[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7355304B2 - epoxy resin composition - Google Patents

epoxy resin composition Download PDF

Info

Publication number
JP7355304B2
JP7355304B2 JP2020550529A JP2020550529A JP7355304B2 JP 7355304 B2 JP7355304 B2 JP 7355304B2 JP 2020550529 A JP2020550529 A JP 2020550529A JP 2020550529 A JP2020550529 A JP 2020550529A JP 7355304 B2 JP7355304 B2 JP 7355304B2
Authority
JP
Japan
Prior art keywords
group
formula
epoxy resin
carbon atoms
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020550529A
Other languages
Japanese (ja)
Other versions
JPWO2020075611A1 (en
Inventor
充孝 尾▲崎▼
思博 郭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Publication of JPWO2020075611A1 publication Critical patent/JPWO2020075611A1/en
Priority to JP2023145263A priority Critical patent/JP2023158145A/en
Application granted granted Critical
Publication of JP7355304B2 publication Critical patent/JP7355304B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

本発明は、耐熱性及び誘電特性に優れるエポキシ樹脂組成物に関する。 The present invention relates to an epoxy resin composition that has excellent heat resistance and dielectric properties.

エポキシ樹脂は、硬化剤で硬化させることにより、機械的性質、密着性、耐水性、耐薬品性、耐熱性、電気絶縁性などに優れた硬化物となるために、接着剤、塗料、積層板、成形材料、注型材料などの幅広い分野に利用されている。
例えば、特許文献1、2には、ビスフェノールA型のポリカーボネートオリゴマーを硬化剤として使用することにより、可撓性、柔軟性、耐熱性に優れ、機械特性が向上したエポキシ樹脂発泡体が得られることが具体的に開示されているが、その耐熱性等の性能は、近年求められるレベルからみて、十分といえるものではなかった。
When epoxy resin is cured with a curing agent, it becomes a cured product with excellent mechanical properties, adhesion, water resistance, chemical resistance, heat resistance, electrical insulation, etc., so it is used in adhesives, paints, and laminates. It is used in a wide range of fields such as , molding materials, and casting materials.
For example, Patent Documents 1 and 2 disclose that by using a bisphenol A type polycarbonate oligomer as a curing agent, an epoxy resin foam with excellent flexibility, softness, heat resistance, and improved mechanical properties can be obtained. has been specifically disclosed, but its performance such as heat resistance has not been sufficient in view of the level required in recent years.

特開平01-103633号公報Japanese Patent Application Publication No. 01-103633 特開平04-16337号公報Japanese Patent Application Publication No. 04-16337

本発明は、上述した事情を背景としてなされたものであって、耐熱性のみならず誘電特性にも優れるエポキシ樹脂組成物を提供することを目的とする。 The present invention was made against the background of the above-mentioned circumstances, and an object of the present invention is to provide an epoxy resin composition that is excellent not only in heat resistance but also in dielectric properties.

本発明者らは、上述の課題解決のために鋭意検討した結果、下記式(1)及び/又は式(2)及び/又は式(3)で表され、重量平均分子量(Mw)が500以上10,000以下の範囲であることを特徴とするポリカーボネートオリゴマーを硬化剤として、1分子中に2個以上のエポキシ基を有するポリエポキシ化合物と組み合わせてエポキシ樹脂組成物とすることにより、耐熱性のみならず誘電特性をも向上し得ることを見出し、本発明を完成した。 As a result of intensive studies aimed at solving the above-mentioned problems, the present inventors found that the compound is represented by the following formula (1) and/or formula (2) and/or formula (3) and has a weight average molecular weight (Mw) of 500 or more. 10,000 or less as a curing agent and a polyepoxy compound having two or more epoxy groups in one molecule to form an epoxy resin composition. The present invention was completed based on the discovery that the dielectric properties could also be improved.

本発明は以下の通りである。
1.(A)下記式(1)及び/又は式(2)及び/又は式(3)で表され、重量平均分子量(Mw)が500以上10,000以下の範囲であることを特徴とするポリカーボネートオリゴマーと、(B)1分子中に2個以上のエポキシ基を有するポリエポキシ化合物を含有することを特徴とするエポキシ樹脂組成物。
(式(1)、(2)、(3)中、R、R、R及びRは、各々独立して水素原子、炭素原子数1~8のアルキル基、炭素原子数5~12のシクロアルキル基、炭素原子数1~8のアルコキシ基又は炭素原子数6~12の芳香族炭化水素基を示し、Xは単結合、炭素原子数1~15のアルキレン基、炭素原子数5~15のシクロアルキレン基、炭素原子数2~15のアルキリデン基、炭素原子数5~15のシクロアルキリデン基、フェニレン基、アダマンタン-1,3-イルエン基、アダマンタン-2-イリデン基、酸素原子、硫黄原子、スルフィニル基、スルホニル基又はフルオレン-9-イリデン基を示し、nは、1以上の整数である。但し、R、R、R及びRが全て水素原子を示し且つXがイソプロピリデン基である場合を除く。)
2.1.記載のエポキシ樹脂組成物を硬化してなる硬化物。
The invention is as follows.
1. (A) A polycarbonate oligomer represented by the following formula (1) and/or formula (2) and/or formula (3) and characterized by having a weight average molecular weight (Mw) in the range of 500 or more and 10,000 or less and (B) an epoxy resin composition containing a polyepoxy compound having two or more epoxy groups in one molecule.
(In formulas (1), (2), and (3), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and 5 to 8 carbon atoms. 12 cycloalkyl group, alkoxy group having 1 to 8 carbon atoms, or aromatic hydrocarbon group having 6 to 12 carbon atoms, X is a single bond, an alkylene group having 1 to 15 carbon atoms, 5 carbon atoms -15 cycloalkylene group, C2-15 alkylidene group, C5-15 cycloalkylidene group, phenylene group, adamantane-1,3-ylene group, adamantane-2-ylidene group, oxygen atom, It represents a sulfur atom, a sulfinyl group, a sulfonyl group, or a fluoren-9-ylidene group, and n is an integer of 1 or more.However, R 1 , R 2 , R 3 and R 4 all represent hydrogen atoms, and (Except when it is an isopropylidene group.)
2.1. A cured product obtained by curing the epoxy resin composition described above.

本発明によるエポキシ樹脂組成物は、式(1)及び/又は式(2)及び/又は式(3)で表され、特定の重量平均分子量を有するポリカーボネートオリゴマーを硬化剤として含有することにより、誘電特性が向上し工業的に有利な効果を発揮する。
また、本発明によるエポキシ樹脂組成物を硬化することにより得られた硬化物は、ガラス転移温度が高く耐熱性に優れているため、耐熱性が要求される工業用材料として好適である。
The epoxy resin composition according to the present invention is represented by formula (1) and/or formula (2) and/or formula (3) and contains a polycarbonate oligomer having a specific weight average molecular weight as a curing agent, thereby producing a dielectric material. Improved properties and industrially advantageous effects.
Further, the cured product obtained by curing the epoxy resin composition according to the present invention has a high glass transition temperature and excellent heat resistance, and is therefore suitable as an industrial material that requires heat resistance.

以下、本発明のエポキシ樹脂組成物について詳細に説明する。
<本発明の成分(A)について>
本発明における成分(A)のポリカーボネートオリゴマーは、重量平均分子量(Mw)が500以上10,000以下の範囲である、下記式(1)及び/又は式(2)及び/又は式(3)で表される化合物である。
(式(1)、(2)、(3)中、R、R、R及びRは、各々独立して水素原子、炭素原子数1~8のアルキル基、炭素原子数5~12のシクロアルキル基、炭素原子数1~8のアルコキシ基又は炭素原子数6~12の芳香族炭化水素基を示し、Xは単結合、炭素原子数1~15のアルキレン基、炭素原子数5~15のシクロアルキレン基、炭素原子数2~15のアルキリデン基、炭素原子数5~15のシクロアルキリデン基、フェニレン基、アダマンタン-1,3-イルエン基、アダマンタン-2-イリデン基、酸素原子、硫黄原子、スルフィニル基、スルホニル基又はフルオレン-9-イリデン基を示し、nは、1以上の整数である。但し、R、R、R及びRが全て水素原子を示し且つXがイソプロピリデン基である場合を除く。)
Hereinafter, the epoxy resin composition of the present invention will be explained in detail.
<About component (A) of the present invention>
The polycarbonate oligomer of component (A) in the present invention has a weight average molecular weight (Mw) of 500 or more and 10,000 or less and is represented by the following formula (1) and/or formula (2) and/or formula (3). The compound represented by
(In formulas (1), (2), and (3), R 1 , R 2 , R 3 and R 4 are each independently a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, and 5 to 8 carbon atoms. 12 cycloalkyl group, alkoxy group having 1 to 8 carbon atoms, or aromatic hydrocarbon group having 6 to 12 carbon atoms, X is a single bond, an alkylene group having 1 to 15 carbon atoms, 5 carbon atoms -15 cycloalkylene group, C2-15 alkylidene group, C5-15 cycloalkylidene group, phenylene group, adamantane-1,3-ylene group, adamantane-2-ylidene group, oxygen atom, It represents a sulfur atom, a sulfinyl group, a sulfonyl group, or a fluoren-9-ylidene group, and n is an integer of 1 or more.However, R 1 , R 2 , R 3 and R 4 all represent hydrogen atoms, and (Except when it is an isopropylidene group.)

