[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7386454B2 - Underwater shortwave heating method - Google Patents

Underwater shortwave heating method Download PDF

Info

Publication number
JP7386454B2
JP7386454B2 JP2019222656A JP2019222656A JP7386454B2 JP 7386454 B2 JP7386454 B2 JP 7386454B2 JP 2019222656 A JP2019222656 A JP 2019222656A JP 2019222656 A JP2019222656 A JP 2019222656A JP 7386454 B2 JP7386454 B2 JP 7386454B2
Authority
JP
Japan
Prior art keywords
food
water
temperature
electrodes
underwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019222656A
Other languages
Japanese (ja)
Other versions
JP2020171271A (en
Inventor
邦彦 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Publication of JP2020171271A publication Critical patent/JP2020171271A/en
Application granted granted Critical
Publication of JP7386454B2 publication Critical patent/JP7386454B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Description

本発明は短波帯域(例えば3MHz~300MHz)の周波数の交流を食品などに印加して食品を加熱処理する方法に関する。 The present invention relates to a method for heat-treating foods by applying alternating current at a frequency in a short wave band (for example, 3 MHz to 300 MHz) to the foods.

包装容器内に収納した食品を加熱殺菌する方法のうち、加圧蒸気や熱水などの包装容器の外部の熱源を使用する加熱では食品自体が発熱するわけではないので、食品の中心部における温度が上昇せず加熱殺菌が不十分になりやすい。 Among methods of heating and sterilizing food stored in packaging containers, heating using a heat source external to the packaging container, such as pressurized steam or hot water, does not generate heat from the food itself, so the temperature at the center of the food heat sterilization tends to be insufficient as the temperature does not rise.

そこで、本発明者は特許文献1には食品自体を発熱させる殺菌方法を提案している。この方法は水を満たす耐圧容器内に一対の筒状電極を同軸状に配置し、これら対をなす筒状電極間を食品収納空間とし、対向する筒状電極間に短波帯の交流を印加することで食品を加熱殺菌するようにしている。 Therefore, the present inventor has proposed a sterilization method in which the food itself generates heat in Patent Document 1. In this method, a pair of cylindrical electrodes are placed coaxially in a pressure container filled with water, the space between the pair of cylindrical electrodes is used as a food storage space, and a short wave band alternating current is applied between the opposing cylindrical electrodes. This is used to sterilize food by heating.

また、特許文献2には、対向する狭い電極間の間隙に液体食品材料を連続的に流すとともに、その電極間に20kHz以下の交流の高電圧を印加して、電極間に生成される交流電界により連続的に殺菌する交流高電界殺菌法が開示されている。 Furthermore, in Patent Document 2, a liquid food material is continuously flowed into a gap between narrow opposing electrodes, and a high alternating current voltage of 20 kHz or less is applied between the electrodes to generate an alternating current electric field between the electrodes. An alternating current high electric field sterilization method for continuous sterilization is disclosed.

上記特許文献2の方法では、電気伝導率の高い液体食品や固体食品の場合に、温度が必要以上に上昇してしまう。そこで特許文献3には、交流電界にパルス電界を重畳させた電界を食品に印加する提案がなされている。 In the method of Patent Document 2, the temperature of liquid foods and solid foods with high electrical conductivity increases more than necessary. Therefore, Patent Document 3 proposes applying an electric field in which a pulsed electric field is superimposed on an alternating current electric field to foods.

特開2016-111928号公報Japanese Patent Application Publication No. 2016-111928 特許第2848591号公報Patent No. 2848591 特開2007-229319号公報Japanese Patent Application Publication No. 2007-229319

上述した特許文献1は特許文献2や3に開示される方法の問題点、つまり食品の温度が必要以上に上昇してしまう問題点、3MHz以下の周波数を用いるとプラスチックフィルムで包まれたり、プラスチック容器に入っている食品(パウチ食品)を外部から殺菌することができない問題点を解消するものである。 Patent Document 1 mentioned above has problems with the methods disclosed in Patent Documents 2 and 3, that is, the temperature of the food increases more than necessary, and if a frequency of 3 MHz or less is used, the food may be wrapped in a plastic film, or the food may be wrapped in a plastic film. This solves the problem that food contained in containers (pouched food) cannot be sterilized from the outside.

しかしながら、特許文献1にあっては、同軸状に配置された電極間に短波域の交流を印加する構成になっている。この構成の場合、水槽内に入れた食品(パウチ食品)のみならず、水槽内の水も同時に加熱することになる。容器内の水を加熱することはエネルギーが余分に必要になり且つ処理時間の短縮も図れない。
また、容器の内壁に沿って一対の平行平板電極を配置した構成としても上記と同様の問題が生じる。
However, in Patent Document 1, an alternating current in a short wave range is applied between electrodes arranged coaxially. In the case of this configuration, not only the food (pouched food) placed in the water tank but also the water in the water tank is heated at the same time. Heating the water in the container requires extra energy and does not shorten the processing time.
Furthermore, the same problem as above occurs even when a pair of parallel plate electrodes are arranged along the inner wall of the container.

一方、容器(水槽)内の水の量を少なくすると、均一加熱を行うことができず、このため一定量以上の水を入れるとともに循環を行っているので、更にエネルギーが必要になる。 On the other hand, if the amount of water in the container (aquarium) is reduced, uniform heating cannot be achieved, and therefore more energy is required because more than a certain amount of water is put in and circulated.

上記課題を解決するため本発明に係る水中短波帯加熱方法は、水を満たした処理容器内に処理対象となる食品をセットし、この食品の両端面に電極を密着させ、この状態で電極間に短波帯域の交流を印加する構成である。ここで食品と電極との間に不可避的に水や微細気泡が入り込んだ状態も密着である。 In order to solve the above problems, the underwater shortwave heating method according to the present invention sets the food to be processed in a processing container filled with water, brings electrodes into close contact with both end surfaces of the food, and in this state, between the electrodes. The configuration is such that shortwave band alternating current is applied to the Here, a state in which water or microbubbles inevitably enter between the food and the electrode is also considered to be close contact.

上記において、複数の食品を同時に加熱処理する場合には、複数の食品を重ね、且つ重ね合わせた食品の両端面に前記電極を密着させるとともに重ね合わせた食品間に導板(金属板)を密着配置させた状態で電極間に短波帯域の交流を印加する。 In the above, when heat-treating multiple foods at the same time, the multiple foods are stacked, and the electrodes are closely attached to both end surfaces of the stacked foods, and a conductive plate (metal plate) is tightly attached between the stacked foods. Short wave band alternating current is applied between the electrodes in the arranged state.

前記電極および導板の形状は処理される食品の端面形状と同じ形状か端面を完全に覆うことができる形状であることが好ましい。食品の端面形状に比較して電極(導板)が極端に小さいと、電極で挟まれた食品の部分の温度が高くなり、均一加熱を行えない。 It is preferable that the shape of the electrode and the conductive plate be the same as the shape of the end surface of the food to be processed, or a shape that can completely cover the end surface. If the electrodes (conducting plates) are extremely small compared to the shape of the end surface of the food, the temperature of the portion of the food sandwiched between the electrodes will be high, making it impossible to heat uniformly.

食品と電極とを密着させたので、食品と電極との間に水が存在せず直接食品を加熱するため、従来にあっては食品と電極との間の水を加熱していたが、この加熱が不要となり消費電力が少なくなる。また、食品と電極とが直接接触しているので必要温度まで短時間で昇温させることができる。 Since the food and the electrode are in close contact, there is no water between the food and the electrode, and the food is heated directly. Conventionally, the water between the food and the electrode was heated, but this method heats the food directly. Heating is not required and power consumption is reduced. Furthermore, since the food and the electrode are in direct contact, the temperature can be raised to the required temperature in a short time.

食品と電極が完全に密着しない隙間には、水が入り込むため、隙間が無い場合と同様、食品を均一に加熱することができる。 Water enters the gap where the food and electrode are not in perfect contact with each other, so the food can be heated evenly as if there were no gap.

更に、本発明によれば複数の食品を同時に処理する場合でも、各食品の加熱にバラツキが生じることなく、均一加熱処理を行える。 Furthermore, according to the present invention, even when a plurality of foods are processed at the same time, uniform heat treatment can be performed without variations in the heating of each food.

また、処理容器の大きさまたは形状として、処理容器内に収納される食品と処理容器内面との隙間が小さくなるものを選定し、食品周囲の水のインピーダンスを食品のインピーダンスに比べて大きくすれば、当該隙間に存在する水に流れる交流電流が少なくなり、消費電力を削減できる。 In addition, the size or shape of the processing container should be selected so that the gap between the food stored in the processing container and the inner surface of the processing container is small, and the impedance of water around the food should be made larger than the impedance of the food. , the amount of alternating current flowing through the water existing in the gap is reduced, and power consumption can be reduced.

また、加圧下で加熱することで100℃以上の温度まで短時間で加熱することができる。例えば、レトルト加熱処理では、食品の中心部が121℃で4分以上の条件を保持することが要求される。加圧下で水中短波帯加熱により短時間でこの条件をクリアすることができる。
具体的には、従来のレトルト加熱は加熱時間が1時間程度かかっているため、その間に魚や肉の物性や風味が激しく劣化する。このため風味の劣化を大量の香辛料で補うレトルトカレーのような食品が市販されているが、香辛料を少なくした薄味の食品でレトルト加熱したものは市販されていない。また、ソーセージや蒲鉾などをレトルト加熱するとゲルが軟化してしまうため、低温加熱を行ったものはチルドで2~3週間の賞味期限となる。
しかしながら本発明によれば100℃以上の加熱時間を短くできるので、レトルト食品と同様に常温長期間保存可能な加工食品でかつ熱劣化の少ない高品質なものを製造することができ、例えば、スーパーのチルドコーナーで売られている賞味期限が2~3週間のソーセージや蒲鉾なども常温の棚で販売することができ、海外輸出も可能となる。
Further, by heating under pressure, it is possible to heat the material to a temperature of 100° C. or more in a short time. For example, in retort heat treatment, the center of the food is required to be maintained at 121° C. for 4 minutes or more. This condition can be met in a short time by underwater shortwave heating under pressure.
Specifically, since conventional retort heating takes about one hour to heat, the physical properties and flavor of fish and meat deteriorate significantly during that time. For this reason, foods such as retort curry that compensate for the deterioration of flavor with large amounts of spices are on the market, but bland foods with less spices heated in retorts are not commercially available. Also, when sausages and kamaboko fish are heated in a retort, the gel softens, so items heated at low temperatures have a shelf life of 2 to 3 weeks when chilled.
However, according to the present invention, the heating time above 100°C can be shortened, so it is possible to produce high-quality processed foods that can be stored at room temperature for a long period of time, like retort foods, and that are less susceptible to thermal deterioration. Sausages and kamaboko fish, which are sold in the chilled section of Japan and have a best-before date of two to three weeks, can now be sold on shelves at room temperature, and can be exported overseas.

(a)は比較例を実施した加熱装置の縦断面図、(b)は同加熱装置の等価回路(a) is a vertical cross-sectional view of a heating device in which a comparative example was implemented, and (b) is an equivalent circuit of the same heating device. 図1の加熱装置を用いてRF加熱した場合の加熱時間と水及び食品の温度変化を示すグラフGraph showing heating time and temperature changes of water and food when performing RF heating using the heating device in Figure 1 図1の加熱装置を用いて温水加熱した場合の加熱時間と水及び食品の温度変化を示すグラフGraph showing heating time and temperature changes of water and food when hot water is heated using the heating device in Figure 1 (a)は本発明に係る水中短波帯加熱方法を実施した加熱装置の縦断面図、(b)は同加熱装置の等価回路(a) is a vertical cross-sectional view of a heating device that implements the underwater shortwave band heating method according to the present invention, and (b) is an equivalent circuit of the same heating device. 図4の加熱装置を用いてRF加熱した場合の加熱時間と水及び食品の温度変化を示すグラフGraph showing heating time and temperature changes of water and food when performing RF heating using the heating device in Figure 4 別実施例に係る加圧加熱装置の縦断面図Longitudinal cross-sectional view of a pressurizing and heating device according to another embodiment 図6の加圧加熱装置を用いてRF加熱した場合の加熱時間と水及び食品の温度変化を示すグラフGraph showing heating time and temperature changes of water and food when performing RF heating using the pressure heating device in Figure 6

以下に本発明の比較例と好適な実施例を添付図面に基づいて説明する。
図1(a)は比較例を実施した加熱装置の縦断面図、(b)は同加熱装置の等価回路を示す。ただし、27MHzの周波数の場合、プラスチック包材のインピーダンスは食品のインピーダンスに比べて小さくなるため、無視した。
加熱装置は処理容器(水槽)1内に短波帯高周波電源2につながる平行平板電極3,3を配置し、これら平行平板電極3,3間に食品4を吊り下げ可能とし、更に容器1内に満たした水を一定温度に保つため、容器1内の水をポンプ5及び熱交換器6を介して循環させている。また、食品4には内部温度を測定するため光ファイバー温度計7を挿入している。
Comparative examples and preferred embodiments of the present invention will be described below with reference to the accompanying drawings.
FIG. 1(a) is a longitudinal cross-sectional view of a heating device according to a comparative example, and FIG. 1(b) shows an equivalent circuit of the same heating device. However, in the case of a frequency of 27 MHz, the impedance of the plastic packaging material is smaller than the impedance of the food product, so it was ignored.
The heating device arranges parallel plate electrodes 3, 3 connected to a short wave band high frequency power source 2 in a processing container (water tank) 1, and allows food 4 to be suspended between these parallel plate electrodes 3, 3. In order to maintain the filled water at a constant temperature, the water in the container 1 is circulated via a pump 5 and a heat exchanger 6. Further, an optical fiber thermometer 7 is inserted into the food 4 to measure the internal temperature.

装置の寸法などは以下の通りである。
容器(水槽)の内寸:縦150cm×横50cm×高さ200cm
食品:ポテトサラダ500gを内寸法140cm×140cmのプラスチック包材に詰めたパウチ食品
電極:150cm×200cmの銅板
印加高周波:27MHz×2kW
水温:80℃
The dimensions of the device are as follows.
Inner dimensions of container (water tank): length 150cm x width 50cm x height 200cm
Food: A pouch containing 500 g of potato salad packed in a plastic packaging material with inner dimensions of 140 cm x 140 cm. Food Electrode: 150 cm x 200 cm copper plate Applied high frequency: 27 MHz x 2 kW
Water temperature: 80℃

上記の加熱装置を用いて、食品を加熱した結果を図2に示す。また、上記の加熱装置を用い且つ高周波を印加せず、循環水の温度のみ(外部加熱)で食品を75℃まで加熱した結果を図3に示す。 FIG. 2 shows the results of heating food using the above heating device. Further, FIG. 3 shows the results of heating the food to 75° C. using the above-mentioned heating device and using only the temperature of the circulating water (external heating) without applying high frequency.

図2と図3を比較すると、温水を用いて食品を外部から加熱する場合には、食品の内部温度が75℃になるまで2000秒を要したが、高周波を印加した場合には、75℃に達するまでの時間を180秒まで短縮できた。この間に消費したエネルギーは732Wであった。 Comparing Figures 2 and 3, when heating food externally using hot water, it took 2000 seconds for the internal temperature of the food to reach 75°C, but when high frequency was applied, it took 2000 seconds to reach 75°C. The time it takes to reach this point was reduced to 180 seconds. The energy consumed during this period was 732W.

一方、高周波を印加した場合には、容器(水槽)内の水温が80℃を超えて97℃まで昇温した。この水温上昇は高周波を印加した結果である。つまりこの比較例の場合は容器内の水温を高くするために無駄なエネルギーが消費されている。 On the other hand, when high frequency was applied, the water temperature in the container (water tank) exceeded 80°C and rose to 97°C. This water temperature increase is the result of applying high frequency. In other words, in this comparative example, energy is wasted in order to raise the temperature of the water in the container.

図4(a)は本発明方法を実施した加熱装置の縦断面図、(b)は同加熱装置の等価回路を示す。図4に示す実施例にあっては、複数の食品4を同時に加熱処理する例を示している。 FIG. 4(a) is a longitudinal cross-sectional view of a heating device that implements the method of the present invention, and FIG. 4(b) shows an equivalent circuit of the same heating device. The embodiment shown in FIG. 4 shows an example in which a plurality of foods 4 are heat-treated at the same time.

加熱装置の寸法などは以下の通りである。
容器(水槽)の内寸:縦150cm×横150cm×高さ250cm
食品:ポテトサラダ250gを内寸法140cm×150cmのプラスチック包材に詰めたパウチ食品
電極:130cm×140cmの銅板
導板:130cm×130cmの銅板
印加高周波:27MHz×2kW
水温:80℃
The dimensions of the heating device are as follows.
Inner dimensions of the container (water tank): Length 150cm x Width 150cm x Height 250cm
Food: 250g of potato salad packed in a plastic packaging material with inner dimensions of 140cm x 150cm Food Electrode: 130cm x 140cm copper plate Conductor plate: 130cm x 130cm copper plate Applied high frequency: 27MHz x 2kW
Water temperature: 80℃

本発明方法にあっては、容器1の底面に板状の電極3を固定し、この電極3の上に食品4を1つ置き、この食品4の上に導板8を重ね、これを繰り返して複数(図示例では4個)の食品4を間に導板8を挟み込んだ状態で上下に重ね合わせ、重ね合わせた食品の上端面に電極3を載せる。
電極3及び導板8の形状は食品の重ねられる面と同じ形状若しくはこれに近い形状が好ましい。
In the method of the present invention, a plate-shaped electrode 3 is fixed to the bottom of the container 1, one food item 4 is placed on top of this electrode 3, a conductive plate 8 is placed on top of this food item 4, and this is repeated. A plurality of (four in the illustrated example) foods 4 are stacked one on top of the other with conductive plates 8 interposed therebetween, and electrodes 3 are placed on the upper end surfaces of the stacked foods.
The shape of the electrode 3 and the conductive plate 8 is preferably the same as the surface on which the food is stacked, or a shape close to this.

食品4と電極3または導板8を密着させるために、そこで、上端の電極3の上に重し(200g程度)を載せるか同等の力で押さえつけることが好ましい。 In order to bring the food 4 into close contact with the electrode 3 or the conductive plate 8, it is preferable to place a weight (approximately 200 g) on top of the electrode 3 at the upper end or press it down with an equivalent force.

上記の加熱装置を用いて、食品を加熱した結果を図5に示す。尚、食品の温度は下から2番目と4番目の食品の温度を光ファイバー温度計で測定した。
図5から複数の食品は略同一の昇温過程をたどる結果を得た。これは、4個の食品を直列接続しているため、各食品に等しい電流が流れたためである。因みに4つの食品の温度差は3℃以内であった。並列接続にすると、温度が高い食品に多くの電流が流れるため、各食品の温度差は拡大することになる。
FIG. 5 shows the results of heating food using the above heating device. The temperature of the second and fourth foods from the bottom was measured using an optical fiber thermometer.
From FIG. 5, results were obtained in which a plurality of foods follow substantially the same temperature increase process. This is because the four foods were connected in series, so an equal current flowed through each food. Incidentally, the temperature difference between the four foods was within 3°C. When connected in parallel, more current flows through the higher temperature food, increasing the temperature difference between each food.

実施例の場合、食品(ポテトサラダ:1000g)の中心温度が75℃になるまでに250秒を要した。ポテトサラダの比熱を1.0とすると1172Wのエネルギーが使用されたことになる。 In the case of the example, it took 250 seconds for the center temperature of the food (potato salad: 1000 g) to reach 75°C. If the specific heat of potato salad is 1.0, then 1172W of energy was used.

一方、比較例では500gのポテトサラダが75℃になるまで180秒かかったので、単純に計算すると、実施例の場合は1000gなので、360秒(180秒×2)かかる筈であるが、実際には4つのパウチ食品を重ねて同時処理しているので有効に電力が消費され、食品1個当たりの処理時間が短縮されている。 On the other hand, in the comparative example, it took 180 seconds for 500g of potato salad to reach 75°C.A simple calculation shows that in the case of the example, since it is 1000g, it should take 360 seconds (180 seconds x 2), but in reality Since four pouches of food are stacked and processed simultaneously, power is effectively consumed and the processing time per food is shortened.

また図5から水の温度より食品の温度が高くなることが分かる。これは、容器の内側面と食品との隙間を小さくし、隙間に入る水の量を少なくなるようにしているため、水のインピーダンスがポテトサラダのインピーダンスに比べて大きくなり水を流れる電流が少なくなった結果、水の発熱が小さくなり、水の温度は80℃を超えなかったと考えられる。 Furthermore, it can be seen from FIG. 5 that the temperature of the food is higher than the temperature of the water. This reduces the gap between the inner surface of the container and the food, reducing the amount of water that can enter the gap, so the impedance of the water is larger than that of potato salad, and the current flowing through the water is smaller. It is thought that as a result, the water generated less heat and the temperature of the water did not exceed 80°C.

図示例にあっては、4つのパウチ食品を上下方向に重ねて同時に加熱する例を示したが、同時に処理する食品数は任意であり、本発明は1つの食品を加熱処理する場合にも適用できる。また、図示例では上下方向に食品を重ねた例を示したが、食品を立てて横方向に重ねると、食品の上下で温度差が生じる。このため食品を寝かせて上下方向に重ねて加熱処理することが好ましい。 In the illustrated example, four pouched foods are stacked vertically and heated at the same time, but the number of foods that can be treated at the same time is arbitrary, and the present invention is also applicable to the case where one food is heated. can. Furthermore, although the illustrated example shows an example in which the food is stacked vertically, if the food is placed upright and stacked horizontally, a temperature difference will occur between the top and bottom of the food. For this reason, it is preferable to heat-process the foods by laying them out and stacking them vertically.

図6は別実施例に係る加圧加熱装置の縦断面図であり、この実施例では加圧下でRF加熱を行う構造となっている。
即ち処理容器1の外側に蓋付きの圧力容器11を配置し、圧力容器11の蓋には圧力計12を取り付けている。また処理容器1内には水が貯留され、この水を抜くためのドレーンパイプ13が処理容器1の底面に接続されている。
FIG. 6 is a longitudinal cross-sectional view of a pressure heating device according to another embodiment, and this embodiment has a structure in which RF heating is performed under pressure.
That is, a pressure vessel 11 with a lid is placed outside the processing vessel 1, and a pressure gauge 12 is attached to the lid of the pressure vessel 11. Further, water is stored in the processing container 1, and a drain pipe 13 for draining this water is connected to the bottom surface of the processing container 1.

また処理容器1の底面からは循環パイプ14が導出され、この循環パイプ14は圧力容器11の外側を通り蓋体を貫通して処理容器1の上方に先端が位置し、この先端にシャワーヘッド15が取り付けられている。 A circulation pipe 14 is led out from the bottom of the processing container 1, passes through the outside of the pressure container 11, penetrates the lid, and has a tip located above the processing container 1. is installed.

循環パイプ13の途中には循環ポンプ5及び熱交換器6が設けられ、熱交換器6では外部から温度制御した蒸気を供給することで水温を高め、この温度が高くなった水をシャワーヘッド14から処理容器1内に供給するようにしている。処理容器1内の水温は光ファイバー温度計16によって測定する。 A circulation pump 5 and a heat exchanger 6 are provided in the middle of the circulation pipe 13, and the heat exchanger 6 increases the water temperature by supplying temperature-controlled steam from the outside, and sends the water with this increased temperature to the shower head 14. The water is supplied into the processing container 1 from the inside. The water temperature in the processing container 1 is measured by an optical fiber thermometer 16.

処理容器1の底面から絶縁した位置に板状電極3(非接地電極)、水面近くに板状電極3(接地電極)を配置し、これら板状電極3、3間に食品を銅板7を介して4段重ねで配置している。ここで、前記板状電極3(接地電極と非接地電極)は整合器を介して短波帯高周波電源2に接続されている。 A plate-shaped electrode 3 (non-grounded electrode) is arranged at a position insulated from the bottom of the processing container 1, and a plate-shaped electrode 3 (grounded electrode) is arranged near the water surface, and food is placed between these plate-shaped electrodes 3 through a copper plate 7. They are arranged in four tiers. Here, the plate-shaped electrode 3 (grounded electrode and non-grounded electrode) is connected to the short wave band high frequency power source 2 via a matching box.

以上の加圧加熱装置を用いた具体的な実施例を以下に記載する。
食品として、豚ひき肉、タピオカ粉、塩、胡椒を混練したものを羊腸に詰め、一本約50gのソーセージを製造した。このソーセージ4本(約200g)を真空パウチ包装して試料とした。
A specific example using the above pressure heating device will be described below.
As food, minced pork, tapioca flour, salt, and pepper were kneaded and stuffed into sheep intestines to produce sausages weighing approximately 50 g each. Four sausages (approximately 200 g) were packaged in vacuum pouches and used as samples.

4個のパウチ包装試料のそれぞれ間に銅板を挟んで積み重ねたものを、処理容器1内の下部の板状電極3(非接地電極)と上部の板状電極3(接地電極)で挟み、8kWの短波帯交流を印加した。 A stack of four pouch-packed samples with a copper plate sandwiched between each was sandwiched between the lower plate-shaped electrode 3 (non-grounded electrode) and the upper plate-shaped electrode 3 (grounded electrode) in the processing container 1, and a 8kW Short wave band alternating current was applied.

8kWの短波帯交流を印加した結果を図7に示す。図7は加熱中の周囲の水温、食品(ソーセージ)中心部の温度履歴を示しており、560秒から1060までの500秒間、短波帯を印加した結果、ソーセージの中心温度は16℃から130℃まで昇温した。一方、パウチの周囲の水温は560秒から960秒まで短波帯のみで加熱され、960秒以降は120℃の蒸気による熱交換水も利用して加熱した。 Figure 7 shows the results of applying 8kW shortwave AC. Figure 7 shows the temperature history of the surrounding water temperature and the center of the food (sausage) during heating.As a result of applying the short wave band for 500 seconds from 560 seconds to 1060, the temperature at the center of the sausage ranged from 16℃ to 130℃. The temperature rose to On the other hand, the water temperature around the pouch was heated only in the short wave band from 560 seconds to 960 seconds, and after 960 seconds, heat exchange water using 120° C. steam was also used to heat the water.

図7からも明らかなように、処理開始から約700秒経過した時点で、水の温度より食品の温度が高くなることが分かる。これは、前記と同様に容器の内側面と食品との隙間を小さくし、隙間に入る水の量を少なくなるようにしているため、水のインピーダンスが食品のインピーダンスに比べて大きくなり水を流れる電流が少なくなった結果、水の発熱が小さくなり、食品に多くの電流が流れて食品中心部の温度が水の温度を上回ったと考えられる。 As is clear from FIG. 7, it can be seen that the temperature of the food becomes higher than the temperature of the water after about 700 seconds have passed from the start of the process. This is because, as mentioned above, the gap between the inner surface of the container and the food is made smaller to reduce the amount of water that enters the gap, so the impedance of the water is larger than the impedance of the food and the water flows. It is thought that as a result of the decrease in current, the water generated less heat, and more current flowed through the food, causing the temperature at the center of the food to exceed the temperature of the water.

本発明に係る食品の加熱処理方法は、ポテトサラダ、ソーセージに限らず、味噌、豆腐などのプラスチックフィルムに包まれた食品、プラスチック容器にパックされた食品の加熱処理に適用することができる。レトルト加熱と同程度の加熱処理をより短時間で行えることから、レトルト加熱の時短およびレトルト食品の高品質化が期待できる。 The food heat treatment method according to the present invention is applicable not only to potato salad and sausage, but also to heat treatment of foods wrapped in plastic films such as miso and tofu, and foods packed in plastic containers. Since the same level of heat treatment as retort heating can be performed in a shorter time, it is expected that retort heating time will be shortened and retort food will be of higher quality.

1…処理容器、2…短波帯高周波電源、3…電極、4…食品、5…ポンプ、6…熱交換器、7…導板(銅板)、11…圧力容器、12…圧力計、13…ドレーンパイプ、14…循環パイプ、15…シャワーヘッド、16…光ファイバー温度計。 DESCRIPTION OF SYMBOLS 1... Processing container, 2... Short wave band high frequency power supply, 3... Electrode, 4... Food, 5... Pump, 6... Heat exchanger, 7... Conductive plate (copper plate), 11... Pressure vessel, 12... Pressure gauge, 13... Drain pipe, 14...Circulation pipe, 15...Shower head, 16...Optical fiber thermometer.

Claims (3)

水を満たした処理容器内に処理対象となる食品を包んだ包材をセットし、この包材の両端面に不可避的に入り込む気泡および水を除き電極を前記包材に密着させ、この状態で電極間に短波帯域の交流を印加し、前記食品の温度が最高値まで加熱された時点で処理容器内の水温よりも高くなるようにすることを特徴とする水中短波帯加熱方法。 A packaging material containing food to be processed is set in a processing container filled with water, and air bubbles and water that inevitably enter the both ends of the packaging material are removed, and the electrodes are brought into close contact with the packaging material . An underwater short-wave band heating method characterized by applying short-wave band alternating current between electrodes so that the temperature of the food becomes higher than the water temperature in the processing container when the temperature of the food is heated to a maximum value. 請求項1に記載の水中短波帯加熱方法において、前記処理対象は複数の分離した食品を包んだ包材であり、これら複数の包材間に導板を上下方向に密着配置して重ね合わせ、この重ね合わせた包材の両端面に前記電極を密着させ、この状態で電極間に短波帯域の交流を印加することを特徴とする水中短波帯加熱方法。 2. The underwater shortwave heating method according to claim 1, wherein the object to be treated is a plurality of packaging materials wrapping a plurality of separated foods, and the plurality of packaging materials are stacked with conductive plates arranged in close contact with each other in the vertical direction, An underwater shortwave band heating method characterized by bringing the electrodes into close contact with both end faces of the stacked packaging materials , and applying shortwave band alternating current between the electrodes in this state. 請求項1に記載の水中短波帯加熱方法において、前記水を満たした処理容器は圧力容器内に設置されることを特徴とする水中短波帯加熱方法。
2. The underwater shortwave heating method according to claim 1, wherein the processing vessel filled with water is installed in a pressure vessel.
JP2019222656A 2019-04-10 2019-12-10 Underwater shortwave heating method Active JP7386454B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019074508 2019-04-10
JP2019074508 2019-04-10

Publications (2)

Publication Number Publication Date
JP2020171271A JP2020171271A (en) 2020-10-22
JP7386454B2 true JP7386454B2 (en) 2023-11-27

Family

ID=72830383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019222656A Active JP7386454B2 (en) 2019-04-10 2019-12-10 Underwater shortwave heating method

Country Status (1)

Country Link
JP (1) JP7386454B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111928A (en) 2014-12-11 2016-06-23 国立研究開発法人農業・食品産業技術総合研究機構 Pressure heat treatment device for food product and pressure heat treatment method therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS602165A (en) * 1983-06-18 1985-01-08 Dowa:Kk Preparation of electrically processed aquatic animal
JPH05308933A (en) * 1991-12-13 1993-11-22 Swork:Kk Preparation of food processed by electrification and apparatus therefor
US6023055A (en) * 1997-06-17 2000-02-08 Yamamoto Vinita Co., Ltd. Apparatus for heating prepackaged foods utilizing high frequency heating with electrodes in a sealed chamber

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016111928A (en) 2014-12-11 2016-06-23 国立研究開発法人農業・食品産業技術総合研究機構 Pressure heat treatment device for food product and pressure heat treatment method therefor

Also Published As

Publication number Publication date
JP2020171271A (en) 2020-10-22

Similar Documents

Publication Publication Date Title
De Alwis et al. The use of direct resistance heating in the food industry
Altemimi et al. Critical review of radio-frequency (RF) heating applications in food processing
KR101412903B1 (en) Device for pasteurizing a mass of foodstuff
Jiao et al. A new strategy to improve heating uniformity of low moisture foods in radio frequency treatment for pathogen control
CN106793812A (en) Microwave distillation system, the method for being used to heat food product using microwave distillation system, and the food product for being formulated for microwave destructive distillation
Dhingra et al. Stabilization of raw rice bran using ohmic heating
Jojo et al. Radio frequency heating and its application in food processing: A review
US20150216220A1 (en) Device for pasteurizing a mass of foodstuff
Tang et al. Radio-frequency heating in food processing
Lyng et al. Ohmic heating of foods
JP7386454B2 (en) Underwater shortwave heating method
JP6484783B2 (en) Pressurized heat treatment apparatus and pressure heat treatment method for food
US20130168386A1 (en) Method for uniformly heating products by means of a high-frequency electromagnetic alternating field
JP2018117605A (en) Adductor muscle processed product
Kong et al. Evaluation of heating uniformity in radio frequency heating systems using carrot and radish
Dhingra et al. Ohmic heating system for stabilization of rice bran
JP6731610B2 (en) Liquid food heat treatment method
JP2015023826A (en) Heating treatment method for food product
Premi et al. Microwave Dielectric Technology: Thermal Processing of Fruits and Vegetables
JPH04267866A (en) Continuous heating process for food
JP2008278817A (en) Aseptic production method for cooked food
JPH0640809B2 (en) How to heat food
Shiby et al. Radio Frequency Applications in Food Processing
BE571511A (en)
JP2005065550A (en) Method for producing fish-paste product and method for heat-treating processed food

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191223

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20191223

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231102

R150 Certificate of patent or registration of utility model

Ref document number: 7386454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150