JP7393640B2 - Manufacturing method of multi-layer plated steel sheet - Google Patents
Manufacturing method of multi-layer plated steel sheet Download PDFInfo
- Publication number
- JP7393640B2 JP7393640B2 JP2020008658A JP2020008658A JP7393640B2 JP 7393640 B2 JP7393640 B2 JP 7393640B2 JP 2020008658 A JP2020008658 A JP 2020008658A JP 2020008658 A JP2020008658 A JP 2020008658A JP 7393640 B2 JP7393640 B2 JP 7393640B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- hot
- dip
- plating
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 101
- 239000010959 steel Substances 0.000 title claims description 101
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000007747 plating Methods 0.000 claims description 128
- 229910052749 magnesium Inorganic materials 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 7
- 239000000203 mixture Substances 0.000 description 29
- 238000010438 heat treatment Methods 0.000 description 25
- 238000005260 corrosion Methods 0.000 description 22
- 230000007797 corrosion Effects 0.000 description 22
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- 229910052710 silicon Inorganic materials 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 6
- WNROFYMDJYEPJX-UHFFFAOYSA-K aluminium hydroxide Chemical compound [OH-].[OH-].[OH-].[Al+3] WNROFYMDJYEPJX-UHFFFAOYSA-K 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- WMWXXXSCZVGQAR-UHFFFAOYSA-N dialuminum;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3] WMWXXXSCZVGQAR-UHFFFAOYSA-N 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 6
- 238000012795 verification Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000000921 elemental analysis Methods 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 238000005102 attenuated total reflection Methods 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000013067 intermediate product Substances 0.000 description 3
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 3
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- 238000004566 IR spectroscopy Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 230000002950 deficient Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 238000000441 X-ray spectroscopy Methods 0.000 description 1
- 239000002390 adhesive tape Substances 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000004566 building material Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000005871 repellent Substances 0.000 description 1
- 230000002940 repellent Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
Images
Landscapes
- Coating With Molten Metal (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Laminated Bodies (AREA)
Description
本発明は、複層めっき鋼板およびその製造方法に関する。 The present invention relates to a multilayer plated steel sheet and a method for manufacturing the same.
めっき鋼板は、建材、自動車、または家電など、様々な分野で使用されている。一般的に、Zn系めっき鋼板は犠牲防食性を有し、Al系めっき鋼板は高耐食性を有していることが知られている。それら二つのめっき鋼板の特性を兼ね備えためっき鋼板として、下層にAl系めっきを施し、上層にZn系めっきを施した複層めっき鋼板が、特許文献1に開示されている。 Plated steel sheets are used in various fields such as building materials, automobiles, and home appliances. It is generally known that Zn-based plated steel sheets have sacrificial corrosion resistance, and Al-based plated steel sheets have high corrosion resistance. As a plated steel plate that combines the characteristics of these two plated steel plates, a multilayer plated steel plate in which the lower layer is coated with Al-based plating and the upper layer is coated with Zn-based plated is disclosed in Patent Document 1.
特許文献1に記載の複層めっき鋼板は、基材鋼板の表面に、第1の溶融めっき(Al系)を施し、その上に第2の溶融めっき(Zn系)を施すことによって製造される。また、特許文献1には、第1の溶融めっきを終えた中間製品を第2の溶融めっきに供する時の、中間製品の鋼板温度が重要となることが記載されている。特許文献1には、好ましい実施例として、中間製品の鋼板温度を300~550℃としたものが示されている。 The multilayer plated steel sheet described in Patent Document 1 is manufactured by applying first hot-dip plating (Al-based) to the surface of a base steel sheet and then applying second hot-dip plating (Zn-based) thereon. . Furthermore, Patent Document 1 describes that the steel plate temperature of the intermediate product is important when the intermediate product that has been subjected to the first hot-dip plating is subjected to the second hot-dip plating. Patent Document 1 discloses, as a preferred embodiment, a steel sheet temperature of an intermediate product of 300 to 550°C.
しかしながら、特許文献1に記載の複層めっき鋼板に対して絞り加工を施すと、上層のZn系めっきが点状に脱落する現象が生じる。このような現象が生じた複層めっき鋼板は、Zn系めっきの犠牲防食性およびAl系めっきの高耐食性という、双方の優れた特性を示さない。したがって、特許文献1に記載の複層めっき鋼板は、絞り加工には適さない。 However, when drawing is performed on the multilayer plated steel sheet described in Patent Document 1, a phenomenon occurs in which the upper layer Zn-based plating falls off in dots. A multilayer plated steel sheet in which such a phenomenon occurs does not exhibit the excellent characteristics of both the sacrificial corrosion resistance of Zn-based plating and the high corrosion resistance of Al-based plating. Therefore, the multilayer plated steel sheet described in Patent Document 1 is not suitable for drawing.
本発明の一態様は、絞り加工に好適な複層めっき鋼板などを実現することを目的とする。 One aspect of the present invention aims to realize a multilayer plated steel plate suitable for drawing.
上記の課題を解決するために、本発明の一態様に係る複層めっき鋼板は、基材鋼板と、前記基材鋼板の表面に施された、質量%でSi:0.1~12%を含む溶融Al系めっき層と、前記溶融Al系めっき層に対して施された、質量%でAl:0~20%およびMg:0.5~8%を含む溶融Zn系めっき層と、前記溶融Al系めっき層と前記溶融Zn系めっき層との間に形成され、質量%でAl:30~50%、Mg:0.5~10%、O:40~60%およびSi:0~5%を、これらの合計が100%以下であるように含む中間層と、を有する。 In order to solve the above problems, a multi-layer plated steel sheet according to one aspect of the present invention includes a base steel plate and a Si: 0.1 to 12% by mass % applied to the surface of the base steel plate. a molten Zn-based plating layer containing Al: 0 to 20% and Mg: 0.5 to 8% in mass %, which is applied to the molten Al-based plating layer; Formed between the Al-based plating layer and the hot-dip Zn-based plating layer, Al: 30 to 50%, Mg: 0.5 to 10%, O: 40 to 60%, and Si: 0 to 5% in mass %. and an intermediate layer containing the sum of these is 100% or less.
また、本発明の一態様に係る複層めっき鋼板の製造方法は、質量%でSi:0.1~12%を含む溶融Al系めっき浴に基材鋼板を浸漬して、該基材鋼板の表面に溶融Al系めっき層を形成する第1のステップと、前記第1のステップにより前記基材鋼板の表面に前記溶融Al系めっき層が施された溶融Al系めっき鋼板を加熱し、前記基材鋼板の温度が380~550℃に到達した状態で10秒以上保持する第2のステップと、質量%でAl:0~20%およびMg:0.5~8%を含む溶融Zn系めっき浴に、前記第2のステップにより加熱された前記溶融Al系めっき鋼板を浸漬して、該溶融Al系めっき鋼板の表面に溶融Zn系めっき層を形成する第3のステップと、を含む。 Further, a method for manufacturing a multilayer plated steel sheet according to one embodiment of the present invention includes immersing a base steel sheet in a hot-dip Al-based plating bath containing Si: 0.1 to 12% by mass. a first step of forming a hot-dip Al-based plating layer on the surface; heating the hot-dip Al-based plated steel sheet on which the surface of the base steel sheet has been provided with the hot-dip Al-based plating layer in the first step; A second step in which the temperature of the steel sheet reaches 380 to 550°C and is held for 10 seconds or more, and a hot-dip Zn-based plating bath containing Al: 0 to 20% and Mg: 0.5 to 8% by mass%. and a third step of immersing the hot-dip Al-based plated steel sheet heated in the second step to form a hot-dip Zn-based plating layer on the surface of the hot-dip Al-based plated steel sheet.
本発明の一態様によれば、絞り加工に好適な複層めっき鋼板などを実現できる。 According to one aspect of the present invention, it is possible to realize a multilayer plated steel plate suitable for drawing.
〔実施形態1〕
以下、本発明の一実施形態について、詳細に説明する。なお、以下の記載は発明の趣旨をよりよく理解させるためのものであり、特に指定のない限り、本発明を限定するものでは無い。また、本出願において、「A~B」とは、A以上B以下であることを示している。化学組成に関する「%」の記載は、特に断らない限り「質量%」を意味する。
[Embodiment 1]
Hereinafter, one embodiment of the present invention will be described in detail. It should be noted that the following description is provided for better understanding of the gist of the invention, and is not intended to limit the invention unless otherwise specified. Furthermore, in this application, "A to B" indicates that the number is greater than or equal to A and less than or equal to B. The description of "%" regarding chemical composition means "% by mass" unless otherwise specified.
<発明の知見の概略的な説明>
特許文献1に記載の複層めっき鋼板には、外観上、および2T曲げ加工部断面観察(特許文献1記載の密着性評価方法)では認識できない不良部があると考えられる。当該不良部においては、上層のZn系めっきと下層のAl系めっきとの間の中間層が、脆い多孔質の構造になっていると考えられる。
<Schematic explanation of the findings of the invention>
It is thought that the multilayer plated steel sheet described in Patent Document 1 has defective parts that cannot be recognized from the appearance or by cross-sectional observation of the 2T bent portion (adhesion evaluation method described in Patent Document 1). In the defective part, it is thought that the intermediate layer between the upper layer Zn-based plating and the lower layer Al-based plating has a brittle porous structure.
絞り加工においては、鋼板の引き伸ばし、圧縮、および金型との接触により、鋼板に対して大きな力が加わる。このため、中間層が脆い場合、絞り加工時に中間層が破壊されて上層が脱落すると考えられる。絞り加工後も上層が脱落しないようにするためには、上層と下層との間の中間層を全面的に緻密で強固なものにさせる必要がある。 During drawing, a large force is applied to the steel plate due to stretching, compression, and contact with a die. Therefore, if the intermediate layer is brittle, it is thought that the intermediate layer will be destroyed during drawing and the upper layer will fall off. In order to prevent the upper layer from falling off even after drawing, it is necessary to make the intermediate layer between the upper layer and the lower layer dense and strong throughout.
本発明者らは、複層めっき鋼板において、中間層を全面的に緻密で強固なものにさせる方法について、鋭意検討を行った結果、以下の知見を得た。すなわち、下層を形成するためのめっきを施した状態の鋼板を、大気雰囲気で380~550℃で10秒以上保持した後で上層を形成するためのめっきを施すことによって、中間層を全面的に緻密で強固なものにし、絞り加工後の上層の脱落を抑制できる。 The present inventors have conducted intensive studies on a method of making the entire intermediate layer dense and strong in a multilayer plated steel sheet, and have obtained the following knowledge. That is, by holding a plated steel plate for forming the lower layer at 380 to 550°C for 10 seconds or more in an air atmosphere and then applying plating to form the upper layer, the intermediate layer is completely coated. By making it dense and strong, it can prevent the upper layer from falling off after drawing.
(検証実験)
上層のめっきを施す前の、大気雰囲気での予備加熱は、特許文献1に記載の複層めっき鋼板においても行われている。上述したとおり、特許文献1に記載されている好ましい実施例では、予備加熱の目標温度は300~550℃となっている。しかし、目標温度へ到達した後に当該温度で所定の時間保持すること(加熱保持)は、特許文献1に記載の複層めっき鋼板においては行われていない。
(Verification experiment)
Preheating in the air before applying the upper layer plating is also performed on the multilayer plated steel sheet described in Patent Document 1. As mentioned above, in the preferred embodiment described in Patent Document 1, the target temperature for preheating is 300 to 550°C. However, in the multilayer plated steel sheet described in Patent Document 1, holding the target temperature for a predetermined time (heat holding) after reaching the target temperature is not performed.
本発明者らは、加熱保持の効果についての検証実験を行った。検証実験では、基材鋼板の表面に下層を形成するための溶融Al系めっき層を形成した後、大気雰囲気で450℃まで加熱し、60秒加熱保持した。その後、溶融Al系めっき層に対して上層を形成するための溶融Zn系めっき層を施して、複層めっき鋼板を作製した。検証実験の結果について以下に説明する。 The present inventors conducted a verification experiment on the effect of heating and holding. In the verification experiment, after forming a molten Al-based plating layer to form a lower layer on the surface of a base steel plate, it was heated to 450° C. in an air atmosphere and kept heated for 60 seconds. Thereafter, a hot-dip Zn-based plating layer was applied to form an upper layer over the hot-dip Al-based plating layer, thereby producing a multilayer plated steel sheet. The results of the verification experiment will be explained below.
図2は、検証実験で作製した複層めっき鋼板の一例についての、断面観察および元素分析の結果を示す図である。断面観察および元素分析には、球面収差補正機能付き走査型透視型電子顕微鏡(Cs-STEM-EDX、Corrector-Spherical Aberration Scanning Transmission Electron Microscope Energy Dispersive X-ray spectrometry)が用いられた。 FIG. 2 is a diagram showing the results of cross-sectional observation and elemental analysis of an example of a multilayer plated steel sheet produced in a verification experiment. For cross-sectional observation and elemental analysis, a scanning transmission electron microscope with a spherical aberration correction function (Cs-STEM-EDX, Corrector-Spherical Aberration Scanning Transmission Electron Microscope Energy Disper) was used. sive X-ray spectrometry) was used.
図2においては、下層2、上層3および中間層4を有するめっき層の断面が符号2001で示されている。また、当該断面におけるZn、Al、Si、O、およびMgの分布状態を示す写真がそれぞれ、符号2002~2006で示されている。符号2002~2006では、それぞれの元素の存在する量が多い領域ほど明るく示されている。また、符号2002においては、下層2と中間層4との境界が破線で示されている。
In FIG. 2, a cross section of a plating layer having a
図2に示すように、中間層4を構成する元素は、主にAl、O、およびMgである。また、下層2および上層3の組成を変動させた複層めっき鋼板を別途作成し、同様に元素分析を行っても、中間層4の組成には大きな変動は見られず、Al:30~50%、O:40~60%、Mg:0.5~10%、Si:0~5%(各元素の比率の和は100%を超えない)であった。これは、下層2の表面の酸化被膜中のAlが、Alよりも自然電位が卑であるMgと置換されることで中間層4が形成されるため、中間層4においては上層3のMg濃度に応じてAlおよびMgの比率が変化するのみであるためと考えられる。
As shown in FIG. 2, the elements constituting the
また、上層がMgを含まず、Znのみである場合、上層に多数のめっきはじき(不めっき)が発生し、複層状のめっき鋼板を作製することができなかった。 Further, when the upper layer does not contain Mg and only contains Zn, a large number of plating repellents (non-plating) occur in the upper layer, making it impossible to produce a multilayer plated steel sheet.
次に、下層を形成するための溶融Al系めっき層表面の状態について、赤外分光分析(IR、Infrared Spectroscopy)の全反射測定法(ATR、Attenuated Total Reflection)を用いて分析を行った。ATR法では、水酸基由来のピークが3500~3900cm-1に表れる。 Next, the state of the surface of the molten Al-based plating layer for forming the lower layer was analyzed using attenuated total reflection (ATR) of infrared spectroscopy (IR). In the ATR method, a peak derived from hydroxyl groups appears at 3500 to 3900 cm -1 .
基材鋼板の表面に溶融Al系めっき層を形成した後、(i)400℃まで加熱した後に加熱保持しない場合、(ii)450℃まで加熱した後に加熱保持しない場合、(iii)450℃まで加熱した後に60秒加熱保持した場合、のそれぞれについて、加熱前後の水酸基量測定結果を表1に示す。測定には、日本分光(株)製のFT-IR6600を用い、3500~3900cm-1に出現するピークを自動積分した値で水酸基量を比較した。 After forming a hot-dip Al-based plating layer on the surface of the base steel plate, (i) heating up to 400°C and not holding it, (ii) heating up to 450°C and not holding it, (iii) heating up to 450°C Table 1 shows the measurement results of the amount of hydroxyl groups before and after heating for each of the cases where the sample was heated and then held for 60 seconds. For the measurement, FT-IR6600 manufactured by JASCO Corporation was used, and the amounts of hydroxyl groups were compared using values obtained by automatically integrating peaks appearing at 3500 to 3900 cm -1 .
表1に示すように、上述したいずれの場合においても、水酸基由来のピークは加熱により減少した。これは、加熱前の溶融Al系めっき層の表面に存在した水酸化アルミニウムの一部が、加熱により酸化アルミニウムに変化することによるものと考えられる。また、加熱前の溶融Al系めっき層の表面には酸化アルミニウム水和物も存在すると考えられるが、これについても少なくとも一部は酸化アルミニウムに変化すると考えられる。 As shown in Table 1, in all of the cases described above, the peak derived from hydroxyl groups was reduced by heating. This is thought to be due to the fact that part of the aluminum hydroxide present on the surface of the molten Al-based plating layer before heating is changed into aluminum oxide by heating. Further, it is thought that aluminum oxide hydrate is also present on the surface of the molten Al-based plating layer before heating, and it is thought that at least a portion of this is also converted to aluminum oxide.
溶融Al系めっき層の表面にMgを含む溶融Zn系めっき層を施すことで、MgとAlの一部とが置換反応を起こし、強固なAl-O-Mg結合を有する中間層が形成される。一般に、水酸化アルミニウムおよび酸化アルミニウム水和物は、酸化アルミニウムと比較して多孔質である。このため、緻密な構造を有する酸化アルミニウムが溶融Al系めっき層の表面に多く存在する場合、該表面にMgを含む溶融Zn系めっき層を施すことで、Al-O-Mg結合が高い密度で形成され、その結果、強固な中間層が形成されると考えられる。 By applying a hot-dip Zn-based plating layer containing Mg to the surface of a hot-dip Al-based plating layer, a substitution reaction occurs between Mg and a portion of Al, forming an intermediate layer having strong Al-O-Mg bonds. . Generally, aluminum hydroxide and aluminum oxide hydrate are porous compared to aluminum oxide. Therefore, if a large amount of aluminum oxide with a dense structure exists on the surface of a molten Al-based plating layer, applying a molten Zn-based plating layer containing Mg to the surface will increase the density of Al-O-Mg bonds. It is believed that this results in the formation of a strong intermediate layer.
特に、溶融Al系めっき層を形成して450℃まで加熱した後、60秒加熱保持した場合における、水酸基由来のピークは、400℃または450℃まで加熱した後、加熱保持しなかった場合と比較して顕著に減少している。すなわち、加熱保持した溶融Al系めっき層の表面においては、水酸化アルミニウムおよび酸化アルミニウム水和物の多くが酸化アルミニウムに変化している。このような溶融Al系めっき層に溶融Zn系めっき層を施すことで、上述した強固な中間層が形成され、絞り加工を行っても上層が脱落しなくなると考えられる。 In particular, the peak derived from hydroxyl groups when a molten Al-based plating layer was formed and heated to 450°C and then held for 60 seconds was compared with the case where the heating was not held after heating to 400°C or 450°C. has decreased significantly. That is, on the surface of the heated and maintained molten Al-based plating layer, most of the aluminum hydroxide and aluminum oxide hydrate has changed to aluminum oxide. It is thought that by applying a hot-dip Zn-based plating layer to such a hot-dip Al-based plating layer, the above-mentioned strong intermediate layer is formed, and the upper layer does not fall off even when drawing is performed.
一方、加熱保持しなかった場合における水酸基由来のピークは、加熱保持した場合と比較すると減少しない。これは、加熱保持しなかったために、加熱保持した場合と比較して、水酸化アルミニウム(および酸化アルミニウム水和物)が酸化アルミニウムに変化するための熱量が少なかったものと考えられる。この場合には、溶融Al系めっき層に対して溶融Zn系めっき層を施して上層を形成しても、強固な中間層は形成されず、絞り加工によって上層が点状に脱落する。 On the other hand, the peak derived from hydroxyl groups in the case of not being heated and held does not decrease compared to the case of being heated and held. This is considered to be because the amount of heat required for aluminum hydroxide (and aluminum oxide hydrate) to change into aluminum oxide was smaller than that in the case of heating and holding, because the heating and holding were not carried out. In this case, even if a hot-dip Zn-based plating layer is applied to the molten-Al-based plating layer to form an upper layer, a strong intermediate layer is not formed, and the upper layer falls off in dots during the drawing process.
なお、中間層には、FeまたはZnといった他の元素も含まれることがある。しかし、これらの元素は上層の密着性には影響しないと考えられる。 Note that the intermediate layer may also contain other elements such as Fe or Zn. However, it is thought that these elements do not affect the adhesion of the upper layer.
〔用語の定義〕
以下の説明において、基材鋼板を溶融Al系めっき浴に浸漬して、基材鋼板の表面に溶融Al系めっき層を形成することを第1の溶融めっきと称することがある。そして、前記第1の溶融めっき後の鋼板を溶融Zn系めっき浴に浸漬して、表面に溶融Zn系めっき層を形成することを第2の溶融めっきと称することがある。
〔Definition of terms〕
In the following description, forming a hot-dip Al-based plating layer on the surface of the base steel plate by immersing the base steel plate in a hot-dip Al-based plating bath may be referred to as first hot-dip plating. Then, immersing the steel plate after the first hot-dip plating in a hot-dip Zn-based plating bath to form a hot-dip Zn-based plating layer on the surface may be referred to as second hot-dip plating.
<複層めっき鋼板>
以下、本発明の一実施形態における複層めっき鋼板について説明する。
<Multi-layer plated steel plate>
Hereinafter, a multilayer plated steel sheet according to an embodiment of the present invention will be described.
図1は、本発明の一実施形態における複層めっき鋼板10の概略を示す図である。図1に示すように、複層めっき鋼板10は、基材鋼板1と、基材鋼板1の表面に施された下層2(溶融Al系めっき層)と、下層2に対して施された上層3(溶融Zn系めっき層)と、下層2と上層3との間に形成された中間層4とを有する。以下に、基材鋼板および各種の層について詳細に説明する。
FIG. 1 is a diagram schematically showing a multilayer plated
〔基材鋼板1〕
めっき原板となる基材鋼板1としては、一般に、Zn系めっき鋼板やAl系めっき鋼板の基材として使用されている各種鋼板が適用可能である。
[Base material steel plate 1]
As the base steel plate 1 serving as a plating original plate, various steel plates that are generally used as base materials for Zn-based plated steel sheets and Al-based plated steel plates can be used.
〔下層2〕
本明細書において「下層」とは、第1の溶融めっきおよび第2の溶融めっきを施した後の複層めっき層中に存在する、第1の溶融めっきにより形成された溶融Al系めっき層に由来する層(後述の中間層を除く部分)をいう。
[Lower layer 2]
In this specification, the term "lower layer" refers to the molten Al-based plating layer formed by the first hot-dip plating, which is present in the multilayer plating layer after the first hot-dip plating and the second hot-dip plating are applied. This refers to the layer from which it originates (excluding the intermediate layer described below).
この下層2は、溶融Al系めっき層に特有の優れた耐食性を発揮して鋼板表面の長期耐食性を担う。下層2の成分組成(上記第1の溶融めっきにおける溶融Al系めっき浴組成)は、質量%でSi:0.1~12%を含む。残部はAlであってよい。また、残部は各種の添加元素を含んでいてもよい。添加元素の例として、B:0~0.5%、Cr:0~2.0%、Sr:0~0.5%、Ti:0~0.5%などが挙げられる。残部は不可避的不純物を含んでいてもよい。
This
下層2におけるSiは、Al系めっき浴の液相線温度を低減する作用を有する。ただし、めっき浴のSi含有量が12%を超えると共晶組成を過ぎて逆に液相線温度が上昇する領域に入りやすい。また、そのように多量のSiを含有すると下層2と後述の上層3との界面に多量のSi晶出相が形成して、下層2と上層3との密着性が低下しやすくなる。この場合、曲げ加工によって下層2と上層3の間に亀裂が生じることがあり、上層3のZnによる犠牲防食作用が十分に発揮されない原因となる。一方で、下層2がSiを含有しない場合、下層2と基材鋼板1との間に伸び性がなく脆いFe-Al合金層が厚く成長するため、絞り加工によりめっきが脱落しやすくなる。したがって下層2にはSiを0.1%~12%以下の範囲で含有させる。
Si in the
〔上層3〕
本明細書において「上層」とは、第1の溶融めっきおよび第2の溶融めっきを施した後の複層めっき層中に存在する、第2の溶融めっきにより形成されたZn系めっき層に由来する層(中間層を除く部分)をいう。この上層3は、AlおよびMgを随意的に含有するZn系めっき層である。上層3は、主として犠牲防食作用、並びにAl、Mgを含有したZn系腐食生成物の形成によるめっき面の保護作用およびMgを含有したZn系腐食生成物による保護作用を担う。
[Upper layer 3]
In this specification, the "upper layer" is derived from a Zn-based plating layer formed by the second hot-dip plating, which is present in the multilayer plating layer after the first hot-dip plating and the second hot-dip plating. (excluding the middle layer). This
上層3の成分組成(上記第2の溶融めっきにおける溶融Zn系めっき浴組成)は、質量%でAl:0~20%、Mg:0.5~8%を含む。残部はZnであってよい。また、残部は各種の添加元素を含んでいてもよい。残部は不可避的不純物を含んでいてもよい。特に、上層3の成分組成は、質量%でMg:3~8%を含むことがより好ましい。また、添加元素の別の例として、B:0~0.05%、Si:0~2.0%、Ca:0~1.0%、Ti:0~0.1%、Sn:0~1.0%などが挙げられる。
The component composition of the upper layer 3 (the composition of the hot-dip Zn-based plating bath in the second hot-dip plating) includes Al: 0 to 20% and Mg: 0.5 to 8% in mass %. The remainder may be Zn. Further, the remainder may contain various additive elements. The remainder may contain unavoidable impurities. In particular, the component composition of the
上層3におけるMgは、めっき層表面に生成する腐食生成物を保護性腐食生成物として安定に維持し、めっき層の耐食性を著しく高める作用を有する。また、切断端面等の鋼素地露出部には、犠牲防食作用により生成したMg含有Zn系腐食生成物が堆積して保護皮膜を形成し、鋼素地露出部を保護する作用を発揮する。ただし、めっき浴のMg含有量が8%を超えるとめっき浴の表面にMg酸化物が多量に発生するため、溶融Mg系めっきを施して複層めっき鋼板を作成すること自体が困難となる。したがって上層3におけるMgの含有量の上限を8%とする。
Mg in the
〔中間層4〕
本明細書において「中間層」とは、第1の溶融めっきおよび第2の溶融めっきを施した後の複層めっき鋼板10において、下層2と上層3との間に形成される層をいう。この中間層4は、下層2と上層3とを接合する作用を担う。
[Middle layer 4]
In this specification, the term "intermediate layer" refers to a layer formed between the
中間層4の成分組成は、質量%でAl:30~50%、Mg:0.5~10%、O:40~60%およびSi:0~5%を、これらの合計が100%以下であるように含む。中間層4がこのような成分組成であれば、絞り加工によってめっきが点状に脱落することを防止できる。したがって、複層めっき鋼板10は、絞り加工に好適なものとなる。中間層4は、他の不純物を含んでいてもよい。
The component composition of the
(製造方法)
本発明の一態様における複層めっき鋼板は、基材鋼板1の表面に、第1の溶融めっき(溶融Al系めっき)を施し(第1のステップ)、第1の溶融めっきが施された溶融Al系めっき鋼板を加熱し、基材鋼板の温度が380~550℃に到達した状態で10秒以上保持し(第2のステップ)、加熱された溶融Al系めっき鋼板に第2の溶融めっき(溶融Zn系めっき)を施す(第3のステップ)ことによって製造することができる。具体的には、連続溶融めっきラインで第1の溶融めっきを施すことによって溶融Al系めっき鋼板を作成する。次に、作成した溶融Al系めっき鋼板を炉で380~550℃に加熱し、10秒以上保持する。最後に、加熱保持後の溶融Al系めっき鋼板に対して連続溶融めっきラインで第2の溶融めっきを施せばよい。上記の製造方法により、絞り加工に好適な複層めっき鋼板を製造することができる。
(Production method)
The multi-layer plated steel sheet in one aspect of the present invention includes a first hot-dip plating (hot-dip Al-based plating) applied to the surface of the base steel sheet 1 (first step), The Al-based plated steel plate is heated, and the temperature of the base steel plate reaches 380 to 550°C and held for 10 seconds or more (second step), and the heated hot-dip Al-based steel plate is coated with a second hot-dip plate ( It can be manufactured by applying molten Zn-based plating (third step). Specifically, a hot-dip Al-based plated steel sheet is created by performing first hot-dip plating on a continuous hot-dip plating line. Next, the produced hot-dip Al-based plated steel sheet is heated to 380 to 550°C in a furnace and held for 10 seconds or more. Finally, second hot-dip plating may be applied to the hot-dip Al-plated steel sheet after being heated and maintained in a continuous hot-dip plating line. By the above manufacturing method, a multilayer plated steel sheet suitable for drawing can be manufactured.
特に、第2のステップにおいて、基材鋼板1の温度が400~500℃に到達した状態で60秒以上保持することが好ましい。上記の範囲の温度に加熱保持することで、第1の溶融めっきの表面の水酸化アルミニウムおよび酸化アルミニウム水和物に、酸化アルミニウムに変化するための熱量が十分に与えられる。したがって、複層めっき鋼板における上層がより強固になる。 In particular, in the second step, it is preferable that the temperature of the base steel plate 1 reaches 400 to 500° C. and is maintained for 60 seconds or more. By heating and maintaining the temperature within the above range, a sufficient amount of heat is given to the aluminum hydroxide and aluminum oxide hydrate on the surface of the first hot-dip plating to change into aluminum oxide. Therefore, the upper layer of the multilayer plated steel sheet becomes stronger.
板厚0.8mmの普通鋼冷延鋼板を基材鋼板とし、連続溶融めっきラインを用いて、溶融Al系めっき(めっき付着量:片面30~90g/m2)を施し、室温まで冷却して、溶融Al系めっき鋼板を得た。次にバッチ式の溶融めっき試験機を用いて、溶融Al系めっき鋼板を300~600℃まで加熱し、一定時間加熱保持した後、その表面にめっき浴温400℃の溶融Zn系めっき(めっき付着量:片面30~180g/m2)を施し、複層めっき鋼板を得た。めっき組成、溶融Al系めっき鋼板の予熱温度、およびめっき付着量は表2および表3中に記載してある。 A cold-rolled ordinary steel sheet with a thickness of 0.8 mm was used as the base steel sheet, and hot-dip Al-based plating (plating weight: 30 to 90 g/m 2 on one side) was applied using a continuous hot-dip plating line, and the sheet was cooled to room temperature. , a hot-dip Al-based plated steel sheet was obtained. Next, using a batch-type hot-dip plating tester, heat the hot-dip Al-plated steel sheet to 300 to 600°C, hold the temperature for a certain period of time, and then apply hot-dip Zn-based plating (no plating adhesion) on the surface at a plating bath temperature of 400°C. Amount: 30 to 180 g/m 2 on one side) to obtain a multilayer plated steel sheet. The plating composition, preheating temperature of the hot-dip Al-based plated steel sheet, and coating weight are listed in Tables 2 and 3.
