[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7384735B2 - スパッタリング装置 - Google Patents

スパッタリング装置 Download PDF

Info

Publication number
JP7384735B2
JP7384735B2 JP2020069416A JP2020069416A JP7384735B2 JP 7384735 B2 JP7384735 B2 JP 7384735B2 JP 2020069416 A JP2020069416 A JP 2020069416A JP 2020069416 A JP2020069416 A JP 2020069416A JP 7384735 B2 JP7384735 B2 JP 7384735B2
Authority
JP
Japan
Prior art keywords
target
sputtering
substrate
axis
vacuum chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020069416A
Other languages
English (en)
Other versions
JP2021165422A (ja
Inventor
真也 中村
一義 橋本
征仁 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2020069416A priority Critical patent/JP7384735B2/ja
Publication of JP2021165422A publication Critical patent/JP2021165422A/ja
Application granted granted Critical
Publication of JP7384735B2 publication Critical patent/JP7384735B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

本発明は、スパッタリング装置に関し、より詳しくは、異種材料のターゲットを同時にスパッタリングして多元系薄膜を成膜することができるものに関する。
従来、大容量の半導体記憶素子として3D-NAND型フラッシュメモリが知られている。3D-NAND型フラッシュメモリの製造工程の中には、高アスペクト比の細長い孔をエッチングする工程があり、これには、所定の薄膜をパターニングしてマスクとするハードマスクが利用されている。ハードマスクを構成する薄膜としては、タングステン膜やカーボン膜が広く利用されてきたが、例えばカーボン膜を用いる場合には、1μm以上の比較的厚い膜厚が要求されるようになっている。このことから、タングステン膜やカーボン膜に代わるものとして、多元系薄膜である炭化シリコン膜(SiC膜)を用いることが注目されている。
SiC膜を効率よく成膜する方法として、所定範囲の組成比を持つSiC製の焼結ターゲットを製作し、スパッタリング法により成膜することが考えられるが、焼結ターゲットの製作時、材料密度を効果的に高めることが難しい(このことは、ターゲットサイズが大きくなる(例えばスパッタ面の直径がφ300mm)のに従い、より顕著になる)。このため、SiC製の焼結ターゲットを用いてスパッタリング法により成膜対象物表面にSiC膜を成膜すると、成膜直後の成膜対象物表面に微細なパーティクルが付着してしまうという不具合が生じる。そこで、ターゲットを多元系薄膜の主成分(ケイ素)で構成される第1ターゲットと、多元系薄膜の副成分(カーボン)で構成される第2ターゲットとに分け、単一の真空チャンバ内に両ターゲットを夫々設置し、これらを同時にスパッタリングすることで主成分に対する副成分の組成比が例えば1%~30%の範囲であるSiC膜を成膜することが提案される。
上記成膜に利用できるスパッタリング装置(所謂多元スパッタリング装置)は例えば特許文献1で知られている。このものは、真空チャンバを備え、真空チャンバの下部には、被処理基板をその基板中心回りに回転自在に保持する保持ステージが設けられている。そして、保持ステージに対向させて真空チャンバ上部に、同等のターゲットサイズを持つ第1ターゲットと第2ターゲットとが夫々配置されている。この場合、被処理基板面内で互いに直交する方向をX軸方向及びY軸方向として、第1ターゲットと第2ターゲットとは、基板中心をその内方に含まないように、被処理基板に平行に例えばX軸方向両側に夫々対向配置した状態からY軸回りに所定の回転角で傾斜させた姿勢で固定配置される。
ここで、上記従来例のスパッタリング装置のように、同等のターゲットサイズを持つ第1ターゲットと第2ターゲットとを真空チャンバに夫々配置すると、装置サイズの大型化を招来するという問題が生じる。また、スパッタリング装置により多元系薄膜を成膜する際に、主成分に対する副成分の組成比を所定の範囲内に調整しようとすると、各ターゲットへの投入電力や成膜時の真空チャンバ内の圧力(成膜時に導入する希ガス等のスパッタガスの分圧)といったスパッタ条件を調整することになる。然し、スパッタ条件を変更すると、ターゲットから飛散したスパッタ粒子が被処理基板に到達するときの分布が変化して、組成比の面内分布が変化する場合がある。このような場合、上記従来例のスパッタリング装置では、組成比の面内分布の均一性の再調整が実質的にできないという問題がある。
特開2013-57108号公報
本発明は、以上の点に鑑み、異種材料のターゲットを同時にスパッタリングして多元系薄膜を成膜するときに、組成比の面内分布の均一性を損なうことなく、組成比の調整が可能で、装置の小型化が可能なスパッタリング装置を提供することをその課題とするものである。
上記課題を解決するために、真空チャンバ内でターゲットをスパッタリングして、ターゲットに対向配置される被処理基板の表面に多元系薄膜を成膜するための本発明のスパッタリング装置は、被処理基板をその基板中心回りに回転自在に保持する保持ステージを備え、ターゲットは、多元系薄膜の主成分を含む第1ターゲットと、この第1ターゲットよりスパッタ面の面積が小さい多元系薄膜の副成分を含む第2ターゲットとを有し、被処理基板面内で互いに直交する方向をX軸方向及びY軸方向として、第1ターゲットが、基板中心をその内方に含むように被処理基板に平行に対向配置した状態からY軸回りに所定の回転角で傾斜させた姿勢で設置され、第2ターゲットが、第1ターゲットに隣接させて被処理基板に平行に対向配置した状態からY軸回りに所定の回転角で傾斜させると共に、X軸回りに所定の回転角で傾斜させた姿勢で設置され、少なくともX軸回りの回転角を調整自在に構成したことを特徴とする。
ここで、主成分に対する副成分の組成比が例えば1%~30%の範囲、より好ましくは、10%~20%の多元系薄膜を成膜するような場合、主成分が占める割合が比較的多いことから、第1ターゲットと第2ターゲットとを同時にスパッタリングして多元系薄膜を成膜するとき、主成分が優先的に被処理基板に供給された方が成膜効率がよい。そこで、本発明では、基板中心をその内方に含むように被処理基板に平行に対向配置した状態からY軸回りに所定の回転角で傾斜させた姿勢で第1ターゲットを配置している。一方、第2のターゲットは、第1ターゲットよりスパッタ面の面積を小さくして(例えば、第1ターゲットに対する第2ターゲットのスパッタ面の面積を1/2以下にして)、第1ターゲットに隣接させて被処理基板に平行に対向配置した状態からY軸回りに所定の回転角で傾斜させた姿勢で配置している。これにより、上記従来例のものより装置サイズを小型化できる。この場合、第2ターゲットの中心を通るX軸及びY軸を第1ターゲットの中心回りに所定角で回転させて第2ターゲットを第1ターゲットに対してオフセット配置すれば、より装置の小型化が図れる。なお、本発明において、「X軸方向及びY軸方向」には、基板中心を通るX軸及びY軸をこの基板中心回りに回転させたときの被処理基板面内のX’軸方向及びY’軸方向も含むものとする。
上記の如く、各ターゲットを配置した状態で真空チャンバ内に希ガスなどのスパッタガスを所定流量で導入し、ターゲット種に応じて例えば第1及び第2の各ターゲットに負の電位を持つ所定電力を投入して第1及び第2の各ターゲットをスパッタリングする。すると、各ターゲットから夫々飛散するスパッタ粒子が、所定の回転速度で回転されている被処理基板表面に付着、堆積して多元系薄膜が成膜される。一方、主成分に対する副成分の組成比を調整する場合、各ターゲットへの投入電力や成膜時の真空チャンバ内の圧力(スパッタガスの分圧)といったスパッタ条件を調整することになるが、1%~30%の比較的広い範囲で組成比を調整しようとすると、組成比の面内分布の均一性が損なわれる場合がある。本願発明者らは、鋭意研究を重ね、第2ターゲットのX軸回りの回転角を変えれば、主成分に対する副成分の組成比の面内分布を調整できることを見出した。そこで、第2ターゲットをY軸回りに所定の回転角で傾斜させると共に、X軸回りに所定の回転角で傾斜させた姿勢で設置し、少なくともX軸回りの回転角を調整自在な構成を採用することで、組成比の面内分布の均一性を損なうことなく、組成比の調整が可能になる。
本発明においては、前記真空チャンバ外から動力を伝達して前記第2ターゲットをX軸及びY軸の少なくとも一方の軸回りに所定の回転角で傾斜させる傾動手段を備えることが好ましい。これにより、真空チャンバを大気開放することなく、組成比の面内分布の調整を可能とする構成が実現できる。この場合、第1ターゲット及び第2ターゲットの侵食に伴って各ターゲットからのスパッタ粒子の飛散分布が変わった場合にも対応することができ、有利である。
また、本発明において、第2ターゲットのスパッタ面と基板中心との距離が、第1ターゲットのスパッタ面と基板中心との距離より長く設定され、第2ターゲットのスパッタ面の前方に、このスパッタ面を囲うようにして設けた筒状の防着板と、防着板の開口を開閉自在に閉塞するシャッタとを備える構成を採用してもよい。これによれば、各ターゲットのクロスコンタミネーション、具体的には、主成分に対する副成分の組成比を比較的少なくする(例えば、数%にする)ために例えば第2ターゲットへの投入電力を小さく設定したときに、第2ターゲット表面が第1ターゲットから飛散するスパッタ粒子で汚染されることや、いずれか一方のターゲットの交換に伴う所謂プレスパッタ時に、他方のターゲット表面が汚染されることを可及的に抑制することができ、有利である。
本発明の実施形態のスパッタリング装置を模式的に示す断面図。 図1に示すスパッタリング装置の平面図。
以下、図面を参照し、被処理基板をシリコンウエハ(以下、単に「基板Sw」という)とし、真空チャンバの上部に第1ターゲットと第2ターゲットとが、その下部に保持ステージが設けられ、各ターゲットをスパッタリングして基板Sw表面に、例えば1%~30%、より好ましくは、10%~20%の比較的広い範囲の組成比で膜厚分布の面内均一性よく多元系薄膜を成膜できるものを例に本発明のスパッタリング装置の実施形態を説明する。
図1及び図2を参照して、SMは、本実施形態のマグネトロン方式の(多元)スパッタリング装置である。スパッタリング装置SMは、真空チャンバ1を備え、真空チャンバ1の下部中央には、保持ステージ2が配置されている。保持ステージ2の上面には、特に図示して説明しないが、静電チャックを有するチャックプレートが設けられ、基板Swを吸着保持することができる。静電チャックの構造については、単極型や双極型等の公知のものが利用できるため、これ以上の説明は省略する。保持ステージ2にはまた、真空チャンバ1の下部壁を(図外の真空シールを介して)貫通させて設けられる回転軸21が連結され、モータ22により、保持ステージ2に吸着保持される基板Swをその基板中心Scを通る中心線Cl回りに所定の回転数で回転することができる。以下において、基板Sw面内で互いに直交する方向をX軸方向及びY軸方向とする(図2参照)。
真空チャンバ1の下部壁には排気口31,31が開設され、排気口31,31には真空ポンプ32からの排気管33が接続され、真空チャンバ1内を所定の排気速度で真空排気することができる。真空ポンプ32としては、クライオポンプ、ターボ分子ポンプやロータリーポンプ等が使用される。また、真空チャンバ1側壁の所定位置にはガス導入孔41,41が開設され、ガス導入孔41,41にはガス導入管42,42が接続され、これに介設されたマスフローコントローラ43,43により流量制御されたスパッタガスを真空雰囲気の真空チャンバ1に導入することができる。スパッタガスとしては、真空チャンバ1内にプラズマを形成する際に導入されるアルゴンガス等の希ガスが用いられる。そして、保持ステージ2上の基板Swに対向させて真空チャンバ1の上部に第1及び第2の各カソードユニットCu1,Cu2が夫々着脱自在に取り付けられている。
第1のカソードユニットCu1は、多元系薄膜の主成分(例えば、多元系薄膜としてのSiC膜を成膜するような場合には、ケイ素)で構成される第1ターゲット51を備える。第1ターゲット51は、円柱状の輪郭(即ち、スパッタ面51aが円形の輪郭)を有し、スパッタ面51aと背向する側である第1ターゲット51の裏面にはバッキングプレート52が接合されている。パッキングプレート52の裏面には更に筒状の取付部材53が設けられ、取付部材53の一端には略直角に屈曲させたフランジ部53aが形成されている。第1のカソードユニットCu1が取り付けられる真空チャンバ1の第1上壁部分11aは、Y軸回りに所定の角度で(即ち、真空チャンバ1の中央側からその外側に向けて低くなるように)傾斜させて形成され、第1上壁部分11aの所定位置には、第1ターゲット51の挿通を可能とする第1取付開口11bが開設されている。
第1ターゲット51は、基板Swの成膜面(図1中、上面)より大きい面積であるが、第1のカソードユニットCu1の第1上壁部分11aへの取付姿勢でも、基板中心Scをその内方に含むようにそのスパッタ面51aの面積が設定される(例えば、基板Swの成膜面に対するスパッタ面51aの面積比が1~1.46の範囲)。第1上壁部分11aを傾斜させる角度は、第1ターゲット51をスパッタリングして、回転する基板Swに成膜したときの膜厚分布を考慮して適宜設定される。そして、スパッタ面51a側を先頭にして第1取付開口11bを挿通させ、第1取付開口11bの周縁に位置する第1上壁部分11a外面に真空シールとしてのベローズ管54を介してフランジ部53aがその全周に亘って当接するように設置することで、第1のカソードユニットCu1が第1上壁部分11aに取り付けられる。これにより、第1ターゲット51は、そのスパッタ面51aが保持ステージ2側を向く(図1中、下方を向く)と共に、真空チャンバ1の第1上壁部分11aに倣ってY軸回りに所定の角度で傾斜した姿勢となる(スパッタ面51aが基板中心Scをその内方に含む)。このとき、ベローズ管54により、後述のようにスパッタ面51aの傾斜角を変更するときでも、真空チャンバ1内を気密維持できるようにしている。また、第1のカソードユニットCu1を第1上壁部分11aに取り付けた状態では、真空チャンバ1内には、第1ターゲット51の周囲を囲うようにして筒状の防着板12が設置される。
取付部材53のY軸方向両側には回転軸55a,55bが夫々突設され、一方の回転軸55aは、これをその軸線回りに回転駆動するステッピングモータ56aに連結され、他方の回転軸55bが軸受部材56bで軸支されている。そして、ステッピングモータ56aにより回転軸55a,55bを回転させると、これに応じて、取付部材53がそのY軸回りに所定(例えば、4度以下)の回転角で回転され、スパッタ面51aのXY平面に対する傾斜角が変更されて、回転する基板Swに成膜したときの膜厚分布を調整することができる。また、第1のカソードユニットCu1は、真空チャンバ1外に位置する取付部材53の内方空間に配置した磁石ユニット57を備える。磁石ユニット57としては、第1ターゲット51のスパッタ面51aの下方空間に磁場を発生させ、スパッタリング時にスパッタ面51aの下方で電離した電子等を捕捉して第1ターゲット51から飛散したスパッタ粒子を効率よくイオン化する閉鎖磁場若しくはカスプ磁場構造を有するものである。なお、図1,図2中、符号57aは、磁石ユニット57を回転駆動するモータであり、磁石ユニット57としては公知のものが利用できるため、第1のカソードユニットCu1を含め、これ以上の説明は省略する。更に、特に図示して説明しないが、第1ターゲット51には、スパッタ電源からの出力が接続され、第1ターゲット51に負の電位を持った所定電力や高周波電力を投入できるようにしている。
一方、第2のカソードユニットCu2は、多元系薄膜の副成分(例えば、多元系薄膜としてのSiC膜を成膜するような場合には、カーボン)で構成される第2ターゲット61を備える。第2ターゲット61もまた、円柱状の輪郭(即ち、スパッタ面61aが円形の輪郭)を有し、スパッタ面61aと背向する側である第2ターゲット61の裏面にはバッキングプレート62が接合されている。パッキングプレート62の裏面には、筒状の取付部材63が設けられ、取付部材63の一端には略直角に屈曲させたフランジ部63aが形成されている。第2のカソードユニットCu2が取り付けられる真空チャンバ1の第2上壁部分13aもまた、Y軸回りに所定の角度で(即ち、真空チャンバ1の中央側からその外側に向けて低くなるように)傾斜させて形成され、第2上壁部分13aの所定位置には、第2ターゲット61の挿通を可能とする第2取付開口13bが開設されている。
第2上壁部分13aは、装置サイズの小型化を図るために、第1のカソードユニットCu1が取り付けられる第1上壁部分11aに対して中心線Cl回りにオフセットさせて設けられている。具体的には、X軸及びY軸を中心線Cl回りに所定の回転角(例えば、反時計方向に30度~60度以下の範囲)で回転させた位置に第2上壁部分13a、ひいては、第2のカソードユニットCu2の第2ターゲット61が存するようにしている(図2参照)。この場合、X軸及びY軸を基板中心Sc回りに回転させたときのXY平面内の軸線をX’軸方向及びY’軸方向とする。また、第2上壁部分13aの真空チャンバ1の底面からの高さは、第1上壁部分11aより高くなるように設定され、第1及び第2の各カソードユニットCu1,Cu2の取付状態では、基板Swからみて第2ターゲット61のスパッタ面61aが第1ターゲット51のスパッタ面51aより上方に位置するようになっている(言い換えると、図1に示すように、第2ターゲット61のスパッタ面61aと基板中心Scとの距離が、第1ターゲット51のスパッタ面51aと基板中心Scとの距離より長く設定されている)。更に、第2のカソードユニットCu2を第2上壁部分13aに取り付けた状態では、真空チャンバ1内には、第2ターゲット61の周囲を囲うようにして筒状の防着板14が設置される。この場合、防着板14の長さは、第1ターゲット51をスパッタリングしたとき、そのスパッタ面51aから飛散するスパッタ粒子が直接第2ターゲット61のスパッタ面61aに付着しないように設定されている。また、筒状の防着板14の下端開口には、これを開閉自在に覆う板状のシャッタ15aが設けられ、モータ15bを備える駆動手段によりシャッタ15aがX’Y’平面内で移動されるようにしている。駆動手段としては、公知のものが利用されるため、これ以上の説明は省略する。
第2ターゲット61は、第1ターゲット51よりスパッタ面61aの面積が小さく(例えば、多元系薄膜の組成比等を考慮して、第1ターゲット51のスパッタ面51aに対する第2ターゲット61のスパッタ面61aの面積を1/2以下に)設定されるが、第2のカソードユニットCu2の第2上壁部分13aへの取付姿勢でも、基板Swの外縁部の直上にスパッタ面61aの一部が位置するようにしている。そして、スパッタ面61a側を先頭にして第2取付開口13bを挿通させ、第2取付開口13bの周縁に位置する第2上壁部分13a外面に真空シールとしてのベローズ管64を介してフランジ部63aがその全周に亘って当接するように設置することで、第2のカソードユニットCu2が第2上壁部分13aに取り付けられる。これにより、第2ターゲット61は、そのスパッタ面61aが保持ステージ2側を向く(図1中、下方を向く)と共に、第2上壁部分13aに倣ってY’軸回りに所定の角度で傾斜した姿勢となる。このとき、上記同様、ベローズ管64により、後述のようにスパッタ面61aの傾斜角を変更するときでも、真空チャンバ1内を気密維持できるようにしている。
取付部材63のX’軸方向一端には第1回転軸65aが突設され、第1回転軸65aは、これを軸線回りに回転駆動する第1ステッピングモータ66aに連結されている。また、取付部材63のY’軸方向両端にもまた、第2回転軸65b,65cが突設されている。一方の回転軸65bは、これをその軸線回りに回転駆動する第2ステッピングモータ66bに連結されている。この場合、第1回転軸65a及び両第2回転軸65b,65cは、平面視コ字状の支持フレーム67に設けた軸受(図示せず)で軸支されている。そして、第1ステッピングモータ66aにより第1回転軸65aを回転させると、これに応じて、取付部材63がそのX’軸回りに所定(例えば、±5度以下)の回転角で回転される一方で、第2ステッピングモータ66bにより第2回転軸65b,65cを回転させると、これに応じて、取付部材63がそのY’軸回りに所定(例えば、±5度以下)の回転角で回転され、スパッタ面61aのXY平面に対する傾斜角が変更される。なお、傾斜角を変更できる範囲は、例えば、多元系薄膜の主成分及び副成分を夫々構成する各ターゲット51,61の種類や、第2ターゲット61の初期の傾斜角(言い換えると、第2上壁部分13aのXY平面に対する傾斜角)に応じて適宜設定される。これにより、多元系薄膜の副成分の組成比やその組成比の面内分布の調整が可能となる。本実施形態では、上記のステッピングモータ66a,66bや回転軸65a~65cといった部品が、真空チャンバ1外から動力を伝達して第2ターゲット61を少なくともY軸回りに所定の回転角で傾斜させる傾動手段を構成する。第2のカソードユニットCu2もまた、上記同様、真空チャンバ1外に位置する取付部材63の内方空間に配置した磁石ユニット68を備える。更に、特に図示して説明しないが、第2ターゲット61には、スパッタ電源からの出力が接続され、第2ターゲット61に負の電位を持った所定電力や高周波電力を投入できるようにしている。
上記スパッタリング装置SMにより基板Swに対して所定の多元系薄膜を成膜する場合、図外の真空搬送ロボットにより保持ステージ2上へと基板Swを搬入し、保持ステージ2のチャックプレート(図示せず)上面に基板Swを設置し、吸着保持する(この場合、基板Swの上面が成膜面となる)。次に、真空チャンバ1内が所定圧力(例えば、1×10-5Pa)まで真空排気されると、モータ22により保持ステージ2を一方向に所定回転数で回転させ、マスフローコントローラ43の制御によりスパッタガスとしてのアルゴンガスを一定の流量で導入し、これに併せて第1ターゲット51と第2ターゲット61とにスパッタ電源(図示せず)から予め設定される電力を投入する。これにより、第1ターゲット51と第2ターゲット61との前方の空間にプラズマが夫々形成され、プラズマ中のアルゴンガスのイオンで各ターゲット51,61がスパッタリングされ、各ターゲット51,61からのスパッタ粒子が、回転する基板Swの上面に付着、堆積して所定の多元系薄膜が成膜される。
以上の実施形態によれば、上記従来例のものより装置サイズの小型化を図ることができる。それに加えて、主成分に対する副成分の組成比を調整する場合、各ターゲット51,61への投入電力や成膜時の真空チャンバ1内の圧力(スパッタガスの分圧)といったスパッタ条件を調整することで、組成比の面内分布の均一性が損なわれたとしても、第2ターゲット61をX’軸及びY’軸の少なくとも一方回りの回転角を調整すれば、組成比の面内分布の均一性を損なうことなく、組成比の調整が可能になる。これは、第1ターゲット51及び第2ターゲット61の侵食に伴って各ターゲット51,61からのスパッタ粒子の飛散分布が変わった場合にも利用できる。しかも、各ターゲット51,61をスパッタリングする際、第2ターゲット61のスパッタ面61aが第1ターゲット51から飛散するスパッタ粒子で汚染されることや、いずれか一方のターゲット51,61の交換に伴う所謂プレスパッタ時に、他方のターゲット61,51のスパッタ面61a,51aが汚染されることを可及的に抑制することができる。
次に、本発明の効果を確認するため、基板Swをφ300mmのシリコンウエハ、第1ターゲット51をφ440mmのケイ素製、第2ターゲット61をφ125mmのアモルファスカーボン製とし、上記スパッタリング装置SMを用いて基板SwにSiC膜を成膜した。スパッタ条件として、第1ターゲット51への投入電力を2kW、第2ターゲット61への投入電力を0.5kW、基板Swの回転速度を120rpm、スパッタ時間を100secに設定した。また、スパッタガスとしてアルゴンガスを用い、スパッタリング中、スパッタガスの分圧を0.2Paとした。更に、第1ターゲット51と基板中心Scとの間の距離を250mm、第2ターゲット61と基板中心Scとの間の距離を285mmとし、このとき、XY平面に対する第1ターゲット51のY軸回りの傾斜角を15度、XY平面に対する第2ターゲット61のY’軸回りの傾斜角を22度、XY平面に対する第2ターゲット61のX’軸回りの傾斜角を38度とした。このような条件で第1ターゲット51及び第2ターゲット61をスパッタリングして基板Sw表面にSiC膜を成膜し、公知の分析機によりその組成比と基板Swの径方向における組成比の面内分布を測定した。これによれば、ケイ素とカーボンとの組成比が15:85であり、その面内分布の均一性は1%であった。そこで、X’軸及びY’軸を夫々反時計方向に回転させ、XY平面に対する第2ターゲット61のY’軸回りの傾斜角を+4度以下の範囲、XY平面に対する第2ターゲット61のX’軸回りの傾斜角を+4度の範囲で夫々変更し、再度、SiC膜を成膜したところ、ケイ素とカーボンとの組成比が10:90~20:80の範囲、その面内分布の均一性は1~2%であり、組成比及び面内分布を調整できることが確認された。
以上、本発明の実施形態について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態では、傾動手段として、ステッピングモータ66a,66bや回転軸65a~65cといった部品を利用したものを例に説明したが、真空チャンバ1外から動力を伝達して第2ターゲット61をX’軸及びY’軸回りに所定の回転角で傾斜させることができれば、これに限定されるものではない。また、上記実施形態では、小型化を図るため、第1ターゲット51に対する第2ターゲット61の位置をXY平面上で及び上方にオフセットしたものを例に説明したが、第2ターゲット61の配置(即ち、第2のカソードユニットCu2の位置)は、上記に限定されるものではなく、種々のレイアウトを採用することができる。更に、上記実施形態では、第1及び第2の各カソードユニットCu1,Cu2が取り付けられる真空チャンバ1の上壁部分11a,13aをXY平面に対して傾斜させたものを例に説明したが、第1及び第2の各ターゲット51,61を傾斜して配置すると共にその傾斜角を調整できるのではあれば、これに限定されるものではない。
SM…スパッタリング装置、Cu1,Cu2…カソードユニット、1…真空チャンバ、2…保持ステージ、11a,13a…真空チャンバの上壁部分、12,14…防着板、15a…シャッタ、51…第1ターゲット(主成分)、61…第2ターゲット(副成分)、Sw…基板(被処理基板)、Sc…基板中心、65a~65c…回転軸(傾動手段の構成要素)、66a,66b…ステッピングモータ(傾動手段の構成要素)。

Claims (3)

  1. 真空チャンバ内でターゲットをスパッタリングして、ターゲットに対向配置される被処理基板の表面に多元系薄膜を成膜するためのスパッタリング装置であって、
    被処理基板をその基板中心回りに回転自在に保持する保持ステージを備えるものにおいて、
    ターゲットは、多元系薄膜の主成分を含む第1ターゲットと、この第1ターゲットよりスパッタ面の面積が小さい多元系薄膜の副成分を含む第2ターゲットとを有し、
    被処理基板面内で互いに直交する方向をX軸方向及びY軸方向として、第1ターゲットが、基板中心をその内方に含むように被処理基板に平行に対向配置した状態からY軸回りに所定の回転角で傾斜させた姿勢で設置され、第2ターゲットが、第1ターゲットに隣接させて被処理基板に平行に対向配置した状態からY軸回りに所定の回転角で傾斜させると共に、X軸回りに所定の回転角で傾斜させた姿勢で設置され、少なくともX軸回りの回転角を調整自在に構成したことを特徴とするスパッタリング装置。
  2. 前記真空チャンバ外から動力を伝達して前記第2ターゲットをX軸及びY軸の少なくとも一方の軸回りに所定の回転角で傾斜させる傾動手段を備えることを特徴とする請求項1記載のスパッタリング装置。
  3. 第2ターゲットのスパッタ面と基板中心との距離が、第1ターゲットのスパッタ面と基板中心との距離より長く設定され、第2ターゲットのスパッタ面の前方に、このスパッタ面を囲うようにして設けた筒状の防着板と、防着板の開口を開閉自在に閉塞するシャッタとを備えることを特徴とする請求項1または請求項2記載のスパッタリング装置。
JP2020069416A 2020-04-07 2020-04-07 スパッタリング装置 Active JP7384735B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020069416A JP7384735B2 (ja) 2020-04-07 2020-04-07 スパッタリング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020069416A JP7384735B2 (ja) 2020-04-07 2020-04-07 スパッタリング装置

Publications (2)

Publication Number Publication Date
JP2021165422A JP2021165422A (ja) 2021-10-14
JP7384735B2 true JP7384735B2 (ja) 2023-11-21

Family

ID=78021772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020069416A Active JP7384735B2 (ja) 2020-04-07 2020-04-07 スパッタリング装置

Country Status (1)

Country Link
JP (1) JP7384735B2 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303470A (ja) 1999-01-12 2008-12-18 Canon Anelva Corp スパッタリング方法及び装置及び電子部品の製造方法
JP2010248587A (ja) 2009-04-17 2010-11-04 Panasonic Corp スパッタリング装置およびスパッタリング方法
WO2015121905A1 (ja) 2014-02-14 2015-08-20 キヤノンアネルバ株式会社 トンネル磁気抵抗効果素子の製造方法、およびスパッタリング装置
JP2019073743A (ja) 2017-10-12 2019-05-16 アドバンストマテリアルテクノロジーズ株式会社 成膜装置及び成膜方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4168139B2 (ja) * 2003-08-28 2008-10-22 独立行政法人産業技術総合研究所 マルチターゲット同時レーザアブレーション堆積装置と同アブレーション堆積用ターゲットホルダー

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303470A (ja) 1999-01-12 2008-12-18 Canon Anelva Corp スパッタリング方法及び装置及び電子部品の製造方法
JP2010248587A (ja) 2009-04-17 2010-11-04 Panasonic Corp スパッタリング装置およびスパッタリング方法
WO2015121905A1 (ja) 2014-02-14 2015-08-20 キヤノンアネルバ株式会社 トンネル磁気抵抗効果素子の製造方法、およびスパッタリング装置
JP2019073743A (ja) 2017-10-12 2019-05-16 アドバンストマテリアルテクノロジーズ株式会社 成膜装置及び成膜方法

Also Published As

Publication number Publication date
JP2021165422A (ja) 2021-10-14

Similar Documents

Publication Publication Date Title
JP2009041040A (ja) 真空蒸着方法および真空蒸着装置
US6241857B1 (en) Method of depositing film and sputtering apparatus
TWI780173B (zh) 濺鍍裝置
JP2004169172A (ja) マグネトロンスパッタリング装置及びそのスパッタリング方法
JP7384735B2 (ja) スパッタリング装置
JP2007131883A (ja) 成膜装置
JP6456010B1 (ja) スパッタリング装置
TW202321484A (zh) 具有旋轉底座的傾斜pvd源
JPH09213634A (ja) 薄膜成膜方法、半導体装置の製造方法及び薄膜成膜装置
JP7128024B2 (ja) スパッタリング装置及びコリメータ
TWI770421B (zh) 濺鍍裝置及濺鍍方法
JP7262235B2 (ja) スパッタリング装置及びスパッタリング方法
JPH11340165A (ja) スパッタリング装置及びマグネトロンユニット
JP7044887B2 (ja) スパッタリング装置
US9449800B2 (en) Sputtering apparatus and sputtering method
WO2022244443A1 (ja) マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置
JP7193369B2 (ja) スパッタリング装置
JP7438853B2 (ja) マグネトロンスパッタリング装置
KR20210002008A (ko) 스퍼터링 장치
JP2023049164A (ja) マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置
TW202202645A (zh) 用於物理氣相沉積(pvd)的多半徑磁控管及其使用方法
JP2019206745A (ja) スパッタリング装置
JP2005290464A (ja) スパッタリング装置及び方法
JPH01152272A (ja) スパッタリング装置
JP2015178653A (ja) スパッタリング装置及びスパッタリング方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231109

R150 Certificate of patent or registration of utility model

Ref document number: 7384735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150