上記式(1)~(3)において、R、R、R及びRのいずれかが、炭素原子数1~8のアルキル基である場合、アルキル基としては、好ましくは炭素原子数1~6の直鎖状、分岐鎖状のアルキル基であり、具体的には、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、イソブチル基等が挙げられる。このようなアルキル基には、本発明の効果を損なわない範囲で例えばフェニル基、炭素原子数1~4のアルコキシ基等の置換基を有していてもよい。
上記式(1)~(3)において、R、R、R及びRのいずれかが、炭素原子数5~12のシクロアルキル基である場合、シクロアルキル基としては、好ましくは炭素原子数5~7のシクロアルキル基であり、具体的には、例えば、シクロヘキシル基、シクロペンチル基、シクロへプチル基等が挙げられる。このようなシクロアルキル基には、本発明の効果を損なわない範囲で、例えば、直鎖又は分岐鎖状の炭素原子数1~4のアルキル基、炭素原子数1~4のアルコキシ基、フェニル基等の置換基を有していてもよい。
また、上記式(1)~(3)において、R、R、R及びRのいずれかが、炭素原子数1~8のアルコキシ基である場合、アルコキシ基としては、好ましくは炭素原子数1~4の直鎖状、分岐鎖状のアルコキシ基であり、具体的には、例えば、メトキシ基、エトキシ基等が挙げられる。このようなアルコキシ基には本願の効果を損なわない範囲で、例えば、フェニル基、炭素原子数1~4のアルコキシ基等の置換基を有していてもよい。
さらに、上記式(1)~(3)において、R、R、R及びRのいずれかが、炭素原子数6~12の芳香族炭化水素基である場合、芳香族炭化水素基としては、具体的には、例えば、フェニル基、ナフチル基等が挙げられる。このような芳香族炭化水素基には、本発明の効果を損なわない範囲で、例えば、炭素原子数1~4のアルキル基及び/又は、炭素原子数1~4のアルコキシ基が1~3程度置換していてもよい。
In the above formulas (1) to (3), when any one of R 1 , R 2 , R 3 and R 4 is an alkyl group having 1 to 8 carbon atoms, the alkyl group preferably has a carbon number of It is a linear or branched alkyl group having 1 to 6 carbon atoms, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an isobutyl group, and the like. Such an alkyl group may have a substituent such as a phenyl group or an alkoxy group having 1 to 4 carbon atoms, as long as the effects of the present invention are not impaired.
In the above formulas (1) to (3), when any of R 1 , R 2 , R 3 and R 4 is a cycloalkyl group having 5 to 12 carbon atoms, the cycloalkyl group is preferably a carbon It is a cycloalkyl group having 5 to 7 atoms, and specific examples thereof include a cyclohexyl group, a cyclopentyl group, a cycloheptyl group, and the like. Such cycloalkyl groups include, for example, linear or branched alkyl groups having 1 to 4 carbon atoms, alkoxy groups having 1 to 4 carbon atoms, and phenyl groups, as long as the effects of the present invention are not impaired. It may have substituents such as.
In addition, in the above formulas (1) to (3), when any one of R 1 , R 2 , R 3 and R 4 is an alkoxy group having 1 to 8 carbon atoms, the alkoxy group is preferably a carbon It is a linear or branched alkoxy group having 1 to 4 atoms, and specific examples thereof include a methoxy group and an ethoxy group. Such an alkoxy group may have a substituent, such as a phenyl group or an alkoxy group having 1 to 4 carbon atoms, within a range that does not impair the effects of the present application.
Furthermore, in the above formulas (1) to (3), when any of R 1 , R 2 , R 3 and R 4 is an aromatic hydrocarbon group having 6 to 12 carbon atoms, the aromatic hydrocarbon group Specific examples thereof include phenyl group, naphthyl group, and the like. Such an aromatic hydrocarbon group may contain, for example, about 1 to 3 alkyl groups having 1 to 4 carbon atoms and/or alkoxy groups having 1 to 4 carbon atoms, as long as the effects of the present invention are not impaired. May be replaced.

上記式(1)~(3)において、Xが炭素原子数1~15のアルキレン基である場合、アルキレン基としては、好ましくは直鎖状又は分岐鎖状の炭素原子数1~8のアルキレン基であり、より好ましくは直鎖状又は分岐鎖状の炭素原子数1~4のアルキレン基であり、具体的には、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基等が挙げられる。このようなアルキレン基には、本発明の効果を損なわない範囲で、例えば芳香族炭化水素基、アルコキシ基等の置換基を有していてもよく、フェニルメチレン基、ジフェニルメチレン基などが例示できる。
上記式(1)~(3)において、Xが炭素原子数5~15のシクロアルキレン基である場合、シクロアルキレン基としては、好ましくは炭素原子数5~7のシクロアルキレン基であり、具体的には、例えば、1,3-シクロペンチレン基、1,4-シクロヘキシレン基、1,3-シクロヘキシレン基等が挙げられる。このようなシクロアルキレン基には、本発明の効果を損なわない範囲で、例えば、炭素原子数1~4のアルキル基が1~3程度置換していてもよい。
上記式(1)~(3)において、Xが炭素原子数2~15のアルキリデン基である場合、好ましいアルキリデン基としては、直鎖状又は分岐鎖状の炭素原子数2~15のアルキリデン基であり、具体的には、例えば、エチリデン基、プロパン-1-イリデン基、イソプロピリデン基、ブタン-1-イリデン基、ブタン-2-イリデン基、2-メチルプロパン-1-イリデン基、ペンタン-2-イリデン基、3-メチルブタン-1-イリデン基、ヘキサン-2-イリデン基、ヘプタン-4-イリデン基、2-エチルヘキサン-1-イリデン基、ノナン-2-イリデン基等が挙げられる。このようなアルキリデン基には本発明の効果を損なわない範囲で、例えば、芳香族炭化水素基、アルコキシ基等の置換基を有していてもよい。
上記式(1)~(3)において、Xが炭素原子数5~15のシクロアルキリデン基である場合、シクロアルキリデン基としては具体的には、例えば、シクロペンチリデン基、シクロヘキシリデン基、シクロヘプチリデン基、シクロドデシリデン基等が挙げられる。このようなシクロアルキリデン基には、本発明の効果を損なわない範囲で、例えば、芳香族炭化水素基、アルキル基、アルコキシ基等の置換基を有していてもよく、具体的には、炭素原子数1~4のアルキル基が1~3程度置換していてもよい。その具体例としては、3-メチルシクロヘキサン-1-イリデン基、3,3,5-トリメチルシクロヘキサン-1-イリデン基等が挙げられる。また、このようなシクロアルキリデン基には、本発明の効果を損なわない範囲で、例えば、芳香族炭化水素基が縮合していてもよい。その具体例としては、フルオレン-9-イリデン基等が挙げられる。
上記式(1)~(3)において、Xがフェニレン基である場合、フェニレン基としては具体的には、例えば、1,4-フェニレン基、1,3-フェニレン基等が挙げられる。このようなフェニレン基には、本発明の効果を損なわない範囲で、例えば、芳香族炭化水素基、アルキル基、アルコキシ基等の置換基を有していてもよい。
In the above formulas (1) to (3), when X is an alkylene group having 1 to 15 carbon atoms, the alkylene group is preferably a linear or branched alkylene group having 1 to 8 carbon atoms. More preferably, it is a linear or branched alkylene group having 1 to 4 carbon atoms, and specific examples thereof include a methylene group, an ethylene group, a propylene group, a butylene group, and the like. Such an alkylene group may have a substituent such as an aromatic hydrocarbon group or an alkoxy group within a range that does not impair the effects of the present invention, and examples thereof include a phenylmethylene group and a diphenylmethylene group. .
In the above formulas (1) to (3), when X is a cycloalkylene group having 5 to 15 carbon atoms, the cycloalkylene group is preferably a cycloalkylene group having 5 to 7 carbon atoms, and specifically Examples of the group include 1,3-cyclopentylene group, 1,4-cyclohexylene group, and 1,3-cyclohexylene group. Such a cycloalkylene group may be substituted with, for example, about 1 to 3 alkyl groups having 1 to 4 carbon atoms, as long as the effects of the present invention are not impaired.
In the above formulas (1) to (3), when X is an alkylidene group having 2 to 15 carbon atoms, the preferable alkylidene group is a linear or branched alkylidene group having 2 to 15 carbon atoms. Yes, specifically, for example, ethylidene group, propan-1-ylidene group, isopropylidene group, butane-1-ylidene group, butan-2-ylidene group, 2-methylpropan-1-ylidene group, pentane-2 -ylidene group, 3-methylbutane-1-ylidene group, hexane-2-ylidene group, heptane-4-ylidene group, 2-ethylhexane-1-ylidene group, nonane-2-ylidene group, and the like. Such an alkylidene group may have a substituent such as an aromatic hydrocarbon group or an alkoxy group within a range that does not impair the effects of the present invention.
In the above formulas (1) to (3), when X is a cycloalkylidene group having 5 to 15 carbon atoms, specific examples of the cycloalkylidene group include cyclopentylidene group, cyclohexylidene group, cyclohexylidene group, Examples include heptylidene group and cyclododecylidene group. Such a cycloalkylidene group may have a substituent such as an aromatic hydrocarbon group, an alkyl group, or an alkoxy group within a range that does not impair the effects of the present invention. Approximately 1 to 3 alkyl groups having 1 to 4 atoms may be substituted. Specific examples thereof include 3-methylcyclohexane-1-ylidene group and 3,3,5-trimethylcyclohexane-1-ylidene group. Furthermore, such a cycloalkylidene group may be condensed with, for example, an aromatic hydrocarbon group within a range that does not impair the effects of the present invention. Specific examples thereof include fluorene-9-ylidene group and the like.
In the above formulas (1) to (3), when X is a phenylene group, specific examples of the phenylene group include a 1,4-phenylene group and a 1,3-phenylene group. Such a phenylene group may have a substituent, such as an aromatic hydrocarbon group, an alkyl group, or an alkoxy group, within a range that does not impair the effects of the present invention.

上記式(1)~(3)における、Xの好ましい態様として、単結合、置換基を有していてもよい炭素原子数1~4のアルキレン基、置換基を有していてもよい炭素原子数1~4のアルキリデン基、置換基を有していてもよい炭素原子数5~15のシクロアルキリデン基が挙げられる。
中でも、Xのより好ましい態様として、単結合、メチレン基、エチレン基、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、フェニルメチリデン基、1-フェニルエタン-1-イリデン基、シクロペンチリデン基、シクロヘキシリデン基、シクロヘプチリデン基、シクロドデシリデン基、4-メチルシクロヘキサン-1-イリデン基、3,3,5-トリメチルシクロヘキサン-1-イリデン基、フルオレン-9-イリデン基が挙げられる。
In the above formulas (1) to (3), preferred embodiments of X include a single bond, an alkylene group having 1 to 4 carbon atoms which may have a substituent, and a carbon atom which may have a substituent. Examples include an alkylidene group having 1 to 4 carbon atoms and a cycloalkylidene group having 5 to 15 carbon atoms which may have a substituent.
Among them, more preferable embodiments of X include a single bond, a methylene group, an ethylene group, an ethylidene group, a propylidene group, an isopropylidene group, a butylidene group, a phenylmethylidene group, a 1-phenylethane-1-ylidene group, and a cyclopentylidene group. , cyclohexylidene group, cycloheptylidene group, cyclododecylidene group, 4-methylcyclohexane-1-ylidene group, 3,3,5-trimethylcyclohexane-1-ylidene group, fluorene-9-ylidene group. It will be done.

式(1)及び/又は式(2)及び/又は式(3)で表されるポリカーボネートオリゴマーは、従来公知の任意の製造方法により製造されるものを使用できる。具体的には、例えば、界面重合法、溶融エステル交換法、ピリジン法、環状カーボネート化合物の開環重合法、プレポリマーの固相エステル交換法等を挙げることができる。中でも、界面重合法、溶融エステル交換法、プレポリマーの固相エステル交換法を用いることが産業上有利である。これらの中でも、ホスゲンを使用しない溶融エステル交換法や、溶融エステル交換法によるプレポリマーの固相エステル交換法が、特に好ましい。
上記の製造方法は、下記式(4)で表されるジヒドロキシ化合物と炭酸エステル形成剤とを使用して行われる。
(式(4)中のR~R、Xの定義は、上述の式(1)、(2)、(3)と同じである。)
The polycarbonate oligomer represented by formula (1) and/or formula (2) and/or formula (3) can be produced by any conventionally known production method. Specifically, examples thereof include interfacial polymerization, melt transesterification, pyridine method, ring-opening polymerization of cyclic carbonate compounds, and solid phase transesterification of prepolymers. Among these, it is industrially advantageous to use interfacial polymerization, melt transesterification, and prepolymer solid phase transesterification. Among these, a melt transesterification method that does not use phosgene and a solid-phase transesterification method of a prepolymer using a melt transesterification method are particularly preferred.
The above manufacturing method is carried out using a dihydroxy compound represented by the following formula (4) and a carbonate ester forming agent.
(The definitions of R 1 to R 4 and X in formula (4) are the same as in formulas (1), (2), and (3) above.)

<式(4)で表されるジヒドロキシ化合物について>
式(4)で表されるジヒドロキシ化合物としては、具体的には、例えば、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル化合物類、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)メタン又は1,1-ビス(ヒドロキシフェニル)メタンの異性体混合物、1,1-ビス(4-ヒドロキシフェニル)シクロドデカン、1,1-ビス(4-ヒドロキシフェニル)-3-メチルシクロヘキサンなどが挙げられる。
重合反応に際し、式(4)で表されるジヒドロキシ化合物は単独でも、2種以上を任意の割合で混合して用いても良い。また、式(4)で表されるジヒドロキシ化合物以外のジヒドロキシ化合物を使用する場合には、全芳香族ジヒドロキシ化合物中、式(4)で表されるジヒドロキシ化合物以外のヒドロキシ化合物共重合原料の割合は、0~90モル%の範囲、好ましくは0~85モル%の範囲、より好ましくは0~80モル%の範囲である。
本発明における式(1)及び/又は式(2)及び/又は式(3)で表されるポリカーボネートオリゴマーの重量平均分子量は、500以上10,000以下の範囲であり、好ましくは600以上9,000以下の範囲、より好ましくは800以上8,500以下の範囲、更に好ましくは1,000以上8,000以下の範囲である。
<About the dihydroxy compound represented by formula (4)>
Specifically, the dihydroxy compound represented by formula (4) includes, for example, 2,2-bis(4-hydroxy-3-methylphenyl)propane, 1,1-bis(4-hydroxyphenyl)-1 -Dihydroxybiphenyl compounds such as phenylethane, 1,1-bis(4-hydroxyphenyl)-3,3,5-trimethylcyclohexane, 4,4'-dihydroxybiphenyl, 9,9-bis(4-hydroxy-3 - methylphenyl)fluorene, 1,1-bis(4-hydroxyphenyl)ethane, 1,1-bis(4-hydroxyphenyl)methane or isomer mixture of 1,1-bis(hydroxyphenyl)methane, 1,1 -bis(4-hydroxyphenyl)cyclododecane, 1,1-bis(4-hydroxyphenyl)-3-methylcyclohexane, and the like.
In the polymerization reaction, the dihydroxy compound represented by formula (4) may be used alone or in a mixture of two or more in any proportion. In addition, when using a dihydroxy compound other than the dihydroxy compound represented by formula (4), the proportion of the hydroxy compound copolymerization raw material other than the dihydroxy compound represented by formula (4) in the wholly aromatic dihydroxy compound is , in the range of 0 to 90 mol%, preferably in the range of 0 to 85 mol%, more preferably in the range of 0 to 80 mol%.
The weight average molecular weight of the polycarbonate oligomer represented by formula (1) and/or formula (2) and/or formula (3) in the present invention is in the range of 500 to 10,000, preferably 600 to 9,000. 000 or less, more preferably 800 or more and 8,500 or less, still more preferably 1,000 or more and 8,000 or less.

<炭酸エステル形成剤について>
式(4)で表されるジヒドロキシ化合物と反応させる炭酸エステル形成剤としては、具体的には、例えば、ジフェニルカーボネート、ジトリルカーボネート、ビス(m-クレジル)カーボネート等の炭酸ジアリール、ジメチルカーボネート、ジエチルカーボネート、ジシクロヘキシルカーボネート等の炭酸ジアルキル、メチルフェニルカーボネート、エチルフェニルカーボネート、シクロヘキシルフェニルカーボネート等の炭酸アルキルアリール又はジビニルカーボネート、ジイソプロペニルカーボネート、ジプロペニルカーボネート等の炭酸ジアルケニル等や炭酸が挙げられる。さらに、ホスゲン等のジハロゲン化カルボニル化合物等やトリホスゲンも挙げられる。これらの中で、炭酸ジアリールが好ましく、ジフェニルカーボネートが特に好ましい。
<About carbonate ester forming agent>
Specific examples of the carbonate ester forming agent to be reacted with the dihydroxy compound represented by formula (4) include diaryl carbonates such as diphenyl carbonate, ditolyl carbonate, and bis(m-cresyl) carbonate, dimethyl carbonate, and diethyl carbonate. carbonate, dialkyl carbonate such as dicyclohexyl carbonate, alkylaryl carbonate such as methylphenyl carbonate, ethylphenyl carbonate, cyclohexylphenyl carbonate, dialkenyl carbonate such as divinyl carbonate, diisopropenyl carbonate, dipropenyl carbonate, etc., and carbonic acid. Further examples include dihalogenated carbonyl compounds such as phosgene, and triphosgene. Among these, diaryl carbonate is preferred, and diphenyl carbonate is particularly preferred.

<溶融エステル交換法について>
式(1)及び/又は式(2)及び/又は式(3)で表されるポリカーボネートオリゴマーで表されるポリカーボネートオリゴマーの製造方法として、溶融エステル交換法について説明する。
溶融エステル交換反応の方法としては、式(4)で表されるジヒドロキシ化合物と、炭酸エステル形成剤としてジフェニルカーボネートを使用する場合には、触媒の存在下、常圧又は減圧の不活性ガス雰囲気で加熱しながら撹拌し、生成するフェノールを留出させて行われる。通常、式(4)で表されるジヒドロキシ化合物と炭酸エステル形成剤の混合比率や、エステル交換反応時の減圧度を調整して、所望の分子量及び末端水酸基量を調整した、式(1)及び/又は式(2)及び/又は式(3)で表されるポリカーボネートオリゴマーを得ることができる。
式(1)及び/又は式(2)及び/又は式(3)で表されるポリカーボネートオリゴマーを得るために、式(4)で表されるジヒドロキシ化合物と炭酸エステル形成剤との混合比率は、式(4)で表されるジヒドロキシ化合物1モルに対して、炭酸エステル形成剤を通常0.2~5モル倍、好ましくは0.3~3.3モル倍、更に好ましくは0.4~2.5モル倍用いる。
溶融エステル交換反応に際し、反応速度を高めるため、必要に応じてエステル交換触媒が用いられる。エステル交換触媒としては、特に制限はなく、例えば、リチウム、ナトリウム、セシウムの水酸化物、炭酸塩、炭酸水素化合物等の無機アルカリ金属化合物、アルコラート、有機カルボン酸塩等の有機アルカリ金属化合物等のアルカリ金属化合物;ベリリウム、マグネシウム等の水酸化物、炭酸塩等の無機アルカリ土類金属化合物、アルコラート、有機カルボン酸塩等の有機アルカリ土類金属化合物等のアルカリ土類金属化合物;テトラメチルホウ素、テトラエチルホウ素、ブチルトリフェニルホウ素等のナトリウム塩、カルシウム塩、マグネシウム塩等の塩基性ホウ素化合物;トリエチルホスフィン、トリ-n-プロピルホスフィン等の3価のリン化合物、又は、これらの化合物から誘導される4級ホスホニウム塩等の塩基性リン化合物;テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド等の塩基性アンモニウム化合物;4-アミノピリジン、2-ジメチルアミノイミダゾール、アミノキノリン等アミン系化合物等の公知のエステル交換触媒を用いることができる。中でも、アルカリ金属化合物が好ましく、特に炭酸セシウム、水酸化セシウム等のセシウム化合物が好ましい。
触媒の使用量は、触媒残留物による生成オリゴマーの品質上の問題が生じない範囲で用いられ、触媒の種類により好適な添加量が異なるので一概には言えないが、概略、例えば、式(B)で表されるジヒドロキシ化合物1モルに対して通常0.05~100μモル、好ましくは0.08~50μモル、より好ましくは0.1~20μモル、さらに好ましくは0.1~5μモルである。触媒はそのままで添加してもよいし、溶媒に溶解して添加してもよく、溶媒としては、例えば水、フェノール等の反応に影響しないものが好ましい。
溶融エステル交換反応の反応条件は、温度は通常120~360℃の範囲、好ましくは150~280℃の範囲、より好ましくは180~260℃の範囲である。反応温度が低すぎるとエステル交換反応が進行せず、反応温度が高いと分解反応等の副反応が進行するので好ましくない。反応は好ましくは減圧下でおこなわれる。反応圧力は、反応温度において原料である炭酸エステル形成剤が系外に留出せず、フェノール等の副生物が留出できる圧力であることが好ましい。このような反応条件において、反応は通常0.5~10時間程度で完結する。
<About melt transesterification method>
A melt transesterification method will be described as a method for producing a polycarbonate oligomer represented by formula (1) and/or formula (2) and/or formula (3).
As a method for melt transesterification, when using a dihydroxy compound represented by formula (4) and diphenyl carbonate as a carbonate ester forming agent, it is carried out in the presence of a catalyst in an inert gas atmosphere at normal pressure or reduced pressure. This is done by stirring while heating and distilling off the produced phenol. Usually, the formula (1) and A polycarbonate oligomer represented by formula (2) and/or formula (3) can be obtained.
In order to obtain the polycarbonate oligomer represented by formula (1) and/or formula (2) and/or formula (3), the mixing ratio of the dihydroxy compound represented by formula (4) and the carbonate ester forming agent is as follows: The amount of the carbonate ester forming agent is usually 0.2 to 5 moles, preferably 0.3 to 3.3 moles, and more preferably 0.4 to 2 moles per mole of the dihydroxy compound represented by formula (4). Use .5 mole times.
During the melt transesterification reaction, a transesterification catalyst is used as necessary to increase the reaction rate. There are no particular restrictions on the transesterification catalyst, and examples include inorganic alkali metal compounds such as hydroxides, carbonates, and hydrogen carbonates of lithium, sodium, and cesium, and organic alkali metal compounds such as alcoholates and organic carboxylates. Alkali metal compounds; inorganic alkaline earth metal compounds such as hydroxides and carbonates such as beryllium and magnesium; alkaline earth metal compounds such as organic alkaline earth metal compounds such as alcoholates and organic carboxylates; tetramethylboron; Basic boron compounds such as sodium salts, calcium salts, and magnesium salts such as tetraethylboron and butyltriphenylboron; trivalent phosphorus compounds such as triethylphosphine and tri-n-propylphosphine, or derivatives from these compounds Basic phosphorus compounds such as quaternary phosphonium salts; Basic ammonium compounds such as tetramethylammonium hydroxide, tetraethylammonium hydroxide, and tetrabutylammonium hydroxide; Amine-based compounds such as 4-aminopyridine, 2-dimethylaminoimidazole, and aminoquinoline Known transesterification catalysts such as compounds can be used. Among these, alkali metal compounds are preferred, and cesium compounds such as cesium carbonate and cesium hydroxide are particularly preferred.
The amount of catalyst to be used is within a range that does not cause quality problems of the produced oligomers due to catalyst residue, and since the suitable addition amount differs depending on the type of catalyst, it cannot be stated unconditionally, but roughly speaking, for example, formula (B ) is usually 0.05 to 100 μmol, preferably 0.08 to 50 μmol, more preferably 0.1 to 20 μmol, and even more preferably 0.1 to 5 μmol per mole of the dihydroxy compound represented by . The catalyst may be added as it is, or may be added after being dissolved in a solvent. Preferably, the solvent is one that does not affect the reaction, such as water or phenol.
The reaction conditions for the melt transesterification reaction are such that the temperature is usually in the range of 120 to 360°C, preferably in the range of 150 to 280°C, more preferably in the range of 180 to 260°C. If the reaction temperature is too low, the transesterification reaction will not proceed, and if the reaction temperature is too high, side reactions such as decomposition reactions will proceed, which is not preferable. The reaction is preferably carried out under reduced pressure. The reaction pressure is preferably such that the carbonate ester forming agent, which is a raw material, does not distill out of the system at the reaction temperature, and by-products such as phenol can distill out. Under such reaction conditions, the reaction is usually completed in about 0.5 to 10 hours.

<本発明の成分(B)について>
本発明のエポキシ樹脂組成物に含まれる成分(B)は、1分子中に2個以上のエポキシ基を有するポリエポキシ化合物である。所謂プレポリマー(中間生成物)と呼称されるものであり、1分子中に2個以上のエポキシ基を有するとともに比較的低分子量を有するものである。そして、本発明のエポキシ樹脂組成物は、後述する硬化(重合)させることにより、硬化物であるエポキシ樹脂硬化物を得ることができる。
本発明のエポキシ樹脂組成物に含まれる成分(B)として、好ましい化学構造は下記式(5)により表されるポリエポキシ化合物である。
(式(5)中のYは、各々独立して単結合、炭素原子数1~10のアルキレン基、炭素原子数5~15のシクロアルキレン基、炭素原子数2~15のアルキリデン基、炭素原子数5~15のシクロアルキリデン基又はフェニレン基を示し、mは、0又は1~10の整数である。)
上記式(5)における、Yの好ましい態様として、炭素原子数1~5のアルキリデン基、炭素原子数1~5のアルキレン基が挙げられ、具体的には、メチレン基、エチリデン基、イソプロピリデン基、プロパン-1-イリデン基、ブタン-2-イリデン基、ブタン-1-イリデン基、3-メチルブタン-2-イリデン基、2-メチルペンタン-4-イリデン基等が挙げられる。
上記式(5)で表されるポリエポキシ化合物としては、例えば、ポリエポキシ化合物の化学構造に対応するポリヒドロキシ化合物と、エピクロルヒドリン等のエピハロヒドリンとの反応により得られる化合物が挙げられる。上記式(5)で表されるポリエポキシ化合物の原料であるポリヒドロキシ化合物の具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン(ビスフェノールA)、2,2-ビス(4-ヒドロキシフェニル)エタン(ビスフェノールE)、2,2-ビス(4-ヒドロキシフェニル)メタン(ビスフェノールF)、4,4’-ジヒドロキシビフェニルが挙げられる。
式(5)により表されるポリエポキシ化合物以外のポリエポキシ化合物の原料であるポリヒドロキシ化合物の具体例としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビフェニルノボラック樹脂等が挙げられる。
本発明における成分(B)ポリエポキシ化合物の具体例としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、キシレンノボラック型エポキシ樹脂、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂のほか、公知のエポキシ樹脂、例えば、特開平01-98613号公報等に記載された下記式で表わされるエポキシ樹脂等が挙げられる。なお、下記式中のaは、各々独立して1以上の整数を表し、bは各々1以下の正数を表す。
これらのエポキシ樹脂は1種あるいは2種以上混合して用いられる。
<About component (B) of the present invention>
Component (B) contained in the epoxy resin composition of the present invention is a polyepoxy compound having two or more epoxy groups in one molecule. It is a so-called prepolymer (intermediate product), and has two or more epoxy groups in one molecule and a relatively low molecular weight. The epoxy resin composition of the present invention can be cured (polymerized) to obtain a cured epoxy resin product as described below.
A preferred chemical structure of component (B) contained in the epoxy resin composition of the present invention is a polyepoxy compound represented by the following formula (5).
(Y in formula (5) each independently represents a single bond, an alkylene group having 1 to 10 carbon atoms, a cycloalkylene group having 5 to 15 carbon atoms, an alkylidene group having 2 to 15 carbon atoms, or a carbon atom. It represents a cycloalkylidene group or a phenylene group of numbers 5 to 15, and m is 0 or an integer of 1 to 10.)
Preferred embodiments of Y in the above formula (5) include an alkylidene group having 1 to 5 carbon atoms and an alkylene group having 1 to 5 carbon atoms, specifically, a methylene group, an ethylidene group, an isopropylidene group. , propan-1-ylidene group, butane-2-ylidene group, butane-1-ylidene group, 3-methylbutan-2-ylidene group, 2-methylpentan-4-ylidene group, and the like.
Examples of the polyepoxy compound represented by the above formula (5) include compounds obtained by reacting a polyhydroxy compound corresponding to the chemical structure of the polyepoxy compound with an epihalohydrin such as epichlorohydrin. Specific examples of polyhydroxy compounds that are raw materials for the polyepoxy compound represented by formula (5) above include 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 2,2-bis(4- Examples include hydroxyphenyl)ethane (bisphenol E), 2,2-bis(4-hydroxyphenyl)methane (bisphenol F), and 4,4'-dihydroxybiphenyl.
Specific examples of polyhydroxy compounds that are raw materials for polyepoxy compounds other than the polyepoxy compound represented by formula (5) include phenol novolac resins, cresol novolak resins, biphenyl novolak resins, and the like.
Specific examples of the component (B) polyepoxy compound in the present invention include bisphenol A type epoxy resin, bisphenol F type epoxy resin, biphenyl type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, xylene novolac type epoxy resin. In addition to epoxy resins, triglycidyl isocyanurate, alicyclic epoxy resins, dicyclopentadiene novolac type epoxy resins, biphenyl novolac type epoxy resins, known epoxy resins, such as the following described in JP-A No. 01-98613, etc. Examples include epoxy resins represented by the following formulas. In addition, a in the following formula each independently represents an integer of 1 or more, and b each represents a positive number of 1 or less.
These epoxy resins may be used alone or in combination of two or more.

本発明の成分(B)ポリエポキシ化合物を得る方法は、特に限定されるものではないが、例えば、1)ポリヒドロキシ化合物のエポキシ化反応は、原料となるポリヒドロキシ化合物をエピハロヒドリンに溶解し、テトラメチルアンモニウムクロライドやトリメチルベンジルアンモニウムクロライド等の第4級アンモニウム塩などを触媒として反応させた後、アルカリ金属水酸化物等塩基性化合物をそのままで、及び/又は水溶液として添加してさらに反応させることにより得る方法や、2)原料ポリヒドロキシ化合物をエピクロルヒドリン等のエピハロヒドリンに溶解しメタノールやエタノール等の極性溶媒を添加し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の固体を添加し、又は添加しながら反応させる方法、また、3)アルカリ金属水酸化物の水溶液を使用し、アルカリ金属水酸化物を逐次的に添加すると共に反応系内から減圧下、又は常圧下、連続的に水及びエピハロヒドリンを留出させ、これを分液し、水は除去しエピハロヒドリンは反応系内に連続的に戻す方法、4)原料ポリヒドロキシ化合物と、例えばアリルクロリド、アリルブロミド等のハロゲン化ビニル化合物を溶媒中で塩基の存在下に反応させ、次いで、反応終了後、そのままm-クロロ過安息香酸等の炭素-炭素二重結合をエポキシ基に酸化可能な酸化剤を作用させるか、又は、例えば反応液と水を混合し、反応生成物を取り出した後、該反応生成物に前記酸化剤を作用させるかした後、例えば、必要に応じて残存する酸化剤を分解処理し、次いで濃縮処理することにより、ジエポキシ化合物を得る方法等が知られている。本発明における1分子中に2個以上のエポキシ基を有するポリエポキシ化合物を得るには、これら何れの方法でもよいし、これ以外の方法によるものでもよい。
本発明のポリエポキシ化合物を製造するに際して、エポキシ化反応の進行とともに、二量体、三量体、四量体等のオリゴマーが少量副生するが、本発明においては、用いるポリエポキシ化合物がオリゴマーを少量含んでいてもよい。また、本発明に用いるポリエポキシ化合物は、エポキシ化反応時、エポキシ基の形成が未完了のままの加水分解性塩素を有する末端基を含む化合物等を少量含んでいてもよい。
The method for obtaining the polyepoxy compound (B) of the present invention is not particularly limited, but for example, 1) the epoxidation reaction of the polyhydroxy compound is performed by dissolving the raw material polyhydroxy compound in epihalohydrin, By reacting with a quaternary ammonium salt such as methylammonium chloride or trimethylbenzylammonium chloride as a catalyst, and then adding a basic compound such as an alkali metal hydroxide as it is or as an aqueous solution and further reacting. 2) Dissolving the raw material polyhydroxy compound in epihalohydrin such as epichlorohydrin, adding a polar solvent such as methanol or ethanol, and adding a solid alkali metal hydroxide such as sodium hydroxide or potassium hydroxide, or 3) Using an aqueous solution of alkali metal hydroxide, the alkali metal hydroxide is added sequentially and water and water are added continuously from within the reaction system under reduced pressure or normal pressure. A method in which epihalohydrin is distilled out, separated into liquids, water is removed, and epihalohydrin is continuously returned to the reaction system; 4) A method in which a raw material polyhydroxy compound and a halogenated vinyl compound such as allyl chloride or allyl bromide are mixed in a solvent. After the reaction is complete, an oxidizing agent capable of oxidizing the carbon-carbon double bond to the epoxy group, such as m-chloroperbenzoic acid, is directly applied to the epoxy group, or, for example, the reaction solution is and water, and after taking out the reaction product, after allowing the oxidizing agent to act on the reaction product, for example, if necessary, the remaining oxidizing agent is decomposed, and then the reaction product is concentrated. , a method for obtaining a diepoxy compound, etc. are known. In order to obtain the polyepoxy compound having two or more epoxy groups in one molecule in the present invention, any of these methods or other methods may be used.
When producing the polyepoxy compound of the present invention, a small amount of oligomers such as dimers, trimers, and tetramers are produced as by-products as the epoxidation reaction progresses, but in the present invention, the polyepoxy compound used is an oligomer. May contain small amounts of. Further, the polyepoxy compound used in the present invention may contain a small amount of a compound containing a terminal group having hydrolyzable chlorine in which the formation of an epoxy group remains incomplete during the epoxidation reaction.

<任意の成分>
本発明のエポキシ樹脂組成物には、前記の成分(A)と成分(B)の他にも、本発明の効果を著しく損なわない範囲で、任意の成分を含有させることが可能である。任意の成分としては、例えば硬化促進剤、カップリング剤、難燃剤、無機充填材、樹脂、触媒、レベリング剤、消泡剤、イオン捕捉剤、応力緩和剤、染料、着色剤等が挙げられる。これらの任意の成分は、1種が単独で含まれてもよく、2種以上が任意の比率および組み合わせで含まれていてもよい。
硬化促進剤としては、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えば、三級アミン化合物、2-メチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール等のイミダゾール類、有機スルフィン類、リン化合物、テトラフェニルボロン塩およびこれらの誘導体等が挙げられる。
カップリング剤としては、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えば、エポキシシラン、アミノシラン、ウレイドシラン、ビニルシラン、アルキルシラン、有機チタネート、アルミニウムアルキレート等が挙げられる。
難燃剤としても、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えば、赤燐、燐酸、燐酸エステル、メラミン、メラミン誘導体、トリアジン環を有する化合物、シアヌル酸誘導体、イソシアヌル酸誘導体の窒素含有化合物、シクロホスファゼン等の燐窒素含有化合物、酸化亜鉛、酸化鉄、酸化モリブデン、フェロセン等の金属化合物、三酸化アンチモン、四酸化アンチモン、五酸化アンチモン等の酸化アンチモン、ブロム化エポキシ樹脂等が挙げられる。
無機充填材としても、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えば、溶融シリカ、結晶シリカ、アルミナ、ジルコン、珪酸カルシウム、炭酸カルシウム、チタン酸カリウム、炭化珪素、窒化アルミ、窒化ホウ素、ベリリア、ジルコン、フォステライト、ステアライト、スピレル、ムライト、チタニア等の粉体、また、これらを球形化したビーズ、ガラス繊維等が挙げられる。無機充填材を含有させることにより、得られるエポキシ樹脂組成物を用いたエポキシ樹脂硬化物の吸湿性、熱伝導性および接着性の向上、熱膨張係数の低減を図ることができる。
また、無機充填材としても、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えば、水酸化アルミニウム、水酸化マグネシウム、珪酸亜鉛、モリブデン酸亜鉛等を含有させることができる。これらを含有させることにより、難燃効果の向上を図ることができる。
イオン捕捉剤としても、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えば、ハイドロタルサイト類、マグネシウム、アルミニウム、チタン、ジルコニウム、ビスマス等の元素の含水酸化物等が挙げられる。イオン捕捉剤を含有させることにより、得られるエポキシ樹脂組成物を用いた電子機器の耐湿性、高温放置特性(耐熱性)を向上させることができる。
応力緩和剤としても、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えばシリコーンゴム粉末等が挙げられる。さらに、着色剤としても、本発明の効果を著しく損なわない限り任意のものを用いることができるが、例えばカーボンブラック等が挙げられる。
<Optional ingredients>
In addition to the component (A) and component (B) described above, the epoxy resin composition of the present invention can contain any other component as long as the effects of the present invention are not significantly impaired. Examples of optional components include curing accelerators, coupling agents, flame retardants, inorganic fillers, resins, catalysts, leveling agents, antifoaming agents, ion scavengers, stress relievers, dyes, colorants, and the like. One type of these optional components may be contained alone, or two or more types may be contained in any ratio and combination.
Any curing accelerator can be used as long as it does not significantly impair the effects of the present invention, and examples thereof include tertiary amine compounds, 2-methylimidazole, 2-ethyl-4-methylimidazole, and 2-phenylimidazole. , 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5-hydroxymethylimidazole, etc. Examples include imidazoles, organic sulfins, phosphorus compounds, tetraphenylboron salts, and derivatives thereof.
Any coupling agent can be used as long as it does not significantly impair the effects of the present invention, and examples thereof include epoxysilane, aminosilane, ureidosilane, vinylsilane, alkylsilane, organic titanate, aluminum alkylate, etc. .
Any flame retardant can be used as long as it does not significantly impair the effects of the present invention, but examples include red phosphorus, phosphoric acid, phosphoric esters, melamine, melamine derivatives, compounds having a triazine ring, cyanuric acid derivatives, isocyanuric acid, etc. Nitrogen-containing compounds such as acid derivatives, phosphorous nitrogen-containing compounds such as cyclophosphazene, metal compounds such as zinc oxide, iron oxide, molybdenum oxide, and ferrocene, antimony oxides such as antimony trioxide, antimony tetroxide, and antimony pentoxide, and brominated epoxy. Examples include resin.
Any inorganic filler can be used as long as it does not significantly impair the effects of the present invention, but examples include fused silica, crystalline silica, alumina, zircon, calcium silicate, calcium carbonate, potassium titanate, silicon carbide, Powders of aluminum nitride, boron nitride, beryllia, zircon, forsterite, stearite, spirel, mullite, titania, etc., as well as beads made of these into spheres, glass fibers, etc., can be mentioned. By containing an inorganic filler, it is possible to improve the hygroscopicity, thermal conductivity, and adhesiveness of the cured epoxy resin product using the obtained epoxy resin composition, and to reduce the coefficient of thermal expansion.
Further, any inorganic filler can be used as long as it does not significantly impair the effects of the present invention, and for example, aluminum hydroxide, magnesium hydroxide, zinc silicate, zinc molybdate, etc. can be included. . By containing these, the flame retardant effect can be improved.
Any ion scavenger can be used as long as it does not significantly impair the effects of the present invention, but examples include hydrotalcites, hydrous oxides of elements such as magnesium, aluminum, titanium, zirconium, and bismuth. Can be mentioned. By containing an ion scavenger, the moisture resistance and high temperature storage characteristics (heat resistance) of electronic devices using the resulting epoxy resin composition can be improved.
Any stress relaxation agent may be used as long as it does not significantly impair the effects of the present invention, and examples thereof include silicone rubber powder. Furthermore, any coloring agent may be used as long as it does not significantly impair the effects of the present invention, and examples thereof include carbon black.

本発明のエポキシ樹脂組成物は、成分(A)ポリカーボネートオリゴマーを硬化剤として含有するものであるが、本発明の効果を損なわない範囲で公知のエポキシ硬化剤を併用することもできる。公知のエポキシ硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールA 、ビスフェノールF等のフェノール類、メチルテトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、無水ピロメリット酸等の酸無水物類、ジアミノジフェニルメタン、ジアミノジフェニルスルホン、ジシアンジアミド等のアミン類が挙げられる。成分(A)ポリカーボネートオリゴマーは、使用する全ての硬化剤の総量に対して1重量%以上配合することが好ましく、3重量%以上配合することがより好ましく、5重量%以上配合することが特に好ましい。成分(A)ポリカーボネートオリゴマーの配合量が少ないと、得られる硬化物の物性改良効果が小さくなり好ましくない。そのため、全ての硬化剤における成分(A)ポリカーボネートオリゴマーの配合量比は、好ましくは70重量%以上であり、より好ましくは80重量%以上であり、さらに好ましくは90重量%であり、特に好ましくは95重量%である。 Although the epoxy resin composition of the present invention contains component (A) polycarbonate oligomer as a curing agent, a known epoxy curing agent may be used in combination without impairing the effects of the present invention. Known epoxy curing agents include, for example, phenol novolac resins, cresol novolac resins, phenols such as bisphenol A and bisphenol F, acid anhydrides such as methyltetrahydrophthalic anhydride, hexahydrophthalic anhydride, and pyromellitic anhydride; Examples include amines such as diaminodiphenylmethane, diaminodiphenylsulfone, and dicyandiamide. Component (A) polycarbonate oligomer is preferably blended in an amount of 1% by weight or more, more preferably 3% by weight or more, and particularly preferably 5% by weight or more based on the total amount of all curing agents used. . If the amount of the polycarbonate oligomer (component (A)) is small, the effect of improving the physical properties of the resulting cured product will be undesirable. Therefore, the blending ratio of component (A) polycarbonate oligomer in all curing agents is preferably 70% by weight or more, more preferably 80% by weight or more, still more preferably 90% by weight, and particularly preferably It is 95% by weight.

<成分(A)と成分(B)との混合比率について>
本発明のエポキシ樹脂組成物は、成分(A)の水酸基、炭酸エステル基と成分(B)のエポキシ基との反応により硬化する。成分(A)と成分(B)との混合比率は、化学当量の観点からは、成分(A)の水酸基及び炭酸エステル基の合計モル数に対する成分(B)エポキシ基のモル数の比、すなわち、「(成分(B)エポキシ基のモル数)/(成分(A)の水酸基及び炭酸エステル基の合計モル数)」が、通常0.5~10の範囲、好ましくは0.9~5の範囲、より好ましくは0.95~1.05の範囲、特に好ましくは1で調整するとよい。
<About the mixing ratio of component (A) and component (B)>
The epoxy resin composition of the present invention is cured by the reaction between the hydroxyl group or carbonate group of component (A) and the epoxy group of component (B). From the viewpoint of chemical equivalent, the mixing ratio of component (A) and component (B) is the ratio of the number of moles of the epoxy group of component (B) to the total number of moles of the hydroxyl group and carbonate group of component (A), i.e. , "(number of moles of epoxy group in component (B))/(total number of moles of hydroxyl group and carbonate group in component (A))" is usually in the range of 0.5 to 10, preferably 0.9 to 5. It may be adjusted within a range, more preferably within a range of 0.95 to 1.05, particularly preferably within a range of 1.

<成分(A)と成分(B)との混合について>
本発明のエポキシ樹脂組成物は、成分(A)と成分(B)のほか、必要に応じた任意成分を含有するものであり、硬化させる前に均一に混合する必要がある。本発明の成分(A)のポリカーボネートオリゴマーが固体である場合には、特に、均一に混合していることを確認した後に、硬化させる必要がある。これらを混合する方法および装置は、これらの成分を均一に分散混合でき、本発明の効果を著しく損なわない限り特に制限されない。ただし、通常は、これらの成分を所定量秤量して同一の系に存在させた後、例えば、ボールミル、二本ロールミル、三本ロールミル、真空雷潰機、ポットミル、ハイブリッドミキサー等を用いて分散混合を行えばよい。
<About mixing component (A) and component (B)>
The epoxy resin composition of the present invention contains, in addition to component (A) and component (B), optional components as required, and must be uniformly mixed before curing. When the polycarbonate oligomer of component (A) of the present invention is solid, it is necessary to cure it, especially after confirming that it is uniformly mixed. The method and device for mixing these components are not particularly limited as long as these components can be uniformly dispersed and mixed and do not significantly impair the effects of the present invention. However, usually, after weighing a predetermined amount of these components and making them exist in the same system, they are dispersed and mixed using, for example, a ball mill, two-roll mill, three-roll mill, vacuum crusher, pot mill, hybrid mixer, etc. All you have to do is

<硬化方法について>
本発明のエポキシ樹脂組成物を硬化させる方法としては、従来公知のエポキシ樹脂の硬化方法を用いることができ、例えば、エポキシ樹脂組成物を加熱及び/又は光照射して硬化させる方法により行うことができる。
エポキシ樹脂組成物を加熱する場合の加熱温度及び加熱時間は特に限定されるものではなく、エポキシ樹脂組成物の配合に応じて適宜決定することが好ましい。エポキシ樹脂組成物を加熱する際、段階的に昇温しながら加熱することも好ましい。具体的には、本発明の成分(A)ポリカーボネートオリゴマーと成分(B)ポリエポキシ化合物を、通常60~180℃で1~10時間加熱溶融(最適には150℃、6時間)しながら均一に混合して、硬化促進剤等の任意成分を添加・混合してエポキシ樹脂組成物を調製する。次いで、得られたエポキシ樹脂組成物を、加圧下、100~200℃で0.1~60分間プレ成形硬化(最適には6MPa、180℃、30分間)させ、さらに硬化性能の向上を図るために、70~200℃の温度で0.1~10時間の範囲で後硬化(最適には180℃、4時間)を行う。また、エポキシ樹脂組成物の粘性が低い場合には、プレ成形硬化前に増粘を目的として、50~150℃(最適には150℃)の加熱により重合させても良い。
<About the curing method>
As a method for curing the epoxy resin composition of the present invention, conventionally known epoxy resin curing methods can be used. For example, the epoxy resin composition may be cured by heating and/or light irradiation. can.
The heating temperature and heating time when heating the epoxy resin composition are not particularly limited, and are preferably appropriately determined depending on the formulation of the epoxy resin composition. When heating the epoxy resin composition, it is also preferable to heat the epoxy resin composition while increasing the temperature in stages. Specifically, component (A) polycarbonate oligomer and component (B) polyepoxy compound of the present invention are uniformly melted by heating at usually 60 to 180°C for 1 to 10 hours (optimally 150°C for 6 hours). After mixing, optional components such as a curing accelerator are added and mixed to prepare an epoxy resin composition. Next, the obtained epoxy resin composition was pre-molded and cured under pressure at 100 to 200 °C for 0.1 to 60 minutes (optimally 6 MPa, 180 °C, 30 minutes) to further improve the curing performance. Then, post-curing is carried out at a temperature of 70 to 200°C for 0.1 to 10 hours (optimally 180°C for 4 hours). Furthermore, when the epoxy resin composition has a low viscosity, it may be polymerized by heating at 50 to 150°C (optimally 150°C) for the purpose of thickening the composition before pre-molding and curing.

<エポキシ樹脂組成物の用途について>
本発明のエポキシ樹脂組成物は、式(1)及び/又は式(2)及び/又は式(3)で表され、特定の重量平均分子量を有するポリカーボネートオリゴマーを含有することにより、耐熱性のみならず誘電特性が向上し、工業的に有利な効果を発揮する。
本発明のエポキシ樹脂組成物は、半導体封止材、電気絶縁材料、銅張り積層板用樹脂、レジスト、電子部品の封止用樹脂、液晶のカラーフィルター用樹脂、塗料、各種コーティング剤、接着剤、ビルドアップ積層板材料、FRPとして有用である。
<About the uses of epoxy resin compositions>
The epoxy resin composition of the present invention is represented by formula (1) and/or formula (2) and/or formula (3) and contains polycarbonate oligomers having a specific weight average molecular weight. First, the dielectric properties are improved and industrially advantageous effects are exhibited.
The epoxy resin composition of the present invention is applicable to semiconductor encapsulating materials, electrical insulating materials, resins for copper-clad laminates, resists, resins for encapsulating electronic components, resins for color filters of liquid crystals, paints, various coating agents, and adhesives. It is useful as a build-up laminate material, FRP.

以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
なお、以下の例における重量平均分子量(Mw)はゲル浸透クロマトグラフィーにより測定した。その分析方法は以下のとおりである。
<分析方法>
1.ゲル浸透クロマトグラフィー測定
装置:東ソー株式会社製 HLC-8320GPC
流量:0.35ml/min、移動相:テトラヒドロフラン、打ち込み量:10μl
カラム:TSKgel guardcolumn SuperMP(HZ)-N, TSKgel SuperMultiporeHZ-
N×3本
検出器:RI
解析方法:ポリスチレン換算の相対分子量とする。
ポリスチレン標品:東ソー株式会社製 A-500,A-2500,A-5000,F-1,F-2,F-4
2.末端ヒドロキシル濃度の測定
H-NMRを用い、TCE(1,1,1,2-テトラクロロエタン)を内部標準として、ビスフェノールA、ビスフェノールCを標品に用いTCEとの重量比の検量線を作成した。この検量線からフェノール末端重量を求める方法で定量した。
装置:BRUKER社製 AscendTM 400
測定条件:室温、積算回数120回
3.動的粘弾性測定
測定装置:EXSTAR DMS6100(日立ハイテクサイエンス社製)
4.比誘電率・誘電正接
測定装置:PNA-LネットワークアナライザN5230A(アジレント・テクノロジ
ー社製)
空洞共振器 1GHz用 CP431(関東電子応用開発社製)
EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples.
In addition, the weight average molecular weight (Mw) in the following examples was measured by gel permeation chromatography. The analysis method is as follows.
<Analysis method>
1. Gel permeation chromatography measurement equipment: Tosoh Corporation HLC-8320GPC
Flow rate: 0.35ml/min, mobile phase: tetrahydrofuran, injection amount: 10μl
Column: TSKgel guardcolumn SuperMP(HZ)-N, TSKgel SuperMultiporeHZ-
N×3 detector: RI
Analysis method: Relative molecular weight in terms of polystyrene.
Polystyrene standard: Tosoh Corporation A-500, A-2500, A-5000, F-1, F-2, F-4
2. Measuring terminal hydroxyl concentration
Using 1 H-NMR, a calibration curve of the weight ratio with TCE was created using TCE (1,1,1,2-tetrachloroethane) as an internal standard and bisphenol A and bisphenol C as standards. Quantification was performed by determining the weight of the phenol end from this calibration curve.
Equipment: BRUKER AscendTM 400
Measurement conditions: room temperature, 120 accumulations 3. Dynamic viscoelasticity measurement Measuring device: EXSTAR DMS6100 (manufactured by Hitachi High-Tech Science)
4. Relative permittivity/dissipation factor Measuring device: PNA-L network analyzer N5230A (Agilent Technologies)
-manufactured by)
Cavity resonator for 1GHz CP431 (manufactured by Kanto Denshi Applied Development Co., Ltd.)

<参考例1>1,1-ビス(4-ヒドロキシフェニル)シクロドデカンのポリカーボネートオリゴマーの合成
(上記式中のnは、各々独立して1以上の整数である。)
温度計、撹拌機、冷却器を備えた4つ口フラスコに1,1-ビス(4-ヒドロキシフェニル)シクロドデカン477g(1.4モル)、ジフェニルカーボネート203g(1.0モル)を仕込み、反応容器を窒素置換した後、90℃で0.1%炭酸セシウム水溶液0.1gを加えた。200℃まで昇温した後、減圧操作を行い、13.3kPaで4時間、1.3kPaで1時間、230℃に昇温し0.3kPaで1時間、240℃に昇温し0.3kPaで2時間、生成したフェノールを留出させながら反応し、少なくとも上記化学構造式の何れか1種以上で表される1,1-ビス(4-ヒドロキシフェニル)シクロドデカンのポリカーボネートオリゴマー470gを得た。得られたポリカーボネートオリゴマーの重量平均分子量は2423(ゲル浸透クロマトグラフィー)、末端ヒドロキシル濃度は1.62mmol/gであった。
<Reference Example 1> Synthesis of polycarbonate oligomer of 1,1-bis(4-hydroxyphenyl)cyclododecane
(n in the above formula is each independently an integer of 1 or more.)
477 g (1.4 mol) of 1,1-bis(4-hydroxyphenyl)cyclododecane and 203 g (1.0 mol) of diphenyl carbonate were charged into a four-necked flask equipped with a thermometer, stirrer, and condenser, and the reaction was started. After purging the container with nitrogen, 0.1 g of a 0.1% cesium carbonate aqueous solution was added at 90°C. After raising the temperature to 200°C, perform a pressure reduction operation, raise the temperature to 13.3kPa for 4 hours, 1.3kPa for 1 hour, raise the temperature to 230°C and raise the temperature to 0.3kPa for 1 hour, raise the temperature to 240°C and lower the pressure to 0.3kPa. The reaction was carried out for 2 hours while distilling off the produced phenol to obtain 470 g of a polycarbonate oligomer of 1,1-bis(4-hydroxyphenyl)cyclododecane represented by at least one of the above chemical structural formulas. The weight average molecular weight of the obtained polycarbonate oligomer was 2423 (gel permeation chromatography), and the terminal hydroxyl concentration was 1.62 mmol/g.

<実施例1>「参考例1」のポリカーボネートオリゴマーを用いたエポキシ樹脂組成物
エポキシ当量が184~194のビスフェノールA型エポキシ樹脂(製造元:三菱化学株式会社)100gと参考例1で得たポリカーボネートオリゴマー149gを計り取り、プラネタリーミキサーを用いて約150℃で約6時間、加熱混合を行った。室温まで冷却した後、この混合物50gを分け取り、110℃の二本ロールミルへ投入した。ここにトリフェニルホスフィン0.4gを添加し、3分間混練を行った。この混合物を100mm×100mmの押込み型にチャージし、圧縮成形機にて、180℃×30分×6MPaの条件でプレスした。成形した板を180℃熱風循環式オーブンで4時間、後硬化させた。作成した硬化板を切削加工し、物性測定を行った。
硬化板をJISK7171に準拠し、動的粘弾性測定をした結果、ガラス転移温度(Tg)は175℃であった。また、ASTM D 250を参考に、比誘電率、誘電正接を測定した結果、比誘電率は2.68、誘電正接は0.0132であった。
<Example 1> Epoxy resin composition using the polycarbonate oligomer of "Reference Example 1" 100 g of bisphenol A epoxy resin (manufacturer: Mitsubishi Chemical Corporation) with an epoxy equivalent of 184 to 194 and the polycarbonate oligomer obtained in Reference Example 1 149 g was weighed out and heated and mixed at about 150° C. for about 6 hours using a planetary mixer. After cooling to room temperature, 50 g of this mixture was taken out and placed in a two-roll mill at 110°C. 0.4 g of triphenylphosphine was added thereto and kneaded for 3 minutes. This mixture was charged into a 100 mm x 100 mm push die and pressed using a compression molding machine under conditions of 180° C. x 30 minutes x 6 MPa. The formed plate was post-cured for 4 hours in a hot air circulation oven at 180°C. The prepared hardened plate was cut and its physical properties were measured.
The cured plate was subjected to dynamic viscoelasticity measurement according to JISK7171, and as a result, the glass transition temperature (Tg) was 175°C. Further, as a result of measuring the dielectric constant and dielectric loss tangent with reference to ASTM D 250, the dielectric constant was 2.68 and the dielectric loss tangent was 0.0132.

<参考例2>ビスフェノールAのポリカーボネートオリゴマーの合成
温度計、撹拌機、冷却器を備えた4つ口フラスコに2,2-ビス(4-ヒドロキシフェニル)プロパン425.4g(1.9モル)、ジフェニルカーボネート280g(1.3モル)を仕込み、反応容器を窒素置換した後、90℃で0.2%炭酸セシウム水溶液0.57gを加えた。210℃まで昇温した後、減圧度を0.6kPaに調整し、8時間、生成したフェノールを留出させながら反応し、目的とするポリカーボネートオリゴマー510gを得た。得られたポリカーボネートオリゴマーの重量平均分子量は2210(ゲル浸透クロマトグラフィー)、末端ヒドロキシル濃度は1.30mmol/gであった。
<Reference Example 2> Synthesis of polycarbonate oligomer of bisphenol A In a four-necked flask equipped with a thermometer, stirrer, and condenser, 425.4 g (1.9 mol) of 2,2-bis(4-hydroxyphenyl)propane, After charging 280 g (1.3 mol) of diphenyl carbonate and purging the reaction vessel with nitrogen, 0.57 g of a 0.2% aqueous cesium carbonate solution was added at 90°C. After raising the temperature to 210° C., the degree of vacuum was adjusted to 0.6 kPa, and reaction was carried out for 8 hours while distilling the produced phenol to obtain 510 g of the desired polycarbonate oligomer. The weight average molecular weight of the obtained polycarbonate oligomer was 2210 (gel permeation chromatography), and the terminal hydroxyl concentration was 1.30 mmol/g.

<比較例1>「参考例2」のポリカーボネートオリゴマーを用いたエポキシ樹脂組成物
エポキシ当量が184~194のビスフェノールA型エポキシ樹脂(製造元:三菱化学株式会社)100gと参考例2で得たポリカーボネートオリゴマー114gを計り取り、プラネタリーミキサーを用いて約150℃で約6時間、加熱混合を行った。室温まで冷却した後、この混合物50gを分け取り、110℃の二本ロールミルへ投入した。ここにトリフェニルホスフィン0.4gを添加し、3分間混練を行った。この混合物を130℃の熱風循環式オーブンへ入れて25分間保持し、増粘させた。この混合物を100mm×100mmの押込み型にチャージし、圧縮成形機にて、180℃×30分×6MPaの条件でプレスした。成形した板を180℃熱風循環式オーブンで4時間、後硬化させた。作成した硬化板を切削加工し、物性測定を行った。
硬化板をJISK7171に準拠し、動的粘弾性測定をした結果、ガラス転移温度(Tg)は122℃であった。また、ASTM D 250を参考に、比誘電率、誘電正接を測定した結果、比誘電率は2.82、誘電正接は0.0150であった。
<Comparative Example 1> Epoxy resin composition using the polycarbonate oligomer of "Reference Example 2" 100 g of bisphenol A epoxy resin (manufacturer: Mitsubishi Chemical Corporation) with an epoxy equivalent of 184 to 194 and the polycarbonate oligomer obtained in Reference Example 2 114 g was weighed out and heated and mixed at about 150° C. for about 6 hours using a planetary mixer. After cooling to room temperature, 50 g of this mixture was taken out and placed in a two-roll mill at 110°C. 0.4 g of triphenylphosphine was added thereto and kneaded for 3 minutes. The mixture was placed in a hot air circulation oven at 130°C and held for 25 minutes to thicken it. This mixture was charged into a 100 mm x 100 mm push die and pressed using a compression molding machine under conditions of 180° C. x 30 minutes x 6 MPa. The formed plate was post-cured for 4 hours in a hot air circulation oven at 180°C. The prepared hardened plate was cut and its physical properties were measured.
The cured plate was subjected to dynamic viscoelasticity measurement according to JISK7171, and as a result, the glass transition temperature (Tg) was 122°C. Further, as a result of measuring the dielectric constant and dielectric loss tangent with reference to ASTM D 250, the dielectric constant was 2.82 and the dielectric loss tangent was 0.0150.

実施例1と比較例1の結果より、本発明のエポキシ樹脂組成物は、従来公知のエポキシ樹脂組成物に比べて、ガラス転移温度が大きく向上し、耐熱性に優れるのみならず、誘電特性に優れた硬化物を生成することが確認された。 From the results of Example 1 and Comparative Example 1, the epoxy resin composition of the present invention has a significantly improved glass transition temperature and excellent heat resistance as well as improved dielectric properties compared to conventionally known epoxy resin compositions. It was confirmed that an excellent cured product was produced.

Claims (2)

(A)下記式(1)及び/又は式(2)及び/又は式(3)で表され、重量平均分子量(Mw)が500以上10,000以下の範囲であることを特徴とするポリカーボネートオリゴマーと、(B)1分子中に2個以上のエポキシ基を有する下記式(5)で表されるポリエポキシ化合物を、成分(A)と成分(B)との混合比率「(成分(B)エポキシ基のモル数)/(成分(A)の水酸基及び炭酸エステル基の合計モル数)」が0.9~5.0の範囲で含有することを特徴とするエポキシ樹脂組成物。
(式(1)、(2)、(3)中、R、R、R及びRは、各々水素原子を示し、Xは炭素原子数5~15のシクロアルキリデン基(但し、アルキル基を有しても良いシクロヘキシリデン基は除く。)を示し、nは、1以上の整数である。)
(式(5)中のYは、各々独立して炭素原子数1~5のアルキリデン基を示し、mは、0又は1~10の整数である。)
(A) A polycarbonate oligomer represented by the following formula (1) and/or formula (2) and/or formula (3) and characterized by having a weight average molecular weight (Mw) in the range of 500 or more and 10,000 or less and (B) a polyepoxy compound represented by the following formula (5) having two or more epoxy groups in one molecule , at a mixing ratio of component (A) and component (B) "(component (B) An epoxy resin composition characterized in that the ratio (number of moles of epoxy groups)/(total number of moles of hydroxyl groups and carbonate groups of component (A)) is in the range of 0.9 to 5.0.
(In formulas (1), (2), and (3), R 1 , R 2 , R 3 and R 4 each represent a hydrogen atom , and X is a cycloalkylidene group having 5 to 15 carbon atoms. (However, cyclohexylidene groups which may have an alkyl group are excluded. n is an integer of 1 or more .)
(Y in formula (5) each independently represents an alkylidene group having 1 to 5 carbon atoms, and m is 0 or an integer of 1 to 10.)
請求項1記載のエポキシ樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the epoxy resin composition according to claim 1.
JP2020550529A 2018-10-12 2019-10-03 epoxy resin composition Active JP7355304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023145263A JP2023158145A (en) 2018-10-12 2023-09-07 epoxy resin composition

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2018193020 2018-10-12
JP2018193020 2018-10-12
JP2018247436 2018-12-28
JP2018247436 2018-12-28
PCT/JP2019/039054 WO2020075611A1 (en) 2018-10-12 2019-10-03 Epoxy resin composition

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023145263A Division JP2023158145A (en) 2018-10-12 2023-09-07 epoxy resin composition

Publications (2)

Publication Number Publication Date
JPWO2020075611A1 JPWO2020075611A1 (en) 2021-09-16
JP7355304B2 true JP7355304B2 (en) 2023-10-03

Family

ID=70164885

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020550529A Active JP7355304B2 (en) 2018-10-12 2019-10-03 epoxy resin composition
JP2023145263A Pending JP2023158145A (en) 2018-10-12 2023-09-07 epoxy resin composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023145263A Pending JP2023158145A (en) 2018-10-12 2023-09-07 epoxy resin composition

Country Status (5)

Country Link
JP (2) JP7355304B2 (en)
KR (1) KR20210075982A (en)
CN (1) CN112752781B (en)
TW (1) TWI809208B (en)
WO (1) WO2020075611A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023048209A1 (en) * 2021-09-24 2023-03-30
WO2024026679A1 (en) * 2022-08-02 2024-02-08 上纬创新育成股份有限公司 Carbonate ester-containing epoxy resin, preparation method therefor, epoxy cured product prepared therefrom, and method for degrading epoxy cured product
JP2024083262A (en) * 2022-12-09 2024-06-20 上緯創新育成股▲ふん▼有限公司 Polycarbonate oligomer, manufacturing method therefor, curable composition, epoxy cured product produced by the same, and method for degrading epoxy cured product by aminolysis
WO2024119458A1 (en) * 2022-12-09 2024-06-13 上纬创新育成股份有限公司 Polycarbonate oligomer and preparation method therefor, curable composition, epoxy cured product, and method for degrading epoxy cured product by means of aminolysis

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342461A (en) 2002-05-27 2003-12-03 Toray Ind Inc Resin composition for storage medium substrate, storage medium substrate comprising the same, and storage medium
JP2007009187A (en) 2005-05-31 2007-01-18 Toray Ind Inc Transparent resin molded body and eyeglass lens comprising the same
JP2013018240A (en) 2011-07-13 2013-01-31 Mitsubishi Chemicals Corp Method of manufacturing polycarbonate resin molding
JP2013159639A (en) 2012-02-01 2013-08-19 Toyo Ink Sc Holdings Co Ltd Thermosetting resin composition containing carboxy group-containing modified urethane ester resin
JP2015183108A (en) 2014-03-25 2015-10-22 富士フイルム株式会社 Composition, laminate for underfill, laminate, method for manufacturing semiconductor device, and semiconductor device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0781025B2 (en) 1987-10-15 1995-08-30 三井石油化学工業株式会社 Method for producing epoxy foam
US4943619A (en) * 1988-12-19 1990-07-24 The University Of Connecticut Polycarbonate-epoxy polymer
JPH0416337A (en) 1990-05-10 1992-01-21 Mitsui Petrochem Ind Ltd Epoxy resin foamable sheet, foamed cured body and composite material
TW222660B (en) * 1992-02-25 1994-04-21 Gen Electric
JPH05262969A (en) * 1992-03-19 1993-10-12 Nippon G Ii Plast Kk Polycarbonate-based resin composition for optical use
WO2009040921A1 (en) * 2007-09-27 2009-04-02 Panasonic Electric Works Co., Ltd. Epoxy resin composition and, produced therewith, prepreg and metal clad laminate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342461A (en) 2002-05-27 2003-12-03 Toray Ind Inc Resin composition for storage medium substrate, storage medium substrate comprising the same, and storage medium
JP2007009187A (en) 2005-05-31 2007-01-18 Toray Ind Inc Transparent resin molded body and eyeglass lens comprising the same
JP2013018240A (en) 2011-07-13 2013-01-31 Mitsubishi Chemicals Corp Method of manufacturing polycarbonate resin molding
JP2013159639A (en) 2012-02-01 2013-08-19 Toyo Ink Sc Holdings Co Ltd Thermosetting resin composition containing carboxy group-containing modified urethane ester resin
JP2015183108A (en) 2014-03-25 2015-10-22 富士フイルム株式会社 Composition, laminate for underfill, laminate, method for manufacturing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
WO2020075611A1 (en) 2020-04-16
CN112752781A (en) 2021-05-04
JPWO2020075611A1 (en) 2021-09-16
KR20210075982A (en) 2021-06-23
TWI809208B (en) 2023-07-21
CN112752781B (en) 2023-08-15
TW202024175A (en) 2020-07-01
JP2023158145A (en) 2023-10-26

Similar Documents

Publication Publication Date Title
JP7355304B2 (en) epoxy resin composition
KR101524485B1 (en) Modified epoxy resin, epoxy resin compositions and cured articles
JP5166610B2 (en) Epoxy resin, production method thereof, epoxy resin composition and cured product using the same
JP4259536B2 (en) Method for producing phenol resin and method for producing epoxy resin
KR20100008771A (en) Crystalline modified epoxy resin, epoxy resin composition and crystalline cured product
KR101896963B1 (en) Epoxy resin compound and radiant heat circuit board using the same
JP5664817B2 (en) Phenolic hydroxyl group-containing compound, phenol resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
WO2014073557A1 (en) Phenolic-hydroxyl-containing resin, epoxy resin, curable resin composition, substance obtained by curing same, and semiconductor sealant
KR20050030863A (en) Epoxy compound, preparation method thereof, and use thereof
CN111378094B (en) Epoxy resin, epoxy resin composition, and resin cured product
KR100724996B1 (en) Epoxy resins, process for production thereof, epoxy resin compositions and cured articles
JP4237600B2 (en) Epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP5714216B2 (en) Epoxy resin composition, cured product thereof, epoxy resin, production method thereof, semiconductor sealing material, and semiconductor device
JP2013010903A (en) Epoxy resin, curing resin composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP2012046465A (en) Phenolic resin, epoxy resin, method for producing them, epoxy resin composition, and cured product
WO2021201046A1 (en) Polyhydric hydroxy resin, epoxy resin, method for producing same, epoxy resin composition using same and cured product
JP5679248B1 (en) Epoxy compound, epoxy resin, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP5040404B2 (en) Epoxy resin composition for sealing material, cured product thereof and semiconductor device
JP6241186B2 (en) Phenol resin, epoxy resin, production method thereof, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JPH111546A (en) Epoxy resin composition and electronic component
JP6066158B2 (en) Epoxy resin, curable resin composition, cured product thereof, semiconductor sealing material, and semiconductor device
JP2012197366A (en) Epoxy resin composition and molding
JP2004339277A (en) Phenol resin, curing agent for epoxy resin, and epoxy resin composition
JP6288493B2 (en) Phenol resin, epoxy resin, production method thereof, curable composition, cured product thereof, semiconductor sealing material, and printed wiring board
JP2022093044A (en) Polyhydric hydroxy resin, epoxy resin, production methods of them, and epoxy resin composition and cured product that employ them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230605

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230908

R150 Certificate of patent or registration of utility model

Ref document number: 7355304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150