JP7347161B2 - power converter - Google Patents
power converter Download PDFInfo
- Publication number
- JP7347161B2 JP7347161B2 JP2019212798A JP2019212798A JP7347161B2 JP 7347161 B2 JP7347161 B2 JP 7347161B2 JP 2019212798 A JP2019212798 A JP 2019212798A JP 2019212798 A JP2019212798 A JP 2019212798A JP 7347161 B2 JP7347161 B2 JP 7347161B2
- Authority
- JP
- Japan
- Prior art keywords
- cell
- bypass switch
- converter
- power
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Inverter Devices (AREA)
Description
本発明は,セル変換器が直列多重接続された電力変換装置に関し,セル変換器をバイパスする技術に関するものである。 The present invention relates to a power conversion device in which cell converters are multiple-connected in series, and relates to a technique for bypassing the cell converters.
大容量・高圧用途に適した電力変換器として,モジューラーマルチレベルカスケード変換器(MMC: Modular Multilevel Converter)がある。MMCは,例えば無効電力補償装置(STATCOM)や直流送電システム(HVDC)への適用が可能である。 A modular multilevel cascade converter (MMC) is a power converter suitable for large-capacity, high-voltage applications. MMC can be applied to, for example, a reactive power compensator (STATCOM) or a direct current power transmission system (HVDC).
MMCの回路方式は,例えば特許文献1に提示されている。図8に,MMC主回路構成を示す。図8において,con.1,con.2,con.3はいずれもセル変換器である。これらのセル変換器が直列に複数段に接続され,クラスタが形成される。図8の例では,各相のクラスタ(Theu-Phase Cluster,The v-Phase Cluster,The w-Phase Cluster)が三相Y結線されている。1つのセル変換器は,複数のスイッチング素子がブリッジ接続されたブリッジ回路と,当該ブリッジ回路の直流母線に接続されるコンデンサを備えている。それぞれのセル変換器におけるコンデンサCu1,Cu2,Cu3は,通常動作時にはそれぞれの電圧vCu1,vCu2,vCu3が等しくなるように制御される。このことにより,各相のクラスタに印加される三相電源系統の相電圧相当の高電圧は,クラスタ内の各セル変換器に分圧されるため,セル変換器は三相電源系統の電圧に対して比較的低い耐圧の部品によって構成でき,その多段接続によって高圧用途に適用することが可能となる。なお,図8において,スイッチMC1,MC2および抵抗Rは,MMCの起動時の突入電流の防止装置を構成しており,またLacは電流平滑リアクトル,Lsは系統のリアクタンス成分を表している。 The MMC circuit system is presented in Patent Document 1, for example. Figure 8 shows the MMC main circuit configuration. In FIG. 8, con. 1, con. 2, con. 3 are cell converters. These cell converters are connected in series in multiple stages to form a cluster. In the example of FIG. 8, the clusters of each phase (Theu-Phase Cluster, The v-Phase Cluster, The w-Phase Cluster) are three-phase Y-connected. One cell converter includes a bridge circuit in which a plurality of switching elements are bridge-connected, and a capacitor connected to a DC bus of the bridge circuit. Capacitors Cu1, Cu2, and Cu3 in each cell converter are controlled so that their respective voltages vCu1, vCu2, and vCu3 are equal during normal operation. As a result, the high voltage equivalent to the phase voltage of the three-phase power system applied to each phase cluster is divided to each cell converter in the cluster, so that the cell converter is applied to the voltage of the three-phase power system. On the other hand, it can be constructed from components with relatively low withstand voltage, and its multistage connection allows it to be applied to high-voltage applications. In FIG. 8, switches MC1, MC2 and resistor R constitute a device for preventing inrush current at the time of starting the MMC, Lac represents a current smoothing reactor, and Ls represents a reactance component of the system.
図8ではY結線のMMCを示しているが,他にもデルタ結線とすることも可能である。 Although FIG. 8 shows a Y-connection MMC, a delta-connection is also possible.
セル変換器が故障した時に,そのセル変換器の出力を短絡してバイパスすることで,電力変換装置の運転を継続する方式が知られている。例えば,出力短絡用のスイッチ(以下,バイパススイッチ)として2つのサイリスタを逆並列に接続したスイッチを用い,セル変換器が故障した時に,2つの半導体スイッチへオン信号を入力してセル変換器の出力を短絡する。故障したセル変換器の出力を短絡することで,当該セル変換器の動作がMMCの動作に影響を与えないようにすることが出来る。一方,短絡されたセル変換器を含むクラスタは,短絡されていないセル変換器で相電圧を分分圧し,直列接続された複数のセル変換器の数が1つ少なくなったクラスタとして機能する。 A method is known in which when a cell converter fails, the output of the cell converter is short-circuited and bypassed to continue operating the power converter. For example, if a switch with two thyristors connected in anti-parallel is used as an output short-circuit switch (hereinafter referred to as a bypass switch), and when a cell converter fails, an on signal is input to the two semiconductor switches and the cell converter is switched on. Short the output. By short-circuiting the output of the failed cell converter, it is possible to prevent the operation of the cell converter from affecting the operation of the MMC. On the other hand, a cluster including short-circuited cell converters divides the phase voltage using cell converters that are not short-circuited, and functions as a cluster in which the number of series-connected cell converters is reduced by one.
特許文献2ではバイパススイッチとして圧接型半導体素子を用いた方式が提案されている。図9に特許文献2のセル変換器構成を示す。セル変換器の出力端子には,バイパススイッチとして圧接型サイリスタ(999)が備えられている。この圧接型サイリスタへサイリスタの耐圧以上の電圧を印加することで短絡破壊し,セル変換器の出力を短絡させる。この時に印加する電圧は,そのセル変換器の直流コンデンサ電圧である。 Patent Document 2 proposes a method using a pressure contact type semiconductor element as a bypass switch. FIG. 9 shows the cell converter configuration of Patent Document 2. The output terminal of the cell converter is equipped with a press-contact type thyristor (999) as a bypass switch. By applying a voltage higher than the thyristor's withstand voltage to this press-contact type thyristor, it will break down due to a short circuit, and the output of the cell converter will be short-circuited. The voltage applied at this time is the DC capacitor voltage of the cell converter.
特許文献2に記載の方法では,セル変換器の直流コンデンサ電圧で圧接型半導体素子の耐圧以上の電圧を印加して壊すことでバイパス機能を実現している。しかし,圧接型半導体素子が過電圧によって短絡故障した瞬間に大電流が通流し得るため,MMC装置の保護機能の作動による装置の停止や,最悪の場合には当該大電流が通流する他のセル変換器が故障に至る可能性があるという問題もあった。 In the method described in Patent Document 2, a bypass function is achieved by applying a DC capacitor voltage of a cell converter to a voltage higher than the withstand voltage of the press-contact type semiconductor element to destroy it. However, a large current can flow at the moment a pressure contact type semiconductor element is short-circuited due to overvoltage, which may cause the device to stop due to activation of the MMC device's protection function, or in the worst case, cause other cells through which the large current flows to There was also the problem that the converter could malfunction.
そこで本発明の解決すべき課題は,圧接型半導体スイッチの短絡破壊を電流の通流によって行うことで,上述のような問題を生じることなく,必要な場合に確実にセル変換器の出力を短絡することである。 Therefore, the problem to be solved by the present invention is to perform short-circuit destruction of a pressure-contact type semiconductor switch by passing current, thereby reliably short-circuiting the output of a cell converter when necessary, without causing the above-mentioned problems. It is to be.
前記目的を実現するため,本発明に係る電力変換装置は,セル変換器を複数台かつ同じ数だけ直列接続した3つのクラスタがデルタ結線を構成してなる電力変換装置であって,前記各セル変換器は,スイッチング素子とコンデンサとから構成され矩形波状の電圧を生成する主回路と,前記電圧を出力する一対の外部出力端子と,前記一対の外部出力端子の間に接続されたバイパススイッチを搭載し,前記複数台のセル変換器は,各々のセル変換器の前記外部出力端子が直列接続され,前記バイパススイッチは前記バイパススイッチを搭載している前記セル変換器以外のセル変換器から流される所定の電流を流すことで常時短絡状態となることを特徴とする。 In order to achieve the above object, a power converter according to the present invention is a power converter in which three clusters each having the same number of cell converters connected in series constitute a delta connection, and each of the cells The converter includes a main circuit that is composed of a switching element and a capacitor and generates a rectangular wave voltage, a pair of external output terminals that output the voltage, and a bypass switch connected between the pair of external output terminals. and the plurality of cell converters are configured such that the external output terminals of each cell converter are connected in series, and the bypass switch is connected to the cell converter other than the cell converter equipped with the bypass switch. It is characterized in that it is always in a short-circuit state by flowing a predetermined current .
本発明によれば,バイパススイッチに所定の電流の通流し,当該バイパススイッチを常時短絡状態とすることによって,セル変換器の故障時のバイパス動作を安定,確実に行うことができる。 According to the present invention, by passing a predetermined current through the bypass switch and always keeping the bypass switch in a short-circuited state, it is possible to stably and reliably perform a bypass operation when a cell converter fails.
以下,本発明の実施形態を説明する。 Embodiments of the present invention will be described below.
ここではまず,デルタ結線方式MMCを例として説明する。図1は,デルタ結線方式MMCの回路構成を示す。 First, a delta connection type MMC will be explained as an example. Figure 1 shows the circuit configuration of a delta connection type MMC.
デルタ結線方式MMCは,セル変換器(500UV1~500UVx,500VW1~500VWx,500WU1~500WUx)と呼ばれる単位変換器を複数直列接続してなるクラスタ(50UV,50VW,50WU)とリアクトル(51UV,51VW,51WU)の直列回路を,デルタ結線接続する。クラスタの両端電圧は,これに含まれるセル変換器の出力端子に発生させる矩形波状の電圧の加算になるため,各セル変換器が互いに異なる位相で電圧波形を出力することで,高調波の少ないマルチレベル波形を合成することが出来る。 The delta connection type MMC consists of a cluster (50UV, 50VW, 50WU), which is formed by connecting multiple unit converters called cell converters (500UV1 to 500UVx, 500VW1 to 500VWx, 500WU1 to 500WUx) in series, and a reactor (51UV, 51VW, 51WU). ) are connected in delta connection. The voltage across the cluster is the sum of the rectangular wave voltages generated at the output terminals of the cell converters included in the cluster, so each cell converter outputs a voltage waveform with a different phase, reducing harmonics. Multi-level waveforms can be synthesized.
図2にセル変換器の構成を示す。セル変換器(500)は複数のスイッチング素子(501~504)がブリッジ接続された,いわゆるフルブリッジ回路を有し,当該フルブリッジ回路の直流母線にコンデンサ(505)が接続されたフルブリッジインバータで構成される。セル変換器の出力端子間には,セル変換器を短絡してバイパスするためのバイパススイッチ(511)として圧接型半導体スイッチが接続される。一般に,圧接型半導体の故障モードは短絡故障であるため,本願発明に係るバイパス用途に適する。各スイッチング素子(501~504)を駆動するゲート駆動回路であるGDU(506~508)への電源供給は,コンデンサ(505)と並列に接続された自己給電回路(510)を介して行う。コンデンサが保持する直流電圧によって,自己給電回路(電子回路であるため消費電力は小さい)に電源供給がなされ,自己給電回路から各GDUに必要な電力が共有される。各GDUは,図示していない制御部から与えられるスイッチングの指令値に応じて,対応するスイッチング素子にオン,オフ信号を与える。このような動作によって,セル変換器の出力端子に矩形波状の電圧が発生する。なお,図2において,バイパススイッチについてのみGDUとの接続を模式図的に示している。 Figure 2 shows the configuration of the cell converter. The cell converter (500) has a so-called full-bridge circuit in which a plurality of switching elements (501 to 504) are bridge-connected, and is a full-bridge inverter in which a capacitor (505) is connected to the DC bus of the full-bridge circuit. configured. A pressure contact type semiconductor switch is connected between the output terminals of the cell converter as a bypass switch (511) for short-circuiting and bypassing the cell converter. Generally, the failure mode of press-contact type semiconductors is short-circuit failure, so they are suitable for the bypass application according to the present invention. Power is supplied to the GDU (506-508), which is a gate drive circuit that drives each switching element (501-504), through a self-power supply circuit (510) connected in parallel with a capacitor (505). The DC voltage held by the capacitor supplies power to the self-power supply circuit (which has low power consumption because it is an electronic circuit), and the necessary power is shared by each GDU from the self-power supply circuit. Each GDU provides an on/off signal to a corresponding switching element in accordance with a switching command value given from a control unit (not shown). This operation generates a rectangular wave voltage at the output terminal of the cell converter. Note that in FIG. 2, only the connection of the bypass switch to the GDU is schematically shown.
図3に,圧接型半導体スイッチを用いたバイパススイッチ(511)の構成例を示す。図3(a)のように2つのサイリスタ(511a,511b)を逆並列に接続する構成や,図3(b)のように2つのIGBT(511c,511d)を逆直列に接続する構成がある。バイパスしないときは各素子をオフ,バイパスするときは各素子をオンしたうえで所定の電流を流して破壊することで,常時短絡状態とすることができる。電流通流による素子破壊は,一般に半導体の温度上昇によって引き起こされるため,破壊に至る半導体の温度,および当該温度に達するための電流値と通流時間を設計時に把握して,これに応じて通流する電流と通流時間を決めればよい。 FIG. 3 shows a configuration example of a bypass switch (511) using a pressure contact type semiconductor switch. There is a configuration in which two thyristors (511a, 511b) are connected in anti-parallel as shown in Figure 3(a), and a configuration in which two IGBTs (511c, 511d) are connected in anti-series as in Figure 3(b). . When not bypassing, each element is turned off; when bypassing, each element is turned on, and a predetermined current is applied to destroy the element, thereby creating a constant short-circuit state. Device destruction due to current flow is generally caused by a rise in the temperature of the semiconductor, so the temperature of the semiconductor that leads to destruction, as well as the current value and conduction time to reach that temperature, should be understood at the time of design, and the current flow should be adjusted accordingly. All you have to do is decide on the current to flow and the duration of the flow.
バイパススイッチに所定の電流を通流する方法の例を図4(a),(b)を用いて説明する。図4(a)のようにスイッチ(501,504)とバイパススイッチ(511)をオン,スイッチ(502,503)をオフ,または図4(b)のようにスイッチ(501,504)をオフ,スイッチ(502,503)とバイパススイッチ(511)をオンすることで,通常動作時において所定の電圧を保持しているコンデンサ(505)の蓄積電荷がバイパススイッチ(511)を通じて流れる。手順としては,まずバイパススイッチをオンした後,バイパススイッチに所定の電流が流れるようにブリッジを構成する所定のスイッチをオンする。その際の通流電流に対する耐量としては,バイパススイッチ(501)よりもブリッジを構成するスイッチ(501~504)の方が強くすることによって,バイパススイッチが先に常時短絡状態に至る。バイパススイッチに所定の電流を通流させてバイパススイッチを常時短絡状態とした後,ブリッジを構成する素子をオフすればよい。あるいは,バイパススイッチを常時短絡状態とした後では,バイパススイッチによってクラスタを流れる電流の経路が確保されているので,ブリッジを構成するスイッチはオフせず,そのままコンデンサの電荷を放出し切ることも可能である。なお,このようにバイパススイッチに所定の電流を通流する際,ブリッジを構成するスイッチを高速にオン,オフすることによって,平均電流を制御することも可能である。 An example of a method for passing a predetermined current through a bypass switch will be described with reference to FIGS. 4(a) and 4(b). Turn on the switches (501, 504) and the bypass switch (511) and turn off the switches (502, 503) as shown in FIG. 4(a), or turn off the switches (501, 504) as shown in FIG. 4(b). By turning on the switches (502, 503) and the bypass switch (511), the accumulated charge in the capacitor (505), which holds a predetermined voltage during normal operation, flows through the bypass switch (511). The procedure is to first turn on the bypass switch, and then turn on the predetermined switches forming the bridge so that a predetermined current flows through the bypass switch. In this case, by making the switches (501 to 504) forming the bridge stronger than the bypass switch (501), the bypass switch always becomes short-circuited first. After a predetermined current is caused to flow through the bypass switch so that the bypass switch is always in a short-circuited state, the elements constituting the bridge may be turned off. Alternatively, after the bypass switch is always short-circuited, the bypass switch secures a path for the current to flow through the cluster, so it is possible to discharge the charge in the capacitor without turning off the switches that make up the bridge. be. Note that when passing a predetermined current through the bypass switch in this manner, it is also possible to control the average current by rapidly turning on and off the switches forming the bridge.
以上に説明したバイパススイッチを常時短絡状態とする方法は,その動作が1つのセル変換器で完結しているため,デルタ結線,Y結線,いずれのMMCにおいても適用が可能である。 The above-described method of always shorting the bypass switch can be applied to either delta connection or Y connection MMC because its operation is completed with one cell converter.
次に,デルタ結線方式MMCに特化したセル変換器のバイパス手段を説明する。図5にデルタ結線のMMCの全体構成を,図6に図5に示すセル変換器500UV1の状態を,それぞれ示す。図5は図の簡略化のため,1つのクラスタのセル変換器の直列数を3とし,またリアクトルおよびMMCの電力系統との表記を省略している。すなわち,UV線間の3つのセル変換器のうち,セル500UV1において,バイパススイッチがオン状態となりかつブリッジを構成するスイッチはオフ状態となっている。このとき,各クラスタの出力する線間電圧の基本波実効値が等しくなるようにする。すなわち,図示しているように,UV線間の動作可能なセル数は2となっており,それらが発生する電圧実効値V1×2に,VW線間,およびWU線間の電圧実効値を一致させるべく,それらの線間に接続された各セル変換器の電圧実効値をV1×2÷3とすればよい。この際,デルタ結線を還流する循環電流を制御することが可能であり,これによってセル変換器500UV1のバイパススイッチ(511)に流れる電流を所定の値とすることによってこれを破壊することができる。デルタ結線方式MMCにおける循環電流の制御方法は公知技術であり,例えば特許第5800154号の特許公報に記述されている。なお,ここでは各相のセル数が3の場合について説明したが,本発明はこれに制限されるものではなく,任意のセル数の場合に適用可能である。ここで説明した技術によって,セル変換器におけるスイッチが開放故障するなどの事由によって,前述のようにコンデンサを短絡することが出来ない場合にも,当該セル変換器のバイパススイッチに所定の電流を通流して常時短絡状態とすることが可能となる。 Next, a cell converter bypass means specialized for delta connection type MMC will be explained. FIG. 5 shows the overall configuration of the delta-connected MMC, and FIG. 6 shows the state of the cell converter 500UV1 shown in FIG. 5. In FIG. 5, in order to simplify the diagram, the number of cell converters connected in series in one cluster is three, and the notation of a reactor and an MMC power system is omitted. That is, in the cell 500UV1 among the three cell converters between the UV lines, the bypass switch is in the on state, and the switch forming the bridge is in the off state. At this time, the effective value of the fundamental wave of the line voltage output by each cluster is made to be equal. In other words, as shown in the figure, the number of operable cells between the UV lines is 2, and the effective voltage values between the VW lines and the WU lines are added to the effective voltage value V1 × 2 generated by these cells. In order to match, the effective voltage value of each cell converter connected between these lines may be set to V1×2÷3. At this time, it is possible to control the circulating current circulating through the delta connection, and thereby destroy it by setting the current flowing through the bypass switch (511) of the cell converter 500UV1 to a predetermined value. A method of controlling circulating current in a delta connection type MMC is a known technique, and is described, for example, in the patent publication No. 5800154. Although the case where the number of cells in each phase is three has been described here, the present invention is not limited to this, and can be applied to any number of cells. With the technology described here, even if the capacitor cannot be short-circuited as described above due to an open failure of the switch in the cell converter, the specified current can be passed through the bypass switch of the cell converter. It is possible to keep the current short-circuited at all times.
続いて,本発明の別の実施例について説明する。MMCは図示しない制御部を更に備え,MMCの運転状態,例えば各スイッチング素子に流れる電圧や電流,各コンデンサの電圧,各部の使用時間を記憶し,前記運転状態に基づいて前記変換器の故障を予知する故障予知部を制御部内に有している。故障予知部は,他のセル変換器への影響を低減するため,セル変換器の故障を予知したならば(セル変換器が健全で直流コンデンサが電圧を保持している状態),上述の方法を用いてバイパススイッチを短絡破壊すればよい。例えば,セル変換器のコンデンサにアルミ電解コンデンサを適用した場合,アルミ電解コンデンサの寿命時間は予め計算することができる。例えば,MMCの運転履歴を故障予知部に記録しておき,予め故障予知部に記憶しておいたアルミ電解コンデンサ寿命時間に使用時間が近づいたとき,予めセル変換器をバイパスするように制御部から指令をGDUに出力するように構成しておくことで,アルミ電解コンデンサの突然の破損による二次災害を未然に防ぐことができる。 Next, another embodiment of the present invention will be described. The MMC further includes a control unit (not shown), which stores the operating state of the MMC, such as the voltage and current flowing through each switching element, the voltage of each capacitor, and the usage time of each part, and detects a failure of the converter based on the operating state. The control unit includes a failure prediction unit that predicts failures. In order to reduce the influence on other cell converters, the failure prediction unit uses the method described above when predicting a failure in a cell converter (when the cell converter is healthy and the DC capacitor maintains voltage). You can short-circuit and destroy the bypass switch using For example, when an aluminum electrolytic capacitor is used as a cell converter capacitor, the life time of the aluminum electrolytic capacitor can be calculated in advance. For example, the operating history of the MMC is recorded in the failure prediction unit, and when the usage time approaches the aluminum electrolytic capacitor life time stored in advance in the failure prediction unit, the control unit can be configured to bypass the cell converter in advance. By configuring the system so that commands are output from the GDU to the GDU, secondary disasters caused by sudden damage to aluminum electrolytic capacitors can be prevented.
続いて,さらに本発明の別の実施形態について説明する。電力変換装置が運転中にバイパススイッチの短絡による破壊をさせる操作を行うと,その影響が電力系統に及び,系統擾乱を引き起こし,他の機器を破損する恐れがある。そこで,図7に示すように電力系統(1)と電力変換装置(2)の間に受電スイッチ(6)を備え,受電スイッチ(6)をオフして電力系統(1)から電力変換装置(2)を切り離した後にバイパススイッチの破壊操作を行うことで,電力系統への影響を防止することができる。電力系統から電力変換装置を切り離しても,各セル変換器のコンデンサが所定の直流電圧を保持していれば上記に説明したセル変換器単独でバイパススイッチを常時短絡状態とする動作は可能であり,また同じく上述のように電力変換装置がデルタ結線方式MMCであれば,デルタ結線による循環電流の経路が確保されているため,循環電流を用いる方式も採用可能である。 Next, another embodiment of the present invention will be described. If a power conversion device is operated to cause damage by short-circuiting the bypass switch, the effect will extend to the power system, causing system disturbances and potentially damaging other equipment. Therefore, as shown in Fig. 7, a power receiving switch (6) is provided between the power system (1) and the power converter (2), and the power receiving switch (6) is turned off to transfer the power from the power system (1) to the power converter ( By performing a destructive operation on the bypass switch after disconnecting 2), it is possible to prevent the impact on the power system. Even if the power converter is disconnected from the power system, if the capacitor of each cell converter maintains the specified DC voltage, it is possible to keep the bypass switch in the short-circuit state using the cell converter alone as described above. Similarly, as described above, if the power converter is a delta connection type MMC, a circulating current path is secured by the delta connection, so a method using circulating current can also be adopted.
1…電源系統
5…MMC
50UV,50VW,50WU…クラスタ
500UV1~500UV3,500UVx,500VW1~500VW3,500VWx,500WU1~500WU3,500WUx…セル変換器
51UV,51VW,51WU…リアクトル
501~504…セル変換器を構成するスイッチング素子
505…コンデンサ
506~509…GDU(ゲート駆動回路)
510…自己給電回路
511…バイパススイッチ
512…バイパススイッチ用GDU
511a,511b…サイリスタ
511c,511d…IGBT
6…受電スイッチ
1...Power supply system 5...MMC
50UV, 50VW, 50WU...Cluster 500UV1 to 500UV3,500UVx, 500VW1 to 500VW3,500VWx, 500WU1 to 500WU3,500WUx...Cell converter 51UV, 51VW, 51WU...Reactor 501 to 504...Switching element 505 forming the cell converter …capacitor 506-509...GDU (gate drive circuit)
510... Self-power supply circuit 511... Bypass switch 512... GDU for bypass switch
511a, 511b...Thyristor 511c, 511d...IGBT
6...Power receiving switch
Claims (3)
前記各セル変換器は,スイッチング素子とコンデンサとから構成され矩形波状の電圧を生
成する主回路と,前記電圧を出力する一対の外部出力端子と,前記一対の外部出力端子の
間に接続されたバイパススイッチを搭載し,
前記複数台のセル変換器は,各々のセル変換器の前記外部出力端子が直列接続され,
前記バイパススイッチは前記バイパススイッチを搭載している前記セル変換器以外のセル
変換器から流される所定の電流を流すことで常時短絡状態となることを特徴とする電力変
換装置。 A power conversion device in which three clusters each having the same number of cell converters connected in series constitute a delta connection,
Each of the cell converters is connected between a main circuit that is composed of a switching element and a capacitor and generates a rectangular wave voltage, a pair of external output terminals that output the voltage, and the pair of external output terminals. Equipped with a bypass switch,
The plurality of cell converters have the external output terminals of each cell converter connected in series,
The bypass switch is a cell other than the cell converter equipped with the bypass switch.
A power converter characterized by being constantly in a short-circuit state by flowing a predetermined current from a converter .
前記バイパススイッチは,前記スイッチング素子より電流耐量が小さいことを特徴とする電力変換装置。 A power conversion device according to claim 1,
A power conversion device characterized in that the bypass switch has a smaller current withstand capacity than the switching element.
前記電力変換装置は電力系統と受電スイッチを介して接続され,
前記受電スイッチがオフした状態で前記所定の電流を前記バイパススイッチに流すことを
特徴とする電力変換装置。 A power conversion device according to any one of claims 1 or 2,
The power conversion device is connected to a power system via a power receiving switch,
A power conversion device characterized in that the predetermined current is caused to flow through the bypass switch while the power receiving switch is turned off.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019212798A JP7347161B2 (en) | 2019-11-26 | 2019-11-26 | power converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019212798A JP7347161B2 (en) | 2019-11-26 | 2019-11-26 | power converter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021087244A JP2021087244A (en) | 2021-06-03 |
JP7347161B2 true JP7347161B2 (en) | 2023-09-20 |
Family
ID=76085964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019212798A Active JP7347161B2 (en) | 2019-11-26 | 2019-11-26 | power converter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7347161B2 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013169088A (en) | 2012-02-16 | 2013-08-29 | Hitachi Ltd | Power converter, dc substation, dc power transmission system and control method of power converter |
JP2017070139A (en) | 2015-10-01 | 2017-04-06 | 株式会社日立製作所 | Electric power conversion system |
WO2018193606A1 (en) | 2017-04-21 | 2018-10-25 | 東芝三菱電機産業システム株式会社 | Power conversion device |
-
2019
- 2019-11-26 JP JP2019212798A patent/JP7347161B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013169088A (en) | 2012-02-16 | 2013-08-29 | Hitachi Ltd | Power converter, dc substation, dc power transmission system and control method of power converter |
JP2017070139A (en) | 2015-10-01 | 2017-04-06 | 株式会社日立製作所 | Electric power conversion system |
WO2018193606A1 (en) | 2017-04-21 | 2018-10-25 | 東芝三菱電機産業システム株式会社 | Power conversion device |
Also Published As
Publication number | Publication date |
---|---|
JP2021087244A (en) | 2021-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3399615B1 (en) | Modular multi-level converter and dc failure blocking method therefor | |
Salimian et al. | Fault-tolerant operation of three-phase cascaded H-bridge converters using an auxiliary module | |
US6229722B1 (en) | Multiple inverter system | |
JP6417043B2 (en) | Power converter | |
EP2719067B1 (en) | Method for energizing a chain-link converter, controller, computer programs and computer program products | |
EP2406873B1 (en) | A modular voltage source converter | |
US10128773B2 (en) | Electric power conversion device and electric power system | |
US9553441B2 (en) | Method and apparatus for protecting an intermediate circuit capacitor in a power converter | |
EP3086459B1 (en) | Power conversion device | |
JP5049964B2 (en) | Power converter | |
JP5930567B1 (en) | Mechanical bypass switch device, converter arm, and power conversion device | |
EP3373435B1 (en) | Power conversion device | |
JP6342063B2 (en) | Power converter | |
JP2004229493A (en) | Inverter drive system | |
CA2842648A1 (en) | Converters | |
MX2011002969A (en) | Power converter. | |
CN107223304B (en) | Multilevel converter with energy storage | |
KR101356277B1 (en) | Alternating current motor drive device | |
CN102097925B (en) | Concatenated high voltage frequency converter bypassing processing method | |
JP7347161B2 (en) | power converter | |
WO2019149438A1 (en) | Modular multilevel converter | |
Azer et al. | A new post-fault control method based on sinusoidal pulse width modulation technique for a neutral point clamped (NPC) inverter | |
Yu et al. | DC fault current control of modular multilevel converter with SiC-based Power Electronics Building Blocks | |
JP5445036B2 (en) | Power converter | |
JP2017093210A (en) | Uninterruptible power supply |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230523 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230712 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230808 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230821 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7347161 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |