JP7354996B2 - Iron-based alloy sintered body and its manufacturing method - Google Patents
Iron-based alloy sintered body and its manufacturing method Download PDFInfo
- Publication number
- JP7354996B2 JP7354996B2 JP2020199130A JP2020199130A JP7354996B2 JP 7354996 B2 JP7354996 B2 JP 7354996B2 JP 2020199130 A JP2020199130 A JP 2020199130A JP 2020199130 A JP2020199130 A JP 2020199130A JP 7354996 B2 JP7354996 B2 JP 7354996B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- mass
- powder
- iron
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Description
本発明は、鉄基合金焼結体及びその製造方法に関する。 The present invention relates to an iron-based alloy sintered body and a method for manufacturing the same.
粉末冶金技術によれば、複雑な形状の部品を、製品形状に極めて近い形状(いわゆるニアネット形状)で、しかも高い寸法精度で製造することができ、部品の作製において大幅な切削コストの低減を図ることができる。そのため、粉末冶金製品は、各種の機械用部品として、多方面に利用されている。さらに、部品の小型化、軽量化及び複雑化に対応するため、粉末冶金技術に対する要求は一段と高まってきている。 Powder metallurgy technology makes it possible to manufacture parts with complex shapes that are extremely close to the product shape (so-called near-net shape) and with high dimensional accuracy, significantly reducing cutting costs when manufacturing parts. can be achieved. Therefore, powder metallurgy products are used in a wide variety of fields as parts for various machines. Furthermore, demands for powder metallurgy technology are increasing to meet the demands for smaller, lighter, and more complex parts.
上記を背景として、高強度焼結部品を製造する技術が開発されてきた。
例えば、特許文献1では、高強度化のために、焼結後の焼入れにおいて、冷却速度:2℃/sec以上の条件で急冷する方法が提案されている。また、この文献には、急冷により得られる組織は焼入れ組織であり、急冷後に焼き戻しを行うことで、高強度となることが示されている。
特許文献2、3では、焼結体の機械的特性を向上させるために、焼結後に浸炭、焼入れ、焼戻しなどの熱処理を行う方法が提案されている。これらの文献には、焼結後に浸炭、焼入れ、焼戻しなどの追加熱処理を施すことで、焼結ままよりも、高強度となることが示されている。
特許文献4では、焼入れ性元素を合金化した合金鋼粉を使用することで、焼結体の高強度化が可能となる方法が提案されている。
Against this background, techniques for manufacturing high-strength sintered parts have been developed.
For example, Patent Document 1 proposes a method of rapidly cooling at a cooling rate of 2° C./sec or more in quenching after sintering in order to increase the strength. Furthermore, this document states that the structure obtained by rapid cooling is a quenched structure, and that high strength can be obtained by tempering after rapid cooling.
Patent Documents 2 and 3 propose a method of performing heat treatment such as carburizing, quenching, and tempering after sintering in order to improve the mechanical properties of the sintered body. These documents indicate that additional heat treatment such as carburizing, quenching, and tempering after sintering results in higher strength than as-sintered material.
Patent Document 4 proposes a method that makes it possible to increase the strength of a sintered body by using alloyed steel powder alloyed with hardenable elements.
しかしながら、上記特許文献1~4に記載されている従来の技術には、以下に述べる問題があった。
特許文献1は、急冷するための付帯設備が必要でコストがかかる上、急冷によって得られる焼入れ組織が硬くて脆いため、高強度化のため、焼き戻しを必要とするという問題があった。
特許文献2、3は、高強度化のため、浸炭・焼入れ・焼戻しといった追加熱処理が必要であり、そのための熱処理装置が別途用意しなければならず、また、製造プロセスも増えるなどの問題があった。
特許文献4は、Niを必須とするため、コスト高であり、加えて供給不安や価格変動が大きいというデメリットがあった。
However, the conventional techniques described in Patent Documents 1 to 4 have the following problems.
Patent Document 1 has the problem that it requires incidental equipment for rapid cooling, which is costly, and the quenched structure obtained by rapid cooling is hard and brittle, so tempering is required in order to increase the strength.
Patent Documents 2 and 3 require additional heat treatment such as carburizing, quenching, and tempering in order to increase the strength, which requires separate heat treatment equipment and increases the number of manufacturing processes. Ta.
Since Patent Document 4 requires Ni, it has the disadvantages of high cost, as well as supply instability and large price fluctuations.
本発明は、上記の問題を解決すべくなされたものであって、従来から適用されている浸炭・焼入れ・焼戻しを実施しなくても、焼結ままで高強度かつ高靭性を有する鉄基合金焼結体を、その製造方法とともに提供することを目的とする。ここで、焼結ままとは、焼結後、浸炭・焼入れ・焼戻しなどのさらなる熱処理を施さない状態をいう。 The present invention has been made to solve the above problems, and is an iron-based alloy that has high strength and high toughness as sintered without the conventional carburizing, quenching, and tempering processes. The purpose is to provide a sintered body along with a method for manufacturing the same. Here, as-sintered refers to a state in which no further heat treatment such as carburizing, quenching, or tempering is performed after sintering.
本発明の要旨構成は以下のとおりである。
[1]成分組成が、
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C: 0.2質量%以上1.2質量%以下を含み、
残部がFeと不可避不純物からなり、
ミクロ組織が、下部ベイナイト、下部ベイナイトとマルテンサイト、下部ベイナイトと上部ベイナイト又は下部ベイナイトと上部ベイナイトとマルテンサイトからなり、
前記ミクロ組織が、0から100Hv刻みで1000Hvまで階級を設けたビッカース硬さの相対度数分布において、400Hv以上500Hv未満、500Hv以上600Hv未満、600Hv以上700Hv未満、700Hv以上800Hv未満又は800Hv以上900Hv未満のいずれかの階級に最も大きい相対度数を有し、該最も大きい相対度数が0.50超である、鉄基合金焼結体。
[2]粉末冶金用鉄基混合粉を成形し、焼結した後、冷却する工程を含む、鉄基合金焼結体の製造方法であって、
前記粉末冶金用鉄基混合粉が、MoとCuを合金化した合金鋼粉、Cu粉及び黒鉛粉を含み、
前記粉末冶金用鉄基混合粉の成分組成が、
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C:0.2質量%以上1.2質量%以下を含み
残部がFe及び不可避的不純物からなり、
前記粉末冶金用鉄基混合粉中のCu粉の量が0.3質量%以上であり、
前記冷却する工程が、焼結温度から200℃以上350℃以下の温度まで10℃/分以上40℃/分以下の平均冷却速度で冷却し、該温度で30分以上120分以下保持することを含む、
鉄基合金焼結体の製造方法。
[3]前記粉末冶金用鉄基混合粉が、さらに潤滑剤を含む、[2]の鉄基合金焼結体の製造方法。
The gist of the present invention is as follows.
[1] The component composition is
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less,
The remainder consists of Fe and unavoidable impurities,
The microstructure consists of lower bainite, lower bainite and martensite, lower bainite and upper bainite, or lower bainite, upper bainite and martensite,
In the relative frequency distribution of Vickers hardness in which the microstructure is graded from 0 to 100Hv in increments of 1000Hv, the microstructure has a hardness of 400Hv or more and less than 500Hv, 500Hv or more and less than 600Hv, 600Hv or more and less than 700Hv, 700Hv or more and less than 800Hv, or 800Hv or more and less than 900Hv. An iron-based alloy sintered body that has the largest relative frequency in any class, and the largest relative frequency is more than 0.50.
[2] A method for producing an iron-based alloy sintered body, comprising a step of molding and sintering an iron-based mixed powder for powder metallurgy, and then cooling it,
The iron-based mixed powder for powder metallurgy includes alloy steel powder alloyed with Mo and Cu, Cu powder, and graphite powder,
The component composition of the iron-based mixed powder for powder metallurgy is
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less, the remainder consisting of Fe and inevitable impurities,
The amount of Cu powder in the iron-based mixed powder for powder metallurgy is 0.3% by mass or more,
The cooling step includes cooling from the sintering temperature to a temperature of 200°C or more and 350°C or less at an average cooling rate of 10°C/min or more and 40°C/min or less, and holding at the temperature for 30 minutes or more and 120 minutes or less. include,
A method for producing an iron-based alloy sintered body.
[3] The method for producing an iron-based alloy sintered body according to [2], wherein the iron-based mixed powder for powder metallurgy further contains a lubricant.
本発明によれば、従来から適用されている浸炭・焼入れ・焼戻しを実施しなくても、焼結ままで高強度かつ高靭性を有する鉄基合金焼結体が、その製造方法が提供される。
本発明の製造方法は、急冷するための付帯設備を用いることなく、また、焼結後の追加熱処理を施すことなく、高強度かつ高靭性の鉄基合金焼結体が得られるため、有利である。また、本発明の鉄基合金焼結体は、Niを含まずに、高強度かつ高靭性を有するため、経済的な貢献も大きい。
According to the present invention, an iron-based alloy sintered body that has high strength and high toughness as sintered without performing carburizing, quenching, and tempering, which have been conventionally applied, and a method for manufacturing the same are provided. .
The manufacturing method of the present invention is advantageous because a high-strength and high-toughness iron-based alloy sintered body can be obtained without using incidental equipment for rapid cooling and without performing additional heat treatment after sintering. be. Further, since the iron-based alloy sintered body of the present invention does not contain Ni and has high strength and toughness, it also makes a large economic contribution.
<鉄基焼結体の製造方法>
本発明の一態様である鉄基合金焼結体の製造方法は、粉末冶金用鉄基混合粉を成形し、焼結した後、冷却する工程を含む。
<Method for producing iron-based sintered body>
A method for producing an iron-based alloy sintered body, which is one embodiment of the present invention, includes the steps of molding and sintering an iron-based mixed powder for powder metallurgy, and then cooling it.
[粉末冶金用鉄基混合粉]
本発明の製造方法に用いられる粉末冶金用鉄基混合粉(以下、「混合粉」ともいう。)は、MoとCuを合金化した合金鋼粉、Cu粉及び黒鉛粉を含み、
前記粉末冶金用鉄基混合粉の成分組成が、
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C:0.2質量%以上1.2質量%以下を含み
残部がFe及び不可避的不純物からなり、
前記粉末冶金用鉄基混合粉中のCu粉の量が0.3質量%以上である。
ここで、「鉄基」とは、Feを50質量%以上含有することをいう。
[Iron-based mixed powder for powder metallurgy]
The iron-based mixed powder for powder metallurgy (hereinafter also referred to as "mixed powder") used in the production method of the present invention includes alloy steel powder alloyed with Mo and Cu, Cu powder, and graphite powder,
The composition of the iron-based mixed powder for powder metallurgy is
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less, the remainder consisting of Fe and inevitable impurities,
The amount of Cu powder in the iron-based mixed powder for powder metallurgy is 0.3% by mass or more.
Here, "iron-based" means containing 50% by mass or more of Fe.
(MoとCuを合金化した合金鋼粉)
MoとCuを合金化した合金鋼粉(以下、「合金鋼粉」ともいう。)は、MoとCuを必須成分として含有する鉄基合金からなる。以下、合金鋼粉の成分組成は、合金鋼粉100質量%に対するものである。
(Alloy steel powder alloyed with Mo and Cu)
Alloy steel powder obtained by alloying Mo and Cu (hereinafter also referred to as "alloy steel powder") is made of an iron-based alloy containing Mo and Cu as essential components. Hereinafter, the composition of the alloy steel powder is based on 100% by mass of the alloy steel powder.
合金鋼粉の合金化元素にMoとCuを選んだ理由について説明する。
焼結ままで十分な引張強度を有するためには、焼入れ性向上元素の合金化が必要である。
焼入れ性向上元素が有する焼入れ性向上効果は、高い方から順に、Mn>Mo>P>Cr>Si>Ni>Cu>Sである。
さらに、一般的な合金鋼粉の製造では、アトマイズ法が採用されることが多く、アトマイズ法で製造した粉末には、熱処理(仕上還元)が施される。上記の焼入れ性向上元素のうち、仕上還元の一般的な条件である950℃、H2雰囲気における還元されやすさは、高い方から順に、Mo>Cu>S>Niである。
MnとCrは、仕上還元の一般的な条件である950℃、H2雰囲気で還元することができない。
これらの点から、Mo及びCuを合金化元素として選んだ。
The reason why Mo and Cu were selected as the alloying elements of the alloyed steel powder will be explained.
In order to have sufficient tensile strength as sintered, alloying with elements that improve hardenability is necessary.
The hardenability-improving effects of the hardenability-improving elements are, in descending order of magnitude, Mn>Mo>P>Cr>Si>Ni>Cu>S.
Furthermore, in the production of general alloy steel powder, the atomization method is often adopted, and the powder produced by the atomization method is subjected to heat treatment (finish reduction). Among the above hardenability-improving elements, the ease of reduction at 950° C. and H 2 atmosphere, which is the general condition for finish reduction, is in descending order of Mo>Cu>S>Ni.
Mn and Cr cannot be reduced at 950° C. and H 2 atmosphere, which are the general conditions for final reduction.
From these points, Mo and Cu were selected as alloying elements.
MoとCuを合金化した合金鋼粉としては、Mo:0.5質量%以上2.0質量%以下、Cu:1.5質量%以上10.0質量%以下を含有し、残部がFe及び不可避的不純物である合金鋼粉が好ましい。 The alloy steel powder alloyed with Mo and Cu contains Mo: 0.5% by mass or more and 2.0% by mass or less, Cu: 1.5% by mass or more and 10.0% by mass or less, and the balance is Fe and Preferably, alloyed steel powder is an unavoidable impurity.
Mo:0.5質量%以上2.0質量%以下
Moは、焼入れ性向上元素であり、焼入れ性向上効果を発揮させるために、Mo含有量は0.5質量%以上とすることができ、好ましくは0.7質量%以上であり、より好ましくは1.0質量%以上である。一方、Mo含有量が大きくなりすぎると、高合金化によりプレス時における合金鋼粉の圧縮性が低下し、成形体密度が低下して、焼入れ性向上による強度上昇が、密度低下による強度低下に打ち消され、結果的に焼結体の強度が低下する。このような事態を回避するため、Mo含有量は2.0質量%以下とすることができ、好ましくは1.5質量%以下である。
Mo: 0.5% by mass or more and 2.0% by mass or less Mo is an element that improves hardenability, and in order to exhibit the effect of improving hardenability, the Mo content can be 0.5% by mass or more, Preferably it is 0.7% by mass or more, more preferably 1.0% by mass or more. On the other hand, if the Mo content becomes too large, the compressibility of the alloyed steel powder during pressing will decrease due to high alloying, and the density of the compact will decrease. As a result, the strength of the sintered body decreases. In order to avoid such a situation, the Mo content can be set to 2.0% by mass or less, preferably 1.5% by mass or less.
Cu:1.5質量%以上10.0質量%以下
Cuは、焼入れ性向上元素であり、焼入れ性向上効果を十分に発揮させるため、Cu含有量は1.5質量%以上とすることができ、好ましくは2.0質量%以上であり、より好ましくは3.0質量%以上である。一方、Cu含有量が大きくなりすぎると、高合金化によりプレス時における合金鋼粉の圧縮性が低下し、成形体密度が低下して、焼入れ性向上による強度上昇が、密度低下による強度低下に打ち消され、結果的に焼結体の強度が低下する。このような事態を回避するため、Cu含有量は10.0質量%以下とすることができ、好ましくは8.0質量%以下、より好ましくは4.0質量%以下である。
Cu: 1.5% by mass or more and 10.0% by mass or less Cu is an element that improves hardenability, and in order to fully exhibit the effect of improving hardenability, the Cu content can be 1.5% by mass or more. , preferably 2.0% by mass or more, more preferably 3.0% by mass or more. On the other hand, if the Cu content becomes too large, the compressibility of the alloyed steel powder during pressing will decrease due to high alloying, and the density of the compact will decrease. As a result, the strength of the sintered body decreases. In order to avoid such a situation, the Cu content can be set to 10.0% by mass or less, preferably 8.0% by mass or less, and more preferably 4.0% by mass or less.
合金鋼粉は、上記のMo及びCu以外は、Fe及び不可避的不純物からなる。不可避的不純物とは、製造工程等で不可避的に混入する不純物であり、例えば、C、S、O、N、Mn、Crからなる群より選択される1又は2以上を含有することができる。不可避的不純物としての前記元素の含有量は特に限定されないが、それぞれ以下の範囲であることが好ましい。
C:0.02質量%以下
O:0.3質量%以下、より好ましくは0.25質量%以下
N:0.004質量%以下
S:0.03質量%以下
Mn:0.2質量%以下、より好ましくは0.15質量%以下
Cr:0.2質量%以下、より好ましくは0.10質量%以下
The alloy steel powder consists of Fe and inevitable impurities other than the above-mentioned Mo and Cu. Unavoidable impurities are impurities that are unavoidably mixed in during manufacturing processes, etc., and can contain, for example, one or more selected from the group consisting of C, S, O, N, Mn, and Cr. The content of the above elements as unavoidable impurities is not particularly limited, but is preferably within the following ranges.
C: 0.02% by mass or less O: 0.3% by mass or less, more preferably 0.25% by mass or less N: 0.004% by mass or less S: 0.03% by mass or less Mn: 0.2% by mass or less , more preferably 0.15% by mass or less Cr: 0.2% by mass or less, more preferably 0.10% by mass or less
合金鋼粉の平均粒子径が小さくなるほど成形時にスプリングバックが増加し、成形体に割れが生じるため、平均粒子径は、30μm以上が好ましく、50μm以上がより好ましい。また、平均粒子径が大きくなるほど焼結体の気孔が大きくなり、強度が低下するため、平均粒子径は120μm以下が好ましく、100μm以下がより好ましい。本明細書において、平均粒子径は、重量累積分布のメジアン径D50をいい、JIS Z 8801-1に規定される篩を用いて粒度分布を測定し、得られた粒度分布から積算粒度分布を作成したときに、篩上及び篩下の重量が50%となる粒子径を求めたときの値である。合金鋼粉の最大粒子径は120μmが好ましい。 As the average particle size of the alloy steel powder becomes smaller, springback increases during molding and cracks occur in the compact, so the average particle size is preferably 30 μm or more, more preferably 50 μm or more. In addition, the larger the average particle size, the larger the pores of the sintered body and the lower the strength, so the average particle size is preferably 120 μm or less, more preferably 100 μm or less. In this specification, the average particle size refers to the median diameter D50 of cumulative weight distribution, and the particle size distribution is measured using a sieve specified in JIS Z 8801-1, and the cumulative particle size distribution is created from the obtained particle size distribution. This is the value obtained when determining the particle size at which the weight on the sieve and under the sieve becomes 50%. The maximum particle size of the alloy steel powder is preferably 120 μm.
合金鋼粉の製造方法は、特に限定されず、任意の方法で製造することができる。例えば、合金鋼粉は、アトマイズ法によって製造されるアトマイズ粉であることができ、中でも製造コストが低く、大量生産が容易な水アトマイズ法によって製造される水アトマイズ粉であることが好ましい。アトマイズ法で合金鋼粉を製造する場合、例えば、所定の成分組成を有するように調整された溶鋼をアトマイズして粉末とし、必要に応じて還元及び/又は分級して合金鋼粉を得ることができる。 The method for producing alloy steel powder is not particularly limited, and any method can be used to produce the alloy steel powder. For example, the alloy steel powder can be an atomized powder produced by an atomization method, and preferably a water atomized powder produced by a water atomization method, which has a low manufacturing cost and is easy to mass-produce. When producing alloy steel powder by the atomization method, for example, molten steel adjusted to have a predetermined composition may be atomized to powder, and if necessary, reduced and/or classified to obtain alloy steel powder. can.
(Cu粉)
Cu粉は、焼入れ性向上により、焼結体の強度を高める効果を有し、焼結時に溶融して液相となり、合金鋼粉の粒子を互いに固着させる作用も有している。この点から、粉末冶金用鉄基混合粉中のCu粉の量は0.3質量%以上であり、好ましくは0.7質量%以上、より好ましくは1.0質量%以上とする。一方、Cu粉の量が4.0質量%を超えると、Cuの膨張による焼結密度低下により焼結体の引張強度が低下する。したがって、Cu粉の量は4.0質量%以下、好ましくは3.0質量%以下、より好ましくは2.0質量%以下とする。
(Cu powder)
The Cu powder has the effect of increasing the strength of the sintered body by improving the hardenability, and also has the effect of melting into a liquid phase during sintering and making the particles of the alloy steel powder stick to each other. From this point of view, the amount of Cu powder in the iron-based mixed powder for powder metallurgy is 0.3% by mass or more, preferably 0.7% by mass or more, and more preferably 1.0% by mass or more. On the other hand, when the amount of Cu powder exceeds 4.0% by mass, the tensile strength of the sintered body decreases due to a decrease in sintered density due to expansion of Cu. Therefore, the amount of Cu powder is 4.0% by mass or less, preferably 3.0% by mass or less, more preferably 2.0% by mass or less.
Cu粉の平均粒子径は、粒度の大きいCu粉が焼結時に溶融して、焼結体の体積を膨張させ、焼結体の密度の低下から回避する点から、50μm以下が好ましく、40μm以下がより好ましい。Cu粉の平均粒子径の下限に特に制限はないが、製造コスト低減のために0.5μm以上とすることが好ましい。 The average particle diameter of the Cu powder is preferably 50 μm or less, and 40 μm or less, from the viewpoint of avoiding a decrease in the density of the sintered body by melting the Cu powder with a large particle size during sintering and expanding the volume of the sintered body. is more preferable. Although there is no particular restriction on the lower limit of the average particle size of the Cu powder, it is preferably 0.5 μm or more in order to reduce manufacturing costs.
(黒鉛粉)
黒鉛粉を構成するCは、焼結時にFeに固溶し、固溶強化、焼入れ性向上により、焼結体の強度をさらに向上させる。この点から、粉末冶金用鉄基混合粉中の黒鉛粉の量は0.2質量%以上であり、好ましくは0.4質量%以上、より好ましくは0.5質量%以上とする。一方、黒鉛粉の量が1.2質量%を超えると過共析になるため、セメンタイトが多く析出し、かえって焼結体の強度が低下する。そのため、黒鉛粉の量は1.2質量%以下であり、好ましくは1.0質量%以下、より好ましくは0.8%質量以下とする。
黒鉛粉の平均粒子径は1μm以上50μm以下とすることが好ましい。
(graphite powder)
C, which constitutes the graphite powder, dissolves in Fe during sintering, and further improves the strength of the sintered body through solid solution strengthening and improved hardenability. From this point of view, the amount of graphite powder in the iron-based mixed powder for powder metallurgy is 0.2% by mass or more, preferably 0.4% by mass or more, and more preferably 0.5% by mass or more. On the other hand, if the amount of graphite powder exceeds 1.2% by mass, hypereutectoid formation occurs, and a large amount of cementite precipitates, which actually reduces the strength of the sintered body. Therefore, the amount of graphite powder is 1.2% by mass or less, preferably 1.0% by mass or less, more preferably 0.8% by mass or less.
The average particle diameter of the graphite powder is preferably 1 μm or more and 50 μm or less.
(混合粉)
混合粉は、成分組成が、
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C:0.2質量%以上1.2質量%以下を含み
残部がFe及び不可避的不純物となるように、合金鋼粉、Cu粉及び黒鉛粉を配合したものであることができる。ただし、混合粉中のCu粉の量は0.3質量%以上とする。
成分組成におけるCuは、3.5質量%以上が好ましく、また、8.0質量%以下が好ましい。Cuは、Cu粉又はMoとCuを合金化した合金鋼粉に由来するものであることができる。
成分組成におけるMoは、0.7質量%以上が好ましく、1.0質量%以上がより好ましく、また、1.5質量%以下がより好ましい。
成分組成におけるCは、0.4質量%以上がより好ましく、また、1.0質量%以下がより好ましい。Cは、黒鉛粉に由来するものであることができる。
混合粉における不可避的不純物は、例えば、C、S、O、N、Mn、Crからなる群より選択される1又は2以上を含有することができ、不可避的不純物としての前記元素の含有量は特に限定されないが、それぞれ以下の範囲であることが好ましい。
C:0.02質量%以下
O:0.3質量%以下、より好ましくは0.25質量%以下
N:0.004質量%以下
S:0.03質量%以下
Mn:0.2質量%以下、より好ましくは0.15質量%以下
Cr:0.2質量%以下、より好ましくは0.10質量%以下
(mixed powder)
The mixed powder has a component composition of
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less, with the remainder being Fe and inevitable impurities, including alloy steel powder and Cu powder. and graphite powder. However, the amount of Cu powder in the mixed powder is 0.3% by mass or more.
Cu in the component composition is preferably 3.5% by mass or more, and preferably 8.0% by mass or less. Cu can be derived from Cu powder or alloyed steel powder obtained by alloying Mo and Cu.
Mo in the component composition is preferably 0.7% by mass or more, more preferably 1.0% by mass or more, and more preferably 1.5% by mass or less.
C in the component composition is more preferably 0.4% by mass or more, and more preferably 1.0% by mass or less. C can be derived from graphite powder.
The inevitable impurities in the mixed powder can contain, for example, one or more selected from the group consisting of C, S, O, N, Mn, and Cr, and the content of the above elements as the inevitable impurities is Although not particularly limited, the following ranges are preferable.
C: 0.02% by mass or less O: 0.3% by mass or less, more preferably 0.25% by mass or less N: 0.004% by mass or less S: 0.03% by mass or less Mn: 0.2% by mass or less , more preferably 0.15% by mass or less Cr: 0.2% by mass or less, more preferably 0.10% by mass or less
(潤滑剤)
粉末冶金用鉄基混合粉は、さらに潤滑剤を含有することができる。潤滑剤を含有させることで、成形体の金型からの抜出を容易にすることができる。潤滑剤は、特に限定されない。例えば、有機潤滑剤を使用することができ、脂肪酸、脂肪酸アミド、脂肪酸ビスアミド及び金属石鹸からなる群より選択される1又は2以上を用いることができる。金属石鹸(例えば、ステアリン酸リチウム、ステアリン酸亜鉛)、アミド系潤滑剤(例えば、エチレンビスステアリン酸アミド)等が好ましい。
(lubricant)
The iron-based mixed powder for powder metallurgy may further contain a lubricant. By containing a lubricant, the molded article can be easily extracted from the mold. The lubricant is not particularly limited. For example, an organic lubricant can be used, and one or more selected from the group consisting of fatty acids, fatty acid amides, fatty acid bisamides, and metal soaps can be used. Metal soaps (eg, lithium stearate, zinc stearate), amide lubricants (eg, ethylene bisstearamide), and the like are preferred.
潤滑剤の配合量は、粉末冶金用鉄基混合粉100質量部に対して、0.1質量部以上1.2質量部以下が好ましい。0.1質量部以上であれば、成形体の金型からの抜出を十分容易にすることができ、一方、1.2質量部以下であれば、混合粉全体に占める非金属の割合が多くなって焼結体の引張強度が低下することを回避できる。混合粉は、本発明の効果を損なわない範囲で、公知の添加剤等を含有することができる。 The blending amount of the lubricant is preferably 0.1 parts by mass or more and 1.2 parts by mass or less with respect to 100 parts by mass of the iron-based mixed powder for powder metallurgy. If it is 0.1 parts by mass or more, the molded product can be pulled out from the mold with sufficient ease, while if it is 1.2 parts by mass or less, the proportion of nonmetal in the entire mixed powder will be reduced. It is possible to avoid a decrease in the tensile strength of the sintered body due to an increase in the number of particles. The mixed powder can contain known additives and the like within a range that does not impair the effects of the present invention.
[成形工程]
本発明の鉄基合金焼結体の製造方法は、粉末冶金用鉄基混合粉を成形する工程を含む。潤滑剤を含有する混合粉を用いることが好ましい。
[Molding process]
The method for producing an iron-based alloy sintered body of the present invention includes a step of molding an iron-based mixed powder for powder metallurgy. It is preferable to use a mixed powder containing a lubricant.
成形は、金型に混合粉を充填して加圧することにより行うことができる。成形の際の圧力は、400MPa以上1000MPa以下が好ましい。400MPa未満では、成形密度が低く、それに伴い焼結体の密度が低下し、引張強度が低下し得る。一方、1000MPa超では、金型への負担が増え、金型寿命が短くなり、経済的な負荷が増加する。
成形の際の温度は、常温(約20℃)以上160℃以下が好ましい。常温を下回る温度とするには、そのような温度に冷却する設備が必要になる一方、温度の上昇と共に成形密度は増加するため、常温を下回る温度で成形するメリットが薄い。160℃超では、付帯設備が必要となり、経済的な負荷が増える。
Molding can be performed by filling a mold with the mixed powder and applying pressure. The pressure during molding is preferably 400 MPa or more and 1000 MPa or less. If it is less than 400 MPa, the compacted density is low, and accordingly the density of the sintered body is reduced, and the tensile strength may be reduced. On the other hand, if it exceeds 1000 MPa, the load on the mold increases, the life of the mold becomes short, and the economic burden increases.
The temperature during molding is preferably at least room temperature (about 20°C) and at most 160°C. In order to achieve a temperature below room temperature, equipment for cooling to such a temperature is required, while the molding density increases as the temperature rises, so there is little merit in molding at a temperature below room temperature. When the temperature exceeds 160°C, additional equipment is required, which increases the economic burden.
[焼結工程]
本発明の鉄基合金焼結体の製造方法は、上記の成形工程により得られた成形体を焼結する工程を含む。焼結の際の焼結温度は、1100℃以上1300℃以下が好ましい。1100℃未満であると、焼結が十分に進行せず、引張強度が低下し得る。1300℃超であると、焼結体の引張強度は増加するが、製造コストの増加を招く。
焼結時間は、15分以上50分以下が好ましい。15分未満であると、焼結が十分に行われず、焼結不足となり、引張強度が低下し得る。50分以上であると、焼結に必要な製造コストの増加が顕著となる。
[Sintering process]
The method for producing an iron-based alloy sintered body of the present invention includes the step of sintering the molded body obtained by the above-mentioned forming process. The sintering temperature during sintering is preferably 1100°C or more and 1300°C or less. If the temperature is less than 1100°C, sintering will not proceed sufficiently and the tensile strength may decrease. If the temperature exceeds 1300°C, the tensile strength of the sintered body increases, but this causes an increase in manufacturing cost.
The sintering time is preferably 15 minutes or more and 50 minutes or less. If the time is less than 15 minutes, sintering will not be performed sufficiently, resulting in insufficient sintering, and the tensile strength may decrease. If the time is 50 minutes or more, the manufacturing cost required for sintering will increase significantly.
[冷却工程]
本発明の鉄基合金焼結体の製造方法における、焼結後の冷却工程は、焼結ままで高強度かつ高靭性な焼結体を得る上で重要である。冷却工程は、焼結温度から200℃以上350℃以下の温度まで10℃/分以上40℃/分以下の平均冷却速度で冷却し、該温度で30分以上120分以下保持することを含む。
[Cooling process]
In the method for producing an iron-based alloy sintered body of the present invention, the cooling step after sintering is important in obtaining a sintered body that has high strength and high toughness as sintered. The cooling step includes cooling from the sintering temperature to a temperature of 200° C. or more and 350° C. or less at an average cooling rate of 10° C./min or more and 40° C./min or less, and holding at the temperature for 30 minutes or more and 120 minutes or less.
焼結後の冷却における平均冷却速度は、10℃/分未満では、十分に焼入れを行うことができず、引張強度が低下し得、また、冷却速度40℃/分超では、冷却速度を促進する付帯設備が必要となり、製造コストが増加する。そのため、焼結後の冷却における平均冷却速度は、10℃/分以上40℃/分以下とする。平均冷却速度は、20℃/分以上35℃/分以下が好ましい。 If the average cooling rate in cooling after sintering is less than 10°C/min, sufficient quenching cannot be performed and the tensile strength may decrease, and if the cooling rate exceeds 40°C/min, the cooling rate will be accelerated. Additional equipment is required, which increases manufacturing costs. Therefore, the average cooling rate in cooling after sintering is 10° C./min or more and 40° C./min or less. The average cooling rate is preferably 20°C/min or more and 35°C/min or less.
冷却工程では、焼結温度から200℃以上350℃以下の温度まで冷却し、その温度で30分以上120分以下の保持を行う。保持温度が200℃未満又は350℃超では、後述する所定のミクロ組織が得られず、高強度と高靭性の両立が困難となる。また、鉄基焼結合金体について、ビッカース硬さの測定を行った場合、後述する所定の相対度数分布を得ることが困難となる。そのため、保持温度は200℃以上350℃以下の温度とし、好ましくは200℃以上250℃以下の温度である。 In the cooling step, the material is cooled from the sintering temperature to a temperature of 200° C. or more and 350° C. or less, and held at that temperature for 30 minutes or more and 120 minutes or less. If the holding temperature is less than 200°C or more than 350°C, a predetermined microstructure described below cannot be obtained, and it becomes difficult to achieve both high strength and high toughness. Furthermore, when measuring the Vickers hardness of an iron-based sintered alloy body, it becomes difficult to obtain a predetermined relative frequency distribution, which will be described later. Therefore, the holding temperature is 200°C or more and 350°C or less, preferably 200°C or more and 250°C or less.
保持時間が30分未満では、所定のミクロ組織への変態が不十分であり、高強度と高靭性の両立が困難となる。一方、120分超では、所定のミクロ組織への変態が完了しているため、これ以上の保持をする意義に乏しい。そのため、保持時間は30分以上120分以下とし、好ましくは60分以上120分以下である。 If the holding time is less than 30 minutes, transformation to a predetermined microstructure will be insufficient, and it will be difficult to achieve both high strength and high toughness. On the other hand, if the time exceeds 120 minutes, the transformation to a predetermined microstructure has been completed, so there is little point in holding it for any longer than this. Therefore, the holding time is 30 minutes or more and 120 minutes or less, preferably 60 minutes or more and 120 minutes or less.
保持後の冷却は特に限定されず、例えば空冷で常温まで冷却することができる。 Cooling after holding is not particularly limited, and can be cooled to room temperature by air cooling, for example.
焼結及びその後の冷却工程において、雰囲気は特に限定されないが、RXガス(プロパン変性ガス)雰囲気、水素を含む窒素ガス雰囲気、アンモニア分解ガス雰囲気又は真空中が好ましい。 In the sintering and subsequent cooling steps, the atmosphere is not particularly limited, but preferably an RX gas (propane modified gas) atmosphere, a nitrogen gas atmosphere containing hydrogen, an ammonia decomposition gas atmosphere, or a vacuum.
本発明の製造方法によれば、焼結ままで高強度かつ高靭性を有する鉄基合金焼結体を得ることができる。浸炭、焼入れ、焼戻し等の処理は実施してもよいが、製造コストの抑制等の点から実施しないことが好ましい。 According to the manufacturing method of the present invention, an iron-based alloy sintered body having high strength and high toughness can be obtained as-sintered. Treatments such as carburizing, quenching, and tempering may be performed, but are preferably not performed from the viewpoint of reducing manufacturing costs.
[鉄基合金焼結体]
本発明の別態様である鉄基合金焼結体は、
成分組成が、
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C: 0.2質量%以上1.2質量%以下を含み、
残部がFeと不可避不純物からなり、
ミクロ組織が、下部ベイナイト、下部ベイナイトと上部ベイナイト、下部ベイナイトとマルテンサイト又は下部ベイナイトと上部ベイナイトとマルテンサイトからなり、
ミクロ組織が、0から100刻みで1000まで階級を設けたビッカース硬さの相対度数分布において、400Hv以上500Hv未満、500Hv以上600Hv未満、600Hv以上700Hv未満、700Hv以上800Hv未満又は800Hv以上900Hv未満のいずれかの階級に最も大きい相対度数を有し、該最も大きい相対度数が0.50超である。このような鉄基合金焼結体は、高強度であり、かつ高靭性を有し、本発明の鉄基合金焼結体の製造方法により得ることができる。
[Iron-based alloy sintered body]
The iron-based alloy sintered body, which is another embodiment of the present invention, is
The ingredient composition is
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less,
The remainder consists of Fe and unavoidable impurities,
The microstructure consists of lower bainite, lower bainite and upper bainite, lower bainite and martensite, or lower bainite, upper bainite and martensite,
In the relative frequency distribution of Vickers hardness with a grade from 0 to 100 in increments of 100, the microstructure is 400 Hv or more and less than 500 Hv, 500 Hv or more and less than 600 Hv, 600 Hv or more and less than 700 Hv, 700 Hv or more and less than 800 Hv, or 800 Hv or more and less than 900 Hv. has the largest relative frequency in that class, and the largest relative frequency is greater than 0.50. Such an iron-based alloy sintered body has high strength and high toughness, and can be obtained by the method for manufacturing an iron-based alloy sintered body of the present invention.
(ミクロ組織)
本発明の鉄基合金焼結体のミクロ組織は、下部ベイナイト、下部ベイナイトと上部ベイナイト、下部ベイナイトとマルテンサイト又は下部ベイナイトと上部ベイナイトとマルテンサイトからなる。このようなミクロ組織を「所定のミクロ組織」という。下部ベイナイトを必須とし、任意で上部ベイナイト及びマルテンサイトの一方又は両方を含む組織とすることにより、強度と靭性の両方の向上を図ることができる。
(microstructure)
The microstructure of the iron-based alloy sintered body of the present invention consists of lower bainite, lower bainite and upper bainite, lower bainite and martensite, or lower bainite, upper bainite and martensite. Such a microstructure is called a "predetermined microstructure." By creating a structure in which lower bainite is essential and optionally includes one or both of upper bainite and martensite, both strength and toughness can be improved.
鉄基焼結体のミクロ組織は、光学顕微鏡を用いた観察によって評価することができる。 The microstructure of the iron-based sintered body can be evaluated by observation using an optical microscope.
(ビッカース硬さの相対度数分布)
本発明の鉄基合金焼結体のミクロ組織は、マイクロビッカース硬度測定の測定値について、0から100刻みで1000まで階級を設けた相対度数分布において、400Hv以上500Hv未満、500Hv以上600Hv未満、600Hv以上700Hv未満、700Hv以上800Hv未満又は800Hv以上900Hv未満のいずれかの階級に最も大きい相対度数を有し、該最も大きい相対度数が0.50超である。このような相対度数分布を「所定の相対度数分布」という。ここで、相対度数分布における0から100刻みで1000までの階級は、100Hv未満、100Hv以上200Hv未満、200Hv以上300Hv未満、300Hv以上400Hv未満、400Hv以上500Hv未満、500Hv以上600Hv未満、600Hv以上700Hv未満、700Hv以上800Hv未満又は800Hv以上900Hv未満、900Hv以上1000Hv未満であり、全階級の度数の合計は1である。
(Relative frequency distribution of Vickers hardness)
The microstructure of the iron-based alloy sintered body of the present invention has a relative frequency distribution of 400 Hv or more, less than 500 Hv, 500 Hv or more and less than 600 Hv, 600 Hv, in a relative frequency distribution with a class from 0 to 1000 in increments of 100 for the measured value of micro Vickers hardness measurement. It has the largest relative frequency in any of the following classes: 700 Hv to less than 800 Hv, 800 Hv to less than 900 Hv, and the largest relative frequency is greater than 0.50. Such a relative frequency distribution is referred to as a "predetermined relative frequency distribution." Here, the classes from 0 to 1000 in the relative frequency distribution are less than 100Hv, 100Hv or more and less than 200Hv, 200Hv or more and less than 300Hv, 300Hv or more and less than 400Hv, 400Hv or more and less than 500Hv, 500Hv or more and less than 600Hv, 600Hv or more and less than 700Hv. , 700 Hv or more and less than 800 Hv, 800 Hv or more and less than 900 Hv, or 900 Hv or more and less than 1000 Hv, and the total frequency of all classes is 1.
100Hv未満、100Hv以上200Hv未満、200Hv以上300Hv未満、300Hv以上400Hv未満のいずれの階級に最も大きい相対度数を有する場合、軟質なミクロ組織のため、十分な高強度を得ることができない。
一方、900Hv以上1000Hv未満の相対度数が最も大きい場合、硬質なミクロ組織のため、かえって強度が低下する。
When the relative frequency is the largest in any of the following classes: less than 100 Hv, 100 Hv or more and less than 200 Hv, 200 Hv or more and less than 300 Hv, or 300 Hv or more and less than 400 Hv, sufficient high strength cannot be obtained due to the soft microstructure.
On the other hand, when the relative frequency of 900 Hv or more and less than 1000 Hv is the largest, the strength is reduced due to the hard microstructure.
引張強度の点から、600Hv以上700Hv未満の階級が、最も大きい相対度数を有することが好ましい。 From the viewpoint of tensile strength, it is preferable that the class of 600 Hv or more and less than 700 Hv has the largest relative frequency.
ビッカース硬さは、マイクロビッカース硬度測定により、以下のようにして求めることができる。
焼結体の断面の中央部に、圧子(対面角136度のダイヤモンド正四角錐)を、押し込み荷重98N、保持時間10秒で打痕する。打痕は気孔から5μm以上離れているものとし、打痕予定位置に気孔が存在する場合は打痕せず、次の打痕予定位置で打痕を行う。
Vickers hardness can be determined by micro Vickers hardness measurement as follows.
An indenter (diamond square pyramid with a facing angle of 136 degrees) is indented in the center of the cross section of the sintered body under an indentation load of 98 N and a holding time of 10 seconds. The dent should be at least 5 μm away from the pores, and if a pore exists at the expected dent position, the dent is not made and the next dent is made at the next planned dent position.
ビッカース硬さの相対度数分布は、以下のようにして得ることができる。
上記のようにして、30点以上についてビッカース硬さの測定を行い、0から100刻みで1000までの階級に属すデータの数により、ビッカース硬さの相対度数分布を得る。
The relative frequency distribution of Vickers hardness can be obtained as follows.
As described above, the Vickers hardness is measured at 30 or more points, and the relative frequency distribution of the Vickers hardness is obtained based on the number of data belonging to the class from 0 to 1000 in increments of 100.
(成分組成)
鉄基焼結体は、成分組成が、
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C:0.2質量%以上1.2質量%以下を含み、
残部がFe及び不可避的不純物である。
成分組成におけるCuは、3.5質量%以上が好ましく、また、8.0質量%以下が好ましい。Cuは、Cu粉又はMoとCuを合金化した合金鋼粉に由来するものであることができる。
成分組成におけるMoは、0.7質量%以上が好ましく、1.0質量%以上がより好ましく、また、1.5質量%以下がより好ましい。
成分組成におけるCは、0.4質量%以上がより好ましく、また、1.0質量%以下がより好ましい。Cは、黒鉛粉に由来するものであることができる。
混合粉における不可避的不純物は、例えば、C、S、O、N、Mn、Crからなる群より選択される1又は2以上を含有することができ、不可避的不純物としての前記元素の含有量は特に限定されないが、それぞれ以下の範囲であることが好ましい。
C:0.02質量%以下
O:0.3質量%以下、より好ましくは0.25質量%以下
N:0.004質量%以下
S:0.03質量%以下
Mn:0.2質量%以下、より好ましくは0.15質量%以下
Cr:0.2質量%以下、より好ましくは0.10質量%以下
(composition)
The composition of the iron-based sintered body is
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less,
The remainder is Fe and unavoidable impurities.
Cu in the component composition is preferably 3.5% by mass or more, and preferably 8.0% by mass or less. Cu can be derived from Cu powder or alloyed steel powder obtained by alloying Mo and Cu.
Mo in the component composition is preferably 0.7% by mass or more, more preferably 1.0% by mass or more, and more preferably 1.5% by mass or less.
C in the component composition is more preferably 0.4% by mass or more, and more preferably 1.0% by mass or less. C can be derived from graphite powder.
The inevitable impurities in the mixed powder can contain, for example, one or more selected from the group consisting of C, S, O, N, Mn, and Cr, and the content of the above elements as the inevitable impurities is Although not particularly limited, the following ranges are preferable.
C: 0.02% by mass or less O: 0.3% by mass or less, more preferably 0.25% by mass or less N: 0.004% by mass or less S: 0.03% by mass or less Mn: 0.2% by mass or less , more preferably 0.15% by mass or less Cr: 0.2% by mass or less, more preferably 0.10% by mass or less
以下、実施例に基づいて、本発明をさらに具体的に説明する。以下の実施例は、本発明の好適な一例を示すものであり、本発明は、これらの実施例によって何ら限定されるものではない。 Hereinafter, the present invention will be explained in more detail based on Examples. The following examples show preferred examples of the present invention, and the present invention is not limited to these examples in any way.
Fe-3Cu-1.3Mo合金鋼粉(平均粒子径81μm)97.2質量部に、Cu粉(平均粒子径約25μm)2.0質量部、黒鉛粉(平均粒子径約5μm)0.8質量部を配合し、混合粉とした。
混合粉100質量部に対し、潤滑剤としてエチレンビスステアリン酸アミド(EBS)0.5質量部を添加し、成形体製造用混合粉を得た。
成形体製造用混合粉を、所定形状の金型に装入し、密度が7.0Mg/m3と一定になる条件で加圧し、成形体を得た。
得られた成形体を、RXガス(プロパン変性ガス)雰囲気中で、1130℃、20分間の条件で焼結し、表1に示す冷却条件で冷却し、棒状焼結体(長さ:55mm、幅:10mm、厚さ:10mm)及びJIS Z 2550に規定される平板引張試験片を得た。
97.2 parts by mass of Fe-3Cu-1.3Mo alloy steel powder (average particle diameter 81 μm), 2.0 parts by mass Cu powder (average particle diameter approximately 25 μm), and 0.8 parts graphite powder (average particle diameter approximately 5 μm). Parts by mass were blended to form a mixed powder.
0.5 parts by mass of ethylene bisstearamide (EBS) was added as a lubricant to 100 parts by mass of the mixed powder to obtain a mixed powder for producing a molded body.
The mixed powder for producing a molded body was charged into a mold having a predetermined shape, and pressed under conditions to maintain a constant density of 7.0 Mg/m 3 to obtain a molded body.
The obtained molded body was sintered at 1130°C for 20 minutes in an RX gas (propane modified gas) atmosphere, and cooled under the cooling conditions shown in Table 1 to form a rod-shaped sintered body (length: 55 mm, A flat plate tensile test piece (width: 10 mm, thickness: 10 mm) specified in JIS Z 2550 was obtained.
棒状焼結体及び平板引張試験片を用いて以下の評価を行った。結果を表1に示す。
平板引張試験片を用いて、焼結体の強度をJIS Z 2550に基づき、引張強度試験で評価した。
棒状焼結体を用いて、焼結体の靭性をJIS Z 2242に基づき、シャルピー衝撃試験で評価した。
棒状焼結体のビッカース硬さを、マイクロビッカース硬度測定により、以下のようにして評価した。
棒状焼結体の中央部を切断して研磨し、断面中央部の6mm×6mmの範囲に対して、上述のようにして、マイクロビッカース硬度測定を実施した。打痕は、0.1mmの一定間隔で行ったが、打痕予定位置が気孔の場合は打痕を行わず、次の打痕予定位置を打痕そた。合計30点のビッカース硬さを測定し、0から100刻みで1000までの階級の属すデータの数により、ビッカース硬さの相対度数分布を得た。
棒状焼結体の中央部を切断して研磨し、断面を光学顕微鏡(倍率40倍)によって観察し、ミクロ組織を構成する析出相を評価した。
The following evaluations were performed using a rod-shaped sintered body and a flat plate tensile test piece. The results are shown in Table 1.
The strength of the sintered body was evaluated by a tensile strength test based on JIS Z 2550 using a flat plate tensile test piece.
Using a rod-shaped sintered body, the toughness of the sintered body was evaluated by a Charpy impact test based on JIS Z 2242.
The Vickers hardness of the rod-shaped sintered body was evaluated by micro Vickers hardness measurement as follows.
The central part of the rod-shaped sintered body was cut and polished, and a micro Vickers hardness measurement was performed on a 6 mm x 6 mm area at the central part of the cross section as described above. The dents were made at regular intervals of 0.1 mm, but if the planned dent position was a pore, no dents were made and the next planned dent position was removed. The Vickers hardness was measured at a total of 30 points, and a relative frequency distribution of the Vickers hardness was obtained based on the number of data belonging to classes ranging from 0 to 1000 in increments of 100.
The central part of the rod-shaped sintered body was cut and polished, and the cross section was observed with an optical microscope (40x magnification) to evaluate the precipitated phase constituting the microstructure.
表1より、発明例は、所定のミクロ組織及び所定の相対度数分布を有しており、引張強度及び衝撃値が高く、高強度及び高靭性を有することがわかる。
一方、焼結体を製造する際の冷却条件が本発明の範囲外の比較例は、所定のミクロ組織及び所定の相対度数分布の少なくともいずれかを有さず、引張強度及び衝撃値は、発明例に及ばなかった。
From Table 1, it can be seen that the invention examples have a predetermined microstructure and a predetermined relative frequency distribution, have high tensile strength and impact value, and have high strength and high toughness.
On the other hand, a comparative example in which the cooling conditions for manufacturing the sintered body are outside the scope of the present invention does not have the predetermined microstructure and/or the predetermined relative frequency distribution, and the tensile strength and impact value are lower than those of the invention. It wasn't as good as the example.
Claims (3)
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C: 0.2質量%以上1.2質量%以下を含み、
残部がFeと不可避不純物からなり、
ミクロ組織が、下部ベイナイト、下部ベイナイトと上部ベイナイト、下部ベイナイトとマルテンサイト又は下部ベイナイトと上部ベイナイトとマルテンサイトからなり、
前記ミクロ組織が、0から100Hv刻みで1000Hvまで階級を設けたビッカース硬さの相対度数分布において、400Hv以上500Hv未満、500Hv以上600Hv未満、600Hv以上700Hv未満、700Hv以上800Hv未満又は800Hv以上900Hv未満のいずれかの階級に最も大きい相対度数を有し、該最も大きい相対度数が0.50超である、鉄基合金焼結体。 The ingredient composition is
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less,
The remainder consists of Fe and unavoidable impurities,
The microstructure consists of lower bainite, lower bainite and upper bainite, lower bainite and martensite, or lower bainite, upper bainite and martensite,
In the relative frequency distribution of Vickers hardness in which the microstructure is graded from 0 to 100Hv in increments of 1000Hv, the microstructure has a hardness of 400Hv or more and less than 500Hv, 500Hv or more and less than 600Hv, 600Hv or more and less than 700Hv, 700Hv or more and less than 800Hv, or 800Hv or more and less than 900Hv. An iron-based alloy sintered body that has the largest relative frequency in any class, and the largest relative frequency is more than 0.50.
前記粉末冶金用鉄基混合粉が、MoとCuを合金化した合金鋼粉、Cu粉及び黒鉛粉を含み、
前記粉末冶金用鉄基混合粉の成分組成が、
Mo:0.5質量%以上2.0質量%以下、
Cu:1.8質量%以上10.2質量%以下、及び
C:0.2質量%以上1.2質量%以下を含み
残部がFe及び不可避的不純物からなり、
前記粉末冶金用鉄基混合粉中のCu粉の量が0.3質量%以上であり、
前記冷却する工程が、焼結温度から200℃以上350℃以下の温度まで10℃/分以
上40℃/分以下の平均冷却速度で冷却し、該温度で30分以上120分以下保持することを含み、
前記鉄基合金焼結体のミクロ組織が、下部ベイナイト、下部ベイナイトと上部ベイナイト、下部ベイナイトとマルテンサイト又は下部ベイナイトと上部ベイナイトとマルテンサイトからなり、
前記ミクロ組織が、0から100Hv刻みで1000Hvまで階級を設けたビッカース硬さの相対度数分布において、400Hv以上500Hv未満、500Hv以上600Hv未満、600Hv以上700Hv未満、700Hv以上800Hv未満又は800Hv以上900Hv未満のいずれかの階級に最も大きい相対度数を有し、該最も大きい相対度数が0.50超である、
鉄基合金焼結体の製造方法。 A method for producing an iron-based alloy sintered body, comprising a step of molding an iron-based mixed powder for powder metallurgy, sintering it, and then cooling it,
The iron-based mixed powder for powder metallurgy includes alloy steel powder alloyed with Mo and Cu, Cu powder, and graphite powder,
The composition of the iron-based mixed powder for powder metallurgy is
Mo: 0.5% by mass or more and 2.0% by mass or less,
Cu: 1.8% by mass or more and 10.2% by mass or less, and C: 0.2% by mass or more and 1.2% by mass or less, the remainder consisting of Fe and inevitable impurities,
The amount of Cu powder in the iron-based mixed powder for powder metallurgy is 0.3% by mass or more,
The cooling step includes cooling from the sintering temperature to a temperature of 200°C or more and 350°C or less at an average cooling rate of 10°C/min or more and 40°C/min or less, and holding at the temperature for 30 minutes or more and 120 minutes or less. including,
The microstructure of the iron-based alloy sintered body is composed of lower bainite, lower bainite and upper bainite, lower bainite and martensite, or lower bainite, upper bainite and martensite,
In the relative frequency distribution of Vickers hardness in which the microstructure is graded from 0 to 100Hv in increments of 1000Hv, the microstructure has a hardness of 400Hv or more and less than 500Hv, 500Hv or more and less than 600Hv, 600Hv or more and less than 700Hv, 700Hv or more and less than 800Hv, or 800Hv or more and less than 900Hv. has the largest relative frequency in any class, and the largest relative frequency is greater than 0.50;
A method for producing an iron-based alloy sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020199130A JP7354996B2 (en) | 2020-11-30 | 2020-11-30 | Iron-based alloy sintered body and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020199130A JP7354996B2 (en) | 2020-11-30 | 2020-11-30 | Iron-based alloy sintered body and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2022086865A JP2022086865A (en) | 2022-06-09 |
JP7354996B2 true JP7354996B2 (en) | 2023-10-03 |
Family
ID=81894135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020199130A Active JP7354996B2 (en) | 2020-11-30 | 2020-11-30 | Iron-based alloy sintered body and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7354996B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118007029A (en) * | 2024-04-09 | 2024-05-10 | 广东美的制冷设备有限公司 | Iron-copper-molybdenum alloy die steel for 3D printing injection die, and preparation method and application thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316780A (en) | 2000-05-02 | 2001-11-16 | Hitachi Powdered Metals Co Ltd | Valve seat for internal combustion engine and its production method |
JP2005530037A (en) | 2002-06-14 | 2005-10-06 | ホガナス アクチボラゲット | Prealloy iron-based powder and method for producing one or more sintered parts |
JP2014080642A (en) | 2012-10-15 | 2014-05-08 | Sumitomo Denko Shoketsu Gokin Kk | Method of manufacturing sintered component |
JP2016145418A (en) | 2015-01-21 | 2016-08-12 | 日立化成株式会社 | Iron-based sintered alloy and manufacturing method therefor |
WO2019188833A1 (en) | 2018-03-26 | 2019-10-03 | Jfeスチール株式会社 | Powder metallurgy alloy steel powder and powder metallurgy iron-based powder mixture |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3942091C1 (en) * | 1989-12-20 | 1991-08-14 | Etablissement Supervis, Vaduz, Li |
-
2020
- 2020-11-30 JP JP2020199130A patent/JP7354996B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001316780A (en) | 2000-05-02 | 2001-11-16 | Hitachi Powdered Metals Co Ltd | Valve seat for internal combustion engine and its production method |
JP2005530037A (en) | 2002-06-14 | 2005-10-06 | ホガナス アクチボラゲット | Prealloy iron-based powder and method for producing one or more sintered parts |
JP2014080642A (en) | 2012-10-15 | 2014-05-08 | Sumitomo Denko Shoketsu Gokin Kk | Method of manufacturing sintered component |
JP2016145418A (en) | 2015-01-21 | 2016-08-12 | 日立化成株式会社 | Iron-based sintered alloy and manufacturing method therefor |
WO2019188833A1 (en) | 2018-03-26 | 2019-10-03 | Jfeスチール株式会社 | Powder metallurgy alloy steel powder and powder metallurgy iron-based powder mixture |
Also Published As
Publication number | Publication date |
---|---|
JP2022086865A (en) | 2022-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220119927A1 (en) | Wear resistant alloy | |
KR100373169B1 (en) | Powder metallurgy cold oral with high impact toughness and abrasion resistance and manufacturing method | |
JP5958144B2 (en) | Iron-based mixed powder for powder metallurgy, high-strength iron-based sintered body, and method for producing high-strength iron-based sintered body | |
US5641922A (en) | Hi-density sintered alloy and spheroidization method for pre-alloyed powders | |
JP7374269B2 (en) | Sintered parts | |
US20240068074A1 (en) | Titanium alloy and methods of manufacture | |
US20080202651A1 (en) | Method For Manufacturing High-Density Iron-Based Compacted Body and High-Density Iron-Based Sintered Body | |
JP7354996B2 (en) | Iron-based alloy sintered body and its manufacturing method | |
JP5114233B2 (en) | Iron-based sintered alloy and method for producing the same | |
JP6819624B2 (en) | Iron-based mixed powder for powder metallurgy, its manufacturing method, and sintered body with excellent tensile strength and impact resistance | |
JP6271310B2 (en) | Iron-based sintered material and method for producing the same | |
JP6743720B2 (en) | Iron-based mixed powder for powder metallurgy, method for producing the same, and sintered body excellent in tensile strength and impact resistance | |
JP7036216B2 (en) | Iron-based alloy sintered body and iron-based mixed powder for powder metallurgy | |
EP0835329B1 (en) | Hi-density sintered alloy and spheroidization method for pre-alloyed powders | |
JP4301657B2 (en) | Manufacturing method of high strength sintered alloy steel | |
JPWO2019188833A1 (en) | Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
KR20200128158A (en) | Alloy steel powder for powder metallurgy and iron-based mixed powder for powder metallurgy | |
Zhong et al. | Development of powder metallurgy high speed steel | |
JP7572215B2 (en) | Powdered high speed tool steel | |
EP4450186A1 (en) | Managing steel powder free from co, ti, and al | |
Dobrzański et al. | Influence of cooling rates on properties of pre-alloyed PM materials | |
JP2023121011A (en) | Iron-based mixed powder for powder metallurgy and iron-based sintered body | |
US20220331860A1 (en) | Alloyed steel powder for powder metallurgy, iron-based mixed powder for powder metallurgy, and sintered body | |
JPH11302806A (en) | Iron-base sintered alloy excellent in strength and toughness and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220628 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230704 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230822 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7354996 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |