[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7355620B2 - Manufacturing method for additively manufactured objects - Google Patents

Manufacturing method for additively manufactured objects Download PDF

Info

Publication number
JP7355620B2
JP7355620B2 JP2019215614A JP2019215614A JP7355620B2 JP 7355620 B2 JP7355620 B2 JP 7355620B2 JP 2019215614 A JP2019215614 A JP 2019215614A JP 2019215614 A JP2019215614 A JP 2019215614A JP 7355620 B2 JP7355620 B2 JP 7355620B2
Authority
JP
Japan
Prior art keywords
heat input
input area
base plate
area
copper alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019215614A
Other languages
Japanese (ja)
Other versions
JP2021085079A (en
Inventor
博貴 井上
安宏 祢津
秀秋 中島
泰裕 堀田
拓未 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Sangyo Co Ltd
Original Assignee
Aichi Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Sangyo Co Ltd filed Critical Aichi Sangyo Co Ltd
Priority to JP2019215614A priority Critical patent/JP7355620B2/en
Publication of JP2021085079A publication Critical patent/JP2021085079A/en
Application granted granted Critical
Publication of JP7355620B2 publication Critical patent/JP7355620B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、3Dプリンターによる金属粉末の積層方法に関する。特に、レーザー溶融法を利用した銅合金の金属粉末の積層造形物の製造方法、および当該方法により製造された積層造形物に関する。 The present invention relates to a method for laminating metal powder using a 3D printer. In particular, the present invention relates to a method for manufacturing a layered product made of copper alloy metal powder using a laser melting method, and a layered product manufactured by the method.

3Dプリンターは、3D CAD他3次元ソフトウェアで制作された3次元データを基礎として、スライサーソフトウェア等により、積層される2次元の断面形状における設定を行い、立体(3次元のオブジェクト:製品)を造形する積層造形技術である。このうちレーザー溶融法は、一層をレーザーで溶融、固めた後、再度上層に金属粉末をかぶせ、そこにレーザーを当てて固めるという作業を繰り返すもので、金属粉末をレーザービームで溶融して積層する金属積層造形方法である。 3D printers create three-dimensional (three-dimensional objects: products) based on three-dimensional data created using 3D CAD and other three-dimensional software, and use slicer software to set the two-dimensional cross-sectional shapes that are stacked. It is an additive manufacturing technology. Among these, the laser melting method involves repeating the process of melting and solidifying one layer with a laser, then covering the top layer with metal powder, and then applying a laser beam to solidify it.The metal powder is melted with a laser beam and laminated. It is a metal additive manufacturing method.

このうち、金属粉末を積層して造形する金属積層造形技術は、他の加工法では作れない複雑な形状の造形、多様化するニーズに対応した究極の少量他品種生産の実現など、もの造りに革命を起こす潜在能力を持ち、様々な分野で期待されている。アルミニウム、コバルト、チタン、ニッケル、ステンレス鋼など、様々な金属粉末が使用されている。 Among these, metal additive manufacturing technology, which creates products by layering metal powder, is useful for manufacturing, such as creating complex shapes that cannot be created using other processing methods, and realizing the ultimate low-volume production of other products to meet diversifying needs. It has the potential to cause a revolution and is expected to be used in various fields. A variety of metal powders are used, including aluminum, cobalt, titanium, nickel, and stainless steel.

金属のうち、銅合金素材の製造・加工については、宇宙、航空、電気自動車等多くの産業から期待されている。しかし、銅合金粉末をレーザー溶融法により金属積層造形するには、素材の特性として高反射率と高熱伝導率の2点が課題として挙げられる。反射率が高いことで銅合金粉末が赤外線レーザー光のエネルギーを吸収しにくく、粉末の温度が上昇しにくくなる。また、粉末の温度が上昇して融点を超えても、熱伝導率がアルミの約2倍、ステンレスの20倍と大きいために、すぐに冷却されて融点以下になり凝固してしまう。そのためレーザー光照射中に融点を超えて粉末が流動している時間が非常に短く、高密度な積層金属を得ることが困難である。 Among metals, the manufacturing and processing of copper alloy materials is expected to be used in many industries such as space, aviation, and electric vehicles. However, in order to perform metal additive manufacturing using a laser melting method using copper alloy powder, there are two issues to be addressed as the characteristics of the material: high reflectance and high thermal conductivity. The high reflectance makes it difficult for the copper alloy powder to absorb the energy of infrared laser light, making it difficult for the temperature of the powder to rise. Furthermore, even if the temperature of the powder rises and exceeds its melting point, because its thermal conductivity is about twice that of aluminum and 20 times that of stainless steel, it will immediately cool down to below its melting point and solidify. Therefore, the time during which the powder flows above the melting point during laser beam irradiation is very short, making it difficult to obtain a high-density laminated metal.

一方で、電子ビームを適用した金属積層造形技術によれば造形物の生産が可能であるものの、レーザー溶融法による製造が、効率面等で有利であるために強く望まれている。この点、特定の金属粉末構成とすることで、レーザー溶融法を適用可能な銅合金粉末も開発されている。しかしながら、積層造形に期待を寄せるほとんどの銅合金の製品形状は複雑である。赤外線レーザー溶融法に関する銅合金粉末の造形方法については一部に文献(例えば特許文献1)はあるものの、銅合金粉末素材の持つ特異な材料特性のためかその実用記録はほとんど存在しない。また学会報告も極めて少なく、銅合金粉末の積層造形に対してどのような諸元が必要であるかについても過去に実用的なデータがない。特に、オーバーハング形状(例えば傾斜角度60度以下、特に45度以下)を有する造形では、設計通りの形状の保持すらも困難を極めている(図2参照)。現状では小さいエネルギー密度のレーザー条件で造形することが一般的手法であるが、この方法では銅粉末を十分に溶融することは難しく、必要な金属内部充填率を保てない。一方、通常の条件のままでは実用に耐えないほどの造形形状となってしまう。したがって、結果的に製品として有用な程度に提供可能な銅合金のレーザー溶融法による金属積層物は、例えばキュービクルなど、単純な形状のものに限られている(図1参照)。 On the other hand, although it is possible to produce shaped objects using metal additive manufacturing technology that uses electron beams, manufacturing using laser melting is strongly desired because it is advantageous in terms of efficiency and the like. In this regard, copper alloy powders have also been developed that can be applied with laser melting by having a specific metal powder composition. However, the shapes of most copper alloy products that are promising for additive manufacturing are complex. Although there are some documents (for example, Patent Document 1) regarding a method for shaping copper alloy powder using infrared laser melting, there are almost no records of its practical use, probably due to the unique material properties of the copper alloy powder material. Furthermore, there are very few academic conference reports, and there is no practical data in the past regarding what specifications are required for additive manufacturing of copper alloy powder. In particular, in the case of a shape having an overhang shape (for example, an inclination angle of 60 degrees or less, especially 45 degrees or less), it is extremely difficult to maintain the shape as designed (see FIG. 2). Currently, the common method is to model using a laser with a low energy density, but with this method it is difficult to sufficiently melt the copper powder and the required internal metal filling rate cannot be maintained. On the other hand, if normal conditions are used, the shape will be too large for practical use. Therefore, metal laminates of copper alloy produced by the laser melting method that can be provided as useful products are limited to those with simple shapes, such as cubicles (see FIG. 1).

そこで、本発明は、銅合金粉末を使用し、高密度・高品質な、レーザー溶融法による金属積層造形物の提供を可能とする方法を提供することを目的とする。 Therefore, an object of the present invention is to provide a method that uses copper alloy powder and makes it possible to provide a high-density, high-quality metal layered product by laser melting.

上記課題を解決するため、本発明は、金属粉末をベースプレートに敷き詰める機構と、所定の位置にレーザー光を照射する機構と、を備えた金属積層造形装置を使用し、粉末にレーザー光を照射し溶融、凝固させて積層することを繰り返す、銅または銅合金の積層造形物を製造する方法であって、
前記積層造形物は、2層目以上の少なくとも1つの層において、下層に造形部のないエリアを含む形状を備え、前記少なくとも1つの層において、第1の入熱エリアと、第2の入熱エリアを設定し、
第2の入熱エリアは下層に造形部のないエリアを含み、当該第2の入熱エリアには、第1の入熱エリアよりも高いエネルギー密度で入熱を行う行程を含むことを特徴とする製造方法からなる。
In order to solve the above problems, the present invention uses a metal additive manufacturing apparatus equipped with a mechanism for spreading metal powder on a base plate and a mechanism for irradiating a laser beam at a predetermined position, and irradiating the powder with a laser beam. A method for manufacturing a copper or copper alloy laminate product by repeating melting, solidification and lamination, the method comprising:
The laminate-produced article has a shape that includes an area without a modeling part in the lower layer in at least one of the second or higher layers, and in the at least one layer, a first heat input area and a second heat input area. Set the area,
The second heat input area includes an area in which there is no modeling part in the lower layer, and the second heat input area includes a process in which heat is input at a higher energy density than the first heat input area. It consists of a manufacturing method.

さらに、本発明は、金属粉末をベースプレートに敷き詰める機構と、所定の位置にレーザー光を照射する機構と、を備えた金属積層造形装置を使用し、粉末にレーザー光を照射し溶融、凝固させて積層することを繰り返す、銅または銅合金の積層造形物を製造する方法であって、
前記積層造形物は、ベースプレートと仰角方向の傾斜角度を有するオーバーハング部を有し、オーバーハング部の少なくとも1つの層において、第1の入熱エリアと、第2の入熱エリアを設定し、
第2の入熱エリアは下層に造形部のないエリアを含み、第1の入熱エリアのレーザー走査速度及び/又はハッチ間隔に対し、第2の入熱エリアの所定のエリアにおけるレーザー走査速度及び/又はハッチ間隔を小さくすることを特徴とする製造方法からなる。
Furthermore, the present invention uses a metal additive manufacturing apparatus equipped with a mechanism for spreading metal powder on a base plate and a mechanism for irradiating laser light onto predetermined positions, and irradiating the powder with laser light to melt and solidify it. A method for manufacturing a copper or copper alloy laminate product by repeatedly laminating layers, the method comprising:
The laminate-molded article has an overhang part having an inclination angle in the elevation direction with respect to the base plate, and a first heat input area and a second heat input area are set in at least one layer of the overhang part,
The second heat input area includes an area without a modeling part in the lower layer, and the laser scanning speed and/or hatch spacing in a predetermined area of the second heat input area is different from the laser scanning speed and/or hatch spacing of the first heat input area. and/or a manufacturing method characterized by reducing the hatch interval.

本発明で積層する造形物は、2層目以上の少なくとも1つの層において、下層に造形部のないエリアを含む形状、又はベースプレートと仰角方向の傾斜角度を有するオーバーハング部を有しており、通常条件のレーザー溶融法の入熱では実用的な成形はできない。そこで、下層に造形部のないエリアを含む一定のエリアを、通常の入熱を行う第1の入熱エリアと異なるパラメータで入熱を行う。具体的には、第2の入熱エリアには、第1の入熱エリアよりも高いエネルギー密度(J/mm)で入熱を行う。一般的には出力を下げて小さいエネルギー密度を入熱するが、本発明では第2入熱エリアにおいて従来設定される以上の出力を提供し、レーザー走査速度及び/又はハッチ間隔が調整されエネルギー密度を非常に大きく提供する。 The shaped article to be laminated in the present invention has, in at least one of the second or higher layers, a shape including an area without a shaped part in the lower layer, or an overhang part having an inclination angle in the elevation direction with respect to the base plate, Practical molding cannot be achieved with the heat input of laser melting under normal conditions. Therefore, heat is input into a certain area including an area where there is no modeling part in the lower layer using different parameters from the first heat input area where normal heat input is performed. Specifically, heat is input into the second heat input area at a higher energy density (J/mm 3 ) than the first heat input area. Generally, the output is lowered and a small energy density is input, but in the present invention, the second heat input area provides an output higher than that conventionally set, and the laser scanning speed and/or hatch spacing are adjusted to increase the energy density. provide a very large amount of

第2入熱エリアへ入熱するエネルギー密度は、第1の入熱エリアへ入熱するエネルギー密度の2倍以上であることが好適である。さらには、3倍以上であることが好ましい。具体的な値は合金の性質や積層厚さなどにより個別に模索される必要があるが、第1の入熱エリアに対する第2の入熱エリアの出力を下げる場合であっても極力下げ比率を抑えつつ、パラメータを調整することで非常に高いエネルギー密度の入熱提供が行われる。 It is preferable that the energy density of heat input into the second heat input area is at least twice the energy density of heat input into the first heat input area. Furthermore, it is preferably 3 times or more. The specific value needs to be explored individually depending on the properties of the alloy and the laminated thickness, but even when lowering the output of the second heat input area relative to the first heat input area, the reduction ratio should be kept as much as possible. By adjusting the parameters, a very high energy density heat input can be provided.

第2の入熱エリアの設定面積は、造形に十分な成形を行うべく、合金の性質や積層厚さなどにより具体的に模索され、その算出はTR/tanθ(mm)にて行われ(T=厚さ、R=造形形状に由来する個別値(1≦R)、θ=ベースプレートと仰角方向の傾斜角度)、溶融箇所の既積層の垂直距離に依存する。この構成が上記した入熱構成に反映されると、非常に高精度かつ高品質な造形物として製造可能である。当該構成は、下層に造形部ない部分が存在しない層においても、第1の入熱エリアと、第2の入熱エリアを設定し、当該第2の入熱エリアには、第1の入熱エリアよりも高いエネルギー密度で入熱を行う行程を内包する。 The set area of the second heat input area is specifically explored based on the properties of the alloy and the laminated thickness, etc., in order to perform sufficient forming for modeling, and its calculation is performed using TR/tanθ (mm) (T = thickness, R = individual value derived from the shaped shape (1≦R), θ = angle of inclination in the elevation direction relative to the base plate), and depends on the vertical distance of the already laminated layers at the melting point. When this configuration is reflected in the heat input configuration described above, it is possible to manufacture a molded article with extremely high precision and high quality. In this configuration, a first heat input area and a second heat input area are set even in a layer where there is no part without a modeling part in the lower layer, and the second heat input area has a first heat input area. It includes the process of inputting heat with a higher energy density than the area.

また、本発明は、上記方法にて製造された、ベースプレートとの仰角方向の傾斜角度が60度以下のオーバーハング部分を有する積層造形物からなる。さらに、当該オーバーハング部の造形物の内部充填率が99.5% 以上であることからなる Further, the present invention includes a laminate-molded article manufactured by the above-mentioned method and having an overhang portion having an inclination angle of 60 degrees or less in the elevation direction with respect to the base plate. Furthermore, the internal filling rate of the modeled object in the overhang part is 99.5% or more.

本発明では、例えば波長1064nmの赤外線ファイバーレーザー光(Nd:YAGレーザー)を熱源としたレーザー溶融法で、銅合金粉末を造形ステージに敷き詰める機構とその所定の位置に赤外線レーザー光を照射する機構と粉末を溶融、凝固させて積層することを繰り返す機構の金属積層造形装置を使用する。装置構成は本発明を実行可能である限り特に限定されない。例えば2系統のレーザー照射機構を有しており、各々のレーザー出力が最大で700Wの出力の装置を使用できる。銅合金粉末を造形ステージに敷き詰める機構において、厚さは限定されないが、リコータ機構に関しては精密かつ均質に銅合金粉末を溶融させるため0.02~0.1mmの厚さで均一に敷き詰め可能な機構を有したリコータ機構が、好ましい。 The present invention uses a laser melting method using an infrared fiber laser beam (Nd: YAG laser) with a wavelength of 1064 nm as a heat source, for example, to spread copper alloy powder onto a modeling stage, and to irradiate infrared laser beams at predetermined positions. A metal additive manufacturing device is used that repeatedly melts, solidifies, and laminates powder. The device configuration is not particularly limited as long as the present invention can be carried out. For example, it is possible to use a device that has two systems of laser irradiation mechanisms, each with a maximum laser output of 700W. In the mechanism for spreading copper alloy powder on the modeling stage, the thickness is not limited, but the recoater mechanism is a mechanism that can evenly spread the copper alloy powder to a thickness of 0.02 to 0.1 mm in order to melt the copper alloy powder precisely and homogeneously. A recoater mechanism having the following is preferred.

上記積層造形に使用する銅合金粉末の成分は、例えばCr1.0~1.5%質量、Zr0.20~0.25%質量、残部がCu及び不可避的不純物からなる銅合金粉末を採用可能である。銅合金粉末はCrを含むことにより造形中の熱伝導率を下げる効果があり、銅合金粉末の造形を容易にする効果がある。更に凝固時にCr相が析出して機械的強度と電気伝導性、熱伝導性に優れる銅合金造形物が期待できる。またZrは微量の添加によりCu合金の中間温度脆性を改善し、熱伝導率を下げる酸素(O)等の不純物と化合物を形成して不純物の影響を抑える効果が期待できる。また造形作業の生産性と作業性を考慮して、粉末は例えば15μm~45μmの粒径のものを使用することが望ましい。 As for the components of the copper alloy powder used in the above-mentioned additive manufacturing, for example, a copper alloy powder consisting of 1.0 to 1.5% Cr by mass, 0.20 to 0.25% Zr by mass, and the balance being Cu and unavoidable impurities can be adopted. be. By containing Cr, the copper alloy powder has the effect of lowering the thermal conductivity during shaping, and has the effect of facilitating the shaping of the copper alloy powder. Furthermore, a Cr phase is precipitated during solidification, and a copper alloy shaped article with excellent mechanical strength, electrical conductivity, and thermal conductivity can be expected. Further, when added in a small amount, Zr can be expected to have the effect of improving the intermediate temperature brittleness of the Cu alloy, forming a compound with impurities such as oxygen (O), which lowers the thermal conductivity, and suppressing the influence of impurities. Further, in consideration of the productivity and workability of the molding operation, it is desirable to use a powder having a particle size of, for example, 15 μm to 45 μm.

なお、本発明の上記行程は、レーザー溶融法を利用した銅合金の金属粉末の積層造形物の製造方法としてだけではなく、3Dデータを基にしてスライサー等により設定する、2次元の断面形状における設定方法としても把握される。 Note that the above process of the present invention is not only used as a method for manufacturing a copper alloy metal powder layered product using a laser melting method, but also as a method for manufacturing a two-dimensional cross-sectional shape that is set using a slicer or the like based on 3D data. It can also be understood as a setting method.

上記積層造形は造形中の銅合金粉末の溶融・凝固金属の酸化と造形物の欠陥発生を防止する観点から、酸素濃度を0.01~0.1%の範囲に保持する密室スペースで造形を行うことが望ましい。 In order to prevent the oxidation of the molten and solidified metal of the copper alloy powder and the occurrence of defects in the modeled object, the additive manufacturing process described above is performed in a closed space where the oxygen concentration is maintained within the range of 0.01 to 0.1%. It is desirable to do so.

上記に加えてベースプレートにオーステナイト系ステンレス鋼ベースプレートを使用することが好適である。共材の銅系ベースプレートを使用した場合、造形開始後の銅合金の粉末溶融形態は粉末の温度が上昇して融点を超えても、熱伝導率が高いために、すぐに冷却されて融点以下になり凝固してしまう。そのためレーザー照射中に融点を超えて粉末が流動している時間が非常に短く、高密度な積層金属を得ることが困難になる。オーステナイト系ステンレス鋼ベースプレートは銅系のプレートに比較して熱伝導率が約20倍小さいため、造形開始後の銅合金の粉末の急冷・凝固を緩和し、銅合金粉末を十分に溶融し、凝固を規則正しく繰り返させる効果で、造形物全体の品質が向上し、上記構成と合わせ、オーバーハング部を含め内部充填率を99.50%以上、さらには99.80%近傍まで達成可能となる。 In addition to the above, it is preferred to use an austenitic stainless steel base plate for the base plate. When using a co-material copper base plate, even if the temperature of the powder rises and exceeds the melting point after the start of modeling, the powder quickly cools down to below the melting point due to its high thermal conductivity. and solidify. Therefore, the time during which the powder flows above its melting point during laser irradiation is extremely short, making it difficult to obtain a high-density laminated metal. The austenitic stainless steel base plate has approximately 20 times lower thermal conductivity than copper-based plates, so it eases the rapid cooling and solidification of copper alloy powder after the start of modeling, and allows the copper alloy powder to sufficiently melt and solidify. The effect of regularly repeating this improves the quality of the entire modeled object, and in combination with the above configuration, it becomes possible to achieve an internal filling rate of 99.50% or more, even close to 99.80%, including the overhang portion.

また、一般的に銅合金鋼を熱加工する方法として組成のもつ熱的特性に対処するため、加工前の母相の予熱、加工中の母相温度を制御する必要があるが、ベースプレートにオーステナイト系ステンレス鋼ベースプレートを使用することで、積層造形中の過度な熱拡散を防止し、本銅合金粉末の造形においては予熱及び積層造形中の母相の温度制御等は特に必要とせずに安定した積層造形物の構築を可能にする。 In addition, in order to deal with the thermal characteristics of the composition in general when heat working copper alloy steel, it is necessary to preheat the parent phase before processing and control the parent phase temperature during processing. By using a stainless steel base plate, excessive heat diffusion during additive manufacturing is prevented, and the modeling of this copper alloy powder is stable without the need for preheating or temperature control of the matrix during additive manufacturing. Enables the construction of additively manufactured objects.

銅合金粉末における単純形状(キュービクル)造形物の積層方向に平行な断面とその内部充填状況を示す図である。It is a figure which shows the cross section parallel to the lamination direction of a simple shape (cubicle) shaped object in copper alloy powder, and its internal filling situation. オーバーハングを有する形状で設定される造形物の1例である。This is an example of a shaped object set in a shape with an overhang. 従来の造形手法を用いた銅合金粉末において、図2に示す造形物の造形結果を示す図である。FIG. 3 is a diagram illustrating the modeling results of the modeled article shown in FIG. 2 using copper alloy powder using a conventional modeling method. 本発明の方法を示す概念図である。FIG. 1 is a conceptual diagram showing the method of the present invention. 本発明の方法を示す概念図である。FIG. 1 is a conceptual diagram showing the method of the present invention. 本発明の方法における入熱エリアを3次元的に示す図である。FIG. 3 is a diagram three-dimensionally showing a heat input area in the method of the present invention. 本発明の方法により製造された造形物を示す図である。FIG. 3 is a diagram showing a shaped article manufactured by the method of the present invention. 本発明の方法により製造された造形物を2例示す図である。It is a figure which shows two examples of the shaped object manufactured by the method of this invention.

以下、図面を参照して説明する。
図1は、銅合金粉末における単純形状(キュービクル)造形物の積層方向に平行な断面とその内部充填状況を示す図(写真)である。ベースプレートと仰角方向の傾斜角度を有するオーバーハング部が存在しない造形物については、レーザー溶融法によっても造形可能なものが存在している。
This will be explained below with reference to the drawings.
FIG. 1 is a diagram (photograph) showing a cross section parallel to the stacking direction of a simple shaped (cubicle) shaped object made of copper alloy powder and its internal filling state. As for objects that do not have an overhang portion that has an inclination angle in the elevation direction with respect to the base plate, there are objects that can also be formed by laser melting.

これに対し、図2はオーバーハングを有する形状の造形結果を示す図である。設定される造形物1は、キュービクル状の底部6から上に向けて60度、50度、45度、40度のオーバーハング部2~5を有している。図2上部には造形物の斜視、図下部には正面及び側面が示される。サポート7は造形物を支え、製造後に切り離される。当該オーバーハング部2~5においては、各層において下層に造形部がない部分を有し、かつその面積は角度が下がるごとに増大する。 On the other hand, FIG. 2 is a diagram showing the modeling result of a shape having an overhang. The modeled object 1 to be set has overhang parts 2 to 5 of 60 degrees, 50 degrees, 45 degrees, and 40 degrees upward from the cubicle-shaped bottom 6. The upper part of FIG. 2 shows a perspective view of the model, and the lower part of the figure shows the front and side views. The support 7 supports the modeled object and is separated after manufacturing. In each of the overhang parts 2 to 5, there is a part in which there is no shaped part in the lower layer, and the area thereof increases as the angle decreases.

図3従来の造形手法を用いた銅合金粉末において、図2に示す造形物の造形結果を示す図である。上部には側面、下部には底面である。明らかに、オーバーハング部2~5の下面において形状が崩れる。特に、50度以下の面において顕著である。さらに、45度以下になると、側面からでも一見して形状の崩れが見て取れる状態となる。当該造形は、図2の設定造形とは明確に異なり、精密さの要求に耐えない。 FIG. 3 is a diagram showing the results of modeling the object shown in FIG. 2 using copper alloy powder using a conventional modeling method. The upper part is the side surface, and the lower part is the bottom surface. Obviously, the shapes of the overhang parts 2 to 5 are distorted on the lower surfaces. This is particularly noticeable on surfaces of 50 degrees or less. Furthermore, if the angle is 45 degrees or less, the shape will be deformed, which can be seen at a glance even from the side. This shape is clearly different from the set shape shown in FIG. 2 and does not meet the requirements for precision.

図4は、本発明の方法を示す概念図である。オーバーハング部を有するN-1~N+1層において、通常のエネルギー密度にて入熱を行う第1の入熱エリア8、より高いエネルギー密度にて入熱を行う第2の入熱エリア9が設けられる。これら入熱エリアにおいて、レーザー機器10が2系統の出力原を有していれば、より効率的に製造が可能となる。第2の入熱エリア9は、設計としては、端部11から境界位置12までの距離をXとしたとき、オーバーハング形状のベースプレートとのなす角をθ、積層厚さを0.03mmとすれば、X=0.03R/tanθ(mm)(R:Reference:溶融箇所の既積層の垂直距離に依存し、造形物形状によって適宜変更される値)として表され、下層に既積層がない部分の距離に対し、下層に既積層がある部分の距離が数倍以上はおろか、数十倍~数百倍となり得る、非常に大きい面積を採る。第2の入熱エリア9には、第1の入熱エリア8よりも高いエネルギー密度で入熱を行う。 FIG. 4 is a conceptual diagram showing the method of the present invention. In the N-1 to N+1 layers having an overhang part, a first heat input area 8 that inputs heat at a normal energy density and a second heat input area 9 that inputs heat at a higher energy density are provided. It will be done. In these heat input areas, if the laser device 10 has two systems of output sources, more efficient manufacturing becomes possible. The second heat input area 9 is designed so that when the distance from the end 11 to the boundary position 12 is X, the angle formed with the overhang-shaped base plate is θ, and the laminated thickness is 0.03 mm. For example, it is expressed as Compared to the distance of , the distance of the part with the existing laminated layer below is not only several times or more, but can be tens to hundreds of times, so it takes up a very large area. Heat is input into the second heat input area 9 at a higher energy density than the first heat input area 8.

図5及び図6に示すように、第2の入熱エリアは、上述式により端部11から境界位置12までに渡り設定され、下層に既積層がある部分も含み設定される。この結果一般的に放熱性が劣悪であるオーバーハング面のZ方向距離が十分に確保される。当該実施例においては、銅合金粉末を使用した0.03mmの層で、第1の入熱エリアには144,23(J/mm)、第2の入熱エリアには476.19(J/mm)のエネルギー密度で入熱が行われている。ほぼ3.3倍のエネルギー密度であり、2倍以上、好ましくは3倍以上の高いエネルギー密度が精密な造形を実現に資する。なお、通常のレーザー溶融法と同様に、形状をかたどる枠部分はエリア部分と別の設定(高いエネルギー密度の入力)が行われる。このときも、第1の入熱エリアの枠よりも第2の入熱エリアの枠の方が高いエネルギー密度の入熱が行われる。 As shown in FIGS. 5 and 6, the second heat input area is set from the end portion 11 to the boundary position 12 using the above-mentioned formula, and is set to include a portion where there is an already laminated layer below. As a result, a sufficient distance in the Z direction of the overhang surface, which generally has poor heat dissipation, is ensured. In this example, a 0.03 mm layer using copper alloy powder has a power of 144.23 (J/mm 3 ) in the first heat input area and 476.19 (J/mm 3 ) in the second heat input area. Heat input is performed at an energy density of /mm 3 ). The energy density is approximately 3.3 times higher, and an energy density higher than 2 times, preferably 3 times or more contributes to realizing precise modeling. Note that, similar to the normal laser melting method, the frame portion that shapes the shape is set differently from the area portion (high energy density input). At this time as well, heat input with a higher energy density is performed in the frame of the second heat input area than in the frame of the first heat input area.

図7は、上記例にて製造された造形物の写真(側面)、およびオーバーハング部の拡大写真である。オーバーハング部において、成形の正確さが実現され、欠陥は見受けられなかった。本例においては、ベースプレートにオーステナイト系ステンレス鋼ベースプレートを使用しており、内部充填率99.80%近傍まで達し、成形の正確さだけでなく、品質も非常に高い。ただし、Cuベースプレートの場合も、99.50%近傍まで達しており、本発明の方法の有利性が確認された。 FIG. 7 is a photograph (side view) of the model manufactured in the above example and an enlarged photograph of the overhang portion. In the overhang part, molding accuracy was achieved and no defects were observed. In this example, an austenitic stainless steel base plate is used as the base plate, and the internal filling rate is close to 99.80%, and not only the accuracy of molding but also the quality is very high. However, in the case of the Cu base plate as well, it reached nearly 99.50%, confirming the advantage of the method of the present invention.

図8は、本発明の方法により製造された造形物を2例示している。産業界で要求される造形物はこのように複雑であり、0度の角度を含めた大小多くのオーバーハング部を有している。本発明によれば、これら新たな形状物を、高品質に効率的にレーザー溶融法により可能となる。 FIG. 8 shows two examples of shaped objects manufactured by the method of the present invention. The molded objects required in the industrial world are thus complex and have many overhang parts of various sizes, including angles of 0 degrees. According to the present invention, these new shapes can be produced efficiently and with high quality by laser melting.

1 造形物
2~5 オーバーハング部
6 底部
7 サポート
8 第1の入熱エリア
9 第2の入熱エリア
10 レーザー機器
11 端部
12 境界位置
1 Modeled object 2 to 5 Overhang part 6 Bottom part 7 Support 8 First heat input area 9 Second heat input area 10 Laser device 11 End part 12 Boundary position

Claims (7)

金属粉末をベースプレートに敷き詰める機構と、所定の位置にレーザー光を照射する機構と、を備えた金属積層造形装置を使用し、粉末にレーザー光を照射し溶融、凝固させて積層することを繰り返す、銅または銅合金の積層造形物を製造する方法であって、
前記積層造形物は、ベースプレートと仰角方向の傾斜角度を有するオーバーハング部を有し、オーバーハング部を有する少なくとも1つの層において、第1の入熱エリアと、第2の入熱エリアを設定し、
第1の入熱エリアは下層に造形部のないエリアを含まず、第2の入熱エリアは下層に造形部のないエリアを含み、第1の入熱エリアのレーザー走査速度及びハッチ間隔に対し、第2の入熱エリアのレーザー走査速度及びハッチ間隔が小さいことを特徴とする製造方法。
Using a metal additive manufacturing device equipped with a mechanism that spreads metal powder onto a base plate and a mechanism that irradiates laser light to predetermined positions, the powder is repeatedly irradiated with laser light, melted and solidified, and then laminated. A method for manufacturing a copper or copper alloy laminate product, the method comprising:
The laminate-molded article has an overhang part having an inclination angle in the elevation direction with respect to the base plate, and a first heat input area and a second heat input area are set in at least one layer having the overhang part. ,
The first heat input area does not include an area without a built-in part in the lower layer, and the second heat input area includes an area without a built-in part in the lower layer, and the laser scanning speed and hatch spacing of the first heat input area , a manufacturing method characterized in that the laser scanning speed and hatch interval of the second heat input area are small.
第2入熱エリアへ入熱するエネルギー密度は、第1の入熱エリアへ入熱するエネルギー密度の2倍以上であることを特徴とする請求項1に記載の方法。2. The method according to claim 1, wherein the energy density of the heat input into the second heat input area is at least twice the energy density of the heat input into the first heat input area. ベースプレートがオーステナイト系ステンレス鋼のベースプレートであることを特徴とする請求項1又は2に記載の方法。3. A method according to claim 1 or 2, characterized in that the base plate is an austenitic stainless steel base plate. オーバーハング部の内部充填率が99.5%以上となることを特徴とする請求項1から3のいずれか1項に記載の製造方法。4. The manufacturing method according to claim 1, wherein the internal filling rate of the overhang portion is 99.5% or more. 金属粉末をベースプレートに敷き詰める機構と、所定の位置にレーザー光を照射する機構と、を備えた金属積層造形装置を使用し、粉末にレーザー光を照射し溶融、凝固させて積層することを繰り返す、銅または銅合金の積層造形物の製造における、2次元層の設定方法であって、Using a metal additive manufacturing device equipped with a mechanism that spreads metal powder onto a base plate and a mechanism that irradiates laser light to predetermined positions, the powder is repeatedly irradiated with laser light, melted and solidified, and then laminated. A method for setting two-dimensional layers in the production of a copper or copper alloy laminate, the method comprising:
前記積層造形物は、ベースプレートと仰角方向の傾斜角度を有するオーバーハング部を有し、オーバーハング部を有する少なくとも1つの層において、第1の入熱エリアと、第2の入熱エリアを設定し、The laminate-molded article has an overhang part having an inclination angle in the elevation direction with respect to the base plate, and a first heat input area and a second heat input area are set in at least one layer having the overhang part. ,
第1の入熱エリアは下層に造形部のないエリアを含まず、第2の入熱エリアは下層に造形部のないエリアを含み、第1の入熱エリアのレーザー走査速度及びハッチ間隔に対し、第2の入熱エリアのレーザー走査速度及びハッチ間隔を小さくする設定を含むことを特徴とする方法。The first heat input area does not include an area without a built-in part in the lower layer, and the second heat input area includes an area without a built-in part in the lower layer, and the laser scanning speed and hatch spacing of the first heat input area , a method comprising: setting a laser scanning speed and a hatch spacing of the second heat input area to be small;
第2入熱エリアへ入熱するエネルギー密度は、第1の入熱エリアへ入熱するエネルギー密度の3倍以上に設定されることを特徴とする請求項5に記載の方法・The method according to claim 5, characterized in that the energy density of heat input to the second heat input area is set to be three times or more the energy density of heat input to the first heat input area. ベースプレートがオーステナイト系ステンレス鋼のベースプレートであることを特徴とする請求項5又は6に記載の方法。7. A method according to claim 5 or 6, characterized in that the base plate is an austenitic stainless steel base plate.
JP2019215614A 2019-11-28 2019-11-28 Manufacturing method for additively manufactured objects Active JP7355620B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019215614A JP7355620B2 (en) 2019-11-28 2019-11-28 Manufacturing method for additively manufactured objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019215614A JP7355620B2 (en) 2019-11-28 2019-11-28 Manufacturing method for additively manufactured objects

Publications (2)

Publication Number Publication Date
JP2021085079A JP2021085079A (en) 2021-06-03
JP7355620B2 true JP7355620B2 (en) 2023-10-03

Family

ID=76085805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019215614A Active JP7355620B2 (en) 2019-11-28 2019-11-28 Manufacturing method for additively manufactured objects

Country Status (1)

Country Link
JP (1) JP7355620B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
JP2014516387A (en) 2011-04-19 2014-07-10 フェニックス システム Method for producing an object by solidifying powder using a laser
JP2018070914A (en) 2016-10-25 2018-05-10 株式会社ダイヘン Manufacturing method of laminate molded article and laminate molded article
JP2018518384A (en) 2015-04-21 2018-07-12 ア−カム アーベー Improved method for additive manufacturing
US20180311769A1 (en) 2017-04-28 2018-11-01 Divergent Technologies, Inc. Multi-materials and print parameters for additive manufacturing
JP2019019398A (en) 2017-07-20 2019-02-07 株式会社アドバンテスト Manufacturing device, manufacturing method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010215971A (en) 2009-03-17 2010-09-30 Panasonic Electric Works Co Ltd Method of producing three-dimensional shaped article and three-dimensional shaped article obtained from the same
JP2014516387A (en) 2011-04-19 2014-07-10 フェニックス システム Method for producing an object by solidifying powder using a laser
JP2018518384A (en) 2015-04-21 2018-07-12 ア−カム アーベー Improved method for additive manufacturing
JP2018070914A (en) 2016-10-25 2018-05-10 株式会社ダイヘン Manufacturing method of laminate molded article and laminate molded article
US20180311769A1 (en) 2017-04-28 2018-11-01 Divergent Technologies, Inc. Multi-materials and print parameters for additive manufacturing
JP2019019398A (en) 2017-07-20 2019-02-07 株式会社アドバンテスト Manufacturing device, manufacturing method, and program

Also Published As

Publication number Publication date
JP2021085079A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP6132523B2 (en) Metal powder for metal stereolithography, manufacturing method of three-dimensional structure, and manufacturing method of molded product
US20170016096A1 (en) Method of manufacturing aluminum alloy articles
Srinivas et al. A critical review on recent research methodologies in additive manufacturing
Gibson et al. Directed energy deposition processes
JP6717573B2 (en) Additive manufacturing method using fiber reinforcement
US20170016095A1 (en) Method of manufacturing aluminum alloy articles
KR101789682B1 (en) Additive manufacturing method for metallic materials using laser producible a large sized product
JP5452072B2 (en) Electron beam shaping method
WO2011102382A1 (en) Method for producing three-dimensional shaped article and three-dimensional shaped article
Korpela et al. Additive manufacturing—Past, present, and the future
JP2015205485A (en) Sintering shaping method, liquid binder, and sintered shaped article
JP2016505709A (en) Method for melting powder, including heating in a range adjacent to the molten bath
US20170016093A1 (en) Method of manufacturing aluminum alloy articles
EP3406372B1 (en) Method of manufacturing aluminum alloy articles
US11773471B2 (en) Aluminum alloy articles
US10030288B2 (en) Method of manufacturing aluminum alloy articles
JP2007016312A (en) Method for forming sintered compact
Mahamood et al. Laser additive manufacturing
CN110785246A (en) Additive manufacturing techniques for precipitation hardened superalloy powder materials
JP2021188070A (en) Lamination modeling method and lamination modeling apparatus
WO2017203717A1 (en) Laminate-molding metal powder, laminate-molded article manufacturing method, and laminate-molded article
JP7355620B2 (en) Manufacturing method for additively manufactured objects
EP3315227A1 (en) Method of manufacturing metal articles
JP2019039067A (en) Continuous additive manufacture of high pressure turbine
CN105798294A (en) Rapid part prototyping method for refractory materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230921

R150 Certificate of patent or registration of utility model

Ref document number: 7355620

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150