得られた複層めっき鋼板について、以下の調査を行った。 The following investigation was conducted on the obtained multilayer plated steel sheet.
(1)上層めっき性の評価
複層めっき鋼板の外観を目視で観察し、上層めっきが施された領域の面積に対する不めっき部の面積の比率を計測した。不めっき5%未満のものを、めっき性良好と判定した。めっき性が不良である不めっきが5%以上のサンプルは、後述する絞り加工後密着性および絞り加工後耐食性の評価には用いなかった。表2および表3においては、めっきはじき(不めっき)が5%以上のものを×、1%以上5%未満のものを△、1%未満のものを○、不めっきが全くないものを◎として示している。
(1) Evaluation of upper layer plating properties The appearance of the multi-layer plated steel sheet was visually observed, and the ratio of the area of the unplated portion to the area of the region coated with the upper layer was measured. Those with less than 5% non-plating were judged to have good plating properties. Samples with poor plating properties and 5% or more of unplated samples were not used in the evaluation of post-drawing adhesion and post-drawing corrosion resistance, which will be described later. In Tables 2 and 3, those with plating repellency (unplated) of 5% or more are ×, those with 1% or more and less than 5% are △, those with less than 1% are ○, and those with no unplated at all are ◎ It is shown as
(2)中間層組成の分析
平板状の複層めっき鋼板を収束イオンビーム(FIB、Focused Ion Beam)装置を用いて、断面切削し、球面収差補正機能付き走査型透過電子顕微鏡(Cs‐STEM‐EDX)を用いて、断面から中間層の組成分析を行った。表2および表3においては、中間層の組成について、A、BおよびCの3種類に分類して示している。A~Cのそれぞれの具体的な組成については表4を参照して後述する。
(2) Analysis of intermediate layer composition A cross-section of a flat multilayer plated steel plate was cut using a focused ion beam (FIB) device, and the cross-section was cut using a scanning transmission electron microscope (Cs-STEM-) with a spherical aberration correction function. EDX) was used to analyze the composition of the intermediate layer from the cross section. In Tables 2 and 3, the composition of the intermediate layer is classified into three types, A, B, and C. Specific compositions of each of A to C will be described later with reference to Table 4.
(3)絞り加工後密着性の評価
複層めっき鋼板の外観を目視で確認し、不めっきのない部位を、68mmφに打ち抜いた。打ち抜いた複層めっき鋼板に対し、40mmφ5Rのポンチ、および42mmφ5Rのダイスを用いて、高さ16mmまで円筒状に速度30mm/minで絞り加工をし、円筒絞りサンプルを得た。円筒絞りサンプルの肩部および側壁部のそれぞれに粘着テープを貼付した後に剥離させ、上層の剥離面積を評価した。剥離面積が10%未満のものを密着性良好と判定した。表2および表3においては、上層の剥離が全くないものを◎、剥離面積が10%未満のものを○、剥離面積が10%以上のものを×として示している。
(3) Evaluation of adhesion after drawing The appearance of the multilayer plated steel sheet was visually confirmed, and the unplated portion was punched out to a diameter of 68 mm. The punched multilayer plated steel plate was drawn into a cylindrical shape up to a height of 16 mm at a speed of 30 mm/min using a 40 mmφ5R punch and a 42 mmφ5R die to obtain a cylindrical drawn sample. Adhesive tape was attached to each of the shoulder and side wall of the cylindrical drawing sample and then peeled off, and the peeled area of the upper layer was evaluated. A sample with a peeled area of less than 10% was judged to have good adhesion. In Tables 2 and 3, cases in which there was no peeling of the upper layer at all are shown as ◎, cases in which the peeled area was less than 10% are shown as ○, and cases in which the peeled area was 10% or more are shown as ×.
(4)絞り加工後耐食性の評価
(3)で作製した円筒絞りサンプルの端面部をフッ素テープでシールしたものを耐食性評価サンプルとし、サイクル腐食試験(CCT)を200サイクル行った。その後、円筒絞りサンプルの肩部および側壁部における赤錆を目視で観察した。赤錆発生面積率が5%未満のものを耐食性良好と判定した。表2および表3においては、赤錆発生面積率が5%未満のものを○、5%以上のものを×として示している。
(4) Evaluation of corrosion resistance after drawing The end face of the cylindrical drawing sample prepared in (3) was sealed with fluorine tape as a corrosion resistance evaluation sample, and 200 cycles of cyclic corrosion testing (CCT) were conducted. Thereafter, red rust on the shoulders and sidewalls of the cylindrical drawing sample was visually observed. Those with a red rust occurrence area ratio of less than 5% were judged to have good corrosion resistance. In Tables 2 and 3, those with an area ratio of red rust occurrence of less than 5% are indicated as ○, and those with an area ratio of 5% or more are indicated as ×.
上述した調査について、発明例についての結果を表2に示す。また、比較例についての結果を表3に示す。 Regarding the above-mentioned investigation, the results for the invention examples are shown in Table 2. Table 3 also shows the results for comparative examples.
発明例No.1~26は、いずれも「上層めっき性」、「絞り加工後密着性」および「絞り加工後耐食性」について、良好な結果を示した。このうち、上層のMgの含有量が3~8%、かつ加熱温度が400~500℃であった、発明例No.1~4、6~10、14~19、23~26については、「上層めっき性」が○または◎という、より良好な結果を示した。特に、加熱温度が450℃、かつ保持時間が60秒以上である、発明例No.1~4、6~8、10、23~26は、「上層めっき性」および「絞り加工後密着性」の両方が◎という、際立って良好な結果を示した。 Invention example no. Nos. 1 to 26 all showed good results in terms of "upper layer plating properties," "adhesion after drawing," and "corrosion resistance after drawing." Among these, Invention Example No. 1 had an upper layer Mg content of 3 to 8% and a heating temperature of 400 to 500°C. Samples Nos. 1 to 4, 6 to 10, 14 to 19, and 23 to 26 showed better results with "upper layer plating properties" of ○ or ◎. In particular, invention example No. 1, in which the heating temperature is 450° C. and the holding time is 60 seconds or more. Samples Nos. 1 to 4, 6 to 8, 10, and 23 to 26 showed outstandingly good results, with both "upper layer plating properties" and "post-drawing adhesion" being ◎.
なお、発明例No.23~26のそれぞれと、発明例No.3とは、めっき付着量についてのみ相違する。これらの発明例を比較した結果からは、下層および上層の、いずれのめっき付着量についても「上層めっき性」、「絞り加工後密着性」および「絞り加工後耐食性」への影響は認められなかった。 In addition, invention example No. 23 to 26, and Invention Example No. 3 differs only in the amount of plating deposited. From the results of comparing these invention examples, no influence on "upper layer plating properties", "adhesion after drawing", and "corrosion resistance after drawing" was observed for the amount of plating on either the lower layer or the upper layer. Ta.
表2および表3における、「中間層組成」について、A、B、およびCの組成を表4に示す。比較のため、第2の溶融めっきを施す前の、下層表面の酸化被膜の組成も併せて表4に示す。表4における各成分の総和が100%を超えることはない。 Regarding the "intermediate layer composition" in Tables 2 and 3, the compositions of A, B, and C are shown in Table 4. For comparison, the composition of the oxide film on the surface of the lower layer before the second hot-dip plating is also shown in Table 4. The sum of each component in Table 4 does not exceed 100%.
表4に示すように、中間層の組成におけるMgの含有量については、A~CのうちでAが最も少なく、Cが最も多い。逆に、中間層の組成におけるAlの含有量については、Aが最も多く、Cが最も少ない。ただし、中間層の組成がA~Cのいずれであっても、中間層の組成と、下層表面の酸化被膜の組成とで、大きな差異はない。 As shown in Table 4, the Mg content in the composition of the intermediate layer is the lowest in A to C, and the highest in C. Conversely, regarding the content of Al in the composition of the intermediate layer, A has the highest content and C has the lowest content. However, regardless of the composition of the intermediate layer from A to C, there is no major difference between the composition of the intermediate layer and the composition of the oxide film on the surface of the lower layer.
表2においては、上層のMg濃度が低い発明例No.5では中間層組成はAであり、Mg濃度が高い発明例No.8では中間層組成はCであった。その他の発明例では中間層組成は全てBであった。すなわち、上層のMg濃度が高い程、中間層のMg濃度が増加し、Al濃度が減少していた。このことから、中間層においては、上層のMg濃度に応じて、AlがMgに置換されたと考えられる。 In Table 2, Invention Example No. 1 has a low Mg concentration in the upper layer. In Invention Example No. 5, the intermediate layer composition is A, and the Mg concentration is high. In No. 8, the intermediate layer composition was C. In other invention examples, the intermediate layer composition was all B. That is, as the Mg concentration in the upper layer increased, the Mg concentration in the intermediate layer increased and the Al concentration decreased. From this, it is considered that Al was replaced with Mg in the intermediate layer depending on the Mg concentration of the upper layer.
第2の溶融めっきを施す前の加熱工程において加熱保持しなかった(すなわち、加熱温度まで到達した時点で即座に加熱を終了した)比較例No.27~31では、「絞り加工後密着性」および「絞り加工後耐食性」がいずれも発明例よりも劣っていた。この結果は、加熱工程において下層に与えられた熱量が不十分であったために、下層表面の酸化アルミニウム水和物および水酸化アルミニウムが十分に酸化アルミニウムに変化しなかったためと考えられる。 Comparative Example No. 1, in which heating was not maintained in the heating step before applying the second hot-dip plating (that is, heating was immediately terminated when the heating temperature was reached). In samples Nos. 27 to 31, both "adhesion after drawing" and "corrosion resistance after drawing" were inferior to the invention examples. This result is considered to be because the amount of heat given to the lower layer in the heating step was insufficient, so that the aluminum oxide hydrate and aluminum hydroxide on the surface of the lower layer were not sufficiently converted to aluminum oxide.
上層にMgを含まない比較例No.32~39では、下層の組成に関わらず、「上層めっき性」が発明例よりも劣っていた。この結果から、発明例においては、上層に含まれていたMgが複層めっき鋼板のめっき性を向上させたと考えられる。 Comparative example No. 1 containing no Mg in the upper layer. In samples No. 32 to 39, the "upper layer plating properties" were inferior to the invention examples, regardless of the composition of the lower layer. From this result, it is considered that in the invention example, Mg contained in the upper layer improved the plating properties of the multilayer plated steel sheet.
下層にSiを含まない比較例No.40では、「上層めっき性」は良好であったものの、「絞り加工後密着性」および「絞り加工後耐食性」が発明例よりも劣っていた。この結果は、溶融Al系めっきである下層においてSiが存在しなかったために、下層の下部に、脆く、伸び性のないFe-Al合金層が著しく成長し、絞り加工時にその合金層が破壊されて下層自体が基材鋼板から脱落したためと考えられる。 Comparative example No. 1 containing no Si in the lower layer. In No. 40, although the "upper layer plating properties" were good, the "post-drawing adhesion" and "post-drawing corrosion resistance" were inferior to the invention examples. This result is because there was no Si in the lower layer, which is hot-dip Al plating, so a brittle and inextensible Fe-Al alloy layer grew significantly at the bottom of the lower layer, and the alloy layer was destroyed during drawing. This is thought to be because the lower layer itself fell off from the base steel plate.
下層にSiが過剰である比較例No.41では、「上層めっき性」が発明例よりも劣っていた。この結果は、下層表面にSiおよびSi化合物が多量に析出し、上層めっき性を低下させたためと考えられる。 Comparative Example No. in which Si is excessive in the lower layer. In No. 41, the "upper layer plating property" was inferior to that of the invention example. This result is considered to be because a large amount of Si and Si compounds precipitated on the surface of the lower layer, reducing the plating properties of the upper layer.
第2の溶融めっきを施す前の加熱温度が低いNo.42~44では、「上層めっき性」が発明例よりも劣っていた。この結果は、第2の溶融めっきのめっき浴温が400℃であったのに対し、加熱温度が40℃以上低かったために、上層と下層との間でMgとAlとの置換が進まなかったためと考えられる。 No. 2 has a lower heating temperature before applying the second hot-dip plating. Samples No. 42 to No. 44 had inferior "upper layer plating properties" compared to the invention examples. This result was due to the fact that the plating bath temperature in the second hot-dip plating was 400°C, but the heating temperature was more than 40°C lower, so the replacement of Mg and Al between the upper and lower layers did not proceed. it is conceivable that.
第2の溶融めっきを施す前の加熱温度が高い比較例No.45~47では、下層が溶融したため、上層と下層とで組成が異なる複層めっき鋼板を作製することができなかった。 Comparative Example No. 1 has a higher heating temperature before applying the second hot-dip plating. In No. 45 to No. 47, the lower layer was melted, so it was not possible to produce a multilayer plated steel sheet in which the upper layer and the lower layer had different compositions.
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. are also included within the technical scope of the present invention.
1 基材鋼板
2 下層(溶融Al系めっき層)
3 上層(溶融Zn系めっき層)
4 中間層
10 複層めっき鋼板
1
3 Upper layer (hot-dip Zn-based plating layer)
4
Claims (3)
前記第1のステップにより前記基材鋼板の表面に前記溶融Al系めっき層が施された溶融Al系めっき鋼板を加熱し、前記基材鋼板の温度が380~550℃に到達した状態で10秒以上保持する第2のステップと、
質量%でAl:0~20%およびMg:0.5~8%を含む溶融Zn系めっき浴に、前記第2のステップにより加熱された前記溶融Al系めっき鋼板を浸漬して、該溶融Al系めっき鋼板の表面に溶融Zn系めっき層を形成する第3のステップと、を含むことを特徴とする複層めっき鋼板の製造方法。 A first step of forming a hot-dip Al-based plating layer on the surface of the base steel plate by immersing the base steel plate in a hot-dip Al-based plating bath containing Si: 0.1 to 12% by mass%;
The hot-dip Al-plated steel sheet on which the hot-dip Al-based plating layer has been applied to the surface of the base steel sheet in the first step is heated, and the temperature of the base steel sheet reaches 380 to 550° C. for 10 seconds. a second step of holding the above;
The hot-dip Al-plated steel sheet heated in the second step is immersed in a hot-dip Zn-based plating bath containing Al: 0 to 20% and Mg: 0.5 to 8% by mass%, and the molten Al A method for producing a multi-layer plated steel sheet, comprising: a third step of forming a hot-dip Zn-based plating layer on the surface of the Zn-based plated steel sheet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020008658A JP7393640B2 (en) | 2020-01-22 | 2020-01-22 | Manufacturing method of multi-layer plated steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020008658A JP7393640B2 (en) | 2020-01-22 | 2020-01-22 | Manufacturing method of multi-layer plated steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021116438A JP2021116438A (en) | 2021-08-10 |
JP7393640B2 true JP7393640B2 (en) | 2023-12-07 |
Family
ID=77174127
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020008658A Active JP7393640B2 (en) | 2020-01-22 | 2020-01-22 | Manufacturing method of multi-layer plated steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7393640B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006219716A (en) | 2005-02-09 | 2006-08-24 | Jfe Galvanizing & Coating Co Ltd | HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET AND ITS PRODUCTION METHOD |
JP2010144193A (en) | 2008-12-16 | 2010-07-01 | Nisshin Steel Co Ltd | Multilayer-plated steel sheet and method for manufacturing the same |
JP2010229483A (en) | 2009-03-26 | 2010-10-14 | Nisshin Steel Co Ltd | Zn-Al BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING THE SAME |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2777571B2 (en) * | 1991-11-29 | 1998-07-16 | 大同鋼板株式会社 | Aluminum-zinc-silicon alloy plating coating and method for producing the same |
JP3398810B2 (en) * | 1995-10-24 | 2003-04-21 | 日新製鋼株式会社 | Manufacturing method of hot-dip aluminized steel sheet with excellent heat resistance |
-
2020
- 2020-01-22 JP JP2020008658A patent/JP7393640B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006219716A (en) | 2005-02-09 | 2006-08-24 | Jfe Galvanizing & Coating Co Ltd | HOT DIP Zn-Al BASED ALLOY PLATED STEEL SHEET AND ITS PRODUCTION METHOD |
JP2010144193A (en) | 2008-12-16 | 2010-07-01 | Nisshin Steel Co Ltd | Multilayer-plated steel sheet and method for manufacturing the same |
JP2010229483A (en) | 2009-03-26 | 2010-10-14 | Nisshin Steel Co Ltd | Zn-Al BASED PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING THE SAME |
Also Published As
Publication number | Publication date |
---|---|
JP2021116438A (en) | 2021-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI451004B (en) | Steel plate for hot pressing and method for manufacturing hot pressing component using the same | |
JP6346972B2 (en) | Zn-Mg alloy plated steel sheet and method for producing the same | |
TWI686510B (en) | Coated steel | |
JP5404126B2 (en) | Zn-Al plated steel sheet with excellent corrosion resistance and method for producing the same | |
CN117026132A (en) | Molten Al-Zn-Mg-Si-Sr plated steel sheet and method for producing same | |
AU2012268278B2 (en) | Steel sheet for hot pressing and process for manufacturing hot pressed member using the steel sheet | |
CA2729942A1 (en) | Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet | |
WO2012070482A1 (en) | Steel sheet for hot pressing and method for producing hot-pressed member using steel sheet for hot pressing | |
CN111527233A (en) | Plated steel sheet for hot press forming, formed part using same, and method for producing same | |
JP2004043887A (en) | Aluminum-coated structural member and production method thereof | |
WO2012053694A1 (en) | Galvanized steel sheet having excellent coatability, coating adhesion, and spot weldability, and method for manufacturing same | |
CN113897610A (en) | Steel component provided with a coating | |
EP1491649A1 (en) | Titanium material, production thereof, and exhaust pipe | |
JP5597980B2 (en) | Hot pressed member and method for manufacturing the same | |
KR20180039107A (en) | Mg-containing Zn alloy coated steel | |
CN114761603B (en) | Aluminum-based alloy-plated steel sheet excellent in workability and corrosion resistance, and method for producing same | |
KR20160043990A (en) | Al-COATED STEEL SHEET HAVING EXCELLENT TOTAL REFLECTION PROPERTIES AND CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING SAME | |
JP7393640B2 (en) | Manufacturing method of multi-layer plated steel sheet | |
JP2000104153A (en) | Zinc-aluminum alloy plated steel sheet | |
JP6028843B2 (en) | Steel sheet for hot press and method for producing hot press member using the same | |
EP4417729A1 (en) | Hot-stamp-molded object | |
WO2021250973A1 (en) | Hot-dipped zn–al–mg-based plated steel | |
KR102311503B1 (en) | Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same | |
CN114829666A (en) | Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same | |
JP5504854B2 (en) | Hot pressed member and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20200901 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220905 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230620 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230801 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231106 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7393640 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |