelectric power generation element and manufacturing method thereof, and thermoelectric power generation device | |
JP2017152618A (en) | Thermoelectric module and manufacturing method thereof and thermoelectric device | |
JPH08254468A (en) | Thermoelectric generating element and temperature sensor combining metal materials as thermocouple | |
JP2019029504A (en) | Thermoelectric conversion device | |
Nemir et al. | Scaling considerations for thermoelectric generators |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220727 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230627 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231122 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7396621 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |