JP7389729B2 - 障害物検知装置、障害物検知システム及び障害物検知方法 - Google Patents
障害物検知装置、障害物検知システム及び障害物検知方法 Download PDFInfo
- Publication number
- JP7389729B2 JP7389729B2 JP2020151723A JP2020151723A JP7389729B2 JP 7389729 B2 JP7389729 B2 JP 7389729B2 JP 2020151723 A JP2020151723 A JP 2020151723A JP 2020151723 A JP2020151723 A JP 2020151723A JP 7389729 B2 JP7389729 B2 JP 7389729B2
- Authority
- JP
- Japan
- Prior art keywords
- depth
- representation
- depth representation
- distance
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 120
- 238000000034 method Methods 0.000 claims description 97
- 230000008569 process Effects 0.000 claims description 70
- 230000014509 gene expression Effects 0.000 claims description 56
- 238000010801 machine learning Methods 0.000 claims description 39
- 239000000284 extract Substances 0.000 claims description 9
- 238000004891 communication Methods 0.000 claims description 4
- 238000013528 artificial neural network Methods 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 15
- 230000006870 function Effects 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008867 communication pathway Effects 0.000 description 1
- 238000013527 convolutional neural network Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/55—Depth or shape recovery from multiple images
- G06T7/593—Depth or shape recovery from multiple images from stereo images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/165—Anti-collision systems for passive traffic, e.g. including static obstacles, trees
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/16—Anti-collision systems
- G08G1/166—Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
- G06T2207/30261—Obstacle
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Image Analysis (AREA)
- Traffic Control Systems (AREA)
Description
例えば、特表2017-528731(特許文献1)には「本開示は、既知の投影パターンを使用して、ステレオ奥行き検出(又は、カメラに基づく他の奥行き検出)をよりロバストにすることを対象とする。ドットが、キャプチャされた画像において検出され、異なる奥行きにおける既知の投影パターンと比較されて、各奥行きにおける照合信頼度スコアが決定される。信頼度スコアは、サブ画素解像度におけるものであり得る各ドット位置における奥行きを決定するための基礎として使用され得る。信頼度スコアはまた、ドット位置に対応する画素の間にある画素についての奥行き値を見つけ出すために、画素奥行きを補間するための重み等の基礎として使用され得る」技術が記載されている。
また、米国特許出願US9443154B2には、「第1のカメラからの第1の画像フレームおよび第2のカメラからの第2の画像フレームを処理することによって物体を検出するように動作可能な車両に搭載可能なコンピュータ化されたシステム。第1の範囲は、第1の画像フレームを使用して前記検出されたオブジェクトに決定される。画像位置は、第1の画像フレーム内の検出されたオブジェクトの第2の画像フレーム内の画像位置に投影される。第2の範囲は、第1および第2の画像フレームの両方に基づいて、検出されたオブジェクトに対して決定される。検出された物体は、第1および第2の画像フレームの両方で追跡される。検出された物体が第1のカメラの視野を離れると、第2の範囲および第2の画像フレームに応じて第3の範囲が決定される」技術が記載されている。
また、特許文献2は、可視光カメラによって取得された可視光画像と、赤外線カメラによって取得された赤外線画像とを結合することにより、より正確な物体検出手段を提供することに関する。
更に、特許文献1に記載の手段では、被写体が動かない、静的な撮影環境を前提としており、列車や自動車等の移動体に適用した場合、移動体と物体の相対的移動により、物体に対して投影された既知の投影パターンが歪められてしまうため、正確な深度判定が困難となる。
従って、列車等の移動体に適用可能であり、かつ、近距離の物体及び遠距離の物体の両方について高精度な深度情報に基づく障害物検出手段が求められている。
上記以外の課題、構成及び効果は、以下の発明を実施するための形態における説明により明らかにされる。
また、ステレオ画像に基づいた深度表現は、例えば、2つのステレオ画像間の視差に基づいた深度マップであり、近距離の物体について正確な深度情報を示すものである。
なお、本実施例では、第1の深度表現、第2の深度表現、及び第3の深度表現を深度マップとした場合を想定して説明するが、本開示はこれに限定されず、移動体と、当該移動体の周辺に存在する物体までの距離を示すものであれば、異なるデータ構造であってもよい。
なお、ここでの列車等の移動体(図示せず)は、鉄道の運行の単位として編成した車両、自動車、モノレール、飛行機、船舶等、任意の移動体であってもよい。
図2に示すように、第1のセンサ201及び第2のセンサ202は、第1の画像203及び第2の画像204をそれぞれ取得する。この第1の画像203及び第2の画像204は、センサの種類によっては、RGB画像、赤外線画像、ステレオ画像等、任意の形式の画像であってもよいが、本実施例では、第1の画像203及び第2の画像204のそれぞれが単一のステレオ画像とした場合を想定して説明する。
これらの第1の画像203及び第2の画像204は、後述するように、機械学習に基づく深度表現と、ステレオ画像間の視差に基づく深度表現の生成に用いられる。
なお、ここでの第1の深度表現208とは、第1の画像203と、第2の画像204との視差から生成される深度表現であるため、遠距離の物体に関する深度情報の精度が限られているが、近距離の物体に関する深度情報の精度が良好である。
なお、ここでの第2の深度表現207と、第3の深度表現209とは、第1の画像203と、第2の画像204との視差から生成される第1の深度表現208と異なり、単一の画像に対して所定の機械学習手法を施すことにより得られる深度表現であり、遠距離の物体に関する深度情報の精度が良好である。
ここでの結合深度表現212とは、遠距離の物体に関する正確な深度情報を示す機械学習に基づいた深度表現である第2の深度表現207及び/又は第3の深度表現209と、近距離の物体に関する正確な深度情報を示すステレオ画像に基づいた深度表現である第1の深度表現208とを結合することで生成され、撮影画像の全範囲について高精度な深度情報を含む深度表現である。
なお、この結合深度表現212は、遠距離の物体に関する正確な深度情報を示す機械学習に基づいた深度表現である第2の深度表現207及び第3の深度表現209のいずれか一方と、近距離の物体に関する正確な深度情報を示すステレオ画像に基づいた深度表現である第1の深度表現208との少なくとも2つの深度表現とから生成することができるが、深度判定の精度を更に向上させる観点から、第1の深度表現208と、第2の深度表現207と、第3の深度表現209との3つの深度表現から生成することが望ましい。
ここでの障害物情報216とは、倒木、動物、車、歩行者、火事、水没、レール破断等の、列車の走行を阻止する可能性のある障害物の有無、存在位置、推定移動速度、移動方向、移動体からの距離、カテゴリー(倒木、動物)等、障害物を特徴付ける情報を含む。この障害物情報216は、例えば列車の運行を制御するための遠隔列車運行管理部、列車に内蔵されている列車運行管理部、列車の運転士・乗務員、障害物通知を発した列車とは異なる列車(所定の半径以内の列車等)、又は警察署、消防署、気象庁、企業、機関、団体、個人等、任意の通知先に送信されてもよい。この障害物情報216を受信した通知先は、例えば、列車の運行を制御したり、検出された障害物を処分したりして列車の走行安全性を向上させるための対策を実施してもよい。
ここでの所定の機械学習手法とは、学習用画像と、(例えばいわゆるStructure From Motion;SFM法によって得られた)当該学習用画像に対応する深度マップとによって訓練される畳み込みニューラルネットワークを用いて、第1の画像203及び第2の画像204に写る物体の特徴量を抽出し、抽出した特徴量に基づいて、画像に写る物体の深度を示す深度表現を生成するための手法である。このように生成した深度表現は、ステレオ画像間の視差に基づいて生成した深度表現に比べて、遠距離の物体に関する正確な深度情報を含む。
ここでのニューラルネットワークは、例えば、第1の画像を入力する入力層と、第1の画像における物体を特徴付けるコンテキスト特徴量を抽出する中間層と、当該コンテキスト特徴量を用いて、第1の画像の画素毎の深度情報を示す前記第1の深度表現を生成し、出力する出力層をから構成されてもよい。また、ここでのコンテキスト特徴量とは、所定の物体を特徴付ける情報であり、例えば色、形状、大きさ、クラス等を含む。
ここでの結合深度表現212とは、遠距離の物体に関する正確な深度情報を示す機械学習に基づいた深度表現である第2の深度表現207及び・又は第3の深度表現209と、近距離の物体に関する正確な深度情報を示すステレオ画像に基づいた深度表現である第1の深度表現208とを結合することで生成され、撮影画像の全範囲について高精度な深度情報を含む深度表現である。
なお、この結合深度表現212は、遠距離の物体に関する正確な深度情報を示す機械学習に基づいた深度表現である第2の深度表現207及び第3の深度表現209のいずれか一方と、近距離の物体に関する正確な深度情報を示すステレオ画像に基づいた深度表現である第1の深度表現208との少なくとも2つの深度表現とから生成することができるが、深度判定の精度を更に向上させる観点から、第1の深度表現208と、第2の深度表現207と、第3の深度表現209との3つの深度表現から生成することが望ましい。また、ここでは、結合深度表現212を生成する際に用いられる深度表現の数は特定に限定されず、4つ以上の深度表現を用いてもよい。
より具体的には、ステップS404では、第3の深度表現生成部は、所定の物体検出アルゴリズム(406)によって定義されるバウンディングボックスの位置に基づいて、それぞれのポイントクラウドの間で対応する物体をグルーピングした後、それぞれのポイントクラウドでのグルーピングの結果を比較することで、第1の深度表現208と第2の深度表現207との深度の差分を示す深度差分値を計算する。なお、この処理の詳細については後述する。
より具体的には、ステップS405では、第3の深度表現生成部は、所定の物体検出アルゴリズム(406)によって定義されるバウンディングボックスの位置に基づいて、それぞれのポイントクラウドの間で対応する物体をグルーピングした後、それぞれのポイントクラウドでのグルーピングの結果を比較することで、第1の深度表現208と第3の深度表現209との深度の差分を示す深度差分値を計算する。なお、この処理の詳細については後述する。
なお、図5を参照して説明する具体例は、図4を参照して説明した結合深度表現生成処理400におけるステップS405、S406に実質的に対応する。
従って、正確な深度情報を取得するためには、ポイントクラウド間の深度の差分を計算し、ポイントクラウドの深度を互いに整合させるための補正を行うことが望ましい。そこで、本実施例では、所定の物体検出アルゴリズムによって定義されるバウンディングボックスを用いて、複数のポイントクラウド間で同一の物体をグルーピング(対応付け)し、これらのグループを比較することでポイントクラウド間の深度差分を計算した後、当該深度差分から得られる補正値を用いてポイントクラウドを補正することで、正確な深度情報を取得することができる。
なお、ここでのバウンディングボックス508は、ポイントクラウドにおける比較対象の領域の範囲を指定するものであり、バウンディングボックス508のサイズと位置は、例えば電柱や線路等の、鉄道環境に存在するものに基づいて設定されてもよい。このバウンディングボックス508を用いることにより、特定の物体に関する正確な深度情報を取得することができる。また、バウンディングボックス508を用いて比較対象となる領域を制限することで、処理に要するコンピューティング資源を抑えることができる。
一例として、第1のセンサ201及び第2のセンサ202によって撮影される場面には、円筒形の第1の障害物と、球体の第2の障害物と、箱型の第3の障害物と、三角形の第4の障害物が実際に存在するとする。ただし、第1のセンサ201及び第2のセンサ202の角度や撮影範囲の制限等により、円筒形の第1の障害物(605・615)が第2の深度表現207に写るが、第3の深度表現209及び第1の深度表現208に写らない。
また、三角形の第4の障害物(607・617)が第3の深度表現209に写るが、第1の深度表現208に写らない。更に、箱型の第3の障害物(609・619、629、639)は、第2の深度表現207及び第3の深度表現209に写るが、第1の深度表現208に写らない。一方、球体の第2の障害物(611・621、631・641、651)は、第2の深度表現207、第3の深度表現209、及び第1の深度表現208に写る。
一例として、第3の深度表現生成部は、図6に示すように、第2の深度表現207において、計算した補正値に基づいて、第1の障害物の深度を605から615に補正し、第2の障害物の深度を611から621に補正し、第3の障害物の深度を609から619に補正する。同様に、第3の深度表現生成部は、図6に示すように、第3の深度表現209において、計算した補正値に基づいて、第2の障害物の深度を631から641に補正し、第3の障害物の深度を629から639に補正し、第4の障害物の深度を607から617に補正する。これにより、検出された物体の深度情報が修正されている、補正した第2の深度表現及び補正した第3の深度表現(図4に示す207R、209R)が得られる。
このLIDAR部814を用いることにより、移動体の周辺に存在する物体についてより高精度の深度情報を有するポイントクラウド816(「第4の深度表現」ともいう)を取得することができるため、ステレオ画像間の視差に基づいて生成された深度表現である第1の深度表現208を、このポイントクラウド816に基づいて補正することにより、実施例1に示す障害物検知装置200に比べて、更に高精度の障害物検出が可能となる。
なお、本実施例では、第1の深度表現、第2の深度表現、及び第3の深度表現を深度マップとした場合を想定して説明するが、本開示はこれに限定されず、移動体と、当該移動体の周辺に存在する物体までの距離を示すものであれば、異なるデータ構造であってもよい。
なお、図9に示す障害物検知方法960は、LIDAR部によって取得したポイントクラウドを用いてステレオ画像間の視差に基づいて生成された深度表現である第1の深度表現を補正する点において、上述した図3に示す障害物検知方法360と相違する。この点以外、図9に示す障害物検知方法960は上述した図3に示す障害物検知方法360と実質的に同様であるため、ここでは、共通のステップについての説明を省略する。
なお、対象物ごとの深度情報の数、分解能は、レーザー光をどのぐらいの間隔で走査するかといった走査方法で決定される。
なお、ポイントクラウドに基づいて第1の深度表現を補正する処理の詳細については後述する。
このように、ステレオ画像間の視差に基づいて生成された深度表現である第1の深度表現を、このポイントクラウド816に基づいて補正することにより、実施例1に比べて、更に高精度の障害物検出が可能となる。
その後、第1の深度表現生成部は、各ポイントについて計算した差分値を平均化し、補正値とする。最後に、第1の深度表現生成部は、計算した補正値に基づいて、深度表現208の各ポイント1001を正しい深度1002に移動させることで、補正した第1の深度表現を生成する。
これにより、実施例1に比べて、更に高精度の深度情報を有する深度表現を生成することができるため、より高精度の障害物検出が可能となる。
図11に示す結合深度表現生成処理1100は、第1の深度表現208、第2の深度表現207、及び第3の深度表現209をポイントクラウドに変換せず、深度表現に対して直接にグルーピングを行う点において、上述した実施例1における結合深度表現生成処理400と異なる。このように、第1の深度表現208、第2の深度表現207、及び第3の深度表現209をポイントクラウドに変換する処理を省略することにより、実施例1に比べてコンピューティング資源を節約することができる。ただし、バウンディングボックスの形式が2次元となるため、3次元のバウンディングボックスによるグルーピングができない。
なお、第1の深度表現208、第2の深度表現207、及び第3の深度表現209をポイントクラウドに変換する処理を省略する点以外、実施例3に係る示す結合深度表現生成処理1100は、実施例1に係る示す結合深度表現生成処理400と実質的に同様であるため、ここでは、共通のステップについての説明を省略する。
より具体的には、ステップS1104では、第3の深度表現生成部は、所定の物体検出アルゴリズム(406)によって定義されるバウンディングボックスの位置に基づいて、それぞれの深度表現の間で対応する物体をグルーピングした後、それぞれの深度表現でのグルーピングの結果を比較することで、第1の深度表現208と第2の深度表現207との深度の差分を示す深度差分値を計算する。なお、この処理の詳細は、図4~6を参照して説明したため、ここでは省略する。
より具体的には、ステップS1105では、第3の深度表現生成部は、所定の物体検出アルゴリズム(406)によって定義されるバウンディングボックスの位置に基づいて、それぞれの深度表現の間で対応する物体をグルーピングした後、それぞれの深度表現でのグルーピングの結果を比較することで、第1の深度表現208と第3の深度表現209との深度の差分を示す深度差分値を計算する。なお、この処理の詳細は、図4~6を参照して説明したため、ここでは省略する。
図12に示す結合深度表現生成処理1200は、バウンディングボックスによるグルーピングの代わりに、最近傍探索法を用いてグルーピングを行う点において、上述した実施例1における結合深度表現生成処理400と異なる。バウンディングボックスによるグルーピングの代わりに、最近傍探索法を用いてグルーピングを行うことにより、2次元及び3次元のデータを対応しつつ、実施例1に比べてコンピューティング資源を節約することができる。
最近傍探索(英: Nearest neighbor search, NNS)は、ポイントクラウド等のような距離空間における最も近い点を探す解法であり、線形探索や空間分割等の手法を含む。
なお、図12に示す結合深度表現生成処理1200は、バウンディングボックスによるグルーピングの代わりに、最近傍探索法を用いてグルーピングを行う点以外、実施例4に係る示す結合深度表現生成処理1200は、実施例1に係る示す結合深度表現生成処理400と実質的に同様であるため、ここでは、共通のステップについての説明を省略する。
より具体的には、ステップS1204では、第3の深度表現生成部は、第1の深度表現208に対応するポイントクラウドと、第2の深度表現207に対応するポイントクラウドとに対して最近傍探索法を施すことにより、これらのポイントクラウド間で最も近い点をグルーピングし、このグルーピングの結果を比較することで、第1の深度表現208と第2の深度表現207との深度の差分を示す深度差分値を計算する。
より具体的には、ステップS1205では、第3の深度表現生成部は、第1の深度表現208に対応するポイントクラウドと、第3の深度表現209に対応するポイントクラウドとに対して最近傍探索法を施すことにより、これらのポイントクラウド間で最も近い点をグルーピングし、このグルーピングの結果を比較することで、第1の深度表現208と第3の深度表現209との深度の差分を示す深度差分値を計算する。
LIDAR部814から出力されるポイントクラウド1310を第1の深度表現の代わりに用いることにより、遠距離の物体についての深度情報の精度が限られている、ステレオ画像間の視差に基づいて生成された深度表現が不要となり、更に高精度の障害物検出が可能となる。
なお、本実施例では、第2の深度表現及び第3の深度表現を深度マップとした場合を想定して説明するが、本開示はこれに限定されず、移動体と、当該移動体の周辺に存在する物体までの距離を示すものであれば、異なるデータ構造であってもよい。
なお、図14に示す障害物検知方法1460は、LIDAR部から出力されるポイントクラウド1310を第1の深度表現の代わりに用いる点において、上述した図3に示す障害物検知方法360と相違する。この点以外、図14に示す障害物検知方法1460は上述した図3に示す障害物検知方法360と実質的に同様であるため、ここでは、共通のステップについての説明を省略する。
ここでの結合深度表現212とは、遠距離の物体に関する正確な深度情報を示す機械学習に基づいた深度表現である第2の深度表現207及び・又は第3の深度表現209と、ステレオ画像間の視差に基づいて生成された深度表現より高精度の深度情報を有するポイントクラウドとから生成されるため、例えば実施例1に比べて更に高精度の障害物検出が可能となる。
図15に示す結合深度表現生成処理1500は、LIDAR部から出力されるポイントクラウド1310を第1の深度表現の代わりに用いる点において、上述した図4に示す結合深度表現生成処理400と相違する。この点以外、図15に示す結合深度表現生成処理1500は上述した図4に示す結合深度表現生成処理400と実質的に同様であるため、ここでは、共通のステップについての説明を省略する。
より具体的には、ステップS1504では、第3の深度表現生成部は、所定の物体検出アルゴリズム(406)によって定義されるバウンディングボックスの位置に基づいて、それぞれのポイントクラウドの間で対応する物体をグルーピングした後、それぞれのポイントクラウドでのグルーピングの結果を比較することで、LIDAR部のポイントクラウド1310と第2の深度表現207との深度の差分を示す深度差分値を計算する。なお、この処理の詳細は、図4~6を参照して説明したため、ここでは省略する。
より具体的には、ステップS1505では、第3の深度表現生成部は、所定の物体検出アルゴリズム(406)によって定義されるバウンディングボックスの位置に基づいて、それぞれのポイントクラウドの間で対応する物体をグルーピングした後、それぞれのポイントクラウドでのグルーピングの結果を比較することで、第1の深度表現208と第3の深度表現209との深度の差分を示す深度差分値を計算する。なお、この処理の詳細は、図4~6を参照して説明したため、ここでは省略する。
201 第1のセンサ
202 第2のセンサ
203 第1の画像
204 第2の画像
205 第1の深度表現生成部
206 第2の深度表現生成部
207 第2の深度表現
208 第1の深度表現
209 第3の深度表現
210 第3の深度表現生成部
212 結合深度表現
214 障害物検出部
216 障害物情報
Claims (7)
- 移動体の周辺の障害物を検知する障害物検知装置であって、
前記障害物検知装置は、
第1のセンサによって取得された第1の画像と、第2のセンサによって取得された第2の画像とから生成される視差画像を用いて、前記移動体と前記移動体の周辺に存在する物体との距離を示す第1の深度表現を生成する第1の深度表現生成部と、
前記第1の画像を所定の機械学習手法によって処理することにより、前記移動体と前記移動体の周辺に存在する物体との距離を示す第2の深度表現を生成する第2の深度表現生成部と、
前記第1の深度表現を第1のポイントクラウドに変換し、
前記第2の深度表現を第2のポイントクラウドに変換し、
所定の物体検出手法によって第1のポイントクラウドにおいて存在する第1の物体を特定し、
前記所定の物体検出手法によって第2のポイントクラウドにおいて存在し、前記第1の物体に対応する第2の物体を特定し、
前記第1の物体と、前記第2の物体とを対応付けて比較することで、前記第1の深度表現と前記第2の深度表現との深度の差分を示す深度差分値を計算し、
前記深度差分値に基づいて、前記第2の深度表現によって示される、前記移動体と前記移動体の周辺に存在する物体との距離を前記第1の深度表現に整合するように補正し、補正した第2の深度表現を生成し、
前記第1の深度表現から、前記移動体から所定の距離未満に存在する物体に関する近距離物体深度情報を抽出し、
前記補正した第2の深度表現から、前記移動体から前記所定の距離以上に存在する物体に関する遠距離物体深度情報を抽出し、
前記近距離物体深度情報と、前記遠距離物体深度情報とを結合することで、
前記第1の深度表現と前記第2の深度表現とに比べて、前記移動体と前記移動体の周辺に存在する物体との距離をより正確に示す結合深度表現を生成する第3の深度表現生成部と、
前記結合深度表現を用いて、前記移動体の周辺の障害物に関する障害物情報を生成し、出力する障害物検出部と、
を含むことを特徴とする障害物検知装置。 - 前記障害物検知装置は、
レーザー光を走査し移動体の周辺を照射し、その散乱や反射光を観測することで前記移動体と前記移動体の周辺に存在する物体との距離を示す第4の深度表現を生成するLIDAR(Light Detection and Ranging)部を更に含み、
前記第3の深度表現生成部は、
前記第4の深度表現に基づいて、前記第1の深度表現によって示される、前記移動体と前記移動体の周辺に存在する物体との距離を補正し、補正した第1の深度表現を生成し、
前記深度差分値に基づいて、前記第2の深度表現によって示される、前記移動体と前記移動体の周辺に存在する物体との距離を補正し、
補正した第2の深度表現を生成し、
前記補正した第1の深度表現から、前記移動体から所定の距離未満に存在する物体に関する近距離物体深度情報を抽出し、
前記補正した第2の深度表現から、前記移動体から前記所定の距離以上に存在する物体に関する遠距離物体深度情報を抽出し、
前記近距離物体深度情報と、前記遠距離物体深度情報とを結合することで、前記結合深度表現を生成する、
ことを特徴とする、請求項1に記載の障害物検知装置。 - 前記第1のセンサ及び前記第2のセンサは、
ステレオカメラであり、
前記第1の画像及び前記第2の画像は、前記ステレオカメラによって取得されたステレオ画像であり、
前記第1の深度表現は、
前記ステレオ画像によって生成されるステレオ深度マップである、
ことを特徴とする、請求項1に記載の障害物検知装置。 - 前記第3の深度表現生成部は、
前記第1の画像と、前記第2の画像とから生成される視差画像を用いて生成した前記第1の深度表現と、
前記第1の画像を所定の機械学習手法によって処理することによって生成した前記第2の深度表現と、
前記第2の画像を所定の機械学習手法によって処理することによって生成した第3の深度表現と、
を結合することで、前記結合深度表現を生成する、
ことを特徴とする、請求項1に記載の障害物検知装置。 - 前記機械学習手法は、
前記第1の画像を入力する入力層と、
前記第1の画像における物体を特徴付けるコンテキスト特徴量を抽出する中間層と、
前記コンテキスト特徴量を用いて、前記第1の画像の画素毎の深度情報を示す前記第1の深度表現を生成し、出力する出力層を含むニューラルネットワークである、
ことを特徴とする、請求項1に記載の障害物検知装置。 - 移動体の周辺の障害物を検知する障害物検知システムであって、
前記障害物検知システムにおいて、
前記移動体の周辺を撮影し、第1の画像を取得する第1のセンサと、
前記移動体の周辺を撮影し、第2の画像を取得する第2のセンサと、
障害物を検知する障害物検知装置とが通信ネットワークを介して接続されており、
前記障害物検知装置は、
前記第1のセンサから受信した前記第1の画像と、前記第2のセンサから受信した前記第2の画像とから生成される視差画像を用いて、前記移動体と前記移動体の周辺に存在する物体との距離を示す第1の深度マップを生成する第1の深度表現生成部と、
前記第1の画像を所定の機械学習手法によって処理することにより、前記移動体と前記移動体の周辺に存在する物体との距離を示す第2の深度マップを生成する第2の深度表現生成部と、
前記第1の深度マップを第1のポイントクラウドに変換し、
前記第2の深度マップを第2のポイントクラウドに変換し、
所定の物体検出手法によって第1のポイントクラウドにおいて存在する第1の物体を特定し、
前記所定の物体検出手法によって前記第2のポイントクラウドにおいて存在し、前記第1の物体に対応する第2の物体を特定し、
前記第1の物体と、前記第2の物体とを対応付けて比較することで、前記第1の深度マップと前記第2の深度マップとの深度の差分を示す深度差分値を計算し、
前記深度差分値に基づいて、前記第2の深度マップによって示される、前記移動体と前記移動体の周辺に存在する物体との距離を前記第1の深度マップに整合するように補正し、補正した第2の深度マップを生成し、
前記第1の深度マップから、前記移動体から所定の距離未満に存在する物体に関する近距離物体深度情報を抽出し、
前記補正した第2の深度マップから、前記移動体から前記所定の距離以上に存在する物体に関する遠距離物体深度情報を抽出し、
前記近距離物体深度情報と、前記遠距離物体深度情報とを結合することで、
前記第1の深度マップと前記第2の深度マップとに比べて、前記移動体と前記移動体の周辺に存在する物体との距離をより正確に示す結合深度表現を生成する第3の深度表現生成部と、
前記結合深度表現を用いて、前記移動体の周辺の障害物に関する障害物情報を生成し、所定の通知先に送信する障害物検出部と、
を含むことを特徴とする障害物検知システム。 - 移動体の周辺の障害物を検知する障害物検知方法であって、
LIDAR部によって取得され、前記移動体と前記移動体の周辺に存在する物体との距離を示す深度表現としてポイントクラウドを生成する工程と、
第1のセンサによって取得される第1の画像を所定の機械学習手法によって処理することにより、前記移動体と前記移動体の周辺に存在する物体との距離を示す深度表現として深度マップを生成する工程と、
所定の物体検出手法によって前記ポイントクラウドにおいて存在する第1の物体を特定する工程と、
前記所定の物体検出手法によって前記深度マップにおいて存在し、前記第1の物体に対応する第2の物体を特定する工程と、
前記第1の物体と、前記第2の物体とを対応付けて比較することで、前記ポイントクラウドと前記深度マップとの深度の差分を示す深度差分値を計算する工程と、
前記深度差分値に基づいて、前記ポイントクラウド及び前記深度マップによって示される、前記移動体と前記移動体の周辺に存在する物体との距離を互いに整合するように前記ポイントクラウド及び前記深度マップのいずれか一方を補正する工程と、
前記ポイントクラウドと、前記深度マップとを結合することで、前記ポイントクラウドと、前記深度マップとに比べて、前記移動体と前記移動体の周辺に存在する物体との距離をより正確に示す結合深度表現を生成する工程と、
前記結合深度表現を用いて、前記移動体の周辺の障害物に関する障害物情報を生成し、出力する工程と、
を含むことを特徴とする障害物検知方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020151723A JP7389729B2 (ja) | 2020-09-10 | 2020-09-10 | 障害物検知装置、障害物検知システム及び障害物検知方法 |
EP21866382.1A EP4213128A4 (en) | 2020-09-10 | 2021-07-21 | OBSTACLE DETECTION DEVICE, OBSTACLE DETECTION SYSTEM, AND OBSTACLE DETECTION METHOD |
PCT/JP2021/027275 WO2022054422A1 (ja) | 2020-09-10 | 2021-07-21 | 障害物検知装置、障害物検知システム及び障害物検知方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020151723A JP7389729B2 (ja) | 2020-09-10 | 2020-09-10 | 障害物検知装置、障害物検知システム及び障害物検知方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2022045947A JP2022045947A (ja) | 2022-03-23 |
JP2022045947A5 JP2022045947A5 (ja) | 2023-03-14 |
JP7389729B2 true JP7389729B2 (ja) | 2023-11-30 |
Family
ID=80632534
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020151723A Active JP7389729B2 (ja) | 2020-09-10 | 2020-09-10 | 障害物検知装置、障害物検知システム及び障害物検知方法 |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP4213128A4 (ja) |
JP (1) | JP7389729B2 (ja) |
WO (1) | WO2022054422A1 (ja) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023195097A1 (ja) * | 2022-04-06 | 2023-10-12 | 日本電気株式会社 | 画像処理装置、そのプログラムが記録された非一時的なコンピュータ可読媒体及び方法 |
CN114694125B (zh) * | 2022-05-31 | 2022-08-26 | 杭州蓝芯科技有限公司 | 一种用于轨道异物识别的数据处理方法 |
JP2024097571A (ja) * | 2023-01-06 | 2024-07-19 | 株式会社日立製作所 | 環境認識装置並びに環境認識方法 |
CN115909815B (zh) * | 2023-01-06 | 2023-06-06 | 广州通达汽车电气股份有限公司 | 基于多元数据的融合检测方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004028727A (ja) | 2002-06-25 | 2004-01-29 | Fuji Heavy Ind Ltd | 監視システムおよび監視方法、当該監視システムにおける距離補正装置および距離補正方法 |
JP2019125112A (ja) | 2018-01-15 | 2019-07-25 | キヤノン株式会社 | 情報処理装置及びその制御方法及びプログラム、並びに、運転制御システム |
JP2020020612A (ja) | 2018-07-30 | 2020-02-06 | 株式会社リコー | 測距装置、測距方法、プログラム、移動体 |
JP2020126607A (ja) | 2019-01-31 | 2020-08-20 | 株式会社ストラドビジョンStradvision,Inc. | カメラから取得されたイメージと、それに対応するレーダまたはライダを通じて取得されたポイントクラウドマップをニューラルネットワークのそれぞれのコンボリューションステージごとに統合する学習方法及び学習装置、そしてそれを利用したテスト方法及びテスト装置 |
JP2019526878A5 (ja) | 2017-09-12 | 2020-10-22 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7786898B2 (en) | 2006-05-31 | 2010-08-31 | Mobileye Technologies Ltd. | Fusion of far infrared and visible images in enhanced obstacle detection in automotive applications |
JP5587930B2 (ja) * | 2012-03-09 | 2014-09-10 | 日立オートモティブシステムズ株式会社 | 距離算出装置及び距離算出方法 |
US20150381972A1 (en) | 2014-06-30 | 2015-12-31 | Microsoft Corporation | Depth estimation using multi-view stereo and a calibrated projector |
EP3358369A4 (en) * | 2015-09-30 | 2019-05-08 | Sony Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD, AND PROGRAM |
GB2553782B (en) * | 2016-09-12 | 2021-10-20 | Niantic Inc | Predicting depth from image data using a statistical model |
-
2020
- 2020-09-10 JP JP2020151723A patent/JP7389729B2/ja active Active
-
2021
- 2021-07-21 EP EP21866382.1A patent/EP4213128A4/en active Pending
- 2021-07-21 WO PCT/JP2021/027275 patent/WO2022054422A1/ja active Search and Examination
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004028727A (ja) | 2002-06-25 | 2004-01-29 | Fuji Heavy Ind Ltd | 監視システムおよび監視方法、当該監視システムにおける距離補正装置および距離補正方法 |
JP2019526878A5 (ja) | 2017-09-12 | 2020-10-22 | ||
JP2019125112A (ja) | 2018-01-15 | 2019-07-25 | キヤノン株式会社 | 情報処理装置及びその制御方法及びプログラム、並びに、運転制御システム |
JP2020020612A (ja) | 2018-07-30 | 2020-02-06 | 株式会社リコー | 測距装置、測距方法、プログラム、移動体 |
JP2020126607A (ja) | 2019-01-31 | 2020-08-20 | 株式会社ストラドビジョンStradvision,Inc. | カメラから取得されたイメージと、それに対応するレーダまたはライダを通じて取得されたポイントクラウドマップをニューラルネットワークのそれぞれのコンボリューションステージごとに統合する学習方法及び学習装置、そしてそれを利用したテスト方法及びテスト装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2022045947A (ja) | 2022-03-23 |
EP4213128A4 (en) | 2024-09-25 |
WO2022054422A1 (ja) | 2022-03-17 |
EP4213128A1 (en) | 2023-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7389729B2 (ja) | 障害物検知装置、障害物検知システム及び障害物検知方法 | |
WO2020102944A1 (zh) | 点云处理方法、设备及存储介质 | |
US11669972B2 (en) | Geometry-aware instance segmentation in stereo image capture processes | |
CN110226186B (zh) | 表示地图元素的方法和装置以及定位的方法和装置 | |
CN110826499A (zh) | 物体空间参数检测方法、装置、电子设备及存储介质 | |
US11455806B2 (en) | System and method for free space estimation | |
CN112346073A (zh) | 一种动态视觉传感器与激光雷达数据融合方法 | |
JP2022045947A5 (ja) | ||
US20220301277A1 (en) | Target detection method, terminal device, and medium | |
KR102167835B1 (ko) | 영상 처리 방법 및 장치 | |
KR20210090384A (ko) | 카메라 및 라이다 센서를 이용한 3d 객체 검출방법 및 장치 | |
US12061252B2 (en) | Environment model using cross-sensor feature point referencing | |
JP2006252473A (ja) | 障害物検出装置、キャリブレーション装置、キャリブレーション方法およびキャリブレーションプログラム | |
WO2021114776A1 (en) | Object detection method, object detection device, terminal device, and medium | |
WO2021114773A1 (en) | Target detection method, device, terminal device, and medium | |
US11842440B2 (en) | Landmark location reconstruction in autonomous machine applications | |
CN114692720A (zh) | 基于鸟瞰图的图像分类方法、装置、设备及存储介质 | |
KR102003387B1 (ko) | 조감도 이미지를 이용한 교통 장애물의 검출 및 거리 측정 방법, 교통 장애물을 검출하고 거리를 측정하는 프로그램을 저장한 컴퓨터 판독가능 기록매체 | |
JP2007233440A (ja) | 車載用画像処理装置 | |
WO2021114775A1 (en) | Object detection method, object detection device, terminal device, and medium | |
CN113281770A (zh) | 坐标系关系获取方法及装置 | |
WO2018120932A1 (en) | Method and apparatus for optimizing scan data and method and apparatus for correcting trajectory | |
WO2024018726A1 (ja) | プログラム、方法、システム、道路マップ、および道路マップの作成方法 | |
JP2007233755A (ja) | 画像処理装置、及び画像処理方法 | |
CN115909274A (zh) | 面向自动驾驶的动态障碍物检测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230303 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230303 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20231107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20231117 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7389729 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |