JP7364158B2 - Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder - Google Patents
Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder Download PDFInfo
- Publication number
- JP7364158B2 JP7364158B2 JP2019236295A JP2019236295A JP7364158B2 JP 7364158 B2 JP7364158 B2 JP 7364158B2 JP 2019236295 A JP2019236295 A JP 2019236295A JP 2019236295 A JP2019236295 A JP 2019236295A JP 7364158 B2 JP7364158 B2 JP 7364158B2
- Authority
- JP
- Japan
- Prior art keywords
- rare earth
- magnetic powder
- powder
- mass
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
- H01F1/0596—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
- H01F1/059—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/061—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder with a protective layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/083—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together in a bonding agent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
- H01F1/06—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/08—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/086—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together sintered
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Hard Magnetic Materials (AREA)
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Description
本発明は、希土類鉄窒素系磁性粉末、ボンド磁石用コンパウンド、ボンド磁石及び希土類鉄窒素系磁性粉末の製造方法に関する。 The present invention relates to a rare earth iron nitrogen based magnetic powder, a bonded magnet compound, a bonded magnet, and a method for producing the rare earth iron nitrogen based magnetic powder.
希土類鉄窒素系のTh2Zn17型、Th2Ni17型、TbCu7型結晶構造を有するR2Fe17Nx(Rは希土類元素)窒化化合物は、その多くがニュークリエーション型の保磁力発生機構を有し、優れた磁気特性を有する磁性材料として知られている。なかでも希土類元素(R)がサマリウム(Sm)であるx=3のSm2Fe17N3を主相化合物とする磁性粉末は、高性能の永久磁石用磁性粉末であり、ポリアミド12やエチレンエチルアクリレートなどの熱可塑性樹脂、あるいはエポキシ樹脂や不飽和ポリエステル樹脂などの熱硬化性樹脂をバインダーとするボンド磁石として多方面で応用されている。 Most of the R 2 Fe 17 N x (R is a rare earth element) nitride compounds with rare earth iron nitrogen-based Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type crystal structures generate coercive force in the nucleation type. It is known as a magnetic material that has a mechanism and excellent magnetic properties. Among them, magnetic powder whose main phase compound is Sm 2 Fe 17 N 3 with x=3, where the rare earth element (R) is samarium (Sm), is a high-performance magnetic powder for permanent magnets, and it is suitable for polyamide 12 and ethylene ethyl. It is applied in many fields as a bonded magnet using a thermoplastic resin such as acrylate, or a thermosetting resin such as epoxy resin or unsaturated polyester resin as a binder.
Sm2Fe17N3に代表される希土類鉄窒素系磁性粉末の製法として、従来から溶解法と還元拡散法が知られている。溶解法では希土類金属を原料に用い、これを鉄などの金属とともに溶解及び反応させて磁性粉末を作製する。これに対して還元拡散法では希土類酸化物を原料に用い、これを還元させると同時に鉄などの金属と反応させて磁性粉末とする。安価な希土類酸化物を用いることができるため、還元拡散法は望ましい手法と考えられている。 BACKGROUND ART Dissolution methods and reduction diffusion methods have been conventionally known as methods for producing rare earth iron-nitrogen magnetic powders typified by Sm 2 Fe 17 N 3 . The melting method uses rare earth metals as raw materials, which are melted and reacted with metals such as iron to produce magnetic powder. On the other hand, in the reduction diffusion method, rare earth oxides are used as raw materials, which are reduced and simultaneously reacted with metals such as iron to form magnetic powder. The reduction-diffusion method is considered a desirable method because it allows the use of inexpensive rare earth oxides.
ところで、希土類鉄窒素系磁性粉末は、耐熱性(耐酸化性)が悪いという欠点がある。粉末の耐熱性が悪いと、ボンド磁石製造時の混錬・成形工程での加熱により、磁気特性が低下する問題が発生する。またボンド磁石は、使用時に100℃以上の高温に曝されることがあり、そのような使用時に磁気特性が低下する問題がある。そこでこの問題を解決するために、希土類鉄窒素系磁性粉末において、鉄(Fe)の一部を他の元素で置換したり、微粉割合を低減したり、あるいは粉末表面に耐酸化性被膜を形成したりして、粉末の耐熱性を改善することが提案されている。 By the way, rare earth iron nitrogen based magnetic powder has a drawback of poor heat resistance (oxidation resistance). If the heat resistance of the powder is poor, there will be a problem in that the magnetic properties will deteriorate due to heating during the kneading and molding steps during bonded magnet manufacturing. Further, bonded magnets are sometimes exposed to high temperatures of 100° C. or higher during use, and there is a problem in that their magnetic properties deteriorate during such use. In order to solve this problem, we have tried to replace some of the iron (Fe) with other elements in rare-earth iron-nitrogen magnetic powders, reduce the proportion of fine powder, or form an oxidation-resistant film on the powder surface. It has been proposed to improve the heat resistance of the powder by
例えば、特許文献1、非特許文献1及び非特許文献2には、溶解法や還元拡散法で作製した希土類鉄窒素系磁性粉末において、鉄(Fe)の一部をマンガン(Mn)で置換して、耐熱性及び耐酸化性を改善することが提案されている。すなわち特許文献1には、一般式Rα-Fe(100-α-β-γ)MnβNγ(但し、3≦α≦20、0.5≦β≦25、17≦γ≦25)で表され、平均粒径10μm以上であることを特徴とする磁性材料に開して、Sm、Fe及びMnを高周波溶解炉で溶解混合して合金を調整し、この合金をアンモニア混合気流中で加熱処理してSm-Fe-Mn-N系粉体を調整する旨、優れた耐酸化性能と温度特性を有している旨が記載されている(特許文献1の請求項1、[0048]~[0050]及び[0070])。また非特許文献1や非特許文献2には、還元拡散法により製造されたSm-(Fe,Mn)-N磁石粉末に関して、Feの一部をMnで置換したSm2(Fe,Mn)17Nx(x>4)磁石粉末はSm2Fe17N3磁石粉末に比べて優れた耐熱性を示す旨が記載されている(非特許文献1の第881頁)。
For example, Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2 disclose that in rare earth iron nitrogen-based magnetic powder produced by a dissolution method or a reduction diffusion method, part of iron (Fe) is replaced with manganese (Mn). It has been proposed to improve heat resistance and oxidation resistance. That is, Patent Document 1 describes the general formula R α-Fe(100-α-β-γ) Mn β N γ (3≦α≦20, 0.5≦β≦25, 17≦γ≦25). Sm, Fe, and Mn are melted and mixed in a high-frequency melting furnace to prepare an alloy, and this alloy is heated in an ammonia mixed flow. It is described that the Sm-Fe-Mn-N powder is prepared by processing, and that it has excellent oxidation resistance and temperature characteristics (Claim 1 of Patent Document 1, [0048]~ [0050] and [0070]) . Furthermore, Non-Patent Document 1 and Non-Patent Document 2 describe Sm-(Fe,Mn)-N magnet powder produced by a reduction diffusion method, in which Sm 2 (Fe, Mn) in which a part of Fe is replaced with Mn. It is stated that 17 N x (x>4) magnet powder exhibits superior heat resistance compared to Sm 2 Fe 17 N 3 magnet powder (page 881 of Non-Patent Document 1).
また特許文献2には希土類金属(R)と遷移金属(TM)を含む母合金を粉砕する工程(a)、粉砕された母合金粉末に希土類酸化物粉末と還元剤とを混合し、不活性ガス中加熱処理する工程(b)、得られた反応生成物を脆化・粉砕する工程(c)、得られた反応生成物粉末を窒化し磁石合金粉末を得る工程(d)、および得られた磁石合金粉末を水洗する工程(e)を含む希土類-遷移金属-窒素系磁石合金粉末の製造方法が開示され、該磁石合金粉末は、1μm未満の微粒子が極めて少ないため大気中での取り扱いが容易となり、耐熱性および耐候性に優れた磁石材料となる旨が記載されている(特許文献2の請求項1及び[0025])。 Further, Patent Document 2 describes a step (a) of pulverizing a mother alloy containing a rare earth metal (R) and a transition metal (TM), a step (a) of pulverizing a mother alloy containing a rare earth metal (R) and a transition metal (TM), and a step (a) of mixing a rare earth oxide powder and a reducing agent with the pulverized mother alloy powder, and inactivating the powder. Step (b) of heat-treating in gas, step (c) of embrittling and pulverizing the obtained reaction product, step (d) of nitriding the obtained reaction product powder to obtain magnet alloy powder, and Disclosed is a method for producing a rare earth-transition metal-nitrogen magnet alloy powder, which includes a step (e) of washing the magnet alloy powder with water, and the magnet alloy powder has extremely few particles of less than 1 μm, so it cannot be handled in the atmosphere. It is described that the magnet material is easily produced and has excellent heat resistance and weather resistance (Claim 1 and [0025] of Patent Document 2).
さらに特許文献3には燐酸を含む有機溶剤中で希土類-鉄-窒素系磁石粗粉末を粉砕する工程を含む、表面に均一で強固な燐酸塩皮膜を形成することを特徴とするボンド磁石用希土類-鉄-窒素系磁石粉末の製造方法に関して、磁石の耐候性を高めるために、燐酸中に磁石粉末を入れて処理し、表面に燐酸塩皮膜を形成することが行われている旨が記載されている(特許文献3の請求項1及び[0002])。 Further, Patent Document 3 discloses a rare earth material for bonded magnets which includes a step of pulverizing rare earth-iron-nitrogen magnet coarse powder in an organic solvent containing phosphoric acid to form a uniform and strong phosphate film on the surface. - Regarding the manufacturing method of iron-nitrogen magnet powder, it is stated that in order to improve the weather resistance of the magnet, the magnet powder is placed in phosphoric acid and treated to form a phosphate film on the surface. (Claim 1 and [0002] of Patent Document 3).
また特許文献4には表面被覆金属層を有する異方性希土類合金系磁性粉末と樹脂からなる希土類ボンド磁石に関して、表面被覆金属層の金属は、Zn,Sn,In,Al,Si,希土類元素の少なくとも一種以上からなる単一金属または合金である旨、還元拡散法によって製作したSm-Fe-N合金磁性粉末をZn蒸気中処理して表面に0.05ミクロンのZn被覆層をもつ磁性粉末を得た旨、180℃程度以上の高温長時間減磁を抑制でき、従来にない高性能・耐熱性のボンド磁石ができる旨が記載されている(特許文献4の請求項1、[0068]及び[0071])。 Further, in Patent Document 4, regarding a rare earth bonded magnet made of an anisotropic rare earth alloy magnetic powder and resin having a surface coating metal layer, the metal of the surface coating metal layer is Zn, Sn, In, Al, Si, or a rare earth element. Sm-Fe-N alloy magnetic powder produced by the reduction diffusion method is treated in Zn vapor to produce magnetic powder with a 0.05 micron Zn coating layer on the surface, indicating that it is a single metal or alloy consisting of at least one kind of metal. It is stated that demagnetization can be suppressed for a long time at high temperatures of about 180° C. or higher, and that a bonded magnet with unprecedented high performance and heat resistance can be produced (Claim 1 of Patent Document 4, [0068] and [0071]).
磁石粉末に樹脂バインダーを混合して成形される希土類元素を含む鉄系ボンド磁石では、一般家電製品、通信・音響機器、医療機器、一般産業機器等に至る幅広い分野において需要が拡大しており、材料の保管や輸送、製品の使用条件も厳しくなってきている。そのため、耐熱性により一層優れ、保磁力などの特性が高いものが必要とされている。 Demand for iron-based bonded magnets containing rare earth elements, which are formed by mixing magnetic powder with a resin binder, is expanding in a wide range of fields, including general home appliances, communications and audio equipment, medical equipment, and general industrial equipment. Conditions for storing and transporting materials and using products are also becoming stricter. Therefore, there is a need for a material with even better heat resistance and high properties such as coercive force.
しかしながら従来から提案されている技術では十分とは言えない。例えば特許文献1、非特許文献1及び非特許文献2に開示される鉄(Fe)の一部をマンガン(Mn)で置換する手法では、磁性粉末の耐熱性は改善されるが、磁化が低下してしまう問題がある。実際、特許文献1にはMn量3.5原子%である磁性材料(実施例1)はその飽和磁化が84emu/gであるのに対し、Mn量を10.3原子%に増量した磁性材料(実施例4)は飽和磁化が72emu/gまで低下することが示されている(特許文献1の[0069]表1)。また非特許文献1にはSm2(Fe,Mn)17N化合物において、Mn量が増加するのに伴って、キュリー温度Tcと最大磁化σmが単調に低下する旨が記載されている(非特許文献1の第885頁)。さらに特許文献2~4に開示される微粉割合を低減する手法や粉末表面に耐酸化性被膜を形成する手法では、一定の効果があるものの、耐熱性の点で改善の余地があった。 However, the techniques proposed so far are not sufficient. For example, in the method disclosed in Patent Document 1, Non-Patent Document 1, and Non-Patent Document 2, in which a part of iron (Fe) is replaced with manganese (Mn), the heat resistance of magnetic powder is improved, but the magnetization is reduced. There is a problem with this. In fact, in Patent Document 1, a magnetic material with an Mn content of 3.5 at% (Example 1) has a saturation magnetization of 84 emu/g, whereas a magnetic material with an increased Mn content of 10.3 at% (Example 4) has been shown to have a saturation magnetization reduced to 72 emu/g ([0069] Table 1 of Patent Document 1). Furthermore, Non-Patent Document 1 describes that in Sm 2 (Fe, Mn) 17 N compounds, as the amount of Mn increases, the Curie temperature T c and the maximum magnetization σ m monotonically decrease ( (Page 885 of Non-Patent Document 1). Further, although the methods of reducing the proportion of fine powder and the method of forming an oxidation-resistant film on the powder surface disclosed in Patent Documents 2 to 4 have certain effects, there is still room for improvement in terms of heat resistance.
本発明者らは、ニュークリエーション型の保磁力機構を持つ希土類鉄窒素(R2Fe17N3)系磁性粉末における上記課題を解決するために鋭意検討を重ねた。その結果、R2Fe17N3よりも希土類(R)リッチな相を粒子表面層(シェル層)として存在させ、その内部の主たる体積部(コア部)をR2Fe17N3化合物相とするコアシェル構造を形成することで、高い耐熱性と磁気特性が両立される磁性粉末になるとの知見を得た。 The present inventors have made extensive studies to solve the above-mentioned problems in rare earth iron nitrogen (R 2 Fe 17 N 3 )-based magnetic powders having a nucleation-type coercive force mechanism. As a result, a phase richer in rare earth (R) than R 2 Fe 17 N 3 is present as a particle surface layer (shell layer), and the main volume part (core part) inside is composed of the R 2 Fe 17 N 3 compound phase. The researchers found that by forming a core-shell structure, magnetic powder can be created that has both high heat resistance and magnetic properties.
本発明は、このような知見に基づき完成されたものであり、耐熱性及び磁気特性に優れる希土類鉄窒素系磁性粉末及びその製造方法の提供を課題とする。また本発明は希土類鉄窒素系磁性粉末を含むボンド磁石用コンパウンド及びボンド磁石の提供を課題とする。 The present invention was completed based on such knowledge, and an object of the present invention is to provide a rare earth iron-nitrogen magnetic powder having excellent heat resistance and magnetic properties, and a method for producing the same. Another object of the present invention is to provide a bonded magnet compound and a bonded magnet containing rare earth iron nitrogen based magnetic powder.
本発明は下記(1)~(12)の態様を包含する。なお、本明細書において「~」なる表現は、その両端の数値を含む。すなわち、「X~Y」は「X以上Y以下」と同義である。 The present invention includes the following aspects (1) to (12). Note that in this specification, the expression "~" includes numerical values at both ends thereof. That is, "X to Y" is synonymous with "more than or equal to X and less than or equal to Y."
(1)希土類元素(R)、鉄(Fe)及び窒素(N)を主構成成分として含む希土類鉄窒素系磁性粉末であって、
前記磁性粉末は、その平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)をを2.5質量%以上4.0質量%以下の量で含み、
前記磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、前記コア部の表面に設けられる厚さ1nm以上30nm以下のシェル層と、を備え、
前記シェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含む、磁性粉末。
(1) A rare earth iron nitrogen based magnetic powder containing a rare earth element (R), iron (Fe) and nitrogen (N) as main components,
The magnetic powder has an average particle size of 1.0 μm or more and 10.0 μm or less, and contains 22.0 to 30.0 mass% of rare earth elements (R) and 2.5% of nitrogen (N). Contains in an amount of not less than 4.0% by mass and not more than 4.0% by mass,
The magnetic powder includes a core portion having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer with a thickness of 1 nm or more and 30 nm or less provided on the surface of the core portion. , comprising;
The shell layer is a magnetic powder containing a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 3.0 or less.
(2)前記希土類元素(R)としてサマリウム(Sm)を含む、上記(1)の磁性粉末。 (2) The magnetic powder of (1) above, containing samarium (Sm) as the rare earth element (R).
(3)最表面にさらに燐酸系化合物被膜を備える、上記(1)又は(2)の磁性粉末。 (3) The magnetic powder according to (1) or (2) above, further comprising a phosphoric acid compound coating on the outermost surface.
(4)アルゴン(Ar)雰囲気下300℃で1時間加熱したとき、加熱前の保磁力(Hc)に対する加熱後の保磁力(Hc,300)の比率である維持率(Hc,300/Hc)が70%以上である、上記(1)~(3)のいずれかの磁性粉末。 (4) When heated at 300°C for 1 hour in an argon (Ar) atmosphere, the retention rate (H c ,300 ) is the ratio of the coercive force (H c,300 ) after heating to the coercive force (H c ) before heating. /H c ) is 70% or more, the magnetic powder according to any one of (1) to (3) above.
(5)上記(1)~(4)のいずれかの磁性粉末と樹脂バインダーとを含む、ボンド磁石用コンパウンド。 (5) A compound for bonded magnets, comprising the magnetic powder according to any one of (1) to (4) above and a resin binder.
(6)上記(1)~(4)のいずれかの磁性粉末と樹脂バインダーとを含む、ボンド磁石。 (6) A bonded magnet containing the magnetic powder according to any one of (1) to (4) above and a resin binder.
(7)希土類鉄窒素系磁性粉末の製造方法であって、以下の工程;
Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する希土類鉄合金粉末と希土類酸化物粉末とを準備する工程と、
前記希土類鉄合金粉末100質量部に前記希土類酸化物粉末1~20質量部を混合して、粒径10.0μm以下の希土類鉄合金粉末と粒径1.0μm以下の希土類酸化物粉末とを含む原料混合物とする工程と、
前記原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量の還元剤を前記原料混合物に添加及び混合し、さらに還元剤を添加した前記原料混合物を非酸化性雰囲気中730~1050℃の範囲内の温度で加熱処理して還元拡散反応生成物とする工程と、
前記還元拡散反応生成物を窒素及び/又はアンモニアを含むガス気流中300~500℃の範囲内の温度で窒化熱処理して窒化反応生成物とする工程と、を含み、
前記還元拡散反応生成物とする工程での加熱処理により、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有する希土類鉄合金を含むコア部を形成するとともに、還元された希土類元素(R)の拡散反応により、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含むシェル層を前記コア部の表面に形成する、方法。
(7) A method for producing rare earth iron nitrogen based magnetic powder, comprising the following steps;
A step of preparing rare earth iron alloy powder and rare earth oxide powder having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type;
1 to 20 parts by mass of the rare earth oxide powder are mixed with 100 parts by mass of the rare earth iron alloy powder to contain rare earth iron alloy powder with a particle size of 10.0 μm or less and rare earth oxide powder with a particle size of 1.0 μm or less. A step of forming a raw material mixture;
The raw material obtained by adding and mixing a reducing agent in an amount of 1.1 to 10.0 times the equivalent amount required to reduce the oxygen component contained in the raw material mixture, and further adding a reducing agent. heating the mixture in a non-oxidizing atmosphere at a temperature within the range of 730 to 1050°C to obtain a reduction-diffusion reaction product;
nitriding heat-treating the reduction-diffusion reaction product at a temperature within the range of 300 to 500°C in a gas stream containing nitrogen and/or ammonia to obtain a nitridation reaction product;
By the heat treatment in the step of forming the reduction-diffusion reaction product, a core portion containing a rare earth iron alloy having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type is formed, Due to the diffusion reaction of the reduced rare earth element (R), a shell layer containing the rare earth element (R) and iron (Fe) at an R/Fe atomic ratio of 0.3 or more and 3.0 or less is formed in the core portion. A method of forming on a surface.
(8)前記窒化熱処理前の還元拡散反応生成物に解砕処理を施す工程をさらに含む、上記(7)の方法。 (8) The method according to (7) above, further comprising a step of subjecting the reduction-diffusion reaction product before the nitriding heat treatment to a crushing treatment.
(9)前記還元拡散反応生成物及び/又は窒化反応生成物を水及び/又はグリコールを含む洗浄液中に投入して崩壊させ、それにより生成物中の還元剤由来成分を低減させる湿式処理を施す工程をさらに含む、上記(7)又は(8)の方法。 (9) A wet treatment is performed in which the reduction-diffusion reaction product and/or nitridation reaction product is disintegrated by being thrown into a cleaning solution containing water and/or glycol, thereby reducing the reducing agent-derived components in the product. The method of (7) or (8) above, further comprising a step.
(10)前記窒化熱処理後の生成物の表面に燐酸系化合物被膜を形成する工程をさらに含む、上記(7)~(9)のいずれかの方法。 (10) The method according to any one of (7) to (9) above, further comprising the step of forming a phosphoric acid compound film on the surface of the product after the nitriding heat treatment.
(11)前記原料混合物の加熱減量が1質量%未満である、上記(7)~(10)のいずれかの方法。 (11) The method according to any one of (7) to (10) above, wherein the heating loss of the raw material mixture is less than 1% by mass.
(12)前記拡散反応生成物とする際の加熱処理を0~8時間行う、上記(7)~(11)のいずれかの方法。 (12) The method according to any one of (7) to (11) above, wherein the heat treatment is performed for 0 to 8 hours when producing the diffusion reaction product.
本発明によれば、耐熱性及び磁気特性に優れる希土類鉄窒素系磁性粉末及びその製造方法が提供される。また本発明によれば希土類鉄窒素系磁性粉末を含むボンド磁石用コンパウンド及びボンド磁石が提供される。 According to the present invention, a rare earth iron nitrogen based magnetic powder having excellent heat resistance and magnetic properties and a method for producing the same are provided. Further, according to the present invention, there are provided a bonded magnet compound and a bonded magnet containing rare earth iron nitrogen based magnetic powder.
本発明の具体的な実施形態(以下、「本実施形態」という)について説明する。なお本発明は、以下の実施形態に限定されるものではなく、本発明の要旨を変更しない範囲において種々の変更が可能である。 A specific embodiment of the present invention (hereinafter referred to as "this embodiment") will be described. Note that the present invention is not limited to the following embodiments, and various changes can be made without departing from the gist of the present invention.
≪希土類鉄窒素系磁性粉末≫
本実施形態の希土類鉄窒素系磁性粉末は、希土類元素(R)、鉄(Fe)及び窒素(N)を主構成成分として含む。またこの磁性粉末は、その平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)をを2.5質量%以上4.0質量%以下の量で含む。この磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、このコア部の表面に設けられる厚さ1nm以上30nm以下のシェル層と、を備える。このシェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含む。
≪Rare earth iron nitrogen based magnetic powder≫
The rare earth iron nitrogen based magnetic powder of this embodiment contains a rare earth element (R), iron (Fe) and nitrogen (N) as main constituents. Further, this magnetic powder has an average particle size of 1.0 μm or more and 10.0 μm or less, contains 22.0% by mass or more of rare earth elements (R) and 30.0% by mass or less, and 2.0% by mass of nitrogen (N). Contained in an amount of 5% by mass or more and 4.0% by mass or less. This magnetic powder has a core portion having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer with a thickness of 1 nm or more and 30 nm or less provided on the surface of this core portion. , is provided. This shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 3.0 or less.
希土類元素(R)は、特に限定されるものではないが、ランタン(La)、セリウム(Ce)、サマリウム(Sm)、プラセオジウム(Pr)、ネオジム(Nd)、ガドリニウム(Gd)、テルビウム(Tb)から選ばれる少なくとも1種の元素が含まれるものが好ましい。あるいは、さらにジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、およびイッテルビウム(Yb)から選ばれる少なくとも1種の元素が含まれるものが好ましい。なかでもサマリウム(Sm)及び/又はネオジム(Nd)が含まれるものは、本実施形態の効果を顕著に発揮させるため特にに好ましい。ボンド磁石に応用される場合には、その50原子%以上がサマリウム(Sm)であることが望ましく、また高周波磁性材料に応用される場合にはその50原子%以上がネオジウム(Nd)であることが望ましい。 Rare earth elements (R) include, but are not limited to, lanthanum (La), cerium (Ce), samarium (Sm), praseodymium (Pr), neodymium (Nd), gadolinium (Gd), and terbium (Tb). It is preferable that at least one element selected from the following be contained. Alternatively, it is preferable that the material further contains at least one element selected from dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), and ytterbium (Yb). Among these, those containing samarium (Sm) and/or neodymium (Nd) are particularly preferable because they bring out the effects of this embodiment significantly. When applied to bonded magnets, it is desirable that 50 atomic% or more be samarium (Sm), and when applied to high frequency magnetic materials, 50 atomic% or more should be neodymium (Nd). is desirable.
磁性粉末は、希土類元素(R)、鉄(Fe)及び窒素(N)以外の他の成分を含んでいてもよい。例えばコバルト(Co)、ニッケル(Ni)、マンガン(Mn)及び/又はクロム(Cr)を含んでもよい。しかしながら、このうちニッケル(Ni)、マンガン(Mn)及びクロム(Cr)は磁化を低下させる恐れがあるため、その含有量はなるべく少ないことが好ましい。希土類元素(R)、鉄(Fe)及び窒素(N)以外の他の成分を含む場合には、その含有量は10原子%以下が好ましく、5原子%以下がより好ましく、1原子%以下がさらに好ましい。磁性粉末が、希土類元素(R)、鉄(Fe)及び窒素(N)を含み、残部不可避不純物であってもよい。 The magnetic powder may contain components other than rare earth elements (R), iron (Fe), and nitrogen (N). For example, it may contain cobalt (Co), nickel (Ni), manganese (Mn) and/or chromium (Cr). However, among these, nickel (Ni), manganese (Mn), and chromium (Cr) may reduce magnetization, so it is preferable that their content is as low as possible. When components other than rare earth elements (R), iron (Fe) and nitrogen (N) are included, the content is preferably 10 at% or less, more preferably 5 at% or less, and 1 at% or less. More preferred. The magnetic powder may contain a rare earth element (R), iron (Fe), and nitrogen (N), with the remainder being unavoidable impurities.
本実施形態の磁性粉末は、その平均粒径が1.0μm以上10.0μm以下である。平均粒径1.0μm未満では、磁性粉末の取扱いが困難となる。また粒子全体に占めるコア部の体積比率が小さくなってしまう。コア部は磁気特性が高いため、その体積比率が小さくなると、磁性粉末の磁気特性が高くなり難くなってしまう。一方で、平均粒径が10μmより大きくなると、磁性材料として十分高い保磁力(Hc)を得にくい。好ましい平均粒径は1μm以上10μm以下であり、より好ましい平均粒径は2μm以上9μm以下である。 The magnetic powder of this embodiment has an average particle size of 1.0 μm or more and 10.0 μm or less. If the average particle size is less than 1.0 μm, handling of the magnetic powder becomes difficult. Moreover, the volume ratio of the core portion to the entire particle becomes small. Since the core portion has high magnetic properties, if the volume ratio of the core portion decreases, it becomes difficult to increase the magnetic properties of the magnetic powder. On the other hand, when the average particle size is larger than 10 μm, it is difficult to obtain a sufficiently high coercive force (H c ) as a magnetic material. A preferable average particle size is 1 μm or more and 10 μm or less, and a more preferable average particle size is 2 μm or more and 9 μm or less.
本実施形態の磁性粉末は、希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)を2.5質量%以上4.0質量%以下の量で含む。磁性粉末全体の組成で、希土類元素(R)が22質量%未満では保磁力が低下する。一方で30質量%を超えると磁化の低いシェル層が厚くなり、またRFe3窒化物相が増加して残留磁化(σr)が低下する。窒素(N)が2.5質量%未満では十分に窒化されていない粒子が形成されてしまう。そのような粒子は飽和磁化と磁気異方性が小さいため、磁性粉末の残留磁化と保磁力が低下する。窒素(N)が4.0質量%を超えると過剰に窒化された粒子が増加して残留磁化と保磁力が低下する。 The magnetic powder of this embodiment contains a rare earth element (R) in an amount of 22.0% by mass or more and 30.0% by mass or less, and nitrogen (N) in an amount of 2.5% by mass or more and 4.0% by mass or less. If the rare earth element (R) is less than 22% by mass in the overall composition of the magnetic powder, the coercive force will decrease. On the other hand, if it exceeds 30% by mass, the shell layer with low magnetization becomes thicker, the RFe 3 nitride phase increases, and the residual magnetization (σ r ) decreases. If nitrogen (N) is less than 2.5% by mass, particles that are not sufficiently nitrided will be formed. Such particles have low saturation magnetization and magnetic anisotropy, which reduces the residual magnetization and coercive force of the magnetic powder. If nitrogen (N) exceeds 4.0% by mass, the number of excessively nitrided particles increases and the residual magnetization and coercive force decrease.
また本実施形態の磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部を備える。このような結晶構造を有するコア部を備えることで、優れた磁気特性を有する磁性粉末とすることが可能となる。コア部の結晶構造は、通常の粉末X線回折で求められるピーク位置から判断することができる。この場合には、シェル層も含めて測定されるが、シェル層の厚みはコア部に比べて十分に薄い。そのためシェル層の影響はX線回折パターンにはほとんど見られない。 Further, the magnetic powder of this embodiment includes a core portion having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type. By providing a core portion having such a crystal structure, it is possible to obtain a magnetic powder having excellent magnetic properties. The crystal structure of the core portion can be determined from the peak position determined by ordinary powder X-ray diffraction. In this case, the shell layer is also included in the measurement, and the thickness of the shell layer is sufficiently thinner than that of the core. Therefore, the influence of the shell layer is hardly seen on the X-ray diffraction pattern.
さらに本実施形態の磁性粉末は、コア部の表面に設けられるシェル層を備える。このシェル層は厚さ1nm以上30nm以下であり、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含む。このシェル層は、希土類元素(R)及び鉄(Fe)以外の他の成分を含んでもよい。例えばシェル層は窒素(N)を含んでもよく、あるいは含まなくともよい。シェル層が窒素(N)を含む場合には、その含有量は、例えばオージェ電子分光法により分析したときに1~20原子%である。一方で、希土類元素(R)、鉄(Fe)及び窒素(N)以外の成分の含有量は10原子%以下が好ましく、5原子%以下がより好ましく、1原子%以下がさらに好ましい。シェル層が希土類元素(R)及び鉄(Fe)を含み残部不可避不純物からなるものであってよく、あるいは希土類元素(R)、鉄(Fe)及び窒素(N)を含み残部不可避不純物からなるものであってもよい。 Furthermore, the magnetic powder of this embodiment includes a shell layer provided on the surface of the core portion. This shell layer has a thickness of 1 nm or more and 30 nm or less, and contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 3.0 or less. This shell layer may contain components other than the rare earth element (R) and iron (Fe). For example, the shell layer may or may not contain nitrogen (N). When the shell layer contains nitrogen (N), its content is, for example, 1 to 20 atomic % when analyzed by Auger electron spectroscopy. On the other hand, the content of components other than rare earth elements (R), iron (Fe), and nitrogen (N) is preferably 10 at % or less, more preferably 5 at % or less, and even more preferably 1 at % or less. The shell layer may contain a rare earth element (R) and iron (Fe), with the remainder consisting of unavoidable impurities, or may contain a rare earth element (R), iron (Fe), and nitrogen (N), with the remainder consisting of unavoidable impurities. It may be.
平均粒径1~10μmの粒子の表面部にこのようなシェル層を存在させることで、耐熱性と磁気特性を両立させることができる。ここで形成されるシェル層は、R2Fe17N3相より希土類に富むR相、RFe2相、RFe3相等、あるいはそれらの窒化物になっていると推測される。R/Feが0.3未満ではコア部に近い組成になってしまい、耐熱性向上が期待できない。一方でR/Feが3.0を超えると残留磁化が低下する場合がある。好ましいR/Feは0.5以上1.5以下である。シェル層の厚み1nm未満では耐熱性の改善効果が小さく、30nmを超えると残留磁化が低下する。厚みは好ましくは3nm以上15nm以下である。 By providing such a shell layer on the surface of particles having an average particle size of 1 to 10 μm, both heat resistance and magnetic properties can be achieved. The shell layer formed here is presumed to be an R phase richer in rare earth elements than the R 2 Fe 17 N 3 phase, an RFe 2 phase, an RFe 3 phase, etc., or a nitride thereof. If R/Fe is less than 0.3, the composition will be close to that of the core, and no improvement in heat resistance can be expected. On the other hand, if R/Fe exceeds 3.0, residual magnetization may decrease. Preferably R/Fe is 0.5 or more and 1.5 or less. When the thickness of the shell layer is less than 1 nm, the effect of improving heat resistance is small, and when it exceeds 30 nm, residual magnetization decreases. The thickness is preferably 3 nm or more and 15 nm or less.
磁性粉末は、好ましくは希土類元素(R)としてサマリウム(Sm)を含む。これにより磁性粉末をボンド磁石として好適に用いることが可能となる。 The magnetic powder preferably contains samarium (Sm) as the rare earth element (R). This allows the magnetic powder to be suitably used as a bonded magnet.
磁性粉末は、好ましくはその最表面に更に燐酸系化合物被膜を備える。磁性粉末のシェル層の外側に公知の燐酸系化合物被膜を設けると、湿度環境下での安定性を高めることができる。燐酸系化合物被膜の厚みは、シェル層の厚みよりも薄いことが望ましい。厚さは例えば30nm以下であり、5nm以上20nm以下が好ましい。燐酸系化合物被膜の厚み30nmを超えると磁気特性が低下することがある。 The magnetic powder preferably further includes a phosphoric acid compound coating on its outermost surface. By providing a known phosphoric acid compound coating on the outside of the magnetic powder shell layer, stability in a humid environment can be improved. The thickness of the phosphoric acid compound coating is desirably thinner than the thickness of the shell layer. The thickness is, for example, 30 nm or less, preferably 5 nm or more and 20 nm or less. If the thickness of the phosphoric acid compound coating exceeds 30 nm, the magnetic properties may deteriorate.
磁性粉末は、残留磁化(σr)が80Am2/kg以上であってよく、90Am2/kg以上であってよく、100Am2/kg以上であってよい。またこの磁性粉末は、保磁力(Hc)が700kA/m以上であってよく、1000kA/m以上であってよく、1300kA/m以上であってよい。さらにこの磁性粉末は、保磁力の維持率(Hc,300/Hc)が70%以上であってよく、75%以上であってよく、80%以上であってよく、85%以上であってよい。ここで保磁力の維持率(Hc,300/Hc)とは、磁性粉末をアルゴン(Ar)雰囲気下300℃で1時間加熱したとき、加熱前の保磁力(Hc)に対する加熱後の保磁力(Hc,300)の比率である。 The magnetic powder may have a residual magnetization (σ r ) of 80 Am 2 /kg or more, 90 Am 2 /kg or more, or 100 Am 2 /kg or more. Further, this magnetic powder may have a coercive force (H c ) of 700 kA/m or more, 1000 kA/m or more, or 1300 kA/m or more. Furthermore, this magnetic powder may have a coercive force retention rate (H c,300 /H c ) of 70% or more, 75% or more, 80% or more, 85% or more. It's fine. Here, the retention rate of coercive force (H c, 300 /H c ) is the coercive force (H c ) after heating compared to the coercive force (H c ) before heating when magnetic powder is heated at 300°C for 1 hour in an argon (Ar) atmosphere. It is the ratio of coercive force (H c, 300 ).
本実施形態の磁性粉末は、耐熱性、耐候性だけでなく、磁気特性、特に磁化及び保磁力に優れるという特徴がある。すなわちこの磁性粉末はSm2Fe17N3に代表される従来の磁性粉末に比べて高い耐熱性を有する。また鉄(Fe)の一部を他元素(Mn、Cr)で置換した高耐熱性のR2(Fe、M)17Nx磁性粉末(M=Cr、Mn)に比べて同等以上の磁気特性を有する。 The magnetic powder of this embodiment is characterized by excellent not only heat resistance and weather resistance but also magnetic properties, particularly magnetization and coercive force. That is, this magnetic powder has higher heat resistance than conventional magnetic powder typified by Sm 2 Fe 17 N 3 . In addition, it has magnetic properties equivalent to or better than highly heat-resistant R 2 (Fe, M) 17 N x magnetic powder (M = Cr, Mn) in which a part of iron (Fe) is replaced with other elements (Mn, Cr). has.
耐熱性及び磁気特性に優れる本実施形態の磁性粉末は、これを樹脂バインダーと混合してボンド磁石を作製する上で好適である。すなわち磁性粉末を用いてボンド磁石を作製する際に、磁性粉末が高温に曝されることがある。例えばポリフェニレンサルファイド樹脂や芳香族ポリアミド樹脂などの耐熱性の高い熱可塑性樹脂をバインダーとしてボンド磁石を作製する場合には、磁性粉末と樹脂バインダーとの混合混練工程や射出成形工程で、材料の曝される温度が300℃を超えることがある。本実施形態の磁性粉末は、このような高温に曝された後であっても、磁気特性の劣化が抑制される。 The magnetic powder of this embodiment, which has excellent heat resistance and magnetic properties, is suitable for producing a bonded magnet by mixing it with a resin binder. That is, when producing a bonded magnet using magnetic powder, the magnetic powder may be exposed to high temperatures. For example, when producing a bonded magnet using a highly heat-resistant thermoplastic resin such as polyphenylene sulfide resin or aromatic polyamide resin as a binder, the material is exposed to Temperatures may exceed 300°C. The magnetic powder of this embodiment suppresses deterioration of magnetic properties even after being exposed to such high temperatures.
なお特許文献4には表面被覆金属層を有する異方性希土類合金系磁性粉末と樹脂からなり、表面被覆金属層の金属がZn,Sn,In,Al,Si,希土類元素の少なくとも一種以上からなる単一金属または合金である希土類ボンド磁石が開示されている(特許文献4の請求項1及び2)。しかしながら特許文献4には表面被覆金属層について、希土類元素(R)、鉄(Fe)及び窒素(N)をR/Fe原子比で0.3以上3.0以下となるように含むことの開示や示唆は無く、この表面被覆金属層は本実施形態のシェル層とは全くの別物である。その上、特許文献4には表面被覆金属層(Zn被覆層)の厚さが0.05ミクロン(50nm)である旨が記載されており(特許文献4の[0068])、この厚さ(50nm)は本実施形態のシェル層の厚さ(1nm以上30nm以下)より厚い。このように厚い表面被覆金属層を有する磁性粉末は、磁気特性、特に磁化が低いという問題がある。 In addition, Patent Document 4 discloses a material comprising an anisotropic rare earth alloy magnetic powder and a resin having a surface coating metal layer, and the metal of the surface coating metal layer is composed of at least one of Zn, Sn, In, Al, Si, and rare earth elements. A rare earth bonded magnet that is a single metal or an alloy is disclosed (Claims 1 and 2 of Patent Document 4). However, Patent Document 4 discloses that the surface coating metal layer contains rare earth elements (R), iron (Fe), and nitrogen (N) so that the R/Fe atomic ratio is 0.3 or more and 3.0 or less. There is no suggestion that this surface coating metal layer is completely different from the shell layer of this embodiment. Furthermore, Patent Document 4 describes that the thickness of the surface coating metal layer (Zn coating layer) is 0.05 microns (50 nm) ([0068] of Patent Document 4), and this thickness ( 50 nm) is thicker than the thickness of the shell layer of this embodiment (1 nm or more and 30 nm or less). A magnetic powder having such a thick surface coating metal layer has a problem of low magnetic properties, particularly low magnetization.
≪希土類鉄窒素系磁性粉末の製造方法≫
希土類鉄窒素系磁性粉末の製造方法は、得られる磁性粉末が上述する要件を満足する限り、限定されるものではない。しかしながら還元拡散法により製造することが好ましく、以下に説明される手法で製造することが特に好ましい。
≪Method for producing rare earth iron nitrogen based magnetic powder≫
The method for producing the rare earth iron nitrogen magnetic powder is not limited as long as the obtained magnetic powder satisfies the above-mentioned requirements. However, it is preferable to produce it by a reduction-diffusion method, and it is particularly preferable to produce it by the method described below.
本実施形態の希土類鉄窒素系磁性粉末の製造方法は、以下の工程;Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する希土類鉄合金粉末と、希土類酸化物粉末と、を準備する工程(準備工程)と、希土類鉄合金粉末100質量部に希土類酸化物粉末1~20質量部を混合して、粒径10.0μm以下の希土類鉄合金粉末と粒径1.0μm以下の希土類酸化物粉末とを含む原料混合物とする工程(混合工程)と、この原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量の還元剤を原料混合物に添加及び混合し、さらに還元剤を添加した原料混合物を非酸化性雰囲気中730~1050℃の範囲内の温度で加熱処理して還元拡散反応生成物とする工程(還元拡散処理工程)と、この還元拡散反応生成物を窒素及び/又はアンモニアを含むガス気流中300~500℃の範囲内の温度で窒化熱処理して窒化反応生成物とする工程(窒化熱処理工程)と、を含む。また還元拡散反応生成物とする工程での加熱処理により、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有する希土類鉄合金を含むコア部を形成するとともに、還元された希土類元素(R)の拡散反応により、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含むシェル層を前記コア部の表面に形成する。各工程の詳細について以下に説明する。 The method for producing rare earth iron nitrogen- based magnetic powder according to the present embodiment includes the following steps ; A step (preparation step) of preparing a rare earth iron alloy powder with a particle size of 10.0 μm or less by mixing 1 to 20 parts by mass of a rare earth oxide powder with 100 parts by mass of a rare earth iron alloy powder. A step (mixing step) of forming a raw material mixture containing rare earth oxide powder of 1.0 μm or less, and 1.1 to 10.0 times the equivalent amount required to reduce the oxygen component contained in this raw material mixture. A step of adding and mixing an amount of reducing agent to the raw material mixture, and further heat-treating the raw material mixture to which the reducing agent has been added at a temperature within the range of 730 to 1050 ° C. in a non-oxidizing atmosphere to obtain a reduction-diffusion reaction product. (reduction diffusion treatment step) and a step of nitriding the reduction diffusion reaction product at a temperature within the range of 300 to 500°C in a gas stream containing nitrogen and/or ammonia to obtain a nitridation reaction product (nitridation heat treatment step). ) and including. In addition, by heat treatment in the step of forming a reduction-diffusion reaction product, a core portion containing a rare earth iron alloy having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type is formed, Due to the diffusion reaction of the reduced rare earth element (R), a shell layer containing the rare earth element (R) and iron (Fe) at an R/Fe atomic ratio of 0.3 or more and 3.0 or less is formed in the core portion. Form on the surface. Details of each step will be explained below.
<準備工程>
準備工程では、希土類鉄合金粉末と希土類酸化物粉末とを準備する。ここで希土類鉄合金粉末は、主としてコア部を形成するための原料であり、Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する粉末、例えばR2Fe17組成の粉末である。希土類鉄合金粉末は、後続する混合工程で10.0μm以下の粒径になるものを選択すればよい。
<Preparation process>
In the preparation step, rare earth iron alloy powder and rare earth oxide powder are prepared. Here, the rare earth iron alloy powder is mainly a raw material for forming the core part, and is a powder having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, for example, R 2 Fe 17 The composition is powder. The rare earth iron alloy powder may be selected to have a particle size of 10.0 μm or less in the subsequent mixing step.
希土類鉄合金粉末(R2Fe17粉末等)は、主としてコア部を形成するための原料である。希土類鉄合金粉末は、公知の手法、例えば還元拡散法、溶解鋳造法、あるいは液体急冷法などで作製することができる。このうち還元拡散法であれば、その原料である鉄粒子の大きさと還元拡散反応の温度等の条件を調整することで、所望とする粒径の合金粉末を直接製造できる。あるいは、より大きな粒径の合金粉末や合金塊を出発として所望の粒径まで粉砕して製造することもできる。 Rare earth iron alloy powder (R 2 Fe 17 powder, etc.) is mainly a raw material for forming the core portion. The rare earth iron alloy powder can be produced by a known method, such as a reduction diffusion method, a melt casting method, or a liquid quenching method. Among these methods, the reduction-diffusion method allows for the direct production of alloy powder with a desired particle size by adjusting the size of the iron particles that are the raw material and conditions such as the temperature of the reduction-diffusion reaction. Alternatively, it can also be manufactured by starting from an alloy powder or alloy ingot with a larger particle size and pulverizing it to a desired particle size.
なお還元拡散法による希土類鉄合金粉末では製造条件によって、金属間化合物中に水素が含まれ、水素含有希土類鉄合金粉末(R2Fe17Hx粉末等)になっている場合がある。この水素含有希土類鉄合金(R2Fe17Hx等)は、希土類鉄合金(R2Fe17)と結晶構造が変わらないものの、格子定数が大きくなっていることがある。また溶解鋳造法や液体急冷法の合金においても、粉末化するのに水素を吸蔵させて粉砕した粉末では、同様に格子定数が大きな水素含有希土類鉄合金粉末(R2Fe17Hx粉末)になっている場合がある。合金粉末がこのような水素を含有する状態でも差支えない。ただし希土類鉄合金粉末は、その含有水分量(加熱減量)が1質量%未満であることが望ましい。 Depending on the manufacturing conditions, the rare earth iron alloy powder produced by the reduction diffusion method may contain hydrogen in the intermetallic compound, resulting in a hydrogen-containing rare earth iron alloy powder (such as R 2 Fe 17 H x powder). Although the hydrogen-containing rare earth iron alloy (R 2 Fe 17 H x etc.) has the same crystal structure as the rare earth iron alloy (R 2 Fe 17 ), it may have a larger lattice constant. In addition, in the case of alloys produced by the melt casting method or the liquid quenching method, if the powder is pulverized by absorbing hydrogen and then pulverized, it becomes a hydrogen-containing rare earth iron alloy powder (R 2 Fe 17 H x powder) with a similarly large lattice constant. It may be. There is no problem even if the alloy powder contains such hydrogen. However, the rare earth iron alloy powder desirably has a moisture content (loss on heating) of less than 1% by mass.
希土類酸化物粉末は、主としてシェル層を形成するための原料である。希土類酸化物粉末を構成する希土類元素(R)は、希土類鉄合金粉末を構成する希土類元素と同一であってもよく、或いは異なっていてもよい。しかしながら両者が同一であることが好ましい。また希土類酸化物粉末は、後続する混合工程で1.0μm以下の粒径になるものを選択すればよい。 The rare earth oxide powder is primarily a raw material for forming the shell layer. The rare earth element (R) constituting the rare earth oxide powder may be the same as or different from the rare earth element constituting the rare earth iron alloy powder. However, it is preferred that they are the same. Further, the rare earth oxide powder may be selected to have a particle size of 1.0 μm or less in the subsequent mixing step.
<混合工程>
混合工程では、準備した希土類鉄合金粉末100質量部に希土類酸化物粉末1~20質量部を混合して原料混合物とする。希土類酸化物粉末量が1質量部未満であると、後述する還元拡散処理後に希土類鉄合金粉末(R2Fe17粉末等)の表面にα-Feが生成し、最終的に得られる磁性粉末の保磁力が低下する。一方で、希土類酸化物粉末量が20質量部を超えると希土類鉄合金よりも希土類(R)リッチなRFe3および/またはRFe2化合物が多く生成し、最終的に得られる磁性粉末の収率が低下する。
<Mixing process>
In the mixing step, 1 to 20 parts by mass of rare earth oxide powder is mixed with 100 parts by mass of the prepared rare earth iron alloy powder to obtain a raw material mixture. If the amount of rare earth oxide powder is less than 1 part by mass, α-Fe will be generated on the surface of the rare earth iron alloy powder (R 2 Fe 17 powder, etc.) after the reduction and diffusion treatment described below, and the final magnetic powder will be Coercive force decreases. On the other hand, if the amount of rare earth oxide powder exceeds 20 parts by mass, more rare earth (R)-rich RFe 3 and/or RFe 2 compounds will be produced than the rare earth iron alloy, and the yield of the final magnetic powder will decrease. descend.
混合工程で得られる原料混合物は、粒径10.0μm以下の希土類鉄合金粉末と粒径1.0μm以下の希土類酸化物粉末を含む。すなわち原料混合物に含まれる希土類鉄合金粉末と希土類酸化物粉末の最大粒径を、それぞれ10.0μm以下及び1.0μm以下とする。希土類鉄合金粉末は、磁性粉末のコアになる原料である。後続する還元拡散熱処理による粒成長、凝集及び焼結や、シェル層が形成される分を考慮すると、合金粉末は、その粒径が最大でも磁性粉末の粒径(1.0μm以上10.0μm以下)程度である。そのため原料混合粉末中の合金粉末の粒径を10.0μm以下とする。合金粉末の粒径は、磁性粉末の目標粒径に対して90%未満であることが好ましい。また希土類酸化物粉末は、シェル層を所望の厚みで均一に形成するために微細な粉末であることが望ましい。そのため原料混合粉末中の酸化物粉末は、その粒径を1.0μm以下とする。酸化物粉末の粒径は、500nm以下が好ましく、300nm以下がより好ましい。なお粒径は走査電子顕微鏡(SEM)で容易に確認することができる。 The raw material mixture obtained in the mixing step includes rare earth iron alloy powder with a particle size of 10.0 μm or less and rare earth oxide powder with a particle size of 1.0 μm or less. That is, the maximum particle diameters of the rare earth iron alloy powder and the rare earth oxide powder contained in the raw material mixture are set to 10.0 μm or less and 1.0 μm or less, respectively. Rare earth iron alloy powder is a raw material that becomes the core of magnetic powder. Considering the grain growth, agglomeration, and sintering caused by the subsequent reduction-diffusion heat treatment and the formation of a shell layer, the maximum particle size of the alloy powder is the particle size of the magnetic powder (1.0 μm or more and 10.0 μm or less). ). Therefore, the particle size of the alloy powder in the raw material mixed powder is set to 10.0 μm or less. The particle size of the alloy powder is preferably less than 90% of the target particle size of the magnetic powder. Further, the rare earth oxide powder is desirably a fine powder in order to uniformly form the shell layer with a desired thickness. Therefore, the particle size of the oxide powder in the raw material mixed powder is set to 1.0 μm or less. The particle size of the oxide powder is preferably 500 nm or less, more preferably 300 nm or less. Note that the particle size can be easily confirmed using a scanning electron microscope (SEM).
混合工程では、粒径10.0μm以下の希土類鉄合金粉末と希土類酸化物粉末との混合操作が重要である。均一なシェル層を付与するには希土類酸化物粉末の粒度をなるべく微細にするとともに均一に分散させることが望ましい。混合は乾式法及び湿式法のいずれによってもよい。乾式混合は、ヘンシェルミキサー、コンピックス、メカノハイブリッド、メカノフュージョン、ノビルタ、ハイブリダイゼーションシステム、ミラーロ、タンブラーミキサー、シータ・コンポーザ又はスパルタンミキサーなどの乾式混合機を用い、不活性ガス雰囲気中で行えばよい。湿式混合は、ビーズミル、ボールミル、ナノマイザー、湿式サイクロン、ホモジナイザー、ディゾルバー、フィルミックスなどの湿式混合機を用いて行えばよい。 In the mixing step, it is important to mix the rare earth iron alloy powder with a particle size of 10.0 μm or less and the rare earth oxide powder. In order to provide a uniform shell layer, it is desirable to make the particle size of the rare earth oxide powder as fine as possible and to disperse it uniformly. Mixing may be done by either a dry method or a wet method. Dry mixing may be performed in an inert gas atmosphere using a dry mixer such as a Henschel mixer, Compix, MechanoHybrid, Mechanofusion, Nobilta, Hybridization System, Miraro, Tumbler mixer, Theta Composer, or Spartan mixer. . Wet mixing may be performed using a wet mixer such as a bead mill, a ball mill, a nanomizer, a wet cyclone, a homogenizer, a dissolver, and a film mix.
希土類鉄合金粉末と希土類酸化物粉末を混合する際に、これらを同時に微粉砕して所望の粒径にしてもよい。微粉砕時に希土類酸化物粉末を加えて同時に微粉砕することで、均一な混合物を得ることができる。微粉砕は、ジェットミルなどの乾式粉砕機や、振動ミル、回転ボールミル、媒体攪拌ミルなどの湿式微粉砕機が使用可能である。湿式微粉砕はケトン類、へキサンなどの低級炭化水素類、トルエンなどの芳香族類、エタノールまたはイソプロピルアルコール等のアルコール類、フッ素系不活性液体類、またはこれらの混合物などの有機溶媒を用いることができる。これらの微粉砕混合は、希土類酸化物粉末も微粉砕され、それらが均一に分散するので好ましい。湿式法では微粉砕後のスラリーから有機溶媒を乾燥除去して原料混合物とすればよい。 When mixing the rare earth iron alloy powder and the rare earth oxide powder, they may be simultaneously pulverized to a desired particle size. By adding rare earth oxide powder during pulverization and pulverizing at the same time, a homogeneous mixture can be obtained. For fine pulverization, a dry pulverizer such as a jet mill, or a wet pulverizer such as a vibration mill, a rotary ball mill, or a media stirring mill can be used. Wet pulverization uses organic solvents such as ketones, lower hydrocarbons such as hexane, aromatics such as toluene, alcohols such as ethanol or isopropyl alcohol, fluorine-based inert liquids, or mixtures thereof. I can do it. These finely pulverized mixtures are preferable because the rare earth oxide powders are also finely pulverized and dispersed uniformly. In the wet method, the organic solvent may be removed by drying from the slurry after pulverization to obtain a raw material mixture.
原料混合物は、その加熱減量が1質量%未満であることが望ましい。加熱減量は乾燥後の混合粉末の含有不純物量であり、水分を主体とする。また混合時に用いられる有機溶媒、分散助剤、取扱いプロセスの種類によっては炭素も含まれうる。加熱減量が1質量%を超えると、後続する還元拡散処理中に水蒸気や炭酸ガスが多量に発生することがある。水蒸気や炭酸ガスが多量に発生すると、これらが還元剤(Ca粒等)を酸化させて還元拡散反応を抑えてしまう。そのため、優れた磁気特性を得る上で望ましくないα-Feが最終的に得られる磁性粉末中に生成してしまう。そのため原料混合物を十分に減圧乾燥することが望ましい。これにより含まれる水分のみならず炭素が十分に除去される。なお加熱減量は、試料50gを真空中400℃で5時間加熱したときの減量αを測定することで求められる。 It is desirable that the raw material mixture has a heating loss of less than 1% by mass. The heating loss is the amount of impurities contained in the mixed powder after drying, and is mainly composed of water. Depending on the organic solvent, dispersion aid, and handling process used during mixing, carbon may also be included. If the loss on heating exceeds 1% by mass, a large amount of water vapor and carbon dioxide gas may be generated during the subsequent reduction-diffusion treatment. When a large amount of water vapor and carbon dioxide gas is generated, these oxidize the reducing agent (Ca particles, etc.) and suppress the reduction-diffusion reaction. Therefore, α-Fe, which is undesirable for obtaining excellent magnetic properties, is generated in the finally obtained magnetic powder. Therefore, it is desirable to thoroughly dry the raw material mixture under reduced pressure. This sufficiently removes not only the moisture but also the carbon contained therein. The heating loss is determined by measuring the weight loss α when 50 g of the sample is heated at 400° C. for 5 hours in a vacuum.
<還元拡散処理工程>
還元拡散処理工程では、得られた原料混合物に還元剤を添加及び混合し、さらに還元剤を添加した原料混合物を加熱処理して還元拡散反応生成物とする。ここで還元剤の添加量は、原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量とする。また加熱処理は非酸化性雰囲気中730~1050℃の範囲内の温度で行う。
<Reduction diffusion treatment process>
In the reduction-diffusion treatment step, a reducing agent is added and mixed with the obtained raw material mixture, and the raw material mixture to which the reducing agent has been added is further heat-treated to obtain a reduction-diffusion reaction product. Here, the amount of the reducing agent added is 1.1 to 10.0 times the equivalent amount required to reduce the oxygen component contained in the raw material mixture. Further, the heat treatment is performed in a non-oxidizing atmosphere at a temperature within the range of 730 to 1050°C.
還元剤として、マグネシウム(Mg)、カルシウム(Ca)、ストロンチウム(Sr)、バリウム(Ba)及びこれらの水素化物からなる群から選ばれる少なくとも1種を用いることができる。このうちカルシウム(Ca)が特に有用である。還元剤は粒状の形態で供給されることが多い。粒度0.5~3.0mmの還元剤を使用することが望ましい。 As the reducing agent, at least one member selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and hydrides thereof can be used. Among these, calcium (Ca) is particularly useful. Reducing agents are often supplied in particulate form. It is desirable to use a reducing agent with a particle size of 0.5 to 3.0 mm.
還元剤(Ca粒等)の添加量は当量に対して1.1~10.0倍である。ここで当量とは、希土類鉄合金粉末の含有酸素と希土類酸化物粉末とを還元するのに必要な量である。添加量が1.1倍未満であると、酸化物が還元されて形成された希土類元素(R)の拡散が進みにくくなる。一方で添加量が10倍を超えると、還元剤が過度に多量に残留するため好ましくない。多量に残留した還元剤は、希土類元素(R)の拡散に対する障害になる恐れがある。また還元剤に起因する残留物が多くなりその除去に手間がかかる。 The amount of reducing agent (Ca grains, etc.) added is 1.1 to 10.0 times the equivalent amount. Here, the equivalent amount is the amount necessary to reduce the oxygen contained in the rare earth iron alloy powder and the rare earth oxide powder. If the amount added is less than 1.1 times, the rare earth element (R) formed by reducing the oxide will be difficult to diffuse. On the other hand, if the amount added exceeds 10 times, an excessively large amount of the reducing agent remains, which is not preferable. A large amount of the reducing agent remaining may become an obstacle to the diffusion of the rare earth element (R). In addition, there is a large amount of residue caused by the reducing agent, and its removal is time-consuming.
混合工程では、原料混合物と還元剤(Ca粒等)とを均一に混合することが望ましい。混合器としてはVブレンダー、Sブレンダー、リボンミキサ、ボールミル、ヘンシェルミキサー、メカノフュージョン、ノビルタ、ハイブリダイゼーションシステム、ミラーロなどを使用できる。均一に混合し、特に原料である希土類鉄合金粉末に希土類酸化物粉末の偏析がないように混合することが望ましい。希土類酸化物粉末が偏析すると、シェル層の厚みばらつきの原因になるからである。 In the mixing step, it is desirable to uniformly mix the raw material mixture and the reducing agent (Ca grains, etc.). As a mixer, a V blender, an S blender, a ribbon mixer, a ball mill, a Henschel mixer, a Mechanofusion, a Nobilta, a hybridization system, a Miraro, etc. can be used. It is desirable to mix uniformly, and especially to avoid segregation of the rare earth oxide powder in the raw material rare earth iron alloy powder. This is because segregation of the rare earth oxide powder causes variations in the thickness of the shell layer.
次に還元剤を添加した原料混合物を加熱処理して還元拡散反応生成物とする。この加熱処理は例えば次のようにして行えばよい。すなわち得られた混合物を鉄製るつぼに装填し、このるつぼを反応容器に入れて電気炉に設置する。混合から電気炉への設置まで、可能な限り大気や水蒸気との接触を避けることが好ましい。混合物内に残留する大気や水蒸気を除去するため、反応容器内を真空引きしてヘリウム(He)、アルゴン(Ar)などの不活性ガスで置換することが好ましい。 Next, the raw material mixture to which the reducing agent has been added is heat-treated to obtain a reduction-diffusion reaction product. This heat treatment may be performed, for example, as follows. That is, the obtained mixture is loaded into an iron crucible, the crucible is placed in a reaction vessel, and the crucible is placed in an electric furnace. From mixing to installation in the electric furnace, it is preferable to avoid contact with the atmosphere and water vapor as much as possible. In order to remove air and water vapor remaining in the mixture, it is preferable to evacuate the inside of the reaction vessel and replace it with an inert gas such as helium (He) or argon (Ar).
その後、反応容器内を再度真空引きするか、ヘリウム(He)、アルゴン(Ar)などの不活性ガスを容器内にフローしながら非酸化性雰囲気中で混合物に還元拡散処理を施す。この加熱処理は730~1050℃の範囲内の温度で行うことが重要である。730℃未満では、蒸気となった還元剤(Ca粒等)により希土類酸化物の還元は進むが、希土類鉄合金粉末(R2Fe17粉末等)の表面での拡散反応によるシェル層の形成が進みにくい。そのため最終的に得られる磁性粉末の耐熱性向上が望めない。一方で1050℃を超えると、磁性粉末の粒成長や凝集及び焼結が進み、残留磁化や保磁力が低下する。加熱処理温度は、好ましくは750~1000℃である。 Thereafter, the inside of the reaction container is evacuated again, or the mixture is subjected to a reduction diffusion treatment in a non-oxidizing atmosphere while flowing an inert gas such as helium (He) or argon (Ar) into the container. It is important that this heat treatment be performed at a temperature within the range of 730 to 1050°C. At temperatures below 730°C, the reduction of rare earth oxides progresses due to the reducing agent (Ca grains, etc.) in the form of vapor, but the formation of a shell layer due to the diffusion reaction on the surface of the rare earth iron alloy powder (R 2 Fe 17 powder, etc.) Difficult to advance. Therefore, it is not possible to expect an improvement in the heat resistance of the finally obtained magnetic powder. On the other hand, if the temperature exceeds 1050°C, grain growth, aggregation, and sintering of the magnetic powder will proceed, resulting in a decrease in residual magnetization and coercive force. The heat treatment temperature is preferably 750 to 1000°C.
加熱保持時間は、最終的に得られる磁性粉末の粒成長や凝集及び焼結を抑制するように加熱温度と併せて設定すればよい。例えば設定温度で0~8時間保持する。8時間を超えると粒成長や凝集及び焼結が顕著になり、目的とする平均粒径が1μm以上10μm以下の磁性粉末を得ることが難しくなることがある。保持時間は、0~5時間が好ましく、0~3時間がより好ましい。なお保持時間が「0時間」とは、設定温度に到達後にすぐ冷却することを意味する。 The heating holding time may be set together with the heating temperature so as to suppress grain growth, aggregation, and sintering of the finally obtained magnetic powder. For example, hold at the set temperature for 0 to 8 hours. If it exceeds 8 hours, grain growth, agglomeration, and sintering become noticeable, and it may become difficult to obtain magnetic powder with the desired average particle size of 1 μm or more and 10 μm or less. The holding time is preferably 0 to 5 hours, more preferably 0 to 3 hours. Note that a holding time of "0 hours" means that cooling is performed immediately after reaching the set temperature.
このような加熱処理により、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有する希土類鉄合金を含むコア部が形成されるとともに、還元された希土類元素(R)の拡散反応によりシェル層が形成される。このシェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含む。 Through such heat treatment, a core portion containing a rare earth iron alloy having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type is formed, and the reduced rare earth element (R ) A shell layer is formed by the diffusion reaction. This shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 3.0 or less.
希土類鉄窒素系磁性粉末は、ニュークリエーション型の保磁力発生機構を有する。粒子表面にα-Feなどの軟磁性相や結晶磁気異方性を低下させる結晶欠陥などが存在すると、そこが逆磁区の発生核(ニュークリエーション)になって粒子保磁力が低下する。従来の磁性粉末の耐熱性が悪いのは、加熱によってR2Fe17N3化合物相が分解してα-FeやFe窒化物などの軟磁性相が生成し、それが逆磁区発生核になるためである。これに対して、本実施形態では、R/Fe原子比0.3以上3.0以下のシェル層を表面に形成することで、磁性粉末の耐熱性(耐酸化性)が改善する。この理由として、シェル層は、加熱による分解がR2Fe17N3化合物相より起こりにくいためと推測される。またこの効果は、加熱処理条件を例えば2段階としたときに有利に得ることができる。 Rare earth iron nitrogen based magnetic powder has a nucleation type coercive force generation mechanism. If a soft magnetic phase such as α-Fe or crystal defects that reduce magnetocrystalline anisotropy are present on the particle surface, these become nucleations of reversed magnetic domains and reduce the particle coercive force. The reason why conventional magnetic powders have poor heat resistance is that heating decomposes the R 2 Fe 17 N 3 compound phase to produce soft magnetic phases such as α-Fe and Fe nitride, which become reverse magnetic domain generation nuclei. It's for a reason. On the other hand, in this embodiment, the heat resistance (oxidation resistance) of the magnetic powder is improved by forming a shell layer with an R/Fe atomic ratio of 0.3 or more and 3.0 or less on the surface. The reason for this is presumed to be that the shell layer is less likely to decompose due to heating than the R 2 Fe 17 N 3 compound phase. Further, this effect can be advantageously obtained when the heat treatment conditions are set in two stages, for example.
すなわち、前記の還元拡散処理の工程において、加熱処理条件を2段階とし、前段で730~810℃の範囲内の温度で0.5~4時間保持し、後段では、さらに温度を上げて800~1000℃の範囲内の温度で3時間以内保持することができる。この条件にすれば、希土類酸化物粉末が希土類金属に十分還元されて、R2Fe17希土類鉄合金がコア部となり、その表面で希土類元素(R)の拡散反応が促進されてシェル層が形成される。 That is, in the above-mentioned reduction diffusion treatment step, the heat treatment conditions are set in two stages, in the first stage the temperature is maintained at a temperature within the range of 730 to 810°C for 0.5 to 4 hours, and in the latter stage the temperature is further increased to 800 °C to 810°C. It can be held at a temperature in the range of 1000° C. for up to 3 hours. Under these conditions, the rare earth oxide powder is sufficiently reduced to the rare earth metal, the R 2 Fe 17 rare earth iron alloy becomes the core, and the diffusion reaction of the rare earth element (R) is promoted on the surface to form a shell layer. be done.
加熱処理が終了した反応生成物は、シェル層を表面に有する希土類鉄合金粒子(R2Fe17粉末等)、R金属、RFe3および/またはRFe2化合物、還元剤由来成分からなる焼結体である。ここで還元剤由来成分は、副生した還元剤酸化物粒子(CaO等)及び未反応残留還元剤(Ca等)からなる。 The reaction product after the heat treatment is a sintered body consisting of rare earth iron alloy particles (such as R 2 Fe 17 powder) having a shell layer on the surface, R metal, RFe 3 and/or RFe 2 compound, and components derived from the reducing agent. It is. Here, the reducing agent-derived component consists of by-produced reducing agent oxide particles (CaO, etc.) and unreacted residual reducing agent (Ca, etc.).
<解砕処理工程>
必要に応じて、還元拡散処理後の生成物(還元拡散反応生成物)に解砕処理を施す工程(解砕処理工程)を設けてもよい。反応生成物は焼結した塊状である。反応生成物には微細な空隙があるので、焼結した塊状であっても、後続する窒化熱処理工程で内部のR2Fe17希土類鉄合金粒子まで窒化することが可能である。しかしながら塊状反応生成物を解砕してから窒化熱処理を施すことで、より均一な窒化が可能となる。解砕手法は特に限定されず、例えば機械的に解砕する方法や反応生成物を水素ガス雰囲気中に置きR金属、RFe3および/またはRFe2化合物の水素吸収による体積膨張を利用して解砕する方法などが挙げられる。またコア部における窒素分布をより均一にして磁性粉末の角形性を向上させるために、必要に応じて窒化熱処理に続いて、真空中、又はアルゴンガス等の不活性ガス雰囲気中で磁石粉末を加熱し、磁石粉末に過剰に導入された窒素や水素を排出させてもよい。
<Crushing process>
If necessary, a step of subjecting the product after the reduction-diffusion treatment (reduction-diffusion reaction product) to a crushing treatment (pulverization treatment step) may be provided. The reaction product is a sintered mass. Since the reaction product has fine voids, even if it is in the form of a sintered lump, it is possible to nitride even the internal R 2 Fe 17 rare earth iron alloy particles in the subsequent nitriding heat treatment step. However, by performing the nitriding heat treatment after crushing the lumpy reaction product, more uniform nitriding becomes possible. The crushing method is not particularly limited, and examples include mechanical crushing, placing the reaction product in a hydrogen gas atmosphere, and utilizing the volume expansion due to hydrogen absorption of the R metal, RFe 3 and/or RFe 2 compound. Examples include a method of crushing. In addition, in order to make the nitrogen distribution more uniform in the core part and improve the squareness of the magnetic powder, if necessary, following the nitriding heat treatment, the magnetic powder is heated in a vacuum or in an inert gas atmosphere such as argon gas. However, nitrogen or hydrogen excessively introduced into the magnet powder may be discharged.
<窒化熱処理工程>
窒化熱処理工程では、還元拡散処理後又は解砕処理後の生成物(還元拡散反応生成物)を窒素及び/又はアンモニアを含むガスの気流中で窒化熱処理して窒化反応生成物とする。窒化熱処理は公知の手法を用いればよく、例えば窒素(N2)ガス雰囲気、窒素(N2)ガスと水素(H2)ガスの混合雰囲気、アンモニア(NH3)ガス雰囲気、アンモニア(NH3)ガスと水素(H2)ガスの混合雰囲気、アンモニア(NH3)ガスと窒素(N2)ガスの混合ガス雰囲気、アンモニア(NH3)ガスと窒素(N2)ガスと水素(H2)ガスの混合ガス雰囲気下で行うことができる。
<Nitriding heat treatment process>
In the nitriding heat treatment step, the product after the reduction diffusion treatment or the crushing treatment (reduction diffusion reaction product) is subjected to nitriding heat treatment in a gas stream containing nitrogen and/or ammonia to obtain a nitridation reaction product. The nitriding heat treatment may be performed using a known method, such as a nitrogen (N 2 ) gas atmosphere, a mixed atmosphere of nitrogen (N 2 ) gas and hydrogen (H 2 ) gas, an ammonia (NH 3 ) gas atmosphere, or an ammonia (NH 3 ) gas atmosphere. Mixed atmosphere of gas and hydrogen (H 2 ) gas, mixed gas atmosphere of ammonia (NH 3 ) gas and nitrogen (N 2 ) gas, ammonia (NH 3 ) gas, nitrogen (N 2 ) gas, and hydrogen (H 2 ) gas This can be carried out in a mixed gas atmosphere.
窒化熱処理は300~500℃の範囲内の温度で行う。加熱温度が300℃未満では窒化が進まず、一方で500℃を超えると合金が希土類元素の窒化物と鉄に分解するので好ましくない。加熱温度は350~480℃が好ましく、400~450℃がより好ましい。 The nitriding heat treatment is performed at a temperature within the range of 300 to 500°C. If the heating temperature is less than 300°C, nitriding will not proceed, whereas if it exceeds 500°C, the alloy will decompose into rare earth element nitride and iron, which is not preferable. The heating temperature is preferably 350 to 480°C, more preferably 400 to 450°C.
また処理時間はガス種、ガス流量と加熱温度に応じて決めればよい。ガス流量と加熱温度が小さいほど処理時間を長くする。アンモニア(NH3)ガスと水素(H2)ガスの混合雰囲気にした場合には、例えば1~6時間が好ましく、2~4時間がより好ましい。また窒素(N2)ガス雰囲気として場合には、例えば10~40時間とすることが好ましく、水素(H2)ガスとの混合雰囲気とした場合は、5~25時間とすることが好ましい。窒化熱処理後に冷却して窒化反応生成物を回収する。 Further, the processing time may be determined depending on the gas type, gas flow rate, and heating temperature. The lower the gas flow rate and heating temperature, the longer the processing time. When a mixed atmosphere of ammonia (NH 3 ) gas and hydrogen (H 2 ) gas is used, the heating time is preferably 1 to 6 hours, more preferably 2 to 4 hours. Further, in the case of a nitrogen (N 2 ) gas atmosphere, the period is preferably 10 to 40 hours, and in the case of a mixed atmosphere with hydrogen (H 2 ) gas, the period is preferably 5 to 25 hours. After the nitriding heat treatment, the nitriding reaction product is recovered by cooling.
<湿式処理工程>
必要に応じて、還元拡散処理工程及び/又は窒化熱処理工程で得られた生成物(還元拡散反応生成物及び/又は窒化反応生成物)に湿式処理を施す工程(湿式処理工程)を設けてもよい。湿式処理は、還元拡散反応生成物及び/又は窒化反応生成物を水及び/又はグリコールを含む洗浄液中に投入して崩壊させる。これにより生成物中の還元剤由来成分(副生した還元剤酸化物粒子及び未反応残留還元剤)が低減する。生成物を洗浄液(水及び/またはグリコール)中に投入して0.1~24時間放置すると細かく崩壊してスラリー化する。このスラリーはそのpHが10~12程度である。pHが10以下になるまで洗浄液の投入、攪拌及び上澄み除去(デカンテーション)を繰り返す。その後、必要に応じてスラリーのpHが6~7になるように酢酸などの弱酸を添加してスラリー中の水酸化した還元剤成分(Ca(OH)2等)を溶解除去する。スラリー中にR金属、RFe3および/またはRFe2化合物由来の余剰窒化物が含まれている場合には、pHが6~7を保つように酸を添加しながら攪拌洗浄を続けて、これら余剰窒化物も溶解除去する。その後、残留する酸成分を水及び/またはグリコールで洗浄除去し、さらにメタノール、エタノールなどのアルコールで置換してから固液分離し乾燥する。乾燥は、真空中または不活性ガス雰囲気中で、100~300℃、好ましくは150~250℃に加熱して行う。
<Wet processing process>
If necessary, a step (wet treatment step) of subjecting the product (reduction diffusion reaction product and/or nitriding reaction product) obtained in the reduction diffusion treatment step and/or nitridation heat treatment step to a wet treatment may be provided. good. In the wet treatment, the reduction-diffusion reaction product and/or the nitridation reaction product are disintegrated by being introduced into a cleaning solution containing water and/or glycol. This reduces the reducing agent-derived components (by-produced reducing agent oxide particles and unreacted residual reducing agent) in the product. When the product is placed in a washing liquid (water and/or glycol) and left for 0.1 to 24 hours, it breaks down into fine particles and becomes a slurry. This slurry has a pH of about 10 to 12. Adding the washing liquid, stirring, and removing the supernatant (decantation) are repeated until the pH becomes 10 or less. Thereafter, if necessary, a weak acid such as acetic acid is added to adjust the pH of the slurry to 6 to 7 to dissolve and remove the hydroxylated reducing agent components (Ca(OH) 2 , etc.) in the slurry. If the slurry contains excess nitrides derived from the R metal, RFe 3 and/or RFe 2 compounds, continue stirring and cleaning while adding acid to keep the pH between 6 and 7. Nitride is also dissolved and removed. Thereafter, the remaining acid component is removed by washing with water and/or glycol, and further replaced with alcohol such as methanol or ethanol, followed by solid-liquid separation and drying. Drying is carried out by heating at 100 to 300°C, preferably 150 to 250°C in vacuum or in an inert gas atmosphere.
グリコールとしては、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール及びトリプロピレングリコールから選ばれる1種以上のアルキレングリコールを使用できる。これらグリコールおよびその混合物をそのまま使用するのが好ましい。しかし粘度が高いためスラリー化した後に希土類遷移金属粉末と還元剤成分の分離除去がしにくい場合、水で希釈して使用することができる。ただし洗浄液中の水含有率を50質量%以下とすることが好ましい。ここで水含有率は、水/(グリコール+水)の質量比を百分率で示したものである。水含有率が50質量%を超えると、粒子の酸化が顕著になる場合がある。水含有率は30質量%以下がより好ましく、10質量%以下がさらに好ましく、5質量%以下が特に好ましい。グリコールの使用量は、特に制限されないが、窒化反応生成物中の還元剤成分がグリコールと反応する当量に対して2~10倍のグリコールを使用することができる。好ましいのは窒化反応生成物の質量に対して3~8倍のグリコールを使用することである。 As the glycol, one or more alkylene glycols selected from ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, and tripropylene glycol can be used. Preferably, these glycols and mixtures thereof are used as such. However, if it is difficult to separate and remove the rare earth transition metal powder and reducing agent component after slurrying because of its high viscosity, it can be used after being diluted with water. However, it is preferable that the water content in the cleaning liquid is 50% by mass or less. Here, the water content is the mass ratio of water/(glycol+water) expressed as a percentage. When the water content exceeds 50% by mass, oxidation of the particles may become noticeable. The water content is more preferably 30% by mass or less, further preferably 10% by mass or less, particularly preferably 5% by mass or less. The amount of glycol used is not particularly limited, but the amount of glycol used can be 2 to 10 times the equivalent of the reducing agent component in the nitriding reaction product reacting with the glycol. Preference is given to using 3 to 8 times the amount of glycol relative to the weight of the nitriding reaction product.
<微粉末化処理工程>
必要に応じて、窒化熱処理工程及び/又は湿式処理工程で得られた生成物に解砕・微粉末化処理を施す工程(微粉末化処理工程)を設けてもよい。還元拡散処理の条件によっては、得られた粉末が焼結してネッキングを起こしていることがある。最終的に得られる磁性粉末を異方性の磁石材料に応用する場合には、これを解砕することで、ネッキングによる磁性粉末の磁界中配向性の悪化を防ぐことができる。解砕は、ジェットミルなどの乾式粉砕機や媒体攪拌ミルなどの湿式粉砕機を使用できる。いずれも強いせん断や衝突による粉砕となる条件は避けて、シェル層が維持できるよう、ネッキングした部分を解く程度の弱粉砕条件で運転することが望ましい。
<Mulverization process>
If necessary, a step of crushing and pulverizing the product obtained in the nitriding heat treatment step and/or the wet treatment step (pulverization step) may be provided. Depending on the conditions of the reduction and diffusion treatment, the obtained powder may be sintered and necking may occur. When the finally obtained magnetic powder is applied to an anisotropic magnet material, by crushing it, deterioration of the orientation of the magnetic powder in a magnetic field due to necking can be prevented. For crushing, a dry crusher such as a jet mill or a wet crusher such as a media stirring mill can be used. In either case, it is desirable to avoid conditions that result in pulverization due to strong shearing or collisions, and operate under mild pulverization conditions that are sufficient to loosen necked portions so that the shell layer can be maintained.
<被膜形成工程>
必要に応じて、得られた生成物(粉末)の表面に燐酸系化合物被膜を形成する工程(被膜形成工程)を設けてもよい。特に磁性粉末が高湿度環境下で使用される用途に適用される場合には、燐酸系化合物被膜を設けることで、粉末特性の安定性を高めることができる。燐酸系化合物被膜の種類やその形成方法は、特許文献3に開示されるように公知である。本実施形態では、シェル層を考慮して燐酸系化合物被膜を薄目に設けてもよい。20nmよりも厚いと磁化が低下することがあるので、5~20nm程度の被膜にすることが望ましい。
<Film formation process>
If necessary, a step of forming a phosphoric acid compound film on the surface of the obtained product (powder) (film forming step) may be provided. Particularly when the magnetic powder is used in applications where it is used in a high humidity environment, the stability of the powder properties can be improved by providing a phosphoric acid compound coating. The types of phosphoric acid compound coatings and their formation methods are known as disclosed in Patent Document 3. In this embodiment, the phosphoric acid compound coating may be provided thinly in consideration of the shell layer. If the thickness is thicker than 20 nm, the magnetization may decrease, so it is desirable to use a film with a thickness of about 5 to 20 nm.
このようにして本実施形態の磁性粉末を製造することができる。この磁性粉末は、希土類元素(R)、鉄(Fe)及び窒素(N)を主構成成分として含み、平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)をを2.5質量%以上4.0質量%以下の量で含む。またこの粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、このコア部の表面に設けられる厚さ1nm以上30nm以下のシェル層であって、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含むシェル層と、を備える。この磁性粉末は、耐熱性、耐候性だけでなく、磁気特性にも優れるという効果がある。 In this way, the magnetic powder of this embodiment can be manufactured. This magnetic powder contains rare earth elements (R), iron (Fe), and nitrogen (N) as main components, has an average particle size of 1.0 μm or more and 10.0 μm or less, and contains 22 Contains nitrogen (N) in an amount of 2.5% by mass to 4.0% by mass. In addition, this powder has a core portion having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer with a thickness of 1 nm to 30 nm provided on the surface of this core portion. and a shell layer containing a rare earth element (R) and iron (Fe) in an R/Fe atomic ratio of 0.3 or more and 3.0 or less. This magnetic powder has the effect of being excellent not only in heat resistance and weather resistance but also in magnetic properties.
なお特許文献2には希土類金属(R)と遷移金属(TM)を含む母合金を粉砕する工程(a)と粉砕された母合金粉末に希土類酸化物粉末と還元剤とを混合し、不活性ガス中加熱処理する工程(b)を含む希土類-遷移金属-窒素系磁石合金粉末の製造方法が開示されている。しかしながら本実施形態とは異なり、特許文献2では粒径1μm以下の微細な希土類酸化物粉末を用いていない。また母合金のみを粉砕して、後から希土類酸化物粉末を混合している。そのため特許文献2の方法では、母合金と希土類酸化物粉末の均一分散が困難であり、コアシェル構造を形成することできない。 Note that Patent Document 2 describes the step (a) of pulverizing a mother alloy containing a rare earth metal (R) and a transition metal (TM), and the step (a) of mixing a rare earth oxide powder and a reducing agent with the pulverized mother alloy powder, and inactivating the powder. A method for producing a rare earth-transition metal-nitrogen magnet alloy powder is disclosed, which includes a step (b) of heat treatment in a gas. However, unlike this embodiment, Patent Document 2 does not use fine rare earth oxide powder with a particle size of 1 μm or less. In addition, only the mother alloy is ground, and the rare earth oxide powder is mixed in afterwards. Therefore, in the method of Patent Document 2, it is difficult to uniformly disperse the mother alloy and rare earth oxide powder, and a core-shell structure cannot be formed.
<ボンド磁石用コンパウンド>
本実施形態のボンド磁石用コンパウンドは、上述した希土類鉄窒素系磁性粉末と樹脂バインダーとを含む。このコンパウンドは、磁性粉末と樹脂バインダーとを混合して作製される。混合は、バンバリーミキサー、ニーダー、ロール、ニーダールーダー、単軸押出機、二軸押出機等の混練機を用いて磁性粉末と樹脂バインダーとを熔融混練すればよい。
<Compound for bonded magnets>
The bonded magnet compound of this embodiment includes the above-mentioned rare earth iron nitrogen based magnetic powder and a resin binder. This compound is made by mixing magnetic powder and a resin binder. For mixing, the magnetic powder and the resin binder may be melt-kneaded using a kneading machine such as a Banbury mixer, kneader, roll, kneader-ruder, single-screw extruder, or twin-screw extruder.
樹脂バインダーは熱可塑性樹脂及び熱硬化性樹脂のいずれであってよい。熱可塑性樹脂系バインダーは、その種類は特に限定されない。例えば、6ナイロン、6-6ナイロン、11ナイロン、12ナイロン、6-12ナイロン、芳香族系ナイロン、これらの分子を一部変性、または共重合化した変性ナイロン等のポリアミド樹脂、直鎖型ポリフェニレンサルファイド樹脂、架橋型ポリフェニレンサルファイド樹脂、セミ架橋型ポリフェニレンサルファイド樹脂、低密度ポリエチレン、線状低密度ポリエチレン樹脂、高密度ポリエチレン樹脂、超高分子量ポリエチレン樹脂、ポリプロピレン樹脂、エチレン- 酢酸ビニル共重合樹脂、エチレン-エチルアクリレート共重合樹脂、アイオノマー樹脂、ポリメチルペンテン樹脂、ポリスチレン樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、アクリロニトリル-スチレン共重合樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、メタクリル樹脂、ポリフッ化ビニリデン樹脂、ポリ三フッ化塩化エチレン樹脂、四フッ化エチレン-六フッ化プロピレン共重合樹脂、エチレン-四フッ化エチレン共重合樹脂、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合樹脂、ポリテトラフルオロエチレン樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリフェニレンオキサイド樹脂、ポリアリルエーテルアリルスルホン樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、芳香族ポリエステル樹脂、酢酸セルロース樹脂、前出の各樹脂系エラストマー等が挙げられる。またこれらの単重合体や他種モノマーとのランダム共重合体、ブロック共重合体、グラフト共重合体、他の物質での末端基変性品などが挙げられる。さらに熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂などを挙げることができる。 The resin binder may be either a thermoplastic resin or a thermosetting resin. The type of thermoplastic resin binder is not particularly limited. For example, polyamide resins such as nylon 6, nylon 6-6, nylon 11, nylon 12, nylon 6-12, aromatic nylon, modified nylon that is partially modified or copolymerized with these molecules, and linear polyphenylene. Sulfide resin, cross-linked polyphenylene sulfide resin, semi-cross-linked polyphenylene sulfide resin, low-density polyethylene, linear low-density polyethylene resin, high-density polyethylene resin, ultra-high molecular weight polyethylene resin, polypropylene resin, ethylene-vinyl acetate copolymer resin, ethylene - Ethyl acrylate copolymer resin, ionomer resin, polymethylpentene resin, polystyrene resin, acrylonitrile-butadiene-styrene copolymer resin, acrylonitrile-styrene copolymer resin, polyvinyl chloride resin, polyvinylidene chloride resin, polyvinyl acetate resin, polyvinyl Alcohol resin, polyvinyl butyral resin, polyvinyl formal resin, methacrylic resin, polyvinylidene fluoride resin, polytrifluorochloroethylene resin, tetrafluoroethylene-hexafluoropropylene copolymer resin, ethylene-tetrafluoroethylene copolymer resin, Tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer resin, polytetrafluoroethylene resin, polycarbonate resin, polyacetal resin, polyethylene terephthalate resin, polybutylene terephthalate resin, polyphenylene oxide resin, polyallyl ether allyl sulfone resin, polyether sulfone resin, Examples include polyetheretherketone resin, polyarylate resin, aromatic polyester resin, cellulose acetate resin, and each of the above-mentioned resin-based elastomers. Further examples include homopolymers thereof, random copolymers with other types of monomers, block copolymers, graft copolymers, and end group-modified products with other substances. Furthermore, examples of thermosetting resins include unsaturated polyester resins and epoxy resins.
これらの中では、得られる成形体の種々の特性やその製造方法の難易性から12ナイロンおよびその変性ナイロン、ナイロン系エラストマー、ポリフェニレンサルファイド樹脂の使用が好ましい。これら熱可塑性樹脂の2種類以上のブレンド等も当然に使用可能である。 Among these, 12 nylon and its modified nylon, nylon elastomer, and polyphenylene sulfide resin are preferably used in view of the various properties of the molded product obtained and the difficulty of the manufacturing method. Naturally, a blend of two or more of these thermoplastic resins can also be used.
本実施形態では、原料粉末として、従来のSm2Fe17N3磁性粉末に比べて高い耐熱性を有し、また高耐熱性R2(Fe、M)17Nx磁性粉末(M=Cr、Mn)に比べても同等以上の磁気特性を有する磁性粉末を使用する。磁性粉末が高い耐熱性を有するため、樹脂そのものの耐熱性が高いポリフェニレンサルファイド樹脂、芳香族ポリアミド樹脂などの熱可塑性樹脂をバインダーとすることで、高温での成形が可能になり、高性能高耐熱ボンド磁石の調製に有効である。 In this embodiment, the raw material powder is R 2 ( Fe , M ) 17 N x magnetic powder (M=Cr, A magnetic powder having magnetic properties equivalent to or better than Mn) is used. Since magnetic powder has high heat resistance, molding at high temperatures is possible by using thermoplastic resins such as polyphenylene sulfide resin and aromatic polyamide resin, which have high heat resistance themselves, as a binder, resulting in high performance and high heat resistance. Effective for preparing bonded magnets.
樹脂バインダーの配合量は、特に制限されるものではないが、コンパウンド100質量部に対して1~50質量部が好ましい。1質量部より少ないと著しい混練トルクの上昇、流動性の低下を招いて成形困難になるだけでなく、磁気特性が不十分になることがある。一方で50質量部よりも多いと、所望の磁気特性が得られないことがある。樹脂バインダーの配合量は、3~50質量部であってよく、5~30質量部であってよく、7~20質量部であってよい。 The amount of the resin binder blended is not particularly limited, but is preferably 1 to 50 parts by weight per 100 parts by weight of the compound. If it is less than 1 part by mass, not only will the kneading torque significantly increase and the fluidity decrease, making molding difficult, but also the magnetic properties may become insufficient. On the other hand, if the amount is more than 50 parts by mass, desired magnetic properties may not be obtained. The blending amount of the resin binder may be 3 to 50 parts by weight, 5 to 30 parts by weight, or 7 to 20 parts by weight.
コンパウンドには、本実施形態の目的を損なわない範囲で、反応性希釈剤、未反応性希釈剤、増粘剤、滑剤、離型剤、紫外線吸収剤、難燃剤や種々の安定剤などの添加剤、充填材を配合することができる。また求められる磁気特性に合わせて、本実施形態の磁性粉末以外の他の磁石粉末を配合してもよい。他の磁石粉末として通常のボンド磁石に用いるものを採用することができ、例えば希土類磁石粉、フェライト磁石粉及びアルニコ磁石粉などが挙げられる。異方性磁石粉末だけでなく、等方性磁石粉末も混合できるが、異方性磁界HAが4.0MA/m(50kOe)以上の磁石粉末を用いることが好ましい。 The compound may contain additives such as reactive diluents, unreactive diluents, thickeners, lubricants, mold release agents, ultraviolet absorbers, flame retardants, and various stabilizers within the range that does not impair the purpose of this embodiment. Agents and fillers can be added. Further, other magnetic powders than the magnetic powder of this embodiment may be blended in accordance with the required magnetic properties. As other magnet powders, those used in ordinary bonded magnets can be used, such as rare earth magnet powder, ferrite magnet powder, and alnico magnet powder. Although not only anisotropic magnet powder but also isotropic magnet powder can be mixed, it is preferable to use magnet powder with an anisotropic magnetic field HA of 4.0 MA/m (50 kOe) or more.
<ボンド磁石>
本実施形態のボンド磁石は、上述した希土類鉄窒素系磁性粉末と樹脂バインダーとを含む。このボンド磁石は上述したボンド磁石用コンパウンドを射出成形、押出成形又は圧縮成形して作製される。特に好ましい成形方法は射出成形である。ボンド磁石中の成分やその含有割合はボンド磁石用コンパウンドと同一である。
<Bond magnet>
The bonded magnet of this embodiment includes the above-mentioned rare earth iron nitrogen based magnetic powder and a resin binder. This bonded magnet is produced by injection molding, extrusion molding, or compression molding the above-mentioned bonded magnet compound. A particularly preferred molding method is injection molding. The components and their content ratios in the bonded magnet are the same as those of the compound for bonded magnets.
ボンド磁石用コンパウンドを射出成形する場合には、最高履歴温度が330℃以下、好ましくは310℃以下、より好ましくは300℃以下となる条件で成形することが好ましい。最高履歴温度が330℃を超えると、磁気特性が低下することがある。 When injection molding a bonded magnet compound, it is preferable to mold under conditions such that the highest hysteresis temperature is 330°C or lower, preferably 310°C or lower, and more preferably 300°C or lower. If the maximum hysteresis temperature exceeds 330°C, the magnetic properties may deteriorate.
ボンド磁石用コンパウンドが異方性の磁性粉末を含有する場合には、成形機の金型に磁気回路を組み込み、コンパウンドの成形空間(金型キャビティ)に配向磁界がかかるようにすると、異方性のボンド磁石が製造できる。このとき配向磁界を、400kA/m以上、好ましくは800kA/m以上とすることで高い磁気特性のボンド磁石が得られる。ボンド磁石用コンパウンドが等方性の磁性粉末を含有する場合には、コンパウンドの成形空間(金型キャビティ)に配向磁界をかけないで行ってもよい。 If the compound for bonded magnets contains anisotropic magnetic powder, it is possible to incorporate a magnetic circuit into the mold of the molding machine and apply an orienting magnetic field to the molding space (mold cavity) of the compound. bonded magnets can be manufactured. At this time, by setting the orientation magnetic field to 400 kA/m or more, preferably 800 kA/m or more, a bonded magnet with high magnetic properties can be obtained. When the bonded magnet compound contains isotropic magnetic powder, the molding may be performed without applying an orientation magnetic field to the molding space (mold cavity) of the compound.
本実施形態のボンド磁石は、自動車、一般家電製品、通信・音響機器、医療機器、一般産業機器等に至る幅広い分野において極めて有用である。また、本実施形態によれば、磁性粉末が高い耐熱性と高い磁気特性を有するため、磁性粉末を圧粉成形し焼結した磁石においても、従来のような保磁力劣化が抑制されバインダレスの高性能磁石を得ることが可能になる。 The bonded magnet of this embodiment is extremely useful in a wide range of fields including automobiles, general home appliances, communication/audio equipment, medical equipment, general industrial equipment, and the like. Furthermore, according to the present embodiment, since the magnetic powder has high heat resistance and high magnetic properties, even in a magnet made by compacting and sintering the magnetic powder, deterioration in coercive force as in the conventional case is suppressed and binderless magnets can be used. It becomes possible to obtain high-performance magnets.
本発明を以下の実施例を用いてさらに詳細に説明する。しかしながら本発明は以下の実施例に限定されるものではない。 The present invention will be explained in more detail using the following examples. However, the present invention is not limited to the following examples.
実施例、比較例における、粉末の平均粒径、および希土類鉄窒素系磁性粉末の磁気特性や耐熱性を以下のように評価した。 In Examples and Comparative Examples, the average particle size of the powder, and the magnetic properties and heat resistance of the rare earth iron nitrogen magnetic powder were evaluated as follows.
(粉末の粒径)
粉末の最大粒径は、1000倍程度のSEM反射電子像において、そのコントラストからそれぞれの成分粒子を判別し、300粒子以上含まれる視野中の最大粒子の長軸径を最大粒径とした。また平均粒径はレーザー回折粒度分布計(株式会社日本レーザー製,HELOS&RODOS)で測定された50%粒子径(D50)とした。ここでD50は体積粒度分布における50%粒子径である。
(powder particle size)
The maximum particle size of the powder was determined by determining each component particle from the contrast in a SEM backscattered electron image magnified approximately 1000 times, and the long axis diameter of the largest particle in the field of view containing 300 or more particles was determined as the maximum particle size. Moreover, the average particle diameter was taken as the 50% particle diameter (D 50 ) measured with a laser diffraction particle size distribution analyzer (manufactured by Nippon Laser Co., Ltd., HELOS & RODOS). Here, D50 is the 50% particle diameter in the volume particle size distribution.
(磁気特性)
粉末の磁気特性(残留磁化σrと保磁力Hc)は、振動試料型磁力計で測定した。その際、日本ボンド磁性材料協会のボンド磁石試験方法ガイドブックBMG-2005に則り、20mgほどの粉末試料を内径2mm長さ7mmの透明アクリルでできたケースにパラフィンと一緒に入れて、長さ方向に磁界を印加しながら、ドライヤーで加熱してパラフィンを溶かし、粉末を配向させた後に冷却して、パラフィンを固めて作製した。なお試料の着磁磁界は3.2MA/mである。
(Magnetic properties)
The magnetic properties (residual magnetization σ r and coercive force H c ) of the powder were measured using a vibrating sample magnetometer. At that time, in accordance with the bonded magnet test method guidebook BMG-2005 of the Japan Bonded Magnetic Materials Association, about 20 mg of powder sample was placed in a transparent acrylic case with an inner diameter of 2 mm and a length of 7 mm, along with paraffin, and While applying a magnetic field, the paraffin was melted by heating with a dryer, the powder was oriented, and then cooled to solidify the paraffin. Note that the magnetizing magnetic field of the sample was 3.2 MA/m.
(耐熱性)
粉末の耐熱性は、粉末を大気圧のアルゴン雰囲気中300℃で1時間加熱し、加熱前後の保磁力を比較することで評価した。加熱前の保磁力をHc、加熱後の保磁力をHc,300としたとき、保磁力の維持率をHc,300/Hcで算出した。
(Heat-resistant)
The heat resistance of the powder was evaluated by heating the powder at 300° C. for 1 hour in an argon atmosphere at atmospheric pressure and comparing the coercive force before and after heating. When the coercive force before heating is H c and the coercive force after heating is H c,300 , the retention rate of coercive force was calculated as H c,300 /H c .
(粉末の結晶構造)
粉末の結晶構造については、Cuターゲットで加速電圧45kV、電流40mAとし、2θを2min./deg.(0.5deg./min.)でスキャンした粉末X線回折(XRD)パターンを解析して評価した。
(Crystal structure of powder)
Regarding the crystal structure of the powder, the acceleration voltage was set to 45 kV and the current was set to 40 mA using a Cu target, and the 2θ was adjusted to 2 min. /deg. The powder X-ray diffraction (XRD) pattern scanned at (0.5 deg./min.) was analyzed and evaluated.
(シェル層のR/Fe原子比、平均厚み)
シェル層の希土類元素(R)と鉄(Fe)と窒素(N)の含有量と平均厚みは、オージェ電子分光装置(アルバック・ファイ製PHI680、加速電圧10kV)により算出される。本実施形態においてはランダムに3個の粒子を選び、平坦な面に100nmのスポットサイズで電子ビームを照射している。また試料の1~2mm四方の領域に加速電圧2kVでアルゴン(Ar)イオンを照射し、SiO2換算2nm/minのレートでスパッタリングし深さ方向の組成変化を調べた。
(R/Fe atomic ratio of shell layer, average thickness)
The content and average thickness of rare earth elements (R), iron (Fe), and nitrogen (N) in the shell layer are calculated using an Auger electron spectrometer (PHI680 manufactured by ULVAC-PHI, accelerating
本実施形態の希土類鉄窒素系磁性粉末では、粒子の深さ方向表面近傍にR組成がピークを有する部分があり、その内部ではピーク部に対してR組成が低い値で一定となった。このピーク部がシェル層であり、その内部がコア部に相当する。シェル層のR/Fe原子比は、このピーク位置でのR組成と、その位置でのFe組成とから算出した。また平均厚みは、図2に示すように、R組成がコア部R組成(図2ではRがSm)より高い領域幅をシェル層厚みとして、3個の粒子の平均値とした。 In the rare earth iron nitrogen based magnetic powder of the present embodiment, there is a portion where the R composition has a peak near the surface in the depth direction of the particle, and within this portion, the R composition is constant at a lower value than the peak portion. This peak part is the shell layer, and the inside thereof corresponds to the core part. The R/Fe atomic ratio of the shell layer was calculated from the R composition at this peak position and the Fe composition at that position. Further, as shown in FIG. 2, the average thickness was taken as the average value of three particles, with the region width where the R composition was higher than the core R composition (in FIG. 2, R is Sm) being defined as the shell layer thickness.
(磁性粉末の組成)
磁性粉末のRとN組成は、それぞれICP発光分光分析法、熱伝導度法で分析した。
(Composition of magnetic powder)
The R and N compositions of the magnetic powder were analyzed by ICP emission spectroscopy and thermal conductivity method, respectively.
(R2Fe17合金粉末(希土類鉄合金粉末)の作製)
平均粒径(D50)が2.3μmの酸化サマリウムSm2O3粉末0.44kg、平均粒径(D50)が40μmの鉄粉1.0kg、粒状金属カルシウム0.23kgをミキサー混合し、鉄るつぼに入れて、アルゴンガス雰囲気下、1100℃で7時間加熱処理した。
(Preparation of R 2 Fe 17 alloy powder (rare earth iron alloy powder))
0.44 kg of samarium oxide Sm 2 O 3 powder with an average particle size (D 50 ) of 2.3 μm, 1.0 kg of iron powder with an average particle size (D 50 ) of 40 μm, and 0.23 kg of granular metallic calcium are mixed with a mixer, It was placed in an iron crucible and heat-treated at 1100° C. for 7 hours in an argon gas atmosphere.
冷却後に取り出した反応生成物を2Lの水中に投入してアルゴンガス雰囲気中、12時間放置しスラリー化した。このスラリーの上澄みを捨て、新たに水を2L加えて攪拌し、SmFe合金粉が沈降したところで水酸化カルシウムが懸濁する上澄みを捨てる。この操作をpHが10以下になるまで繰り返した。次に合金粉と水2Lとが攪拌されている状態でpHが5になるまで酢酸を添加し、その状態で30分間攪拌を続けた。その後、上澄みを捨てて再び水2Lを加え攪拌する操作を5回行い、最後にアルコールで水を置換した後、ヌッチェで合金粉を回収した。これをミキサーに入れて、減圧しながら400℃で10時間攪拌乾燥し、平均粒径が28μmのSm2Fe17合金粉末(希土類鉄合金粉末)1.3kgを得た。 The reaction product taken out after cooling was put into 2 L of water and left in an argon gas atmosphere for 12 hours to form a slurry. Discard the supernatant of this slurry, add 2 L of water and stir, and when the SmFe alloy powder settles, discard the supernatant in which calcium hydroxide is suspended. This operation was repeated until the pH became 10 or less. Next, while the alloy powder and 2 L of water were being stirred, acetic acid was added until the pH reached 5, and stirring was continued for 30 minutes. Thereafter, the operation of discarding the supernatant, adding 2 L of water again and stirring was performed five times, and finally, after replacing the water with alcohol, the alloy powder was collected using a Nutsche. This was placed in a mixer, and stirred and dried at 400° C. for 10 hours under reduced pressure to obtain 1.3 kg of Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) with an average particle size of 28 μm.
この合金粉末は、平均粒径(D50)が30μmで、Smが24.5質量%、Oが0.15質量%、Hが0.54質量%、Caが0.01質量%未満、残部鉄の組成を持ち、主相がTh2Zn17型結晶構造のSm2Fe17であった。また含有水分量として、この合金粉末50gを真空中400℃で5時間加熱したときの減量αを測定したところ0.1質量%だった。 This alloy powder has an average particle size (D 50 ) of 30 μm, Sm is 24.5% by mass, O is 0.15% by mass, H is 0.54% by mass, Ca is less than 0.01% by mass, and the balance is It had a composition of iron, and the main phase was Sm 2 Fe 17 with a Th 2 Zn 17 type crystal structure. In addition, as for the moisture content, the weight loss α when 50 g of this alloy powder was heated in vacuum at 400° C. for 5 hours was measured and found to be 0.1% by mass.
[実施例1]
上記の方法で作製されたSm2Fe17合金粉末(希土類鉄合金粉末)900gに対して、平均粒径(D50)が2.3μmの酸化サマリウム(希土類酸化物粉末)90g(Sm2Fe17合金粉末100質量部に対して10質量部に相当)をロッキングミキサーで予備混合し、その混合物を4kgのフッ素系不活性液体を溶媒として媒体攪拌ミル粉砕した。
[Example 1]
For 900 g of Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) produced by the above method, 90 g of samarium oxide (rare earth oxide powder) with an average particle size (D 50 ) of 2.3 μm (Sm 2 Fe 17 (equivalent to 10 parts by mass per 100 parts by mass of alloy powder) was premixed using a rocking mixer, and the mixture was pulverized by a media stirring mill using 4 kg of a fluorine-based inert liquid as a solvent.
粉砕後のスラリーをミキサーに入れ減圧しながら加温して溶媒を蒸発させ室温まで冷却した。その後、ミキサーで攪拌を続けながら酸素濃度2体積%の窒素ガスをフローし、混合粉末の酸化発熱が40℃を超えないよう注意しながら酸素濃度を徐々に15体積%まで高め、発熱が終了したのを確認し粉砕混合物を回収した。次に回収された粉砕混合物を電気炉に入れて真空中410℃まで昇温加熱したところ、ガス放出による真空度の悪化が確認された。ガスの発生が終わり、真空度が戻ったところで冷却して取り出した。この粉砕混合物を1000倍でSEM反射電子像観察したところ、Sm2Fe17合金粒子の最大粒径は10μmで酸化サマリウム粒子の最大粒径は0.8μmだった。またサマリウム(Sm)が29.8質量%、酸素(O)が2.9質量%、水素(H)が0.006質量%、残部鉄(Fe)の組成で、混合物全体のD50は2.5μmだった。また粉砕混合物50gを真空中400℃5時間加熱したときの減量αは0.4質量%だった。 The slurry after pulverization was placed in a mixer and heated under reduced pressure to evaporate the solvent and cooled to room temperature. After that, nitrogen gas with an oxygen concentration of 2% by volume was flowed while stirring with a mixer, and the oxygen concentration was gradually increased to 15% by volume while being careful not to cause the oxidation heat generation of the mixed powder to exceed 40°C, until the heat generation ended. This was confirmed and the pulverized mixture was collected. Next, when the recovered pulverized mixture was placed in an electric furnace and heated to 410° C. in vacuum, deterioration of the degree of vacuum due to gas release was confirmed. After gas generation had finished and the degree of vacuum had returned, it was cooled and taken out. When this pulverized mixture was observed as a SEM backscattered electron image at 1000 times magnification, the maximum particle size of the Sm 2 Fe 17 alloy particles was 10 μm, and the maximum particle size of the samarium oxide particles was 0.8 μm. Furthermore, the composition of the mixture is 29.8% by mass of samarium (Sm), 2.9% by mass of oxygen (O), 0.006% by mass of hydrogen (H), and the balance is iron (Fe), and the D50 of the entire mixture is 2. It was .5 μm. Further, the weight loss α when 50 g of the pulverized mixture was heated in vacuum at 400° C. for 5 hours was 0.4% by mass.
この粉砕混合物(原料混合物)100gに目開き1.0mm篩上かつ目開き2.0mm篩下となる粒状金属カルシウム(還元剤)31.3g(粉砕混合物の酸素量から計算される還元必要量に対して4.3倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し830℃で13時間保持し冷却した。これにより反応生成物(還元拡散反応生成物)を得た。 To 100 g of this pulverized mixture (raw material mixture), 31.3 g of granular metallic calcium (reducing agent) that is above the sieve with an opening of 1.0 mm and below the sieve with an opening of 2.0 mm (the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) 4.3 times the amount) and further mixed, placed in an iron crucible, heated in an argon gas atmosphere as a reduction diffusion treatment, held at 830° C. for 13 hours, and cooled. As a result, a reaction product (reduction-diffusion reaction product) was obtained.
回収された反応生成物をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのN2ガス気流中で昇温し450℃24時間保持した。 The recovered reaction product was crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it was placed in a tube furnace, heated in a N 2 gas stream at 50 cc/min, and held at 450° C. for 24 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。これにより希土類鉄窒素系磁性粉末を得た。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. As a result, rare earth iron nitrogen based magnetic powder was obtained. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は5.1μmだったが、SEM観察すると図1のように数100nmから4μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、Arでスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行ったところ、図2(重要なSm、Fe、N、Oのみ)に示すような、内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 5.1 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 4 μm were aggregated as shown in FIG. In addition, for arbitrary three particles, the depth of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) composition was measured using an Auger electron spectrometer while sputtering with Ar. When directional analysis was performed, it was confirmed that a shell layer rich in Sm compared to the inside was formed as shown in FIG. 2 (only important Sm, Fe, N, and O).
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%を表2に示す。またこの磁性粉末の耐熱性として、大気圧のアルゴン雰囲気中300℃で1時間加熱したときの保磁力Hcの維持率も表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, and N atomic % of the shell layer of the magnetic powder. As for the heat resistance of this magnetic powder, Table 2 also shows the retention rate of coercive force Hc when heated at 300° C. for 1 hour in an argon atmosphere at atmospheric pressure.
[実施例2]
実施例1と同様にして得られた窒化反応生成物を、1Lのイオン交換水に投入し、2時間放置してスラリー化し、上澄みを捨てる。再び1Lのイオン交換水を投入し、1分間攪拌・2分間静置して水酸化カルシウムが浮遊する上澄みを捨てる。この操作を15回行ったところ、上澄みがほぼ透明になった。次にエタノールを0.2L投入し攪拌してヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。
[Example 2]
The nitriding reaction product obtained in the same manner as in Example 1 was poured into 1 L of ion-exchanged water, left to stand for 2 hours to form a slurry, and the supernatant was discarded. Add 1 L of ion-exchanged water again, stir for 1 minute, let stand for 2 minutes, and discard the supernatant in which calcium hydroxide is suspended. When this operation was repeated 15 times, the supernatant became almost transparent. Next, 0.2 L of ethanol was added, stirred, and filtered through a Nutsche filter. The resulting cake was placed in a mixer and dried under vacuum at 150° C. for 1 hour with stirring. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は3.7μmだったが、SEM観察すると実施例1と同様に数100nmから4μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、Arでスパッタリングしながらオージェ電子分光装置でSm、Fe、N、O、Ca、C組成の深さ方向分析を行って、内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 3.7 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 4 μm were aggregated as in Example 1. . Furthermore, while sputtering with Ar, the composition of Sm, Fe, N, O, Ca, and C in the depth direction was analyzed using an Auger electron spectrometer for three arbitrary particles, and a shell layer rich in Sm was formed compared to the inside. I confirmed that
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例3]
実施例1と同様にして得られた窒化反応生成物を、水/(エチレングリコール+水)で規定される水含有率が20質量%のエチレングリコール1L中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たに水含有率が20質量%のエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。
[Example 3]
The nitriding reaction product obtained in the same manner as in Example 1 was poured into 1 L of ethylene glycol with a water content of 20% by mass, defined as water/(ethylene glycol + water), and stirred for 3 hours in an argon gas atmosphere. It was made into a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol with a water content of 20% by mass, stir for 5 minutes, let stand until the nitride alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は4.1μmだったが、SEM観察すると実施例1と同様に数100nmから4μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、Arでスパッタリングしながらオージェ電子分光装置でSm、Fe、N、O、Ca、C組成の深さ方向分析を行って、内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 4.1 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 4 μm were aggregated as in Example 1. . Furthermore, while sputtering with Ar, the composition of Sm, Fe, N, O, Ca, and C in the depth direction was analyzed using an Auger electron spectrometer for three arbitrary particles, and a shell layer rich in Sm was formed compared to the inside. I confirmed that
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例4]
実施例1と同様にして得た粉砕混合物(原料混合物)100gに粒状金属カルシウム15.7g(粉砕混合物の酸素量から計算される還元必要量に対して2.2倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し860℃で2時間保持し冷却した。
[Example 4]
To 100 g of the pulverized mixture (raw material mixture) obtained in the same manner as in Example 1, 15.7 g of granular metallic calcium (2.2 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added and further mixed. The sample was placed in an iron crucible, heated in an argon gas atmosphere as a reduction and diffusion treatment, held at 860° C. for 2 hours, and then cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのN2ガス気流中で昇温し450℃24時間保持した。 The recovered reaction product (reduction-diffusion reaction product) was crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it was placed in a tube furnace and heated in a N2 gas flow at 50 cc/min. The temperature was maintained at 450°C for 24 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は1.8μmだったが、SEM観察すると数10nmから4μmの球状粒子からなっているのが確認された。また任意の3粒子について、Arでスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って、内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 1.8 μm, but SEM observation confirmed that it consisted of spherical particles ranging from several tens of nanometers to 4 μm. In addition, for arbitrary three particles, the depth of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) composition was measured using an Auger electron spectrometer while sputtering with Ar. A directional analysis was performed and it was confirmed that a shell layer rich in Sm was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例5]
実施例4において、ヌッチェでろ過したケーキ50gを、エタノール100gに85%燐酸水溶液0.60gを加えて混合した溶液に投入し、旋回型拘束ミキサーフィルミックスで60秒攪拌した。得られたスラリーを再びヌッチェでろ過し、ケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥することで磁性粉末を得た。
[Example 5]
In Example 4, 50 g of the Nutsche-filtered cake was added to a mixed solution of 100 g of ethanol and 0.60 g of an 85% aqueous phosphoric acid solution, and stirred for 60 seconds using a rotating restraint mixer Fillmix. The resulting slurry was filtered again through a Nutsche filter, and the cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in a vacuum to obtain a magnetic powder.
このようにして得られた希土類鉄窒素系磁性粉末のレーザー回折粒度分布計で測定された平均粒径(D50)は1.6μmだったが、SEM観察すると数10nmから4μmの球状粒子からなっているのが確認された。また任意の3粒子について、Arでスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、燐(P)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って、最表面に厚みが7nmほどのSm、Fe、Pからなる燐酸系化合物皮膜があり、その内側にコア部に比べてSmリッチなシェル層が形成されていることを確認した。 The average particle diameter (D 50 ) of the rare earth iron nitrogen magnetic powder thus obtained was 1.6 μm as measured by a laser diffraction particle size distribution analyzer, but when observed by SEM, it consisted of spherical particles ranging from several tens of nanometers to 4 μm. It was confirmed that In addition, three arbitrary particles were analyzed using an Auger electron spectrometer while sputtering with Ar. ) A depth direction analysis of the composition revealed that there was a phosphoric acid compound film consisting of Sm, Fe, and P with a thickness of about 7 nm on the outermost surface, and a shell layer rich in Sm compared to the core was formed inside the film. I confirmed that there is.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例6]
実施例1に使用したのと同じSm2Fe17合金粉末(希土類鉄合金粉末)900gに対して、平均粒径(D50)が7.7μmの酸化サマリウム(希土類酸化物粉末)90g(Sm2Fe17合金粉末100質量部に対して10質量部に相当)をロッキングミキサーで予備混合し、その混合物を4kgのフッ素系不活性液体を溶媒として媒体攪拌ミル粉砕した。
[Example 6]
For 900 g of the same Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) used in Example 1, 90 g of samarium oxide (rare earth oxide powder) (Sm 2 (equivalent to 10 parts by mass per 100 parts by mass of Fe 17 alloy powder) was premixed using a rocking mixer, and the mixture was pulverized in a medium stirring mill using 4 kg of a fluorine-based inert liquid as a solvent.
粉砕後のスラリーをミキサーに入れ減圧しながら加温して溶媒を蒸発させ室温まで冷却した。その後、ミキサーで攪拌を続けながら酸素濃度2体積%の窒素ガスをフローし、混合粉末の酸化発熱が40℃を超えないよう注意しながら酸素濃度を徐々に15体積%まで高め、発熱が終了したのを確認し粉砕混合物を回収した。次に回収された粉砕混合物を電気炉に入れて真空中410℃まで昇温加熱したところ、ガス放出による真空度の悪化が確認された。ガスの発生が終わり、真空度が戻ったところで冷却して取り出した。この粉砕混合物を2000倍でSEM反射電子像観察したところ、Sm2Fe17合金粒子の最大粒径は4μmで酸化サマリウム粒子の最大粒径は0.2μmだった。またサマリウム(Sm)が29.0質量%、酸素(O)が3.7質量%、水素(H)が0.41質量%、残部鉄(Fe)の組成で、混合物全体のD50は1.2μmだった。また粉砕混合物50gを真空中400℃5時間加熱したときの減量αは3.1質量%だった。 The slurry after pulverization was placed in a mixer and heated under reduced pressure to evaporate the solvent and cooled to room temperature. After that, nitrogen gas with an oxygen concentration of 2% by volume was flowed while stirring with a mixer, and the oxygen concentration was gradually increased to 15% by volume while being careful not to cause the oxidation heat generation of the mixed powder to exceed 40°C, until the heat generation ended. This was confirmed and the pulverized mixture was collected. Next, when the recovered pulverized mixture was placed in an electric furnace and heated to 410° C. in vacuum, deterioration of the degree of vacuum due to gas release was confirmed. After gas generation had finished and the degree of vacuum had returned, it was cooled and taken out. When this pulverized mixture was observed as a SEM backscattered electron image at a magnification of 2000 times, the maximum particle size of the Sm 2 Fe 17 alloy particles was 4 μm, and the maximum particle size of the samarium oxide particles was 0.2 μm. Also, the composition of the mixture is 29.0% by mass of samarium (Sm), 3.7% by mass of oxygen (O), 0.41% by mass of hydrogen (H), and the balance is iron (Fe), and the D50 of the entire mixture is 1. It was .2 μm. Further, the weight loss α when 50 g of the pulverized mixture was heated in vacuum at 400° C. for 5 hours was 3.1% by mass.
この粉砕混合物(原料混合物)100gに粒状金属カルシウム(還元剤)23.3g(粉砕混合物の酸素量から計算される還元必要量に対して2.5倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し950℃で2時間保持し冷却した。 To 100 g of this pulverized mixture (raw material mixture), 23.3 g of granular metallic calcium (reducing agent) (2.5 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added and further mixed, and the mixture was placed in an iron crucible. It was heated in an argon gas atmosphere as a reduction diffusion treatment, held at 950° C. for 2 hours, and then cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのN2ガス気流中で昇温し450℃24時間保持した。 The recovered reaction product (reduction-diffusion reaction product) was crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it was placed in a tube furnace and heated in a N2 gas flow at 50 cc/min. The temperature was maintained at 450°C for 24 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は7.3μmだったが、SEM観察すると100nmから3μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 7.3 μm, but SEM observation confirmed that spherical particles of 100 nm to 3 μm were aggregated. Furthermore, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) was measured using an Auger electron spectrometer while sputtering with argon (Ar) for arbitrary three particles. A depth direction analysis was conducted to confirm that an Sm-rich shell layer was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例7]
実施例6と同様にして得た粉砕混合物(原料混合物)100gに粒状金属カルシウム(還元剤)23.3g(粉砕混合物の酸素量から計算される還元必要量に対して2.5倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し1020℃で1時間保持し冷却した。
[Example 7]
To 100 g of the pulverized mixture (raw material mixture) obtained in the same manner as in Example 6, 23.3 g of granular metallic calcium (reducing agent) (2.5 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added. The mixture was further mixed, placed in an iron crucible, heated in an argon gas atmosphere as a reduction and diffusion treatment, held at 1020° C. for 1 hour, and cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのN2ガス気流中で昇温し450℃24時間保持した。 The recovered reaction product (reduction-diffusion reaction product) was crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it was placed in a tube furnace and heated in a N2 gas flow at 50 cc/min. The temperature was maintained at 450°C for 24 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は8.6μmだったが、SEM観察すると100nmから4μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、Arでスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って、内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 8.6 μm, but SEM observation confirmed that spherical particles of 100 nm to 4 μm were aggregated. In addition, for arbitrary three particles, the depth of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) composition was measured using an Auger electron spectrometer while sputtering with Ar. A directional analysis was performed and it was confirmed that a shell layer rich in Sm was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例8]
実施例1に使用したのと同じSm2Fe17合金粉末(希土類鉄合金粉末)900gに対して、平均粒径(D50)が3.4μmの酸化サマリウム(希土類酸化物粉末)45g(Sm2Fe17合金粉末100質量部に対して5質量部に相当)をロッキングミキサーで予備混合し、その混合物を4kgのフッ素系不活性液体を溶媒として媒体攪拌ミル粉砕した。
[Example 8]
For 900 g of the same Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) used in Example 1, 45 g of samarium oxide (rare earth oxide powder) (Sm 2 (equivalent to 5 parts by mass based on 100 parts by mass of Fe 17 alloy powder) was premixed using a rocking mixer, and the mixture was pulverized in a medium stirring mill using 4 kg of a fluorine-based inert liquid as a solvent.
粉砕後のスラリーをミキサーに入れ減圧しながら加温して溶媒を蒸発させ室温まで冷却した。その後、ミキサーで攪拌を続けながら酸素濃度2体積%の窒素ガスをフローし、混合粉末の酸化発熱が40℃を超えないよう注意しながら酸素濃度を徐々に15体積%まで高め、発熱が終了したのを確認し粉砕混合物を回収した。次に回収された粉砕混合物を電気炉に入れて真空中410℃まで昇温加熱したところ、ガス放出による真空度の悪化が確認された。ガスの発生が終わり、真空度が戻ったところで冷却して取り出した。この粉砕混合物を2000倍でSEM反射電子像観察したところ、Sm2Fe17合金粒子の最大粒径は6μmで酸化サマリウム粒子の最大粒径は0.3μmだった。またサマリウム(Sm)が26.8質量%、酸素(O)が3.0質量%、水素(H)が0.03質量%、残部鉄(Fe)の組成で、混合物全体のD50は2.0μmだった。また粉砕混合物50gを真空中400℃5時間加熱したときの減量αは0.23質量%だった。 The slurry after pulverization was placed in a mixer and heated under reduced pressure to evaporate the solvent and cooled to room temperature. After that, nitrogen gas with an oxygen concentration of 2% by volume was flowed while stirring with a mixer, and the oxygen concentration was gradually increased to 15% by volume while being careful not to cause the oxidation heat generation of the mixed powder to exceed 40°C, until the heat generation ended. This was confirmed and the pulverized mixture was collected. Next, when the recovered pulverized mixture was placed in an electric furnace and heated to 410° C. in vacuum, deterioration of the degree of vacuum due to gas release was confirmed. After gas generation had finished and the degree of vacuum had returned, it was cooled and taken out. When this pulverized mixture was observed as a SEM backscattered electron image at a magnification of 2000 times, the maximum particle size of the Sm 2 Fe 17 alloy particles was 6 μm, and the maximum particle size of the samarium oxide particles was 0.3 μm. Also, the composition of the mixture is 26.8% by mass of samarium (Sm), 3.0% by mass of oxygen (O), 0.03% by mass of hydrogen (H), and the balance is iron (Fe), and the D50 of the entire mixture is 2. It was .0 μm. Further, the weight loss α when 50 g of the pulverized mixture was heated in vacuum at 400° C. for 5 hours was 0.23% by mass.
この粉砕混合物(原料混合物)100gに粒状金属カルシウム(還元剤)18.7g(粉砕混合物の酸素量から計算される還元必要量に対して2.5倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し860℃で2時間保持し冷却した。 To 100 g of this pulverized mixture (raw material mixture), 18.7 g of granular metallic calcium (reducing agent) (2.5 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added and further mixed, and the mixture was placed in an iron crucible. It was heated in an argon gas atmosphere as a reduction diffusion treatment, held at 860° C. for 2 hours, and then cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのN2ガス気流中で昇温し450℃24時間保持した。 The recovered reaction product (reduction-diffusion reaction product) was crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it was placed in a tube furnace and heated in a N2 gas flow at 50 cc/min. The temperature was maintained at 450°C for 24 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は5.2μmだったが、SEM観察すると数100nmから2μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 5.2 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 2 μm were aggregated. Furthermore, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) was measured using an Auger electron spectrometer while sputtering with argon (Ar) for arbitrary three particles. A depth direction analysis was conducted to confirm that an Sm-rich shell layer was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例9]
実施例1と同様にして得た粉砕混合物(原料混合物)100gに粒状金属カルシウム(還元剤)71.2g(粉砕混合物の酸素量から計算される還元必要量に対して9.8倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し730℃で2時間保持し冷却した。
[Example 9]
To 100 g of the pulverized mixture (raw material mixture) obtained in the same manner as in Example 1, 71.2 g of granular metallic calcium (reducing agent) (9.8 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added. The mixture was further mixed, placed in an iron crucible, heated under an argon gas atmosphere as a reduction and diffusion treatment, held at 730° C. for 2 hours, and cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのN2ガス気流中で昇温し320℃30時間保持した。 The recovered reaction product (reduction-diffusion reaction product) was crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it was placed in a tube furnace and heated in a N2 gas flow at 50 cc/min. The temperature was maintained at 320°C for 30 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は2.6μmだった。また任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)、炭素(C)組成の深さ方向分析を行って、内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 2.6 μm. Furthermore, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) was measured using an Auger electron spectrometer while sputtering with argon (Ar) for arbitrary three particles. A depth direction analysis was performed and it was confirmed that an Sm-rich shell layer was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例10]
実施例6と同様にして得た粉砕混合物(原料混合物)100gに粒状金属カルシウム(還元剤)28.2g(粉砕混合物の酸素量から計算される還元必要量に対して3.0倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し1050℃で1時間保持し冷却した。
[Example 10]
To 100 g of the pulverized mixture (raw material mixture) obtained in the same manner as in Example 6, 28.2 g of granular metallic calcium (reducing agent) (3.0 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added. The mixture was further mixed, placed in an iron crucible, heated in an argon gas atmosphere as a reduction and diffusion treatment, held at 1050° C. for 1 hour, and cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのNH3ガスと100cc/minのH2ガスとの混合ガス気流中で昇温し480℃2時間保持した。 The recovered reaction product (reduction-diffusion reaction product) is crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it is placed in a tube furnace and subjected to 50 cc/min of NH 3 gas and 100 cc/min of H The temperature was raised in a mixed gas flow of two gases and held at 480°C for 2 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は9.3μmだったが、SEM観察すると数100nmから5μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って、内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 9.3 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 5 μm were aggregated. Furthermore, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) was measured using an Auger electron spectrometer while sputtering with argon (Ar) for arbitrary three particles. A depth direction analysis was performed and it was confirmed that an Sm-rich shell layer was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例11]
実施例1に使用したのと同じSm2Fe17合金粉末(希土類鉄合金粉末)900gに対して、平均粒径(D50)が2.5μmの酸化サマリウム(希土類酸化物粉末)10g(Sm2Fe17合金粉末100質量部に対して1.1質量部に相当)をロッキングミキサーで予備混合し、その混合物を4kgのフッ素系不活性液体を溶媒として媒体攪拌ミル粉砕した。
[Example 11]
To 900 g of the same Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) used in Example 1, 10 g of samarium oxide (rare earth oxide powder) (Sm 2 (equivalent to 1.1 parts by mass based on 100 parts by mass of Fe 17 alloy powder) was premixed using a rocking mixer, and the mixture was pulverized by a media stirring mill using 4 kg of a fluorine-based inert liquid as a solvent.
粉砕後のスラリーをミキサーに入れ減圧しながら加温して溶媒を蒸発させ室温まで冷却した。その後、ミキサーで攪拌を続けながら酸素濃度2体積%の窒素ガスをフローし、混合粉末の酸化発熱が40℃を超えないよう注意しながら酸素濃度を徐々に15体積%まで高め、発熱が終了したのを確認し粉砕混合物を回収した。次に回収された粉砕混合物を電気炉に入れて真空中410℃まで昇温加熱したところ、ガス放出による真空度の悪化が確認された。ガスの発生が終わり、真空度が戻ったところで冷却して取り出した。この粉砕混合物を1000倍でSEM反射電子像観察したところ、Sm2Fe17合金粒子の最大粒径は6μmで酸化サマリウム粒子の最大粒径は0.5μmだった。またサマリウム(Sm)が24.5質量%、酸素(O)が2.4質量%、水素(H)が0.007質量%、残部鉄(Fe)の組成で、混合物全体のD50は1.8μmだった。また粉砕混合物50gを真空中400℃5時間加熱したときの減量αは0.05質量%だった。 The slurry after pulverization was placed in a mixer and heated under reduced pressure to evaporate the solvent and cooled to room temperature. After that, nitrogen gas with an oxygen concentration of 2% by volume was flowed while stirring with a mixer, and the oxygen concentration was gradually increased to 15% by volume while being careful not to cause the oxidation heat generation of the mixed powder to exceed 40°C, until the heat generation ended. This was confirmed and the pulverized mixture was collected. Next, when the recovered pulverized mixture was placed in an electric furnace and heated to 410° C. in vacuum, deterioration of the degree of vacuum due to gas release was confirmed. After gas generation had finished and the degree of vacuum had returned, it was cooled and taken out. When the SEM backscattered electron image of this pulverized mixture was observed at a magnification of 1000 times, the maximum particle size of the Sm 2 Fe 17 alloy particles was 6 μm, and the maximum particle size of the samarium oxide particles was 0.5 μm. Also, the composition of the mixture is 24.5% by mass of samarium (Sm), 2.4% by mass of oxygen (O), 0.007% by mass of hydrogen (H), and the balance is iron (Fe), and the D50 of the entire mixture is 1. It was .8 μm. Further, the weight loss α when 50 g of the pulverized mixture was heated in vacuum at 400° C. for 5 hours was 0.05% by mass.
この粉砕混合物(原料混合物)100gに粒状金属カルシウム(還元剤)9.8g(粉砕混合物の酸素量から計算される還元必要量に対して1.6倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し960℃で2時間保持し冷却した。 To 100 g of this pulverized mixture (raw material mixture), 9.8 g of granular metallic calcium (reducing agent) (1.6 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added and further mixed, and then placed in an iron crucible. It was heated in an argon gas atmosphere as a reduction diffusion treatment, held at 960° C. for 2 hours, and then cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのN2ガス気流中で昇温し450℃27時間保持した。 The recovered reaction product (reduction-diffusion reaction product) was crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it was placed in a tube furnace and heated in a N2 gas flow at 50 cc/min. The temperature was maintained at 450°C for 27 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は4.8μmだったが、SEM観察すると数100nmから3μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 4.8 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 3 μm were aggregated. Furthermore, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) was measured using an Auger electron spectrometer while sputtering with argon (Ar) for arbitrary three particles. A depth direction analysis was conducted to confirm that an Sm-rich shell layer was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[実施例12]
溶解鋳造法で得たSm2Fe17合金鋳塊をアルゴンガス雰囲気で1050℃5日間均一加熱処理し、ジョークラッシャー解砕した後、フッ素系不活性液体を溶媒とし平均粒径(D50)が1.8μmとなるまで媒体攪拌ミル粉砕した。得られたスラリーをミキサーで減圧しながら加温して溶媒を蒸発させ、酸素濃度2体積%の窒素ガスをフローして徐酸化させて回収した。また平均粒径(D50)が2.2μmの酸化サマリウムを、フッ素系不活性液体を溶媒とし平均粒径(D50)が0.2μmとなるまで媒体攪拌ミル粉砕し乾燥させた。このようにして得られたSm2Fe17合金微粉末(希土類鉄合金粉末)100gと酸化サマリウム微粉末(希土類酸化物粉末)20g(Sm2Fe17合金粉末100質量部に対して20質量部に相当)をアルゴンガス雰囲気下でメカノフュージョン精密混合し、アルゴンで置換したグローブボックス中で回収した。この混合物は、サマリウム(Sm)が34.1質量%、酸素(O)が4.5質量%、水素(H)が0.005質量%、残部鉄(Fe)の組成で、混合物全体のD50は1.6μmだった。
[Example 12]
The Sm 2 Fe 17 alloy ingot obtained by the melting and casting method was uniformly heated at 1050°C for 5 days in an argon gas atmosphere, crushed with a jaw crusher, and then crushed with a fluorine-based inert liquid as a solvent to reduce the average particle size (D 50 ). It was ground with a media stirring mill until it became 1.8 μm. The obtained slurry was heated under reduced pressure with a mixer to evaporate the solvent, and nitrogen gas with an oxygen concentration of 2% by volume was flowed for gradual oxidation and recovery. Further, samarium oxide having an average particle diameter (D 50 ) of 2.2 μm was pulverized using a fluorine-based inert liquid as a solvent using a media stirring mill until the average particle diameter (D 50 ) was 0.2 μm, and then dried. 100 g of the thus obtained Sm 2 Fe 17 alloy fine powder (rare earth iron alloy powder) and 20 g of samarium oxide fine powder (rare earth oxide powder) (20 parts by mass for 100 parts by mass of Sm 2 Fe 17 alloy powder) (equivalent) was mechanofusion precision mixed under an argon gas atmosphere and collected in a glove box purged with argon. This mixture has a composition of 34.1% by mass of samarium (Sm), 4.5% by mass of oxygen (O), 0.005% by mass of hydrogen (H), and the balance is iron (Fe). 50 was 1.6 μm.
この混合物(原料混合物)100gに粒状金属カルシウム(還元剤)15.9g(粉砕混合物の酸素量から計算される還元必要量に対して1.2倍)を加えてさらに混合し、鉄るつぼに入れて還元拡散処理としてアルゴンガス雰囲気下で加熱し920℃で2時間保持し冷却した。 To 100 g of this mixture (raw material mixture), 15.9 g of granular metallic calcium (reducing agent) (1.2 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture) was added, mixed further, and placed in an iron crucible. As a reduction and diffusion treatment, it was heated in an argon gas atmosphere, held at 920° C. for 2 hours, and then cooled.
回収された反応生成物(還元拡散反応生成物)をアルゴンガス雰囲気下で10mm以下になるよう解砕し、窒化熱処理として、管状炉に入れて50cc/minのNH3ガスと50cc/minのH2ガスとの混合ガス気流中で昇温し450℃3時間保持した。
The recovered reaction product (reduction-diffusion reaction product) is crushed to a size of 10 mm or less under an argon gas atmosphere, and as a nitriding heat treatment, it is placed in a tube furnace and heated with 50 cc/min of NH 3 gas and 50 cc/min of H The temperature was raised in a mixed gas flow of two gases and maintained at 450°C for 3 hours.
冷却後に管状炉から回収された窒化反応生成物を、1Lのエチレングリコール中に投入しアルゴンガス雰囲気中3時間攪拌しスラリー化した。このスラリーの上澄みを捨て、新たにエチレングリコールを1L加えて5分間攪拌し、窒化合金粉が沈降するまで静置しカルシウム成分が懸濁する上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。次に脱水エタノール500ccを加えて攪拌し合金粉が沈降するまで静置して上澄みを捨てる。この操作をアルゴンガス雰囲気中で3回繰り返した。最後にヌッチェでろ過し、得られたケーキをミキサーに入れて真空中150℃で1時間攪拌乾燥した。以上の作製条件を表1に示す。 The nitriding reaction product recovered from the tube furnace after cooling was poured into 1 L of ethylene glycol and stirred for 3 hours in an argon gas atmosphere to form a slurry. Discard the supernatant of this slurry, add 1 L of ethylene glycol, stir for 5 minutes, let stand until the nitrided alloy powder settles, and discard the supernatant in which the calcium component is suspended. This operation was repeated three times in an argon gas atmosphere. Next, add 500 cc of dehydrated ethanol, stir, and let stand until the alloy powder settles, and then discard the supernatant. This operation was repeated three times in an argon gas atmosphere. Finally, it was filtered through a Nutsche filter, and the resulting cake was placed in a mixer and dried under stirring at 150° C. for 1 hour in vacuo. The above manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は3.4μmだったが、SEM観察すると数100nmから2μmの球状粒子が凝集しているのが確認された。また任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)、炭素(C)組成の深さ方向分析を行って内部に比べてSmリッチなシェル層が形成されていることを確認した。
The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 3.4 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 2 μm were aggregated. Furthermore, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) was measured using an Auger electron spectrometer while sputtering with argon (Ar) for arbitrary three particles. A depth direction analysis was conducted to confirm that an Sm-rich shell layer was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[比較例1]
還元拡散処理を710℃で2時間とした以外は、実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。作製条件を表1に示す。
[Comparative example 1]
A rare earth iron nitrogen based magnetic powder was produced in the same manner as in Example 1 except that the reduction and diffusion treatment was carried out at 710° C. for 2 hours. The manufacturing conditions are shown in Table 1.
得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認されたが、それ以外にα-Feの回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は2.8μmだった。任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)、炭素(C)組成の深さ方向分析を行ったが内部に比べてSmリッチなシェル層は確認できなかった。 The obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD, but α-Fe diffraction lines were also observed. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 2.8 μm. For three arbitrary particles, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) was determined using an Auger electron spectrometer while sputtering with argon (Ar). Although depth direction analysis was performed, no Sm-rich shell layer could be confirmed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
[比較例2]
還元拡散処理を1100℃で1時間とし、窒化に50cc/minのNH3ガスと100cc/minのH2ガスとの混合ガスを使用し、窒化処理時間を3時間とした以外は、実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。作製条件を表1に示す。
[Comparative example 2]
Example 1 except that the reduction diffusion treatment was performed at 1100° C. for 1 hour, the nitriding was performed using a mixed gas of 50 cc/min NH 3 gas and 100 cc/min H 2 gas , and the nitriding treatment time was 3 hours . Rare earth iron nitrogen based magnetic powder was prepared in the same manner as above. The manufacturing conditions are shown in Table 1.
得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。またSEM/EDS分析により粒子間に粗大なSmFe3相も確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は10.8μmだった。任意の3粒子について、Arでスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)、炭素(C)組成の深さ方向分析を行ったが内部に比べてSmリッチなシェル層は確認できなかった。 The obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. Moreover, coarse SmFe three phases were also confirmed between particles by SEM/EDS analysis. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 10.8 μm. For three arbitrary particles, the composition of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) in the depth direction was measured using an Auger electron spectrometer while sputtering with Ar. An analysis was conducted, but no Sm-rich shell layer could be confirmed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
[比較例3]
酸化サマリウム(希土類酸化物粉末)の混合量を200g(Sm2Fe17合金粉末100質量部に対して22質量部に相当)に増やし、粒状金属カルシウム(還元剤)を30.1g(粉砕混合物の酸素量から計算される還元必要量に対して3.3倍)とし、窒化に50cc/minのNH3ガスと100cc/minのH2ガスとの混合ガスを使用し、窒化処理時間を3時間とした以外は、実施例4と同様にして希土類鉄窒素系磁性粉末を作製した。このとき粉砕混合物を1000倍でSEM反射電子像観察したところ、Sm2Fe17合金粒子の最大粒径は9μmで酸化サマリウム粒子の最大粒径は0.6μmだった。またサマリウム(Sm)が35.1質量%、酸素(O)が3.6質量%、水素(H)が0.01質量%、残部鉄(Fe)の組成で、混合物全体のD50は2.2μmだった。また粉砕混合物50gを真空中400℃5時間加熱したときの減量αは0.1質量%だった。作製条件を表1に示す。
[Comparative example 3]
The mixed amount of samarium oxide (rare earth oxide powder) was increased to 200 g (equivalent to 22 parts by mass for 100 parts by mass of Sm 2 Fe 17 alloy powder), and 30.1 g of granular metallic calcium (reducing agent) was added (to 100 parts by mass of Sm 2 Fe 17 alloy powder). (3.3 times the required amount of reduction calculated from the amount of oxygen), a mixed gas of 50 cc/min NH 3 gas and 100 cc/min H 2 gas was used for nitriding , and the nitriding treatment time was 3 hours. A rare-earth iron-nitrogen magnetic powder was produced in the same manner as in Example 4 except for the following . At this time, when the SEM reflection electron image of the pulverized mixture was observed at a magnification of 1000 times, the maximum particle size of the Sm 2 Fe 17 alloy particles was 9 μm, and the maximum particle size of the samarium oxide particles was 0.6 μm. Furthermore, the composition of the mixture is 35.1% by mass of samarium (Sm), 3.6% by mass of oxygen (O), 0.01% by mass of hydrogen (H), and the balance is iron (Fe), and the D50 of the entire mixture is 2. It was .2 μm. Further, the weight loss α when 50 g of the pulverized mixture was heated in vacuum at 400° C. for 5 hours was 0.1% by mass. The manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は4.0μmだったが、SEM観察すると数100nmから3μmの球状粒子が凝集しているのが確認された。またSEM観察ではSmFe3窒化物相が多量に観察された。SmFe3窒化物相以外の任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行って内部に比べてSmリッチなシェル層が形成されていることを確認した。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 4.0 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 3 μm were aggregated. Further, in SEM observation, a large amount of SmFe trinitride phase was observed. For any three particles other than the SmFe trinitride phase, samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), and calcium (Ca) were analyzed using an Auger electron spectrometer while sputtering with argon (Ar). The carbon (C) composition was analyzed in the depth direction, and it was confirmed that a shell layer rich in Sm was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、シェル層のSm/Fe原子比、シェル層の平均厚み、シェル層のN原子%、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , Sm/Fe atomic ratio of the shell layer, average thickness of the shell layer, N atomic % of the shell layer, and heat resistance of the magnetic powder. show.
[比較例4]
酸化サマリウム(希土類酸化物粉末)の混合量を8g(Sm2Fe17合金粉末100質量部に対して0.9質量部に相当)に減らし、粒状金属カルシウム(還元剤)を13.5g(粉砕混合物の酸素量から計算される還元必要量に対して3.0倍)とした以外は、実施例4と同様にして希土類鉄窒素系磁性粉末を作製した。このとき粉砕混合物を1000倍でSEM反射電子像観察したところ、Sm2Fe17合金粒子の最大粒径は9μmで酸化サマリウム粒子の最大粒径は0.7μmだった。またサマリウム(Sm)が24.4質量%、酸素(O)が1.8質量%、水素(H)が0.008質量%、残部鉄(Fe)の組成で、混合物全体のD50は2.1μmだった。また粉砕混合物50gを真空中400℃5時間加熱したときの減量αは0.1質量%だった。作製条件を表1に示す。
[Comparative example 4]
The mixed amount of samarium oxide (rare earth oxide powder) was reduced to 8 g (equivalent to 0.9 parts by mass for 100 parts by mass of Sm 2 Fe 17 alloy powder), and 13.5 g (pulverized) of granular metallic calcium (reducing agent) was added. Rare earth iron nitrogen based magnetic powder was produced in the same manner as in Example 4, except that the amount of reduction required was 3.0 times that calculated from the amount of oxygen in the mixture. At this time, when the pulverized mixture was observed with a SEM backscattered electron image at a magnification of 1000 times, the maximum particle size of the Sm 2 Fe 17 alloy particles was 9 μm, and the maximum particle size of the samarium oxide particles was 0.7 μm. Furthermore, the composition of the mixture is 24.4% by mass of samarium (Sm), 1.8% by mass of oxygen (O), 0.008% by mass of hydrogen (H), and the balance is iron (Fe), and the D50 of the entire mixture is 2. It was .1 μm. Further, the weight loss α when 50 g of the pulverized mixture was heated in vacuum at 400° C. for 5 hours was 0.1% by mass. The manufacturing conditions are shown in Table 1.
このようにして得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認されたが、それ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は4.3μmだったが、SEM観察すると数100nmから3μmの球状粒子が凝集しているのが確認された。任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行ったが内部に比べてSmリッチなシェル層は確認できなかった。 The thus obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD, but strong α-Fe diffraction lines were also observed. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 4.3 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 3 μm were aggregated. For three arbitrary particles, the samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) compositions were determined using an Auger electron spectrometer while sputtering with argon (Ar). Although depth direction analysis was performed, no Sm-rich shell layer could be confirmed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
[比較例5]
窒化熱処理を290℃で24時間とした以外は、実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。作製条件を表1に示す。
[Comparative example 5]
A rare earth iron nitrogen-based magnetic powder was produced in the same manner as in Example 1, except that the nitriding heat treatment was carried out at 290° C. for 24 hours. The manufacturing conditions are shown in Table 1.
得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は5.0μmだったが、SEM観察すると数100nmから4μmの球状粒子が凝集しているのが確認された。任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行ったところ、内部に比べてSmリッチなシェル層が形成されていたがN組成はバックグラウンドレベルだった。 The obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 5.0 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 4 μm were aggregated. For three arbitrary particles, the samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) compositions were determined using an Auger electron spectrometer while sputtering with argon (Ar). When a depthwise analysis was performed, a shell layer rich in Sm was formed compared to the inside, but the N composition was at the background level.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
[比較例6]
窒化熱処理を510℃で3時間とし、窒化に50cc/minのNH3ガスと100cc/minのH2ガスとの混合ガスを使用した以外は、実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。作製条件を表1に示す。
[Comparative example 6]
Rare earth iron nitrogen based magnetic powder was prepared in the same manner as in Example 1, except that the nitriding heat treatment was carried out at 510° C. for 3 hours and a mixed gas of 50 cc/min NH 3 gas and 100 cc/min H 2 gas was used for nitriding. was created. The manufacturing conditions are shown in Table 1.
得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認されたが、それ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は4.8μmだったが、SEM観察すると数100nmから4μmの球状粒子が凝集しているのが確認された。任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行ったところ、内部に比べてSmリッチなシェル層が形成されていた。 The obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD, but strong α-Fe diffraction lines were also observed. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 4.8 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 4 μm were aggregated. For three arbitrary particles, the samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) compositions were determined using an Auger electron spectrometer while sputtering with argon (Ar). When a depth direction analysis was performed, a shell layer rich in Sm was formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
[比較例7]
Sm2Fe17合金粉末と酸化サマリウムとを予備混合する際の媒体攪拌ミル粉砕時間を調整し、粉砕混合物中のSm2Fe17合金粒子(希土類鉄合金粉末)の最大粒径を12μm、酸化サマリウム粒子(希土類酸化物粉末)の最大粒径を1.2μmとしたこと、粉砕混合物の組成をサマリウム(Sm)が29.6質量%、酸素(O)が2.3質量%、水素(H)が0.005質量%、残部鉄(Fe)の組成とし、混合物全体のD50を4.1μm、粉砕混合物50gを真空中400℃5時間加熱したときの減量αを0.05質量%としたこと、粒状金属カルシウム(還元剤)を14.3g(粉砕混合物の酸素量から計算される還元必要量に対して2.5倍)としたこと以外は、実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。作製条件を表1に示す。
[Comparative Example 7]
When premixing Sm 2 Fe 17 alloy powder and samarium oxide, the grinding time with a medium stirring mill was adjusted, and the maximum particle size of Sm 2 Fe 17 alloy particles (rare earth iron alloy powder) in the pulverized mixture was set to 12 μm, samarium oxide The maximum particle size of the particles (rare earth oxide powder) was 1.2 μm, and the composition of the pulverized mixture was 29.6% by mass of samarium (Sm), 2.3% by mass of oxygen (O), and hydrogen (H). was 0.005% by mass, the balance was iron (Fe), the D50 of the entire mixture was 4.1 μm, and the weight loss α when 50 g of the pulverized mixture was heated in vacuum at 400°C for 5 hours was 0.05% by mass. Rare earth iron nitrogen was prepared in the same manner as in Example 1, except that the amount of granular metallic calcium (reducing agent) was 14.3 g (2.5 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture). system magnetic powder was produced. The manufacturing conditions are shown in Table 1.
得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認された。レーザー回折粒度分布計で測定された平均粒径(D50)は8.3μmだったが、SEM観察すると1μmから7μmの球状粒子が凝集しているのが確認された。粒子表面について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行ったところ、内部に比べてSmリッチなシェル層の形成されている部分と形成されていない部分が見らればらついていた。 The obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 8.3 μm, but SEM observation confirmed that spherical particles of 1 μm to 7 μm were aggregated. Regarding the particle surface, the depth of samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca) and carbon (C) composition was measured using an Auger electron spectrometer while sputtering with argon (Ar). When directional analysis was performed, it was found that there were some parts where an Sm-rich shell layer was formed and some parts where it was not formed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
[比較例8]
粒状金属カルシウム(還元剤)を7.3g(粉砕混合物の酸素量から計算される還元必要量に対して1.0倍)とした以外は、実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。作製条件を表1に示す。
[Comparative example 8]
Rare earth iron nitrogen based magnetic powder was prepared in the same manner as in Example 1, except that the amount of granular metal calcium (reducing agent) was changed to 7.3 g (1.0 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture). was created. The manufacturing conditions are shown in Table 1.
得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認されたが、それ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は7.7μmだったが、SEM観察すると数100nmから4μmの球状粒子が凝集しているのが確認された。任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行ったが内部に比べてSmリッチなシェル層は確認できなかった。 The obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD, but strong α-Fe diffraction lines were also observed. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 7.7 μm, but SEM observation confirmed that spherical particles ranging from several 100 nm to 4 μm were aggregated. For three arbitrary particles, the samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) compositions were determined using an Auger electron spectrometer while sputtering with argon (Ar). Although depth direction analysis was performed, no Sm-rich shell layer could be confirmed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
[比較例9]
粒状金属カルシウム(還元剤)を79.2g(粉砕混合物の酸素量から計算される還元必要量に対して10.9倍)とした以外は、実施例1と同様にして希土類鉄窒素系磁性粉末を作製した。作製条件を表1に示す。
[Comparative Example 9]
A rare earth iron nitrogen based magnetic powder was prepared in the same manner as in Example 1, except that the amount of granular metallic calcium (reducing agent) was changed to 79.2 g (10.9 times the required amount of reduction calculated from the amount of oxygen in the pulverized mixture). was created. The manufacturing conditions are shown in Table 1.
得られた希土類鉄窒素系磁性粉末は、XRDによりTh2Zn17型の結晶構造であることが確認されたが、それ以外にα-Feの強い回折線も認められた。レーザー回折粒度分布計で測定された平均粒径(D50)は5.1μmだったが、SEM観察すると数10nmから3μmの球状粒子が凝集しているのが確認された。任意の3粒子について、アルゴン(Ar)でスパッタリングしながらオージェ電子分光装置でサマリウム(Sm)、鉄(Fe)、窒素(N)、酸素(O)、カルシウム(Ca)及び炭素(C)組成の深さ方向分析を行ったが内部に比べてSmリッチなシェル層は確認できなかった。 The obtained rare earth iron nitrogen based magnetic powder was confirmed to have a Th 2 Zn 17 type crystal structure by XRD, but strong α-Fe diffraction lines were also observed. The average particle diameter (D 50 ) measured with a laser diffraction particle size distribution meter was 5.1 μm, but SEM observation confirmed that spherical particles ranging from several tens of nanometers to 3 μm were aggregated. For three arbitrary particles, the samarium (Sm), iron (Fe), nitrogen (N), oxygen (O), calcium (Ca), and carbon (C) compositions were determined using an Auger electron spectrometer while sputtering with argon (Ar). Although depth direction analysis was performed, no Sm-rich shell layer could be confirmed compared to the inside.
磁性粉末のSm組成、N組成、残留磁化σr、保磁力Hc、磁性粉末の耐熱性を表2に示す。 Table 2 shows the Sm composition, N composition, residual magnetization σ r , coercive force H c , and heat resistance of the magnetic powder.
(評価)
上記製造条件を示す表1、それにより得られた磁性粉末の物性を示す表2から次のことが分かる。
(evaluation)
The following can be seen from Table 1 showing the above manufacturing conditions and Table 2 showing the physical properties of the magnetic powder obtained thereby.
実施例1~12では、サマリウム(Sm)、鉄(Fe)、窒素(N)を主構成成分とし、粉末のサマリウム(Sm)含有量が22.5~29.7質量%、窒素(N)含有量が2.5~4.0質量%であって、Th2Zn17型結晶構造を有する平均粒径が1.6~9.3μmの磁性粉末であって、粒子表面に、Sm/Fe原子比が0.3~2.9であり、厚みが2~24nmのシェル層が形成されている希土類鉄窒素系磁性粉末が得られている。そして、この磁性粉末は、83Am2/kg以上の残留磁化σrと740kA/m以上の保磁力Hcを有し、粉末を300℃で1時間加熱した後においても保磁力の維持率Hc,300/Hcが72%以上の高い耐熱性を示している。 In Examples 1 to 12, the main components were samarium (Sm), iron (Fe), and nitrogen (N), and the samarium (Sm) content of the powder was 22.5 to 29.7% by mass, and the nitrogen (N) content was 22.5 to 29.7% by mass. A magnetic powder with a content of 2.5 to 4.0% by mass, a Th 2 Zn 17 type crystal structure, and an average particle size of 1.6 to 9.3 μm, with Sm/Fe on the particle surface. A rare earth iron-nitrogen magnetic powder having an atomic ratio of 0.3 to 2.9 and a shell layer having a thickness of 2 to 24 nm was obtained. This magnetic powder has a residual magnetization σ r of 83 Am 2 /kg or more and a coercive force H c of 740 kA/m or more, and even after heating the powder at 300° C. for 1 hour, the coercive force retention rate H c ,300 /H c shows high heat resistance of 72% or more.
これに対して、比較例1では、還元拡散温度が710℃と730℃より低温であるため、シェル層が形成された部分が認められず、耐熱試験に基づく保磁力の維持率Hc,300/Hcが44%と70%より低くなって悪化している。また、比較例2では、還元拡散温度が1100℃と1050℃より高温であるため、磁性粉末の平均粒径が10.8μmと10μmを超え、保磁力Hcが382kA/mと低く耐熱試験による保磁力の維持率Hc,300/Hcが58%と70%より低くなって悪化している。 On the other hand, in Comparative Example 1, since the reduction diffusion temperature is 710°C, which is lower than 730°C, no part where the shell layer is formed is observed, and the coercive force retention rate H c, 300 based on the heat resistance test. / Hc is 44%, which is lower than 70% and is deteriorating. In addition, in Comparative Example 2, the reduction diffusion temperature is 1100°C, which is higher than 1050°C, so the average particle size of the magnetic powder is 10.8 μm, which exceeds 10 μm, and the coercive force H c is low, which is 382 kA/m. The coercive force retention rate H c,300 /H c is 58%, which is lower than 70% and is deteriorating.
比較例3では、酸化サマリウム(希土類酸化物粉末)の混合量が200gであり、Sm2Fe17合金粉末(希土類鉄合金粉末)100質量部に対して22質量部と20質量部を超えているため、磁性粉末のサマリウム(Sm)含有量が34.8質量%と30質量%を超え、かつ窒素(N)含有量が5.2質量%と4.0質量%を超えた。粉末にはSmFe3相窒化物が多く観察された。そのためシェル層の厚みが32nmと30nmを超え、またSm/Fe原子比が3.4と3.0を超えて、残留磁化σrが52Am2/kgと低くなっている。また比較例4では、酸化サマリウム(希土類酸化物粉末)の混合量が8gであり、Sm2Fe17合金粉末(希土類鉄合金粉末)100質量部に対して0.9質量部と1質量部を下回ったため、磁性粉末のサマリウム(Sm)含有量が21.9質量%と22質量%未満になった。そのためシェル層は認められず、磁性粉末の残留磁化σrが43Am2/kg、保磁力Hcが215kA/mと低くなっている。 In Comparative Example 3, the amount of samarium oxide (rare earth oxide powder) mixed is 200 g, which exceeds 22 parts by mass and 20 parts by mass per 100 parts by mass of Sm 2 Fe 17 alloy powder (rare earth iron alloy powder). Therefore, the samarium (Sm) content of the magnetic powder was 34.8% by mass, which exceeded 30% by mass, and the nitrogen (N) content was 5.2% by mass, which exceeded 4.0% by mass. Many SmFe three- phase nitrides were observed in the powder. Therefore, the thickness of the shell layer exceeds 32 nm and 30 nm, the Sm/Fe atomic ratio exceeds 3.4 and 3.0, and the residual magnetization σ r is as low as 52 Am 2 /kg. In Comparative Example 4, the amount of samarium oxide (rare earth oxide powder) mixed was 8 g, and 0.9 parts by mass and 1 part by mass were added to 100 parts by mass of Sm 2 Fe 17 alloy powder (rare earth iron alloy powder). As a result, the samarium (Sm) content of the magnetic powder was 21.9% by mass, which was less than 22% by mass. Therefore, no shell layer was observed, and the magnetic powder had a low residual magnetization σ r of 43 Am 2 /kg and a low coercive force H c of 215 kA/m.
比較例5では、窒化温度が290℃と300℃を下回ったため、シェル層は認められたが、磁性粉末の窒素(N)含有量が1.7質量%と2.5質量%未満となった。窒素(N)はAESスペクトルのバックグラウンドレベルだった。そのため磁性粉末の残留磁化σrが40Am2/kg、保磁力Hcが103kA/mと低くなっている。比較例6では、窒化温度が510℃と500℃を超えたため、磁性粉末の窒素(N)含有量が5.3質量%と4.0質量%を超え、残留磁化σrが47Am2/kg、保磁力Hcが167kA/mと低くなっている。 In Comparative Example 5, the nitriding temperature was 290°C, which was lower than 300°C, so a shell layer was observed, but the nitrogen (N) content of the magnetic powder was 1.7% by mass, which was less than 2.5% by mass. . Nitrogen (N) was at background level in the AES spectrum. Therefore, the residual magnetization σ r of the magnetic powder is as low as 40 Am 2 /kg, and the coercive force H c is as low as 103 kA/m. In Comparative Example 6, the nitriding temperature exceeded 510°C and 500°C, so the nitrogen (N) content of the magnetic powder exceeded 5.3% by mass and 4.0% by mass, and the residual magnetization σ r was 47Am 2 /kg. , the coercive force H c is as low as 167 kA/m.
比較例7では、原料のSm2Fe17合金粉末(希土類鉄合金粉末)の最大粒径が12.0μmと10μmを超え、また酸化サマリウム粉末の最大粒径が1.2μmと1μmを超えた。それぞれの粒子径が粗く還元拡散工程で還元されたサマリウム(Sm)の原料中の浸透にムラがあったようで、シェル層の観察された粒子と観察されない粒子があってばらついていた。そのため磁性粉末の耐熱試験による保磁力の維持率Hc,300/Hcが51%と70%より低くなって悪化している。 In Comparative Example 7, the maximum particle size of the raw material Sm 2 Fe 17 alloy powder (rare earth iron alloy powder) was 12.0 μm, which exceeded 10 μm, and the maximum particle size of the samarium oxide powder was 1.2 μm, which exceeded 1 μm. It seems that samarium (Sm), which was reduced in the reduction-diffusion process, had an uneven penetration into the raw material due to its coarse particle size, and some particles were observed in the shell layer while others were not observed. Therefore, the coercive force retention rate H c,300 /H c obtained by the heat resistance test of the magnetic powder is 51%, which is lower than 70%, which is worse.
比較例8では、金属カルシウム(還元剤)の配合量が7.3gであり、原料混合物の酸素(O)含有量(2.9質量%)から計算される還元に必要な量(当量)に対して1.0倍と1.1倍を下回った。そのため磁性粉末のサマリウム(Sm)含有量が21.7質量%と22質量%を下回り、窒素(N)含有量も2.3質量%と2.5質量%を下回った。シェル層も認められず、磁性粉末の耐熱試験による保磁力の維持率Hc,300/Hcは25%と70%より大幅に低くなって悪化している。比較例9では、金属カルシウム(還元剤)の配合量が79.2gであり、原料混合物の酸素(O)含有量(2.9質量%)から計算される還元に必要な量(当量)に対して10.9倍と10倍を超えた。そのため磁性粉末のサマリウム(Sm)含有量が21.9質量%と22質量%を下回り、窒素(N)含有量も1.9質量%と2.5質量%を下回った。カルシウム量が多すぎて、サマリウム(Sm)の拡散が阻害されたものと思われる。シェル層も認められず、磁性粉末の耐熱試験による保磁力の維持率Hc,300/Hcは42%と70%より低くなって悪化している。 In Comparative Example 8, the amount of metallic calcium (reducing agent) was 7.3 g, which was equal to the amount (equivalent) required for reduction calculated from the oxygen (O) content (2.9% by mass) of the raw material mixture. However, it was less than 1.0 times and 1.1 times. Therefore, the samarium (Sm) content of the magnetic powder was 21.7% by mass, which was less than 22% by mass, and the nitrogen (N) content was also 2.3% by mass, which was less than 2.5% by mass. No shell layer was observed, and the retention rate of coercive force H c,300 /H c in the heat resistance test of the magnetic powder was 25%, which was significantly lower than 70%. In Comparative Example 9, the amount of metallic calcium (reducing agent) was 79.2 g, which was equal to the amount (equivalent) required for reduction calculated from the oxygen (O) content (2.9% by mass) of the raw material mixture. It was 10.9 times, over 10 times. Therefore, the samarium (Sm) content of the magnetic powder was 21.9% by mass, which was less than 22% by mass, and the nitrogen (N) content was also 1.9% by mass, which was less than 2.5% by mass. It seems that the amount of calcium was too large and the diffusion of samarium (Sm) was inhibited. No shell layer was observed, and the retention rate of coercive force H c,300 /H c in the heat resistance test of the magnetic powder was 42%, which was lower than 70%, which was worse.
Claims (12)
前記磁性粉末は、その平均粒径が1.0μm以上10.0μm以下であり、且つ希土類元素(R)を22.0質量%以上30.0質量%以下、窒素(N)を2.5質量%以上4.0質量%以下の量で含み、
前記磁性粉末は、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有するコア部と、前記コア部の表面に設けられる厚さ1nm以上30nm以下のシェル層と、を備え、
前記シェル層は、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含み、
前記シェル層は、希土類元素(R)の組成がピークを有する部分であり、前記コア部では、希土類元素(R)の組成が一定である、磁性粉末。 A rare earth iron nitrogen based magnetic powder containing a rare earth element (R), iron (Fe) and nitrogen (N) as main constituents,
The magnetic powder has an average particle size of 1.0 μm or more and 10.0 μm or less, and contains 22.0 mass% or more of rare earth elements (R) and 30.0 mass% or less of nitrogen (N) and 2.5 mass% of nitrogen (N). % or more and 4.0% by mass or less,
The magnetic powder includes a core portion having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type, and a shell layer with a thickness of 1 nm or more and 30 nm or less provided on the surface of the core portion. , comprising:
The shell layer contains a rare earth element (R) and iron (Fe) such that the R/Fe atomic ratio is 0.3 or more and 3.0 or less,
The shell layer is a portion where the composition of the rare earth element (R) has a peak, and the composition of the rare earth element (R) is constant in the core portion.
Th2Zn17型、Th2Ni17型、TbCu7型のいずれかの結晶構造を有する希土類鉄合金粉末と希土類酸化物粉末とを準備する工程と、
前記希土類鉄合金粉末100質量部に前記希土類酸化物粉末1~20質量部を混合して、粒径10.0μm以下の希土類鉄合金粉末と粒径1.0μm以下の希土類酸化物粉末とを含む原料混合物とする工程と、
前記原料混合物に含まれる酸素成分を還元するのに必要な当量に対して1.1~10.0倍の量の還元剤を前記原料混合物に添加及び混合し、さらに還元剤を添加した前記原料混合物を非酸化性雰囲気中730~1050℃の範囲内の温度で加熱処理して還元拡散反応生成物とする工程と、
前記還元拡散反応生成物を窒素及び/又はアンモニアを含むガス気流中300~500℃の範囲内の温度で窒化熱処理して窒化反応生成物とする工程と、を含み、
前記還元拡散反応生成物とする工程での加熱処理により、Th2Zn17型、Th2Ni17型及びTbCu7型のいずれかの結晶構造を有する希土類鉄合金を含み、希土類元素(R)の組成が一定であるコア部を形成するとともに、還元された希土類元素(R)の拡散反応により、希土類元素(R)及び鉄(Fe)をR/Fe原子比で0.3以上3.0以下となるように含み、希土類元素(R)の組成がピークを有する部分であるシェル層を前記コア部の表面に形成する、方法。 A method for producing rare earth iron nitrogen based magnetic powder, comprising the following steps;
A step of preparing rare earth iron alloy powder and rare earth oxide powder having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type;
1 to 20 parts by mass of the rare earth oxide powder are mixed with 100 parts by mass of the rare earth iron alloy powder to contain rare earth iron alloy powder with a particle size of 10.0 μm or less and rare earth oxide powder with a particle size of 1.0 μm or less. A step of forming a raw material mixture;
The raw material obtained by adding and mixing a reducing agent in an amount of 1.1 to 10.0 times the equivalent amount required to reduce the oxygen component contained in the raw material mixture, and further adding a reducing agent. heating the mixture in a non-oxidizing atmosphere at a temperature within the range of 730 to 1050°C to obtain a reduction-diffusion reaction product;
nitriding heat-treating the reduction-diffusion reaction product at a temperature within the range of 300 to 500°C in a gas stream containing nitrogen and/or ammonia to obtain a nitridation reaction product;
By the heat treatment in the step of forming the reduction-diffusion reaction product, a rare earth element (R) containing a rare earth iron alloy having a crystal structure of any one of Th 2 Zn 17 type, Th 2 Ni 17 type, and TbCu 7 type is produced. At the same time, by the diffusion reaction of the reduced rare earth element (R), the rare earth element (R) and iron (Fe) are formed in a core part having a constant composition, and the R/Fe atomic ratio is 0.3 or more and 3.0 or more. A method of forming a shell layer on the surface of the core portion, which includes the following and is a portion where the rare earth element (R) composition has a peak .
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019236295A JP7364158B2 (en) | 2019-12-26 | 2019-12-26 | Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder |
CN202011548259.1A CN113053608B (en) | 2019-12-26 | 2020-12-24 | Rare earth ferrite-nitrogen magnetic powder, composite for bonded magnet, and method for producing rare earth ferrite-nitrogen magnetic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019236295A JP7364158B2 (en) | 2019-12-26 | 2019-12-26 | Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021105192A JP2021105192A (en) | 2021-07-26 |
JP7364158B2 true JP7364158B2 (en) | 2023-10-18 |
Family
ID=76508142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019236295A Active JP7364158B2 (en) | 2019-12-26 | 2019-12-26 | Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7364158B2 (en) |
CN (1) | CN113053608B (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113871124B (en) * | 2021-09-28 | 2022-05-03 | 杭州永磁集团有限公司 | Method for preparing high-performance samarium-iron-nitrogen permanent magnet material with high nitriding efficiency |
JPWO2023090220A1 (en) * | 2021-11-22 | 2023-05-25 | ||
CN114156033B (en) * | 2021-11-29 | 2022-08-30 | 横店集团东磁股份有限公司 | SmFeN powder and preparation method thereof |
CN114220647B (en) * | 2021-12-22 | 2024-02-23 | 合肥领远新材料科技有限公司 | Magnetic stripe and preparation method and application thereof |
WO2024038829A1 (en) * | 2022-08-19 | 2024-02-22 | 日亜化学工業株式会社 | α-FE-CONTAINING RARE EARTH ELEMENT-IRON-NITROGEN MAGNETIC POWDER, MANUFACTURING METHOD FOR SAME, MAGNETIC MATERIAL FOR MAGNETIC FIELD AMPLIFICATION, AND MAGNETIC MATERIAL FOR ULTRA-HIGH FREQUENCY ABSORPTION |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212610A (en) | 2000-11-20 | 2002-07-31 | Sumitomo Metal Mining Co Ltd | Method for producing rare earth/transition metal/ nitrogen-based magnet powder and product obtained therefrom |
JP2005129556A (en) | 2003-10-21 | 2005-05-19 | Sumitomo Metal Mining Co Ltd | Rare earth-transition metal-nitrogen magnetic powder and its manufacturing method |
JP2005272986A (en) | 2004-03-26 | 2005-10-06 | Sumitomo Metal Mining Co Ltd | Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it |
JP2008069415A (en) | 2006-09-14 | 2008-03-27 | Ulvac Japan Ltd | Method of manufacturing magnetic material for bonded magnet and rare earth bonded magnet produced by using this magnetic material |
WO2018163967A1 (en) | 2017-03-10 | 2018-09-13 | 国立研究開発法人産業技術総合研究所 | Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet |
WO2018221512A1 (en) | 2017-05-30 | 2018-12-06 | 国立研究開発法人産業技術総合研究所 | Samarium-iron-nitrogen magnetic powder and method for producing same |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4862269B2 (en) * | 2005-03-23 | 2012-01-25 | 住友金属鉱山株式会社 | Rare earth-transition metal-nitrogen based magnet powder, method for producing the same, composition for bonded magnet using the same, and bonded magnet |
CN105609224B (en) * | 2016-03-14 | 2018-01-16 | 北京科技大学 | A kind of preparation method of anisotropy samarium iron nitrogen permanent magnetism powder |
JP2017218623A (en) * | 2016-06-07 | 2017-12-14 | 住友金属鉱山株式会社 | Production method of rare earth-iron-nitrogen system alloy powder |
JP6963251B2 (en) * | 2016-11-28 | 2021-11-05 | 国立大学法人東北大学 | Rare earth iron nitrogen-based magnetic powder |
CN109982791B (en) * | 2016-11-28 | 2022-02-22 | 国立大学法人东北大学 | Rare earth iron-nitrogen-based magnetic powder and method for producing same |
JP6980207B2 (en) * | 2017-02-06 | 2021-12-15 | 国立大学法人東北大学 | Rare earth iron nitrogen-based magnetic powder and its manufacturing method |
JP7385868B2 (en) * | 2020-06-29 | 2023-11-24 | 国立大学法人東北大学 | Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder |
JP2022177699A (en) * | 2021-05-18 | 2022-12-01 | 国立大学法人東北大学 | Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder |
-
2019
- 2019-12-26 JP JP2019236295A patent/JP7364158B2/en active Active
-
2020
- 2020-12-24 CN CN202011548259.1A patent/CN113053608B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002212610A (en) | 2000-11-20 | 2002-07-31 | Sumitomo Metal Mining Co Ltd | Method for producing rare earth/transition metal/ nitrogen-based magnet powder and product obtained therefrom |
JP2005129556A (en) | 2003-10-21 | 2005-05-19 | Sumitomo Metal Mining Co Ltd | Rare earth-transition metal-nitrogen magnetic powder and its manufacturing method |
JP2005272986A (en) | 2004-03-26 | 2005-10-06 | Sumitomo Metal Mining Co Ltd | Rare earth-transition metal-nitrogen-based magnet alloy powder, manufacturing method therefor and rare-earth bond magnet using it |
JP2008069415A (en) | 2006-09-14 | 2008-03-27 | Ulvac Japan Ltd | Method of manufacturing magnetic material for bonded magnet and rare earth bonded magnet produced by using this magnetic material |
WO2018163967A1 (en) | 2017-03-10 | 2018-09-13 | 国立研究開発法人産業技術総合研究所 | Magnetic powder containing sm-fe-n crystal grains, sintered magnet produced from same, method for producing said magnetic powder, and method for producing said sintered magnet |
WO2018221512A1 (en) | 2017-05-30 | 2018-12-06 | 国立研究開発法人産業技術総合研究所 | Samarium-iron-nitrogen magnetic powder and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
JP2021105192A (en) | 2021-07-26 |
CN113053608A (en) | 2021-06-29 |
CN113053608B (en) | 2024-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7364158B2 (en) | Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder | |
JP3452254B2 (en) | Method for producing anisotropic magnet powder, raw material powder for anisotropic magnet powder, and bonded magnet | |
JP6963251B2 (en) | Rare earth iron nitrogen-based magnetic powder | |
EP1544870B1 (en) | Process for producing anisotropic magnet powder | |
JP6980207B2 (en) | Rare earth iron nitrogen-based magnetic powder and its manufacturing method | |
JP3846835B2 (en) | R-T-B sintered permanent magnet | |
CN109982791B (en) | Rare earth iron-nitrogen-based magnetic powder and method for producing same | |
JP3171558B2 (en) | Magnetic materials and bonded magnets | |
WO2004029995A1 (en) | R-t-b rare earth permanent magnet | |
JP7385868B2 (en) | Rare earth iron nitrogen magnetic powder, compound for bonded magnets, method for producing bonded magnets and rare earth iron nitrogen magnetic powder | |
JP2022177699A (en) | Rare earth-iron-nitrogen magnetic powder, compound for bond magnets, bond magnet and method for producing rare earth-iron-nitrogen magnetic powder | |
JP4076179B2 (en) | Method for producing RTB-based rare earth permanent magnet | |
JP4241461B2 (en) | Rare earth-transition metal-nitrogen based magnet alloy powder, method for producing the same, and rare earth bonded magnet using the same | |
JP7044304B2 (en) | Rare earth transition metal alloy powder manufacturing method | |
JP3370013B2 (en) | Rare earth magnet material and rare earth bonded magnet using the same | |
JP3615177B2 (en) | Magnet material and method of manufacturing bonded magnet using the same | |
JP2021052052A (en) | Method for manufacturing sintered compact for rare earth magnet | |
JP2016037611A (en) | Method for producing rare earth-iron-nitrogen-based magnet powder, and rare earth-iron-nitrogen-based magnet powder | |
JP3788401B2 (en) | Rare earth-transition metal-nitrogen based magnet powder with suppressed aggregation and method for producing the same | |
JP3795694B2 (en) | Magnetic materials and bonded magnets | |
JP2024148157A (en) | Manufacturing method of Sm-Fe-N magnetic powder and Sm-Fe-N magnetic powder | |
WO2019182039A1 (en) | Rare earth magnet | |
JP2006060049A (en) | Rare earth-iron-manganese-nitrogen based magnet powder and its production method | |
JP2006059994A (en) | Rare earth-iron-manganese-nitrogen based magnet powder and its production method | |
JP2006269637A (en) | Rare earth-transition metal-nitrogen system magnet powder, its manufacturing method and composite for bond magnet using same and bond magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200427 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220808 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230531 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230606 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230726 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230829 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7364158 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |