JP7347539B2 - 前景抽出装置、前景抽出方法、及び、プログラム - Google Patents
前景抽出装置、前景抽出方法、及び、プログラム Download PDFInfo
- Publication number
- JP7347539B2 JP7347539B2 JP2021565178A JP2021565178A JP7347539B2 JP 7347539 B2 JP7347539 B2 JP 7347539B2 JP 2021565178 A JP2021565178 A JP 2021565178A JP 2021565178 A JP2021565178 A JP 2021565178A JP 7347539 B2 JP7347539 B2 JP 7347539B2
- Authority
- JP
- Japan
- Prior art keywords
- foreground
- foreground extraction
- model
- input image
- extraction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/246—Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/215—Motion-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/20—Analysis of motion
- G06T7/254—Analysis of motion involving subtraction of images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
- G06V10/267—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion by performing operations on regions, e.g. growing, shrinking or watersheds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/7715—Feature extraction, e.g. by transforming the feature space, e.g. multi-dimensional scaling [MDS]; Mappings, e.g. subspace methods
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/774—Generating sets of training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10016—Video; Image sequence
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Description
入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成する抽出結果生成手段と、
前記入力画像に基づいてトラッカーを生成し、前記トラッカーと前記前景抽出結果に含まれる前景との距離を算出し、前記距離を用いて時系列特徴を生成し、生成した時系列特徴に基づいて前景抽出モデルを選択する選択手段と、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する前景領域生成手段と、を備える。
入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成し、
前記入力画像に基づいてトラッカーを生成し、前記トラッカーと前記前景抽出結果に含まれる前景との距離を算出し、前記距離を用いて時系列特徴を生成し、生成した時系列特徴に基づいて前景抽出モデルを選択し、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する。
入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成し、
前記入力画像に基づいてトラッカーを生成し、前記トラッカーと前記前景抽出結果に含まれる前景との距離を算出し、前記距離を用いて時系列特徴を生成し、生成した時系列特徴に基づいて前景抽出モデルを選択し、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する処理をコンピュータに実行させる。
<基本概念>
まず、実施形態に係る前景抽出手法の基本概念について説明する。空を撮影した画像から、飛行中の小さな移動物体(以下、「小移動物体」と呼ぶ。)やその領域を抽出する場合、背景差分手法が利用される。なお、画像に含まれる移動物体を「前景」とも呼ぶ。背景差分手法は連続するフレーム画像の差分に基づいて移動物体を検出する手法であり、様々な背景差分手法が知られている。しかし、それらの背景差分手法は、得意とする状況がそれぞれ異なり、1つの背景差分手法のみを用いて継続的に高精度で前景を抽出することは難しい。
[ハードウェア構成]
図1は、第1実施形態に係る前景抽出装置のハードウェア構成を示すブロック図である。図示のように、前景抽出装置100は、入力IF(InterFace)12と、プロセッサ13と、メモリ14と、記録媒体15と、データベース(DB)16と、を備える。
次に、第1実施形態の第1実施例について説明する。
(機能構成)
図2は、第1実施形態の第1実施例に係る前景抽出装置100の機能構成を示すブロック図である。図示のように、前景抽出装置100は、時系列特徴生成部21と、前景抽出モデル選択部22と、前景領域生成部23と、時系列情報記憶部24と、分類モデル記憶部25と、選択モデル記憶部26と、前景抽出モデル記憶部27と、を備える。
図6は、前景抽出装置100による前景抽出処理のフローチャートである。この処理は、図1に示すプロセッサ13が、予め用意されたプログラムを実行し、図2に示す各要素として動作することにより実現される。
図3を参照して説明したトラッカー生成方法では、1フレームの画像からトラッカーを生成している。その代わりに、複数フレームの画像を用いてトラッカーを生成してもよい。図7及び図8は、複数フレームの画像を用いてトラッカーを生成する方法を示す。図7に示すように、時系列特徴生成部21は、まず、第1フレームから第3フレームのそれぞれにおいて前述の方法でトラッカーを生成する。次に、図8(A)に示すように、各フレームのトラッカーを次のフレームの全てのトラッカーと接続する。そして、時系列特徴生成部21は、各接続により示されるトラッカーのペアから、画像上の移動距離及び前景度に基づいて最適な接続を選択する。図8(B)の例では、画像上の移動距離及び前景度に基づいて、接続91、92により三角形のトラッカーが生成され、接続93、94により円形のトラッカーが生成されている。
次に、第1実施形態の第2実施例について説明する。第1実施例の前景抽出装置100は適切な前景抽出モデルを選択し、それを用いて前景領域を生成し、出力している。第2実施例の前景抽出装置100xは、生成した前景領域を用いて、さらに前景に対応する物体の識別を行う。
図9は、第1実施形態の第2実施例に係る前景抽出装置100xの機能構成を示すブロック図である。図2と比較すると理解されるように、第2実施例に係る前景抽出装置100xは、第1実施例に係る前景抽出装置100の構成に加えて、時系列特徴計算部31と、物体識別部32と、物体識別モデル記憶部34とを備える。また、第1実施例の分類モデル記憶部25の代わりに、前景識別モデル記憶部33が設けられる。
図11は、前景抽出装置100xによる物体識別処理のフローチャートである。この処理は、図1に示すプロセッサ13が、予め用意されたプログラムを実行し、図2に示す各要素として動作することにより実現される。ここで、図11に示す物体識別処理のステップS21~S26は、図6に示す前景抽出処理のステップS11~S16と同様であるので、説明を省略する。
次に、本発明の第2実施形態について説明する。第1実施形態では、入力画像から時系列特徴を生成し、これを用いて適切な前景抽出モデルを選択している。これに対し、第2実施形態では、入力画像とその正解データを用いて、前景抽出モデルを選択する選択モデルを学習する。そして、学習済の選択モデルを用いて、複数の前景選択モデルから適切な前景選択モデルを選択する。なお、第2実施形態による前景抽出装置のハードウェア構成は第1実施形態と同様であるので、説明を省略する。
(機能構成)
図12(A)は、第2実施形態の第1実施例による、学習時の前景抽出装置200の機能構成を示すブロック図である。学習時の前景抽出装置200は、選択モデル学習部41と、選択モデル記憶部42と、正解データ記憶部43とを備える。
次に、第2実施形態の第1実施例による選択モデル及びその学習方法について説明する。第1実施例は、強化学習の手法を用いて選択モデルを学習する。まず、選択モデル学習部41は、図13に示すように、入力画像の隣接するN個のフレーム(図13の例では4フレーム)をニューラルネットワークを用いた特徴抽出器に入力し、入力画像の特徴ベクトルを生成する。特徴抽出器は、一般物体認識で利用される特徴抽出器であれば何でもよく、例えばVGG16、ResNetなどを用いることができる。なお、特徴抽出器は、既に学習済みのものである。
次に、第2実施形態の第2実施例について説明する。第2実施例の前景抽出装置のハードウェア構成は図1に示す第1実施形態と同様であり、機能構成は図12に示す第2実施形態の第1実施例と同様である。
次に、第2実施形態の第2実施例による選択モデル及びその学習方法について説明する。第2実施例は、教師あり学習の手法を用いて選択モデルを学習する。図16は、第2実施形態の第2実施例による選択モデルの学習方法を模式的に示す。
図17は、第2実施形態の第2実施例の変形例による選択モデルの学習方法を模式的に示す。図16に示す第2実施形態の第2実施例では、尤度推定器は各前景抽出モデルに対する重みWを出力している。これに対し、この変形例では、尤度推定器は、各前景抽出モデルについて、そのモデルの選択尤度を示す空間マップWを出力する。具体的に、空間マップWは、n×n次元のマップであり、各画素に対応する係数は入力画像の対応位置におけるその前景抽出モデルの尤度を示す。なお、空間マップのサイズは、入力画像の一部に対応する。図17の例では、空間マップWの画素のうち、暗い色の画素ほど高い係数が設定される。
図18は、第3実施形態に係る前景抽出装置70の機能構成を示すブロック図である。なお、前景抽出装置70のハードウェア構成は、図1と同様である。図示のように、前景抽出装置70は、抽出結果生成部71と、選択部72と、前景領域生成部73と、を備える。
入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成する抽出結果生成部と、
各前景抽出モデルによる前景抽出結果を用いて、前記複数の前景抽出モデルから1又は複数の前景抽出モデルを選択する選択部と、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する前景領域生成部と、
を備える前景抽出装置。
前記選択部は、前記入力画像に基づいて、前記複数の前景抽出モデル毎に時系列特徴を生成し、生成した時系列特徴に基づいて前記前景抽出モデルを選択する付記1に記載の前景抽出装置。
前記選択部は、前記入力画像に基づいてトラッカーを生成し、前記トラッカーと前記前景抽出結果に含まれる前景との距離を算出し、前記距離を用いて前記時系列特徴を生成する付記2に記載の前景抽出装置。
前記選択部は、前記前景抽出結果に含まれる各前景の前景度を算出し、前記前景度を用いて前記時系列特徴を生成する付記3に記載の前景抽出装置。
前記時系列特徴は、前記距離を前記前景度で除した値を全てのトラッカー及び全ての前景について合計した合計値を、前記トラッカーの数で除した値で示され、
前記選択部は、前記時系列特徴の値が最小である前景抽出モデルを選択する付記4に記載の前景抽出装置。
前記前景領域生成部が生成した前景領域に対する時系列特徴を計算する時系列特徴計算部と、
前記入力画像と、前記時系列特徴計算部が計算した時系列特徴とに基づいて、前記前景領域に対応する物体を識別する物体識別部と、
を備える付記2乃至5のいずれか一項に記載の前景抽出装置。
前記選択部は、前記入力画像と、前記前景抽出結果の正解データとを用いて学習済の選択モデルを用いて、前記前景抽出モデルを選択する付記1に記載の前景抽出装置。
前記選択モデルは、前記入力画像から抽出された特徴ベクトルを状態sとし、前記前景抽出結果と前記正解データとの差を報酬rとし、前記状態sにおいて前記複数の前景抽出モデルのいずれかを選択する行動aをとったときの価値Q(s,a)が大きくなるように学習されており、
前記選択部は、前記価値Q(s,a)に基づいて前記前景抽出モデルを選択する付記7に記載の前景抽出装置。
前記価値Q(s,a)は、
前記選択モデルは、入力画像に基づいて尤度推定器が算出した前記前景抽出モデル毎の重みと、前記前景抽出モデル毎の前景抽出結果との重み付き和を予測結果とし、前記予測結果と前記正解データとの差が小さくなるように学習されており、
前記選択部は、前記前景抽出モデル毎の重みに基づいて前記前景抽出モデルを選択する付記7に記載の前景抽出装置。
前記選択モデルは、入力画像に基づいて尤度推定器が算出した前記前景抽出モデル毎の空間マップと、前記前景抽出モデル毎の前景抽出結果との積の総和を予測結果とし、前記予測結果と前記正解データとの差が小さくなるように学習されており、
前記選択部は、前記前景抽出モデル毎の空間マップに基づいて前記前景抽出モデルを選択する付記7に記載の前景抽出装置。
入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成し、
各前景抽出モデルによる前景抽出結果を用いて、前記複数の前景抽出モデルから1又は複数の前景抽出モデルを選択し、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する前景抽出方法。
入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成し、
各前景抽出モデルによる前景抽出結果を用いて、前記複数の前景抽出モデルから1又は複数の前景抽出モデルを選択し、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する処理をコンピュータに実行させるプログラムを記録した記録媒体。
22、44 前景抽出モデル選択部
23、45 前景領域生成部
24 時系列情報記憶部
25 分類モデル記憶部
26、42 選択モデル記憶部
27、46 前景抽出モデル記憶部
31 時系列特徴計算部
32 物体識別部
33 前景識別モデル記憶部
41 選択モデル学習部
100、100x、200、210 前景抽出装置
Claims (10)
- 入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成する抽出結果生成手段と、
前記入力画像に基づいてトラッカーを生成し、前記トラッカーと前記前景抽出結果に含まれる前景との距離を算出し、前記距離を用いて時系列特徴を生成し、生成した時系列特徴に基づいて前景抽出モデルを選択する選択手段と、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する前景領域生成手段と、
を備える前景抽出装置。 - 前記選択手段は、前記前景抽出結果に含まれる各前景の前景度を算出し、前記前景度を用いて前記時系列特徴を生成する請求項1に記載の前景抽出装置。
- 前記時系列特徴は、前記距離を前記前景度で除した値を全てのトラッカー及び全ての前景について合計した合計値を、前記トラッカーの数で除した値で示され、
前記選択手段は、前記時系列特徴の値が最小である前景抽出モデルを選択する請求項2に記載の前景抽出装置。 - 前記前景領域生成手段が生成した前景領域に対する時系列特徴を計算する時系列特徴計算手段と、
前記入力画像と、前記時系列特徴計算手段が計算した時系列特徴とに基づいて、前記前景領域に対応する物体を識別する物体識別手段と、
を備える請求項1乃至3のいずれか一項に記載の前景抽出装置。 - 前記選択手段は、前記入力画像と、前記前景抽出結果の正解データとを用いて学習済の選択モデルを用いて、前記前景抽出モデルを選択する請求項1に記載の前景抽出装置。
- 前記選択モデルは、前記入力画像から抽出された特徴ベクトルを状態sとし、前記前景抽出結果と前記正解データとの差を報酬rとし、前記状態sにおいて前記複数の前景抽出モデルのいずれかを選択する行動aをとったときの価値Q(s,a)が大きくなるように学習されており、
前記選択手段は、前記価値Q(s,a)に基づいて前記前景抽出モデルを選択する請求項5に記載の前景抽出装置。 - 前記選択モデルは、入力画像に基づいて尤度推定器が算出した前記前景抽出モデル毎の重みと、前記前景抽出モデル毎の前景抽出結果との重み付き和を予測結果とし、前記予測結果と前記正解データとの差が小さくなるように学習されており、
前記選択手段は、前記前景抽出モデル毎の重みに基づいて前記前景抽出モデルを選択する請求項5に記載の前景抽出装置。 - 前記選択モデルは、入力画像に基づいて尤度推定器が算出した前記前景抽出モデル毎の空間マップと、前記前景抽出モデル毎の前景抽出結果との積の総和を予測結果とし、前記予測結果と前記正解データとの差が小さくなるように学習されており、
前記選択手段は、前記前景抽出モデル毎の空間マップに基づいて前記前景抽出モデルを選択する請求項5に記載の前景抽出装置。 - 入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成し、
前記入力画像に基づいてトラッカーを生成し、前記トラッカーと前記前景抽出結果に含まれる前景との距離を算出し、前記距離を用いて時系列特徴を生成し、生成した時系列特徴に基づいて前景抽出モデルを選択し、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する前景抽出方法。 - 入力画像について、複数の前景抽出モデルを用いて前景抽出を行って前景抽出結果を生成し、
前記入力画像に基づいてトラッカーを生成し、前記トラッカーと前記前景抽出結果に含まれる前景との距離を算出し、前記距離を用いて時系列特徴を生成し、生成した時系列特徴に基づいて前景抽出モデルを選択し、
選択された前景抽出モデルを用いて、前記入力画像から前景領域を抽出する処理をコンピュータに実行させるプログラム。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2019/049236 WO2021124417A1 (ja) | 2019-12-16 | 2019-12-16 | 前景抽出装置、前景抽出方法、及び、記録媒体 |
Publications (3)
Publication Number | Publication Date |
---|---|
JPWO2021124417A1 JPWO2021124417A1 (ja) | 2021-06-24 |
JPWO2021124417A5 JPWO2021124417A5 (ja) | 2022-07-25 |
JP7347539B2 true JP7347539B2 (ja) | 2023-09-20 |
Family
ID=76477319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021565178A Active JP7347539B2 (ja) | 2019-12-16 | 2019-12-16 | 前景抽出装置、前景抽出方法、及び、プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US20230010199A1 (ja) |
JP (1) | JP7347539B2 (ja) |
WO (1) | WO2021124417A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319236A (ja) | 2000-05-10 | 2001-11-16 | Nippon Hoso Kyokai <Nhk> | 動き物体の形状抽出方法と装置 |
JP2010205007A (ja) | 2009-03-04 | 2010-09-16 | Omron Corp | モデル画像取得支援装置、モデル画像取得支援方法およびモデル画像取得支援プログラム |
JP2019169145A (ja) | 2018-03-22 | 2019-10-03 | キヤノン株式会社 | 画像処理装置および方法、並びに、命令を格納する記憶媒体 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6977664B1 (en) * | 1999-09-24 | 2005-12-20 | Nippon Telegraph And Telephone Corporation | Method for separating background sprite and foreground object and method for extracting segmentation mask and the apparatus |
US7158680B2 (en) * | 2004-07-30 | 2007-01-02 | Euclid Discoveries, Llc | Apparatus and method for processing video data |
US20060067562A1 (en) * | 2004-09-30 | 2006-03-30 | The Regents Of The University Of California | Detection of moving objects in a video |
US7440615B2 (en) * | 2005-10-27 | 2008-10-21 | Nec Laboratories America, Inc. | Video foreground segmentation method |
US9648211B2 (en) * | 2015-05-14 | 2017-05-09 | Xerox Corporation | Automatic video synchronization via analysis in the spatiotemporal domain |
US9930271B2 (en) * | 2015-09-28 | 2018-03-27 | Gopro, Inc. | Automatic composition of video with dynamic background and composite frames selected based on frame criteria |
US20170154273A1 (en) * | 2015-11-30 | 2017-06-01 | Seematics Systems Ltd | System and method for automatically updating inference models |
US10867394B2 (en) * | 2016-05-18 | 2020-12-15 | Nec Corporation | Object tracking device, object tracking method, and recording medium |
US10311690B2 (en) * | 2016-07-27 | 2019-06-04 | Ademco Inc. | Systems and methods for detecting motion based on a video pattern |
WO2018033156A1 (zh) * | 2016-08-19 | 2018-02-22 | 北京市商汤科技开发有限公司 | 视频图像的处理方法、装置和电子设备 |
KR102579994B1 (ko) * | 2016-10-24 | 2023-09-18 | 삼성에스디에스 주식회사 | 다중 배경 모델을 이용한 전경 생성 방법 및 그 장치 |
WO2021186494A1 (ja) * | 2020-03-16 | 2021-09-23 | 日本電気株式会社 | 物体追跡装置、物体追跡理方法、及び、記録媒体 |
EP3923182A1 (en) * | 2020-06-13 | 2021-12-15 | Gust Vision, Inc | Method for identifying a video frame of interest in a video sequence, method for generating highlights, associated systems |
US20230419510A1 (en) * | 2020-10-30 | 2023-12-28 | Nec Corporation | Object tracking device, object tracking method, and recording medium |
JP2023034537A (ja) * | 2021-08-31 | 2023-03-13 | 株式会社日立製作所 | 概念ドリフト検出のための装置、方法、及びシステム |
-
2019
- 2019-12-16 US US17/783,715 patent/US20230010199A1/en active Pending
- 2019-12-16 WO PCT/JP2019/049236 patent/WO2021124417A1/ja active Application Filing
- 2019-12-16 JP JP2021565178A patent/JP7347539B2/ja active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001319236A (ja) | 2000-05-10 | 2001-11-16 | Nippon Hoso Kyokai <Nhk> | 動き物体の形状抽出方法と装置 |
JP2010205007A (ja) | 2009-03-04 | 2010-09-16 | Omron Corp | モデル画像取得支援装置、モデル画像取得支援方法およびモデル画像取得支援プログラム |
JP2019169145A (ja) | 2018-03-22 | 2019-10-03 | キヤノン株式会社 | 画像処理装置および方法、並びに、命令を格納する記憶媒体 |
Also Published As
Publication number | Publication date |
---|---|
WO2021124417A1 (ja) | 2021-06-24 |
JPWO2021124417A1 (ja) | 2021-06-24 |
US20230010199A1 (en) | 2023-01-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109478239B (zh) | 检测图像中的对象的方法和对象检测系统 | |
CN107403426B (zh) | 一种目标物体检测方法及设备 | |
CN109670474B (zh) | 一种基于视频的人体姿态估计方法、装置及设备 | |
JP6032921B2 (ja) | 物体検出装置及びその方法、プログラム | |
JP7263216B2 (ja) | ワッサースタイン距離を使用する物体形状回帰 | |
KR20160096460A (ko) | 복수의 분류기를 포함하는 딥 러닝 기반 인식 시스템 및 그 제어 방법 | |
KR20180055070A (ko) | 재질 인식 및 재질 트레이닝을 수행하는 방법 및 장치 | |
JP6756406B2 (ja) | 画像処理装置、画像処理方法および画像処理プログラム | |
WO2016179808A1 (en) | An apparatus and a method for face parts and face detection | |
JP7364041B2 (ja) | 物体追跡装置、物体追跡方法、及び、プログラム | |
US11836944B2 (en) | Information processing apparatus, information processing method, and storage medium | |
CN111354022B (zh) | 基于核相关滤波的目标跟踪方法及系统 | |
JP7384217B2 (ja) | 学習装置、学習方法、及び、プログラム | |
JP7209657B2 (ja) | 情報処理装置及び方法 | |
JP7347539B2 (ja) | 前景抽出装置、前景抽出方法、及び、プログラム | |
JP6622150B2 (ja) | 情報処理装置および情報処理方法 | |
JP7331947B2 (ja) | 物体識別装置、物体識別方法、学習装置、学習方法、及び、プログラム | |
US11983242B2 (en) | Learning data generation device, learning data generation method, and learning data generation program | |
US20240296357A1 (en) | Method and device for the automated creation of a machine learning system for multi-sensor data fusion | |
JP2007025902A (ja) | 画像処理装置、画像処理方法 | |
KR20180082680A (ko) | 분류기를 학습시키는 방법 및 이를 이용한 예측 분류 장치 | |
JP6989873B2 (ja) | システム、画像認識方法、及び計算機 | |
JP2018005505A (ja) | 画像認識パラメータ設定装置、画像認識パラメータ設定方法、および画像認識パラメータ設定プログラム | |
JP6618661B2 (ja) | 識別分類装置および識別分類方法 | |
US20240095934A1 (en) | Image processing apparatus, training apparatus, image processing method, training method, and non-transitory computer-readable medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220525 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230612 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230821 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7347539 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |