JP7353573B1 - Foldable tray type conveyor water turbine for tidal power generation - Google Patents
Foldable tray type conveyor water turbine for tidal power generation Download PDFInfo
- Publication number
- JP7353573B1 JP7353573B1 JP2022169866A JP2022169866A JP7353573B1 JP 7353573 B1 JP7353573 B1 JP 7353573B1 JP 2022169866 A JP2022169866 A JP 2022169866A JP 2022169866 A JP2022169866 A JP 2022169866A JP 7353573 B1 JP7353573 B1 JP 7353573B1
- Authority
- JP
- Japan
- Prior art keywords
- conveyor
- tidal
- power generation
- water
- tidal current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 55
- 238000010248 power generation Methods 0.000 title description 32
- 230000005611 electricity Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 abstract description 4
- 238000004364 calculation method Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000005381 potential energy Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 239000013535 sea water Substances 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B13/00—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
- F03B13/12—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
- F03B13/26—Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using tide energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03B—MACHINES OR ENGINES FOR LIQUIDS
- F03B9/00—Endless-chain machines or engines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/30—Energy from the sea, e.g. using wave energy or salinity gradient
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Oceanography (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Hydraulic Turbines (AREA)
Abstract
【課題】低流速の潮流から高効率かつ低コストで発電が可能な水車を提供する。【解決手段】低流速の潮流を大口径の漏斗状取水口から取水し、漏斗状取水口を通過する際に増速された潮流をコンベヤに取り付けた受板に集約して導くことにより、潮流の運動エネルギーを圧力エネルギーとして回収し、ベルトおよびプーリーまたはチェーンおよびスプロケットを介して主軸の回転エネルギーとして発電機へ伝達することにより、簡便且つ安価に発電する。【選択図】図2[Problem] To provide a water turbine that can generate power from low-velocity tidal currents with high efficiency and at low cost. [Solution] By taking in low-velocity tidal water from a large-diameter funnel-shaped water intake, and concentrating and guiding the tidal flow that is accelerated when passing through the funnel-shaped water intake to a receiving plate attached to a conveyor, the tidal flow can be reduced. The kinetic energy is recovered as pressure energy and transmitted to the generator as rotational energy of the main shaft via a belt and pulley or chain and sprocket, thereby generating electricity easily and inexpensively. [Selection diagram] Figure 2
Description
本発明は、小規模潮流発電を行うための高効率なコンベヤ式水車装置に関するものである。 The present invention relates to a highly efficient conveyor type water turbine device for small-scale tidal power generation.
脱炭素化社会の実現に向けて、自然エネルギーを利用した発電量の増加が望まれているが、日本においては風力発電の適地が少なく、また河川を利用した大規模水力発電設備の新設の余地も乏しい。そこで、島国であることの特徴を生かした海洋エネルギーの活用による発電が期待されるが、残念ながら海水の位置エネルギーを利用した潮汐発電に適した干満差の大きな立地は乏しいのが実情である。そこで、瀬戸内海や九州地方を中心に流速の速い適地がある潮流発電の実用化が期待されている。
潮流の特徴は、干満運動の変化の予測が容易であることと、潮汐の干満により周期的に流れの方向がほぼ180度変わることである。また、水面下の水粒子の運動は水深に応じて減衰し、波長の2分の1の水深では水粒子の動きは水面の4%程度になるので波の影響は無いと考えて良く、海上で普通に見られる風波の波長は数10mなので、水深が比較的浅い沿岸部でも波の影響をほとんど受けずに安定した発電が可能である。
そこで、流速の低い潮流でも効率良く発電できる小規模潮流発電に適した発電装置が開発されれば、長大な海岸線を持つ日本においては地域によって転流時刻が異なるので、同設備を浅海域に多数設置することにより、全国的には間断なく安定的に低コストでの発電が可能である。
そして、主要な電力消費地である都市部や工業地帯の大部分が沿岸部に集積している日本においては、発電設備と電力消費地を短距離で結ぶことができる小規模潮流発電設備ネットワークの構築は、脱炭素化社会の実現だけでなく社会インフラコストの低減や経済安全保障の視点からも有効な社会課題の解決手段であると考えられる。
上記の状況を鑑みて、沿岸部における低流速な潮流向けの安価で高効率な発電用水車の開発が望まれるが、潮流発電向けに一般的に使用される横軸のプロペラ水車は低流速域の発電効率が低く、機構も複雑で総発電コストが高いことが課題である。
In order to realize a decarbonized society, it is desired to increase the amount of power generated using natural energy, but in Japan there is little land suitable for wind power generation, and there is still room for new construction of large-scale hydroelectric power generation facilities using rivers. is also scarce. Therefore, there are hopes for power generation by utilizing ocean energy that takes advantage of the island country's characteristics, but unfortunately there are few locations with large tidal differences suitable for tidal power generation using the potential energy of seawater. Therefore, there are high hopes for the practical application of tidal power generation, which has suitable locations with fast currents, mainly in the Seto Inland Sea and the Kyushu region.
The characteristics of tidal currents are that changes in tidal movement are easy to predict, and that the direction of the current changes periodically by approximately 180 degrees due to the ebb and flow of the tide. In addition, the movement of water particles below the water surface is attenuated according to the water depth, and at a depth of half the wavelength, the movement of water particles is about 4% of the water surface, so it can be considered that there is no effect of waves, The wavelength of wind and waves commonly seen in Japan is several tens of meters, so even in coastal areas where the water depth is relatively shallow, stable power generation is possible with almost no influence from waves.
Therefore, if a power generation device suitable for small-scale tidal power generation that can efficiently generate power even with low-velocity tidal currents is developed, Japan has a long coastline and commutation times vary depending on the region, so the same equipment can be installed in large numbers in shallow waters. By installing this system, it will be possible to generate electricity nationwide at low cost and stably without interruption.
In Japan, where most of the major power consumption areas such as urban areas and industrial areas are concentrated in coastal areas, a network of small-scale tidal power generation facilities that can connect power generation facilities and power consumption areas over short distances is being developed. Construction is considered to be an effective means of resolving social issues not only in realizing a decarbonized society but also from the perspective of reducing social infrastructure costs and economic security.
In view of the above situation, it is desired to develop a low-cost and highly efficient power generation turbine for low-velocity tidal currents in coastal areas. The problem is that the power generation efficiency is low, the mechanism is complicated, and the total power generation cost is high.
横軸のプロペラ水車は潮流の流れ方向が周期的に約180度変化することに対応するために、水車本体を180度回転させる機構を付加する必要があり、機構の複雑さにより水車本体の製作コストが高い。 Horizontal shaft propeller turbines require a mechanism to rotate the turbine body 180 degrees in order to cope with the periodic changes in the flow direction of the tidal current by approximately 180 degrees.Due to the complexity of the mechanism, manufacturing of the turbine body is required High cost.
プロペラ水車はプロペラが受けた水流の反力を利用して回転軸を回す反動型水車であり、発電量を増すためには、より多くの水流をプロペラで受ける為にプロペラ直径を大きくする必要があり、軸受部にかかる水スラストも非常に大きな値となるので、水車構造体及び水車を固定する支柱は強大な水スラストに耐える強度を持つ必要があり高コストとなる。 A propeller water turbine is a reaction type water turbine that uses the reaction force of the water flow received by the propeller to turn the rotating shaft.In order to increase the amount of power generated, it is necessary to increase the diameter of the propeller in order to receive more water flow with the propeller. Therefore, the water thrust applied to the bearing is very large, so the water turbine structure and the supports that fix the water turbine need to have the strength to withstand the powerful water thrust, resulting in high costs.
横軸のプロペラ水車の発電効率を高める試みとして相反転プロペラ式水車が開発されているが、水流を受けるプロペラの総面積が最大2倍であるのに対して、近接するプロペラ間で発生する乱流による損失を考慮する必要があり、また水車部だけでなく発電機部の構造も複雑になるので総発電コスト低減には不十分である。 A phase-rotating propeller type turbine has been developed as an attempt to increase the power generation efficiency of a horizontal-axis propeller turbine, but while the total area of the propeller receiving water flow is up to twice as large, the turbulence generated between adjacent propellers is It is necessary to take into account the loss caused by the flow, and the structure of not only the water turbine section but also the generator section becomes complicated, so it is not sufficient to reduce the total power generation cost.
横軸型プロペラ水車以外の水車形態としては、低落差水路向けにコンベヤ水車が考案されている。しかし、低落差水路の流水を利用したコンベヤ式水車は、水面上に設置したコンベヤから突出させた複数の受板によって一定方向の流水の運動エネルギーを受け、受板と連結したコンベヤチェーンまたは無限鎖帯を介してスプロケットまたはプーリーを回転させ、その回転力によって発電することを前提としたものであり、波の影響を低減するためにコンベヤ本体を水中に沈めて使用することや、潮汐による正逆方向の潮流に対応して発電する仕組みにはなっていない。また、落差を利用した水力発電の場合には流速はほぼ一定なので水量の変動による発電量の変動のみに留意すれば良いが、潮流発電の場合は潮汐現象によって流速が絶えず変化するので、流速が低い場合でも如何にして多くの運動エネルギーを取り込んで発電量を確保するかが課題となる。 As a type of water turbine other than the horizontal shaft type propeller water turbine, a conveyor water turbine has been devised for use in low-head waterways. However, conveyor-type water turbines that utilize flowing water from low-head waterways receive the kinetic energy of the flowing water in a certain direction through multiple receiving plates that protrude from a conveyor installed above the water surface, and use a conveyor chain or endless chain connected to the receiving plates. The premise is that a sprocket or pulley is rotated through a belt and the rotational force is used to generate electricity.The conveyor body may be submerged in water to reduce the influence of waves, or the conveyor may be used in direct or reverse directions due to the tide. There is no mechanism to generate electricity in response to directional currents. In addition, in the case of hydroelectric power generation using head, the flow velocity is almost constant, so you only need to pay attention to fluctuations in the amount of power generated due to fluctuations in water volume, but in the case of tidal power generation, the flow velocity constantly changes due to tidal phenomena, so the flow velocity is The challenge is how to capture as much kinetic energy and secure the amount of power generation even when it is low.
本発明は、低流速の潮流から高効率かつ低コストで発電が可能な水車の提供を目的とする。 An object of the present invention is to provide a water turbine capable of generating power from low-velocity tidal currents with high efficiency and at low cost.
本発明は、潮流の特性である大量の流量に着目し、大量の潮流を漏斗状の取水口によって取水してコンベヤ受板部に集約し、縦列に配置された複数のコンベヤ受板が受ける圧力エネルギーの合計値を最大化して発電効率を高めることを最も主要な特徴とする。 The present invention focuses on a large amount of flow rate, which is a characteristic of tidal currents, and takes in a large amount of tidal flow through a funnel-shaped water intake and concentrates it on a conveyor receiving plate, thereby creating a pressure that is applied to a plurality of conveyor receiving plates arranged in tandem. The main feature is to maximize the total value of energy and increase power generation efficiency.
本発明のコンベヤ式水車のアウターフレームは直線状のチューブ形状であり、潮流の流れ方向に対して水平に設置することにより、満ち潮時と引き潮時で潮流の流れ方向がほぼ180度変化しても、継続して効率良く発電することができるという利点がある。 The outer frame of the conveyor type water turbine of the present invention has a linear tube shape, and by installing it horizontally with respect to the flow direction of the tidal current, even when the flow direction of the tidal current changes by almost 180 degrees between high tide and low tide. , it has the advantage of being able to generate electricity continuously and efficiently.
また、コンベヤフレーム両端部には傾斜式シャッターを備えた漏斗状の取水口兼吸出管があり、取水動作時には潮流の圧力エネルギーによって上流側シャッターが閉状態となり、取水した大量の潮流が正転側コンベヤ入側の受板部へと導かれて受板を起立させ、低流速の潮流であっても取水口通過時に増速されるので発電が可能となり、その結果として発電適地が多くなるとともに、発電機の稼働時間が長くなるので総発電量の増加が見込まれる。 In addition, there are funnel-shaped water intake and suction pipes with inclined shutters at both ends of the conveyor frame, and during water intake operation, the upstream shutter is closed by the pressure energy of the tidal current, and a large amount of the tidal flow is transferred to the forward rotation side. The receiving plate is guided to the receiving plate on the entrance side of the conveyor, and even low-velocity currents are accelerated when passing through the water intake, making it possible to generate electricity.As a result, more land is suitable for power generation, and The total amount of power generated is expected to increase because the generator will operate for a longer time.
そして、アウターフレームの内部にあるインナーフレームがコンベヤ躯体を支持するとともに、運び側コンベヤと戻り側コンベヤとの間の潮流の行き来を遮断して独立した通水路としているので、取水した潮流の運動エネルギーが運び側コンベヤの受板へ集約して導かれることにより、圧力エネルギーとして効率的に回収できる。 The inner frame inside the outer frame supports the conveyor body, and also blocks the flow of tidal flow between the carrying conveyor and the returning conveyor, creating an independent passageway, so the kinetic energy of the tidal current is absorbed. By concentrating and guiding the energy to the receiving plate of the conveyor, it can be efficiently recovered as pressure energy.
尚、通水時に下流側シャッターは開状態となり、コンベヤから放出される潮流が持っている未活用の運動エネルギーを、逆漏斗状の吸出管を通じて放水することにより、圧力差として回収できるので発電効率が高まるという利点がある。 The downstream shutter is open when water is flowing, and the unused kinetic energy of the tidal flow discharged from the conveyor can be recovered as a pressure difference by discharging water through an inverted funnel-shaped suction pipe, increasing power generation efficiency. This has the advantage of increasing
さらに、コンベヤ格納部分のフレーム断面積を、潮流の流れ方向に沿って上流部分から下流部分に向けて徐々に小さくすることにより、複数の受板部の背面に負圧を生じさせて、潮流から回収できる圧力エネルギーを最大化できる。 Furthermore, by gradually decreasing the frame cross-sectional area of the conveyor housing section from the upstream section to the downstream section along the flow direction of the tidal current, negative pressure is generated on the back of the multiple receiving plates, and the tidal current is The pressure energy that can be recovered can be maximized.
また、受板を転倒式にすることにより、受板が取水口方向へ戻り動作を行う際の投影断面積を小さくして水の抗力を小さくすることができ、結果としてコンベヤ水車が潮流から回収する圧力エネルギーを最大化できる。 In addition, by making the receiving plate inverted, the projected cross-sectional area when the receiving plate moves back toward the water intake can be reduced, reducing the drag of water, and as a result, the conveyor turbine can collect water from the tidal current. Maximizes pressure energy.
コンベヤ水車の受板が潮流から回収した圧力エネルギーは、チェーンおよびスプロケットまたはベルトおよびプーリーを介して回転エネルギーとして発電機へ伝達される。 Pressure energy recovered from the tidal flow by the conveyor turbine backing plate is transferred as rotational energy to the generator via chains and sprockets or belts and pulleys.
図1は、本発明に係る装置の構成図であって、コンベヤアウターフレーム天板、コンベヤ部、コンベヤインナーフレーム部、コンベヤアウターフレーム部、取水口兼吸出し管および架台の位置関係と主要な構成部品を表している。 FIG. 1 is a configuration diagram of an apparatus according to the present invention, and shows the positional relationship and main components of a conveyor outer frame top plate, a conveyor section, a conveyor inner frame section, a conveyor outer frame section, a water intake/suction pipe, and a pedestal. represents.
図2は、潮流の流れ方向による受板とシャッターの姿勢を表した図であり、潮流の流れ方向が約180度変化してもコンベヤ主軸の回転方向が変化しないことと、集約された潮流の圧力エネルギーによってコンベヤ受板が起立動作を行うことを併せて表している。 Figure 2 is a diagram showing the posture of the receiving plate and shutter depending on the flow direction of the tidal current, and shows that even if the flow direction of the tidal current changes by approximately 180 degrees, the rotational direction of the conveyor main shaft does not change, and that It also shows that the conveyor receiving plate performs an upright movement due to pressure energy.
図3は、本発明装置のアウターフレームの三面図であって、より多くの潮流を取水してコンベヤ受板部へ導くための形状を表している。尚、取水口の断面積や起立時と転倒時の受板の投射断面積およびシャッターの取り付け角度等については、本発明装置が設置される場所による制約や潮流とフレームの摩擦によるエネルギー損失を勘案して任意に決定されるものとする。 FIG. 3 is a three-sided view of the outer frame of the apparatus of the present invention, showing a shape for taking in more water and guiding it to the conveyor receiving plate. In addition, regarding the cross-sectional area of the water intake, the projected cross-sectional area of the receiving plate when standing up and falling down, the mounting angle of the shutter, etc., take into account the restrictions due to the location where the device of the present invention is installed and the energy loss due to friction between the tidal current and the frame. shall be determined arbitrarily.
既存の小規模水力発電設備との比較を通じて、本発明装置を実施するための実用的な形態を示す。
秋田県仙北市で2021年10月に完成した鶴の湯水力発電所の主要諸元は下記の通りである。
流量Q :最大出力時 1.05m3/秒
有効落差H :23.48m
流速V :約21.45m/秒(計算による)
総合発電効率 :0.82(計算による)
出力kw :199KW
出力kwと有効落差Hおよび流量Qには、出力kw=9.8×H×Q×総合発電効率Kの関係式が成り立つので、鶴の湯水力発電所の取水口における利用可能な水の位置エネルギーから得られる理論上の最大出力は約242kwであり、総合発電効率Kは約0.82であることが分かる。
次に、本発明装置の主要諸元を下記と仮定すると、取水した潮流が持っている利用可能な運動エネルギーから得られる理論上の最大出力は約192K Wとなる。
潮流の流速V :2m/秒
見做し有効落差H:0.204m(潮流の流速から逆算した数値)
取水口断面積S :48m2(縦6m×横8m)
受板の断面積s :2m2(縦2m×横1m)
流量Q :96m3/秒(V×S)
総合発電効率K :1(仮定)
理論上の最大出力:約192KW
尚、比較対象とした鶴の湯水力発電所と本発明装置には構造上の大きな差異があるので総合発電効率の値にも大きな差異があると考えられる。しかしながら、潮流の流量は大量なので、本発明装置を大型化して取水できる潮流の量を増加させる、あるいは近傍に本発明装置を複数台設置することにより必要な合計出力を得ることができる。
A practical form for implementing the device of the present invention will be shown through comparison with existing small-scale hydroelectric power generation facilities.
The main specifications of the Tsurunoyu hydroelectric power plant, which was completed in October 2021 in Semboku City, Akita Prefecture, are as follows.
Flow rate Q: 1.05m3/sec at maximum output Effective head H: 23.48m
Flow velocity V: Approximately 21.45m/sec (according to calculation)
Total power generation efficiency: 0.82 (based on calculation)
Output kW: 199KW
The relationship between output kw, effective head H, and flow rate Q is as follows: output kw = 9.8 × H × Q × total power generation efficiency K. It can be seen that the theoretical maximum output obtained from energy is approximately 242 kW, and the total power generation efficiency K is approximately 0.82.
Next, assuming that the main specifications of the device of the present invention are as follows, the theoretical maximum output that can be obtained from the usable kinetic energy of the tidal flow of water is about 192KW.
Current velocity V: 2m/sec. Effective head H: 0.204m (number calculated backwards from tidal velocity)
Water intake cross-sectional area S: 48m2 (length 6m x width 8m)
Cross-sectional area of the receiving plate s: 2m2 (length 2m x width 1m)
Flow rate Q: 96m3/sec (V×S)
Total power generation efficiency K: 1 (assumed)
Theoretical maximum output: approximately 192KW
It should be noted that since there is a large structural difference between the Tsuru-no-Yu hydroelectric power plant used for comparison and the device of the present invention, it is thought that there is also a large difference in the value of the overall power generation efficiency. However, since the flow rate of the tidal current is large, the required total output can be obtained by increasing the size of the device of the present invention to increase the amount of tidal current that can be taken in, or by installing a plurality of devices of the present invention nearby.
低流速の潮流からでも安定した発電が可能であり、潮流の流れ方向が周期的に180度変化することに対する特段の機構追加が不要なので、低コストで高効率な小規模潮流発電を実現できる。また、適地に本装置を複数台ファーム化することにより、地上側の受送電関連設備を集約して大型化できるので、総発電コストの更なる低減が図れる。 Stable power generation is possible even from low-velocity tidal currents, and there is no need to add a special mechanism to deal with periodic 180 degree changes in the direction of tidal currents, making it possible to realize low-cost, highly efficient small-scale tidal power generation. In addition, by constructing a farm with multiple units of this device in an appropriate location, it is possible to consolidate and increase the size of power receiving and transmitting equipment on the ground side, thereby further reducing the total power generation cost.
1 アウターフレーム天板
2 連結板
3 軸受
4 軸受用固定ボルト
5 フレーム用固定ボルト
6 受板
7 車輪
8 主軸
9 スプロケットまたはプーリー
10 チェーンまたはベルト
11 従動軸
12 インナーフレーム
13 走行レール
14 アウターフレーム
15 取水口兼吸出し管
16 シャッター
17 シャッター軸
18 架台
19 架台固定アンカーボルト
1 Outer frame top plate
2 Connecting plate
3 bearings
4 Bearing fixing bolt
5 Fixing bolt for frame
6 Receiving plate
7 wheels
8 spindle
9 Sprocket or pulley
10 chain or belt
11 Driven axis
12 Inner frame
13 Traveling rail
14 Outer frame
15 Water intake and suction pipe
16 Shutter
17 Shutter axis
18 Frame
19 Frame fixing anchor bolt
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022169866A JP7353573B1 (en) | 2022-10-24 | 2022-10-24 | Foldable tray type conveyor water turbine for tidal power generation |
PCT/JP2023/031571 WO2024090023A1 (en) | 2022-10-24 | 2023-08-30 | Retractable receiver type conveyor water turbine for tidal power generation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022169866A JP7353573B1 (en) | 2022-10-24 | 2022-10-24 | Foldable tray type conveyor water turbine for tidal power generation |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7353573B1 true JP7353573B1 (en) | 2023-10-02 |
JP2024062090A JP2024062090A (en) | 2024-05-09 |
Family
ID=88198166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022169866A Active JP7353573B1 (en) | 2022-10-24 | 2022-10-24 | Foldable tray type conveyor water turbine for tidal power generation |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7353573B1 (en) |
WO (1) | WO2024090023A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992125A (en) | 1974-07-10 | 1976-11-16 | Schilling Rolf E | Underwater power apparatus with furlable sails as working members |
JP2000087840A (en) | 1998-09-14 | 2000-03-28 | Sadaji Kiyohara | Underwater power generating set |
JP2004270674A (en) | 2003-01-16 | 2004-09-30 | Jeitekkusu:Kk | Flowing water energy collector |
JP2005240786A (en) | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | Tidal current power generation device |
US20120313376A1 (en) | 2011-06-09 | 2012-12-13 | Browning Jr Wilson J | Method and System for Converting Energy in Flowing Water to Electric Energy |
JP5696167B2 (en) | 2013-01-17 | 2015-04-08 | 東芝テック株式会社 | Control device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS49101749A (en) * | 1973-02-06 | 1974-09-26 | ||
JPS5696167A (en) * | 1979-12-28 | 1981-08-04 | Teruo Honami | Water-flow electric power generating mechanism |
JP4750830B2 (en) * | 2008-07-30 | 2011-08-17 | 通博 大江 | Tidal current generator |
KR101653373B1 (en) * | 2014-07-21 | 2016-09-01 | 한국해양과학기술원 | Dual turbine assembly for low-head hydropower generation |
-
2022
- 2022-10-24 JP JP2022169866A patent/JP7353573B1/en active Active
-
2023
- 2023-08-30 WO PCT/JP2023/031571 patent/WO2024090023A1/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3992125A (en) | 1974-07-10 | 1976-11-16 | Schilling Rolf E | Underwater power apparatus with furlable sails as working members |
JP2000087840A (en) | 1998-09-14 | 2000-03-28 | Sadaji Kiyohara | Underwater power generating set |
JP2004270674A (en) | 2003-01-16 | 2004-09-30 | Jeitekkusu:Kk | Flowing water energy collector |
JP2005240786A (en) | 2004-02-27 | 2005-09-08 | Mitsubishi Heavy Ind Ltd | Tidal current power generation device |
US20120313376A1 (en) | 2011-06-09 | 2012-12-13 | Browning Jr Wilson J | Method and System for Converting Energy in Flowing Water to Electric Energy |
JP5696167B2 (en) | 2013-01-17 | 2015-04-08 | 東芝テック株式会社 | Control device |
Also Published As
Publication number | Publication date |
---|---|
WO2024090023A1 (en) | 2024-05-02 |
JP2024062090A (en) | 2024-05-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2006272429B2 (en) | Electricity generating apparatus from a flow of water such as tide, river or the like | |
US7855468B2 (en) | Hinged blade device to convert the natural flow or ocean or river current or ocean waves to rotational mechanical motion for power generation | |
US7918087B1 (en) | System for relocating and converting potential energy of water without dams | |
US20070292259A1 (en) | Floating power plant for extracting energy from flowing water | |
US20060168954A1 (en) | Hydro-electrical generator | |
GB2436857A (en) | two-way tidal barrage with one-way turbines | |
US7645115B2 (en) | System, method, and apparatus for a power producing linear fluid impulse machine | |
US8933574B2 (en) | Method and apparatus for harnessing hydro-kinetic energy | |
JP2013024049A (en) | Small-scaled hydropower generation apparatus | |
US20030059292A1 (en) | Water and gravity driven turbine systems and methods | |
CA2565380A1 (en) | Natural fluid energy extraction system | |
BG66263B1 (en) | Pontoon water-power station | |
JP7353573B1 (en) | Foldable tray type conveyor water turbine for tidal power generation | |
JP2002310054A (en) | Tidal current power generator | |
US20110068580A1 (en) | Conveyor-type system for generating electricity from water currents | |
US11549480B2 (en) | Floating drum turbine for electricity generation | |
JP2004270674A (en) | Flowing water energy collector | |
RU2347935C2 (en) | In-channel river plant | |
JP2018013069A (en) | Tide power generation system utilizing artificial pond/lake and natural bay or the like | |
US20140097620A1 (en) | Fluid power conversion device | |
JP2021152343A (en) | Hydraulic power generation system usable for narrow-width, low-flow rate water channel | |
CN111395280A (en) | Non-dam type hydropower station | |
JP3228396U (en) | Power generation equipment using a conveyor belt turbine using a low-head channel | |
WO2024060665A1 (en) | Underwater power generation device and power system | |
RU2380479C2 (en) | River hydro-electric power plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221025 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20221025 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230131 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230323 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230529 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230630 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230803 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230912 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7353573 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |