[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7234001B2 - Repair method for polymer cement mortar and reinforced concrete - Google Patents

Repair method for polymer cement mortar and reinforced concrete Download PDF

Info

Publication number
JP7234001B2
JP7234001B2 JP2019061962A JP2019061962A JP7234001B2 JP 7234001 B2 JP7234001 B2 JP 7234001B2 JP 2019061962 A JP2019061962 A JP 2019061962A JP 2019061962 A JP2019061962 A JP 2019061962A JP 7234001 B2 JP7234001 B2 JP 7234001B2
Authority
JP
Japan
Prior art keywords
mass
parts
cement mortar
polymer cement
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019061962A
Other languages
Japanese (ja)
Other versions
JP2020158371A (en
Inventor
義徳 長井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Materials Corp
Original Assignee
Taiheiyo Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Materials Corp filed Critical Taiheiyo Materials Corp
Priority to JP2019061962A priority Critical patent/JP7234001B2/en
Publication of JP2020158371A publication Critical patent/JP2020158371A/en
Application granted granted Critical
Publication of JP7234001B2 publication Critical patent/JP7234001B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Working Measures On Existing Buildindgs (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、ポリマーセメントモルタル組成物に関する。詳しくは、断面修復材(断面修復用ポリマーセメントモルタル)としても用いることができ、且つ鉄筋コンクリート補修用防せい材としても用いることができるポリマーセメントモルタル組成物に関する。
また、本発明は、鉄筋コンクリートの補修方法に関する。詳しくは、少ない工程で施工できる鉄筋コンクリートの補修方法に関する。
The present invention relates to polymer cement mortar compositions. Specifically, the present invention relates to a polymer cement mortar composition that can be used as a cross-section repairing material (polymer cement mortar for cross-section repairing) and as a rust prevention material for repairing reinforced concrete.
The present invention also relates to a method for repairing reinforced concrete. More specifically, it relates to a method of repairing reinforced concrete that can be constructed in a small number of steps.

鉄筋コンクリートは、トンネルや橋梁等の土木構造物、ビルや一般家屋等の建築構造物に広く使用されている。しかし、これらの鉄筋コンクリート構造物は、二酸化炭素などの酸性ガスによる中性化並びに海水や凍結防止剤等による塩害で、内部の鉄筋が腐食し、補修が必要になることがある。 Reinforced concrete is widely used for civil engineering structures such as tunnels and bridges, and architectural structures such as buildings and ordinary houses. However, these reinforced concrete structures may be neutralized by acid gases such as carbon dioxide and salt damage caused by seawater, antifreezing agents, etc., corroding the internal reinforcing bars and requiring repair.

鉄筋コンクリートが酷く劣化した場合は、劣化したコンクリートを除去した後、露出した鉄筋の錆を除去・防錆処理(防錆剤の塗布)した後に、コンクリートの断面欠損部分をモルタル又はコンクリートで修復することが行われ、そのような補修方法が提案されている(例えば、特許文献1~3参照。)。 If the reinforced concrete has deteriorated severely, remove the deteriorated concrete, remove the rust from the exposed reinforcing bars, apply rust prevention treatment (apply rust inhibitor), and then repair the cross-sectional defect of the concrete with mortar or concrete. have been performed, and such repair methods have been proposed (see, for example, Patent Documents 1 to 3).

しかし、従来から行われてきた上記のような鉄筋コンクリートの補修方法は、補修方法として優れているものの、より簡素で工程を省略しても、補修した部分の鉄筋を充分に防錆した上で補修できる鉄筋コンクリートの補修方法が望まれていた。 However, although the repair method for reinforced concrete conventionally performed as described above is excellent as a repair method, even if it is simpler and omits the process, it is possible to perform repair after sufficiently preventing the rebar in the repaired portion from being rusted. There has been a demand for a repair method for reinforced concrete that can

特開2003-120041号公報Japanese Patent Application Laid-Open No. 2003-120041 特開平02-92883号公報JP-A-02-92883 特開平08-260562号公報JP-A-08-260562

本発明は前記問題の解決、即ち、本発明は、鉄筋コンクリート補修用防せい材及び断面修復材として使用可能なポリマーセメントモルタル組成物を提供することを目的とする。また、本発明は、より簡素で、補修した部分の鉄筋を充分に防錆した上で補修できる鉄筋コンクリートの補修方法を提供することを目的とする。 An object of the present invention is to solve the above problems, that is, to provide a polymer cement mortar composition that can be used as a rust preventive material for repairing reinforced concrete and a cross-section repairing material. Another object of the present invention is to provide a repair method for reinforced concrete which is simpler and can be repaired after sufficiently rust-proofing the reinforcing bars of the repaired portion.

本発明者は、前記課題解決のため鋭意検討した結果、セメントと、亜硝酸塩、ポリマーディスパージョン、膨張材、フライアッシュ、遅延剤、消泡剤、有機繊維及び細骨材を含有し、特定の亜硝酸イオン量となる亜硝酸塩を含み且つポリマーセメントモルタル中の骨材を除いたペーストの量が特定の量とすることにより、上記課題を解決できることを見出し、本発明を完成させた。即ち、本発明は、以下の(1で表すポリマーセメントモルタル、並びに(3)で表す鉄筋コンクリートの補修方法である。
(1)(A)亜硝酸塩、(B)セメント、(C)ポリマーディスパージョン、(D)膨張材、(E)フライアッシュ、(F)遅延剤、(G)消泡剤、(H)有機繊維、及び(I)細骨材を含有し、(A)亜硝酸塩含有量がポリマーセメントモルタル中の亜硝酸イオン量が1~54.5kg/mとなる量であり、(B)セメント100質量部に対し、(C)ポリマーディスパージョンを2~20質量部、(D)膨張材を3~20質量部、(E)フライアッシュを5~50質量部、(F)遅延剤を0.05~2質量部、(G)消泡剤を0.05~0.5質量部、(H)有機繊維を0.2~2質量部含有し、ポリマーセメントモルタル中の骨材を除いたペーストの量が700~1250kg/mであることを特徴とするポリマーセメントモルタル。
(2)鉄筋コンクリートの劣化部分のコンクリートを当該部分に埋設されている鉄筋が露出するように除去する工程(A)と、前記工程(A)により露出した鉄筋に発生している錆を除去する工程(B)と、工程(A)で形成された断面欠損部を上記(1)に記載のポリマーセメントモルタルで埋め戻す工程(C)とを具備することを特徴とする鉄筋コンクリートの補修方法。
As a result of intensive studies for solving the above problems, the present inventors have found that cement, nitrite, polymer dispersion, expansive agent, fly ash, retarder, antifoaming agent, organic fiber and fine aggregate, and specific The present inventors have found that the above problems can be solved by setting the amount of the paste, which contains nitrite to be the amount of nitrite ions and excludes the aggregate in the polymer cement mortar, to a specific amount, and have completed the present invention. That is, the present invention is a polymer cement mortar represented by (1 ) below and a method for repairing reinforced concrete represented by (3).
(1) (A) nitrite, (B) cement, (C) polymer dispersion, (D) expansive agent, (E) fly ash, (F) retardant, (G) defoamer, (H) organic fibers, and (I) fine aggregate, (A) the nitrite content is such that the amount of nitrite ions in the polymer cement mortar is 1 to 54.5 kg/m 3 , and (B) cement With respect to 100 parts by mass, (C) 2 to 20 parts by mass of polymer dispersion, (D) 3 to 20 parts by mass of expansion agent, (E) 5 to 50 parts by mass of fly ash, (F) 0 parts by mass of retarder 0.05 to 2 parts by mass, (G) 0.05 to 0.5 parts by mass of an antifoaming agent, (H) 0.2 to 2 parts by mass of organic fibers, and the aggregate in the polymer cement mortar was removed. A polymer cement mortar characterized in that the amount of paste is between 700 and 1250 kg/m 3 .
(2) A step (A) of removing the concrete from the deteriorated portion of the reinforced concrete so as to expose the rebar embedded in the portion, and a step of removing rust generated on the exposed rebar in the step (A). (B) and a step (C) of refilling the cross-sectional defect formed in the step (A) with the polymer cement mortar according to the above (1).

本発明によれば、鉄筋コンクリート補修用防せい材及び断面修復材として使用可能なポリマーセメントモルタルが得られる。また、本発明によれば、より簡素で工程が少なく、補修した部分の鉄筋を充分に防錆した上で補修できる鉄筋コンクリートの補修方法が得られる。 According to the present invention, a polymer cement mortar that can be used as a rust prevention material for repairing reinforced concrete and a cross-section repairing material is obtained. Further, according to the present invention, a method for repairing reinforced concrete can be obtained which is simpler, has fewer steps, and can be repaired after sufficiently preventing the reinforcing bars of the repaired portion from being rusted.

本発明のポリマーセメントモルタルは(A)亜硝酸塩、(B)セメント、(C)ポリマーディスパージョン、(D)膨張材、(E)フライアッシュ、(F)遅延剤、(G)消泡剤、(H)有機繊維、及び(I)細骨材を含有し、(A)亜硝酸塩含有量がポリマーセメントモルタル中の亜硝酸イオン量が1~100kg/mとなる量であり、ポリマーセメントモルタル中の骨材を除いたペーストの量が700~1250kg/mであることを特徴とする。 The polymer cement mortar of the present invention comprises (A) nitrite, (B) cement, (C) polymer dispersion, (D) expanding agent, (E) fly ash, (F) retardant, (G) antifoaming agent, A polymer cement mortar containing (H) organic fibers and (I) fine aggregate, and (A) having a nitrite content such that the amount of nitrite ions in the polymer cement mortar is 1 to 100 kg/m 3 . It is characterized in that the amount of paste excluding aggregates inside is 700 to 1250 kg/m 3 .

本発明のポリマーセメントモルタルは、鉄筋コンクリートの補修方法に用いる。本発明のポリマーセメントモルタルは、セメント(成分(B))100質量部に対し、30~90質量部の水を含有することが好ましい。この範囲であると混練し易く、左官作業や吹付け作業が行い易い。また、寸法安定性にも優れ、壁面や天井面に塗付けても垂れ及び変形が起こり難い。セメント(成分(B))100質量部に対し、30質量部未満であると、混練し難く、混練できても左官作業やモルタル吹付け作業は行い難い。また、9 0質量部を超えると、寸法安定性が悪くなり、ひび割れの発生の虞が高まる。更に、モルタルをコン クリート壁面に塗付けた場合に、初期に垂れ又は変形が起こり易い。混練し易く、左官作業及びモル タル吹付け作業が行い易く、壁面に塗付けても垂れ及び変形が起こり難いことから、含有するセメント100質量部に対して35~60質量部の水を含有することが、より好ましい。尚、使用する水の量は、水溶液やエマルション等の水を溶媒や分散媒とする液状の混和材料に含まれる水量も考慮したものとする。本発明のポリマーセメントモルタルを混練するときは、モルタルミキサやコンクリートミキサ等のミキサで混練し製造することが好ましい。用いることのできるミキサとしては連続式ミキサでもバッチ式ミキサでも良く、例えばパン型コンクリートミキサ、パグミル型コンクリートミキサ、重力式コンクリートミキサ、グラウトミキサ、ハンドミキサ、左官ミキサ等が挙げられる。 The polymer cement mortar of the present invention is used for repairing reinforced concrete. The polymer cement mortar of the present invention preferably contains 30 to 90 parts by mass of water per 100 parts by mass of cement (component (B)). Within this range, kneading is easy, and plastering work and spraying work are easy to perform. In addition, it has excellent dimensional stability and does not easily sag or deform when applied to walls or ceilings. If the content is less than 30 parts by mass with respect to 100 parts by mass of cement (component (B)), kneading is difficult, and even if kneading is possible, plastering work and mortar spraying work are difficult. On the other hand, if it exceeds 90 parts by mass, the dimensional stability is deteriorated and the risk of cracking is increased. Furthermore, when mortar is applied to a concrete wall surface, it tends to sag or deform in the initial stage. It is easy to knead, easy to perform plastering work and mortar spraying work, and does not easily sag or deform even when applied to a wall surface. is more preferable. The amount of water to be used also takes into account the amount of water contained in the liquid admixture, such as an aqueous solution or emulsion, in which water is used as a solvent or dispersion medium. When kneading the polymer cement mortar of the present invention, it is preferable to knead it with a mixer such as a mortar mixer or a concrete mixer. A mixer that can be used may be a continuous mixer or a batch mixer, and examples thereof include a pan concrete mixer, a pug mill concrete mixer, a gravity concrete mixer, a grout mixer, a hand mixer, and a plastering mixer.

本発明のポリマーセメントモルタルに用いるセメント(成分(B))は、水硬性セメントであればよく、例えば普通、早強、超早強、低熱及び中庸熱の各種ポルトランドセメント、エコセメント、アルミナセメント、並びにこれらの水硬性セメントに、フライアッシュ、高炉スラグ、シリカフューム又は石灰石微粉末等を混合した各種混合セメント等が挙げられ、これらの一種又は二種以上を使用することができる。本発明に用いるセメントとしては、左官施工し易いことから、珪酸カルシウムを主成分とするセメント又はアルミナセメントを主体としたセメントが好ましい。ここで珪酸カルシウムを主成分とするとは、含まれるセメントクリンカ粉砕物中において珪酸カルシウム鉱物(CS、CS)を50質量%以上含むことをいい、好ましくは60質量%以上含むことをいい、より好ましくは70質量%以上含むことをいう。また、材齢1日において高い強度を得易いことから、普通ポルトランドセメント、早強ポルトランドセメント、超早強ポルトランドセメント、エコセメント及びアルミナセメントから選ばれる一種又は二種以上を使用することが更に好ましい。 The cement (component (B)) used in the polymer cement mortar of the present invention may be any hydraulic cement, such as normal, early-strength, ultra-early-strength, low-heat and moderate-heat various Portland cements, ecocement, alumina cement, In addition, various mixed cements obtained by mixing fly ash, blast furnace slag, silica fume, limestone fine powder, etc. with these hydraulic cements can be used, and one or more of these can be used. As the cement used in the present invention, cement mainly composed of calcium silicate or alumina cement is preferable because it is easy to plaster. Here, "mainly composed of calcium silicate" means that the ground cement clinker contains 50% by mass or more, preferably 60% by mass or more, of calcium silicate minerals (C 3 S, C 2 S). more preferably 70% by mass or more. In addition, it is more preferable to use one or more selected from ordinary Portland cement, high-early-strength Portland cement, ultra-early-strength Portland cement, ecocement, and alumina cement, since high strength can be easily obtained at a material age of 1 day. .

本発明のポリマーセメントモルタルに用いる亜硝酸塩(成分(A))は、亜硝酸カルシウム、亜硝酸リチウムが好適な例として挙げられる。本発明において、亜硝酸塩含有量は、ポリマーセメントモルタル中の亜硝酸イオン量が1~100kg/mとなる量である。ポリマーセメントモルタル中の亜硝酸イオン量が1kg/m未満となる量の亜硝酸塩含有量では、防せい性が不充分で、日本建築学会の「鉄筋コンクリート補修用防せい材の品質基準(案)」(鉄筋コンクリート造建築物の耐久性調査・診断および補修指針(案)・同解説の付録1.3)で規定される品質基準を、ポリマーセメントモルタルが満たさない。また、ポリマーセメントモルタル中の亜硝酸イオン量が100kg/mを超える量の亜硝酸塩含有量では、亜硝酸塩が亜硝酸カルシウムの場合は、硬化が早すぎて断面欠損部への塗布ができず、亜硝酸塩が亜硝酸リチウムの場合は、硬化遅延を起こし、低温時に硬化不良を起こす虞がある。本発明における好ましい亜硝酸塩含有量は、ポリマーセメントモルタル中の亜硝酸イオン量が2~20kg/mとなる量、更にはポリマーセメントモルタル中の亜硝酸イオン量が2~10kg/mとなる量である。 Preferred examples of the nitrite (component (A)) used in the polymer cement mortar of the present invention include calcium nitrite and lithium nitrite. In the present invention, the nitrite content is such that the amount of nitrite ions in the polymer cement mortar is from 1 to 100 kg/m 3 . If the amount of nitrite ion in the polymer cement mortar is less than 1 kg/m 3 , the rust prevention is insufficient. Polymer cement mortar does not meet the quality standards stipulated in "Durability Survey/Diagnosis and Repair Guidelines for Reinforced Concrete Buildings (Draft)/Appendix 1.3 of the Commentary". Also, when the amount of nitrite ions in the polymer cement mortar exceeds 100 kg/m 3 , when the nitrite is calcium nitrite, it hardens too quickly and cannot be applied to cross-sectional defects. When the nitrite is lithium nitrite, curing delay may occur, and curing failure may occur at low temperatures. The preferred nitrite content in the present invention is such that the amount of nitrite ions in the polymer cement mortar is 2 to 20 kg/m 3 , more preferably the amount of nitrite ions in the polymer cement mortar is 2 to 10 kg/m 3 . quantity.

本発明に用いるポリマーディスパージョン(成分(C))としては、ポリマーセメントモルタルやポリマーセメントコンクリートの結合材として用いられるものであればよく、例えば、スチレン・ブタジエン共重合体,クロロプレンゴム,アクリロニトリル・ブタジエン共重合体又はメチルメタクリレート・ブタジエン共重合体等の合成ゴム、天然ゴム、ポリエチレンやポリプロピレン等のポリオレフィン、ポリクロロピレン、ポリアクリル酸エステル、スチレン・アクリル共重合体、オールアクリル共重合体、ポリ酢酸ビニル,酢酸ビニル・アクリル共重合体,酢酸ビニル・アクリル酸エステル共重合体,変性酢酸ビニル,エチレン・酢酸ビニル共重合体,エチレン・酢酸ビニル・塩化ビニル共重合体,酢酸ビニルビニルバーサテート共重合体,アクリル・酢酸ビニル・ベオバ(t-デカン酸ビニルの商品名)共重合体等の酢酸ビニル系樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アルキド樹脂及びエポキシ樹脂等の合成樹脂、アスファルト,ゴムアスファルト及びパラフィン等の瀝青質等が好ましい例として挙げられ、これらの1種又は2種以上を用いることができる。下地との接着が良いという理由から、本発明に使用するポリマーディスパージョンとしては、ポリ酢酸ビニル,酢酸ビニル・アクリル共重合体,酢酸ビニル・アクリル酸エステル共重合体,変性酢酸ビニル,エチレン・酢酸ビニル共重合体,エチレン・酢酸ビニル・塩化ビニル共重合体,酢酸ビニルビニルバーサテート共重合体,アクリル・酢酸ビニル・ベオバ(t-デカン酸ビニルの商品名)共重合体等の酢酸ビニル系樹脂;ポリアクリル酸エステル,ポリメタクリル酸エステル,アクリル酸エステル・スチレン共重合体,スチレン・アクリル共重合体,オールアクリル共重合体等のアクリル系樹脂;ポリエチレン及びポリプロピレン等のポリオレフィン系樹脂;スチレン・ブタジエン共重合体,クロロプレンゴム,アクリロニトリル・ブタジエン共重合体又はメチルメタクリレート・ブタジエン共重合体等の合成ゴムから選ばれる1種又は2種以上を用いることが好ましい。ポリマーディスパージョンは、上記樹脂を水に乳化して安定化された液体状のもの(ポリマーエマルション)、又は水により再乳化するものであれば粉末状(再乳化型粉末樹脂)でもよく、何れか1種又は2種以上を併用してもよい。ポリマーディスパージョンの含有量は、105℃における不揮発性分(以下「固形分」という。)換算で、セメント(成分(B))100質量部に対し、2~20質量部とすることが好ましい。2質量部未満では、下地への付着強度が劣るほか、耐中性化、耐凍結融解性、耐水性などの効果が不足する。また、20質量部を超えるとポリマーセメントモルタルが高粘性となるため 、混練時の抵抗の増大や施工時の作業性の低下をもたらし、硬化遅延により塗布したポリマーセメントモルタルが垂れる虞がある。下地への付着強度が高く且つ粘性が抑えられ施工時の作業性に優れることから、ポリマーディスパージョンの含有量は、固形分換算でセメント(成分(B))100質量部に対し、5~15質量部とすることがより好ましい。 The polymer dispersion (component (C)) used in the present invention may be any one that can be used as a binder for polymer cement mortar or polymer cement concrete. Examples include styrene/butadiene copolymer, chloroprene rubber, acrylonitrile/butadiene. Copolymers or synthetic rubbers such as methyl methacrylate-butadiene copolymers, natural rubbers, polyolefins such as polyethylene and polypropylene, polychloropyrene, polyacrylic acid esters, styrene-acrylic copolymers, all-acrylic copolymers, polyvinyl acetate , vinyl acetate-acrylic copolymer, vinyl acetate-acrylate copolymer, modified vinyl acetate, ethylene-vinyl acetate copolymer, ethylene-vinyl acetate-vinyl chloride copolymer, vinyl acetate-vinyl versatate copolymer , Vinyl acetate resins such as acrylic/vinyl acetate/Veova (t-vinyl t-decanoate) copolymers, synthetic resins such as unsaturated polyester resins, polyurethane resins, alkyd resins and epoxy resins, asphalt, rubber asphalt and Preferred examples include bituminous substances such as paraffin, and one or more of these can be used. Polymer dispersions used in the present invention include polyvinyl acetate, vinyl acetate-acrylic copolymer, vinyl acetate-acrylic acid ester copolymer, modified vinyl acetate, ethylene-acetic acid, and the like, because of their good adhesion to the substrate. Vinyl acetate resins such as vinyl copolymer, ethylene/vinyl acetate/vinyl chloride copolymer, vinyl acetate vinyl versatate copolymer, acrylic/vinyl acetate/Veova (trade name of vinyl t-decanoate) copolymer Acrylic resins such as polyacrylates, polymethacrylates, acrylic acid ester/styrene copolymers, styrene/acrylic copolymers, and all-acrylic copolymers; Polyolefin resins such as polyethylene and polypropylene; Styrene/butadiene It is preferable to use one or more selected from synthetic rubbers such as copolymers, chloroprene rubbers, acrylonitrile-butadiene copolymers, and methyl methacrylate-butadiene copolymers. The polymer dispersion may be in the form of a liquid stabilized by emulsifying the resin in water (polymer emulsion), or in the form of a powder (re-emulsified powder resin) as long as it is re-emulsified with water. You may use together 1 type(s) or 2 or more types. The content of the polymer dispersion is preferably 2 to 20 parts by mass in terms of non-volatile content (hereinafter referred to as “solid content”) at 105° C. with respect to 100 parts by mass of cement (component (B)). If the amount is less than 2 parts by mass, the adhesion strength to the substrate is poor, and effects such as neutralization resistance, freeze-thaw resistance, and water resistance are insufficient. On the other hand, if the amount exceeds 20 parts by mass, the polymer cement mortar becomes highly viscous, resulting in an increase in resistance during kneading and a decrease in workability during construction. The content of the polymer dispersion is 5 to 15 parts per 100 parts by mass of cement (component (B)) in terms of solid content, because it has high adhesion strength to the substrate and suppresses viscosity and is excellent in workability during construction. Parts by mass are more preferable.

本発明に用いる膨張材(成分(D))としては、水和反応により、エトリンガイトや水酸化カルシウムを生成するものであればよく、カルシウムサルフォアルミネート系(エトリンガイト系)膨張材、カルシウムアルミノフェライト系膨張材、(生)石灰系膨張材、エトリンガイト-石灰複合系膨張材及び石膏系膨張材等が挙げられ、これらの一種又は二種以上が使用可能であり好ましい。膨張材を含有することにより、硬化後のポリマーセメントモルタルの収縮が抑制されてひび割れが発生し難くなることに加え、高い寸法安定性 が得られるため、下地となるコンクリートや鉄筋との一体性が保たれる。膨張材の含有量はセメント (成分(B))100質量部に対し、2~20質量部とすることが好ましく、2質量部未満では、収縮抑制効果が得られ難く、20質量部を超えると過膨張を起こす虞がある。より好ましい膨張材の含有量は、セメント (成分(B))100質量部に対し、3~15質量部とし、更に好ましくは、5~10質量部とする。 The expanding material (component (D)) used in the present invention may be any material that produces ettringite or calcium hydroxide by hydration reaction, such as calcium sulfoaluminate-based (ettringite-based) expanding material, calcium aluminoferrite. Examples include an expanding material based on lime, a (quick) lime based expanding material, an ettringite-lime composite expanding material and a gypsum based expanding material, and one or more of these can be used and are preferred. By containing expansive agents, the shrinkage of the polymer cement mortar after hardening is suppressed, making it difficult for cracks to occur. In addition, high dimensional stability is obtained, so the unity with the underlying concrete and reinforcing bars is maintained. be kept. The content of the expansive agent is preferably 2 to 20 parts by mass with respect to 100 parts by mass of cement (component (B)). Excessive expansion may occur. The content of the expansive agent is more preferably 3 to 15 parts by mass, more preferably 5 to 10 parts by mass, per 100 parts by mass of cement (component (B)).

本発明のポリマーセメントモルタルは、フライアッシュ(成分(E))を含有することから、鏝伸び性、鏝切れ性、表面平滑性等の鏝作業性に優れ、鉄筋の凹凸に緻密した状態で断面欠損部に充填し易い。本発明のポリマーセメントモルタル組成物に用いるフライアッシュ(成分(E))は、フライアッシュであれば特に限定されないが、規格(JIS A 6201「コンクリート用フライアッシュ」)に適合するものであれば、鏝伸び性、鏝切れ性、表面平滑性等の鏝作業性に安定して優れ、更にポンプ圧送性にも安定して優れることから好ましい。本発明のポリマーセメントモルタルにおけるフライアッシュ(成分(E))の配合割合は、セメント(成分(B))100質量部に対し5~50質量部とする。この範囲の配合割合でフライアッシュを含有することで、左官施工時の鏝作業性及び吹付け施工時のポンプ圧送性に優れる。5質量部未満では成分(E)を含有させた効果が小さい。また、50質量部を超えると、コンシステンシーを得るための混練水量が増すために、乾燥収縮が大きくなり寸法安定性に問題が生じ易くなる。左官施工時の鏝作業性がよく、吹付け施工時のポンプ圧送性もよい、つまり、作業性に優れることから、本発明のポリマーセメントモルタルにおけるフライアッシュ(成分(E))の配合割合は、セメント(成分(B))100質量部に対し10~30質量部とすることがより好ましく、10~20質量部とすることが更に好ましい。 Since the polymer cement mortar of the present invention contains fly ash (component (E)), it is excellent in trowel workability such as trowel elongation, trowel cutability, and surface smoothness, and can be used in a cross section in a dense state on the unevenness of the reinforcing bars. It is easy to fill the defective part. The fly ash (component (E)) used in the polymer cement mortar composition of the present invention is not particularly limited as long as it is fly ash. It is preferable because it is stably excellent in trowel workability such as trowel elongation, trowel breakability, and surface smoothness, and is also stably excellent in pumpability. The blending ratio of fly ash (component (E)) in the polymer cement mortar of the present invention is 5 to 50 parts by mass per 100 parts by mass of cement (component (B)). By containing the fly ash in a blending ratio within this range, excellent workability with a trowel during plastering and pumpability during spraying can be achieved. If the amount is less than 5 parts by mass, the effect of containing the component (E) is small. On the other hand, when the amount exceeds 50 parts by mass, the amount of kneading water for obtaining consistency is increased, resulting in increased drying shrinkage and dimensional stability problems. The trowel workability during plastering work is good, and the pumping workability during spraying work is good, that is, the workability is excellent. It is more preferably 10 to 30 parts by mass, even more preferably 10 to 20 parts by mass, based on 100 parts by mass of cement (component (B)).

本発明に用いる遅延剤(成分(F))としては、セメントの水和反応を遅らせるものであれば、 特に限定されない。好ましくはクエン酸、酒石酸、グルコン酸、ヘプトン酸等の有機カルボン酸及びその塩、リグニンスルホン酸及びその塩、可溶性デンプンから選ばれる1種又は2種以上を用いる。本発明における遅延剤(成分(F))の含有量は、可使時間が得易く且つ高い強度を得易いことから、セメント(成分(B))100質量部に対し0.05~2質量部とする。より好ましい遅延剤(成分(F))の含有量は、可使時間及び強度の点で、セメント(成分(B))100質量部に対し0.05~1.5質量部とする。 The retarder (component (F)) used in the present invention is not particularly limited as long as it retards the hydration reaction of cement. Preferably, one or more selected from organic carboxylic acids such as citric acid, tartaric acid, gluconic acid and heptonic acid and salts thereof, ligninsulfonic acid and salts thereof, and soluble starch are used. The content of the retarder (component (F)) in the present invention is 0.05 to 2 parts by mass with respect to 100 parts by mass of cement (component (B)), since it is easy to obtain a pot life and high strength. and A more preferable content of the retarder (component (F)) is 0.05 to 1.5 parts by mass with respect to 100 parts by mass of cement (component (B)) in terms of pot life and strength.

本発明のポリマーセメントモルタルは、消泡剤(成分(G))を含有することから、混練中に発生するエントラップエアやエントレンドエアを抜くことができ、鉄筋との付着面積が増すために、鉄筋に対する付着強度が高い。本発明に用いる消泡剤(成分(G))としては、その種類は限定されないが、例えば、市販のセメント用消泡剤、市販のセメントモルタル用消泡剤又は市販のコンクリート用消泡剤の他、他用途の鉱物油系、ポリエーテル系、シリコーン系、脂肪酸エステル系等の消泡剤、トリブチルフォスフェート、ポリジメチルシロキサン又はポリオキシアルキレンアルキルエーテル系非イオン界面活性剤が好適な例として挙げられ、これらの1種又は2種以上を用いることができる。また、本発明に用いる消泡剤としては、液体のものでも粉末状のものでもよい。本発明における消泡剤(成分(G))の含有量は、ポリマーセメントモルタルの鉄筋に対する付着強度が高いことから、セメント(成分(B))100質量部に対し0.05~0.5質量部とする。より好ましい遅延剤(成分(F))の含有量は、可使時間及び強度の点で、セメント(成分(B))100質量部に対し0.1~0.3質量部とする Since the polymer cement mortar of the present invention contains an antifoaming agent (component (G)), it is possible to remove entrapped air and entrended air generated during kneading, increasing the adhesion area with reinforcing bars. , high adhesion strength to rebar. The antifoaming agent (component (G)) used in the present invention is not limited in type, but for example, a commercially available cement antifoaming agent, a commercially available cement mortar antifoaming agent, or a commercial concrete antifoaming agent. In addition, mineral oil-based, polyether-based, silicone-based, fatty acid ester-based antifoaming agents for other uses, tributyl phosphate, polydimethylsiloxane or polyoxyalkylene alkyl ether-based nonionic surfactants are suitable examples. One or more of these can be used. The antifoaming agent used in the present invention may be either liquid or powder. The content of the antifoaming agent (component (G)) in the present invention is 0.05 to 0.5 mass with respect to 100 parts by mass of cement (component (B)) because the polymer cement mortar has a high adhesion strength to reinforcing bars. part. A more preferable content of the retarder (component (F)) is 0.1 to 0.3 parts by mass with respect to 100 parts by mass of cement (component (B)) in terms of pot life and strength.

本発明のポリマーセメントモルタルは、有機繊維(成分())を含有することから、寸法安定性に優れ、下地との高い接着力が得られる。本発明に用いる有機繊維(成分())としては、種類は限定されず、例えば、ビニロン繊維、アクリル繊維、ナイロン繊維、ポリプロピレン繊維、セルロース繊維、ポリエチレン繊維などが好適な例として挙げられ、これらの1種又は2種以上を用いることができる。本発明における有機繊維(成分())を含有量は、より寸法安定性に優れ且つ下地との高い接着力が得られることから、セメント(成分(B))100質量部に対し0.2~2質量部とする。より好ましくは、0.5~1質量部とする。
Since the polymer cement mortar of the present invention contains organic fibers (component ( 3 H )), it has excellent dimensional stability and high adhesion to the substrate. The organic fibers (component ( H )) used in the present invention are not limited in kind, and suitable examples thereof include vinylon fibers, acrylic fibers, nylon fibers, polypropylene fibers, cellulose fibers, and polyethylene fibers. 1 type or 2 types or more can be used. The content of the organic fiber (component ( H )) in the present invention is 0.2 parts per 100 parts by mass of cement (component (B)), since it provides more excellent dimensional stability and high adhesion to the substrate. to 2 parts by mass. More preferably, it is 0.5 to 1 part by mass.

本発明に用いる細骨材(成分(I))としては、モルタルやコンクリートで使用可能なものであればよく、例えば珪砂、石灰石砕砂等の砕砂、川砂、陸砂、海砂、人工軽量細骨材、パーライトやシラスバルーン等の無機質発泡粒、ポリスチレン粒やチレン酢酸エビニル粒等の有機質軽量骨材、高炉スラグ細骨材や電気炉酸化スラグ細骨材等のスラグ細骨材等の他、セメントクリンカ粒(セメントとして市販されているセメントクリンカ粉末よりも粗い粒状のもの)が使用可能で、これらの2種以上を併用してもよい。本発明に用いる細骨材(成分(I))としては、下地に対する付着力が高いことから、無機質発泡粒及び有機質軽量骨材以外のものが好ましく、更に人工軽量細骨材を除いたものから選ばれる1種又は2種以上のものがより好ましい。 The fine aggregate (component (I)) used in the present invention may be any material as long as it can be used in mortar or concrete. Inorganic foamed particles such as perlite and shirasu balloons, organic lightweight aggregates such as polystyrene particles and ethylene-vinyl acetate particles, slag fine aggregates such as blast furnace slag fine aggregates and electric furnace oxidation slag fine aggregates, cement Clinker granules (particles coarser than cement clinker powder commercially available as cement) can be used, and two or more of these can be used in combination. As the fine aggregate (component (I)) used in the present invention, those other than inorganic foamed granules and organic lightweight aggregates are preferred because of their high adhesiveness to the substrate, and artificial lightweight fine aggregates are excluded. One or two or more selected ones are more preferable.

本発明において、ポリマーセメントモルタル中の骨材を除いたペーストの量は、700~1250kg/mであるので、異形鉄筋の凹凸に応じてポリマーセメントモルタルが鉄筋に密着することができ、防せい材としての効果を発揮できるとともに、鉄筋に対する高い付着力が得られる。ペーストの量が700kg/m未満では、骨材が多過ぎ、異形鉄筋の凹凸に応じてポリマーセメントモルタルが鉄筋に密着することができない場合があり、防せい性能及び/又は鉄筋に対する付着力が不足することがある。また、ペーストの量が1250kg/mを超えると、水和熱や乾燥収縮によるひび割れが発生し易くなり、下地との一体性が不足する場合、又は防せい性が低いことがある。異形鉄筋の凹凸に応じてポリマーセメントモルタルが鉄筋に密着し易く、且つひび割れが発生し難いことから、ポリマーセメントモルタル中の骨材を除いたペーストの量は、900~1200kg/mとすることが好ましい。 In the present invention, since the amount of paste excluding aggregate in the polymer cement mortar is 700 to 1250 kg/m 3 , the polymer cement mortar can adhere to the reinforcing bars according to the irregularities of the deformed reinforcing bars, preventing rust. As well as being effective as a material, high adhesion to reinforcing bars can be obtained. If the amount of paste is less than 700 kg/m 3 , the amount of aggregate is too large, and the polymer cement mortar may not be able to adhere to the reinforcing bars depending on the unevenness of the deformed reinforcing bars. may be in short supply. On the other hand, if the amount of paste exceeds 1250 kg/m 3 , cracks are likely to occur due to heat of hydration or shrinkage due to drying, resulting in insufficient integrity with the substrate or low corrosion resistance. The amount of paste in polymer cement mortar, excluding aggregate, should be 900 to 1200 kg/ m3 because polymer cement mortar adheres easily to reinforcing bars according to the irregularities of the deformed reinforcing bars and cracks are less likely to occur. is preferred.

本発明のポリマーセメントモルタルには、、本発明の効果を喪失させない限り、上記の(A)亜硝酸塩、(B)セメント、(C)ポリマーディスパージョン、(D)膨張材、(E)フライアッシュ、(F)遅延剤、(G)消泡剤、(H)有機繊維、及び(I)細骨材以外の成分を含んでいてもよい。このような成分としては、例えば、高性能減水剤や高性能AE減水剤等のセメント分散剤、防水材、防錆剤、収縮低減剤、顔料、上記以外の繊維、撥水剤、白華防止剤、急結剤(材)、急硬剤(材)、凝結遅延剤、発泡剤、消石灰、シリカフューム、火山灰、高炉スラグ粉末等のスラグ粉末、空気連行剤、表面硬化剤等の混和材料、並びに川砂利、陸砂利、砕石等の粗骨材が挙げられる。 The polymer cement mortar of the present invention contains the above (A) nitrite, (B) cement, (C) polymer dispersion, (D) expansive agent, and (E) fly ash, as long as the effects of the present invention are not lost. , (F) a retarder, (G) an antifoaming agent, (H) organic fibers, and (I) fine aggregate. Such components include, for example, cement dispersants such as high-performance water reducing agents and high-performance AE water reducing agents, waterproof materials, rust inhibitors, shrinkage reducing agents, pigments, fibers other than the above, water repellents, and efflorescence prevention. Admixture materials such as agents, accelerators (materials), accelerators (materials), setting retarders, foaming agents, hydrated lime, silica fume, volcanic ash, slag powder such as blast furnace slag powder, air entraining agents, surface hardening agents, etc. Coarse aggregates such as river gravel, land gravel and crushed stone can be mentioned.

本発明の鉄筋コンクリートの補修方法は、鉄筋コンクリートの劣化部分のコンクリートを当該部分に埋設されている鉄筋が露出するように除去する工程(A)と、前記工程(A)により露出した鉄筋に発生している錆を除去する工程(B)と、工程(A)で形成された断面欠損部を上記のポリマーセメントモルタルで埋め戻す工程(C)とを具備することを特徴とする。工程(B)は、工程(A)と同時に行っても、工程(A)の後に行ってもよい。また、工程(C)は、工程(A)及び工程(B)の後に行う。 The method for repairing reinforced concrete according to the present invention comprises a step (A) of removing the concrete from the deteriorated portion of the reinforced concrete so that the reinforcing bars embedded in the portion are exposed, and and a step (C) of filling back the cross-sectional defect formed in the step (A) with the polymer cement mortar. Step (B) may be performed simultaneously with step (A) or after step (A). Further, step (C) is performed after step (A) and step (B).

工程(A)において、コンクリートを除去する方法は、劣化したコンクリートを鉄筋が露出する深さまで除去できれば特に限定されず、例えば、斫り取る方法、超高圧水(ウォータジェット)による方法、静的破砕剤により部分的に破砕する方法、切削機械で削り取る方法、ハンマードリルやクローラドリル等で穿孔する方法、ブラスト処理による方法或いはこれらを組み合わせた方法が好ましい例として挙げられる。この工程(A)において、劣化しているコンクリートを全て除去するときは、健全なコンクリート及び健全な鉄筋が露出するまでコンクリートを除去することが好ましい。 In the step (A), the method of removing concrete is not particularly limited as long as the deteriorated concrete can be removed to the depth where the reinforcing bars are exposed. Preferable examples include a method of partially crushing with an agent, a method of scraping with a cutting machine, a method of drilling with a hammer drill, a crawler drill, or the like, a method of blasting, or a combination of these methods. In this step (A), when removing all the deteriorated concrete, it is preferable to remove the concrete until sound concrete and sound reinforcing bars are exposed.

工程(B)は、前記工程(A)により露出した鉄筋に発生している錆を除去する工程であるが、鉄筋に発生している錆を除去する方法は、特に限定されず、超高圧水(ウォータジェット)による方法、ブラスト処理による方法、ワイヤブラシによる方法、サンドペーパーによる方法、ヤスリによる方法、錆が発生している範囲を含む鉄筋を切断・除去する方法及びこれらを組み合わせた方法が好適な例として挙げられる。 The step (B) is a step of removing the rust generated on the reinforcing bars exposed by the step (A), but the method for removing the rust generated on the reinforcing bars is not particularly limited. (water jet) method, blasting method, wire brush method, sandpaper method, file method, method of cutting and removing reinforcing bars including areas where rust is occurring, and methods of combining these are suitable. Examples include:

工程(B)で鉄筋に発生している錆を除去した後に、もしも鉄筋の強度が不足する場合、又は鉄筋を切断・除去した場合は、鉄筋を新たなものに交換するか、新たな鉄筋を増設することが好ましい。 After removing the rust generated on the rebar in step (B), if the strength of the rebar is insufficient, or if the rebar is cut or removed, replace the rebar with a new one or replace it with a new rebar. It is preferable to increase the number.

工程(C)は、工程(A)で形成された断面欠損部を上記のポリマーセメントモルタルで断面修復する工程である。この工程(C)は、断面欠損部が上側に開口している窪みで且つ窪みの底又は側面に穴や開口が無い場合、或いは、充填するポリマーセメントモルタルのコンシステンシーが小さく、充填するポリマーセメントモルタルが漏れ出る又は垂れる虞がない場合は、断面欠損部である当該窪みにポリマーセメントモルタルをそのまま充填してもよいが、それ以外の場合は、充填するポリマーセメントモルタルが漏れ出ないように又は垂れないように型枠等で処置した上で、断面欠損部にポリマーセメントモルタルを充填することで断面修復することが好ましい。このとき、必要により空気抜き用のホースを設置してもよい。また、工程(C)で断面欠損部にポリマーセメントモルタルを充填する方法は、特に限定されずに、鏝、刷毛、ローラー等で塗布する方法、吹付け装置により吹付ける方法、注入工法により注入する方法、又はこれらを組み合わせた方法によることが好ましい。また、ポリマーセメントモルタルを充填す前に、断面欠損部分のコンクリート表面に、水、吸水調整剤、接着増強材から選ばれる1種又は2種以上を塗布してもよい。 Step (C) is a step of repairing the cross-sectional defect formed in step (A) with the polymer cement mortar. This step (C) is performed when the cross-sectional defect is a dent that opens upward and there are no holes or openings in the bottom or side of the dent, or when the consistency of the polymer cement mortar to be filled is small and the polymer cement to be filled is If there is no risk of the mortar leaking out or dripping, the recesses, which are cross-sectional defects, may be filled with the polymer cement mortar as it is. It is preferable to repair the cross-section by filling the cross-section defect with polymer cement mortar after treating it with a mold or the like so that it does not sag. At this time, if necessary, an air vent hose may be installed. In addition, the method of filling polymer cement mortar in the cross-sectional defect in step (C) is not particularly limited, and may be a method of applying with a trowel, brush, roller, or the like, a method of spraying with a spraying device, or an injection method. It is preferable to use a method or a combination of these methods. In addition, one or more selected from water, a water absorption modifier, and an adhesion enhancer may be applied to the concrete surface of the section-deficient portion before filling with the polymer cement mortar.

以下に示す材料を使用し、表1に示す配合割合となるように粉末又は粒状の固形材料をミキサで1分間乾式混合することでモルタル組成物(プレミックスモルタル)を作製した。作製したモルタル組成物に表1に示す割合の水及び液状混和材料を加え、3分間ミキサで混練することでポリマーセメントモルタル(混練物)を作製した。
<使用材料>
(A)亜硝酸塩:
A1: 亜硝酸カルシウム
A2: 亜硝酸リチウム
(B)セメント: 普通ポルトランドセメント
(C)ポリマーディスパージョン:
C1:スチレン・ブタジエン共重合体系(SBR系)合成ゴムエマルション(固形分:20質量%)
C2:オールアクリル共重合体からなる再乳化型粉末樹脂
(D)膨張材: 生石灰系膨張材
(E)フライアッシュ: JISフライアッシュ(フライアッシュII種)
(F)遅延剤:
F1: クエン酸
F2: 可溶性デンプン
(G)消泡剤: ポリエーテル系消泡剤
(H)有機繊維: ビニロン繊維(繊維長5mm)
(I)細骨材: 珪砂(F.M.:2.6)
A mortar composition (premixed mortar) was prepared by dry-mixing powdered or granular solid materials with a mixer for 1 minute using the materials shown below so that the mixing ratios shown in Table 1 were obtained. A polymer cement mortar (kneaded product) was prepared by adding water and a liquid admixture at the ratios shown in Table 1 to the prepared mortar composition and kneading the mixture with a mixer for 3 minutes.
<Materials used>
(A) Nitrite:
A1: Calcium nitrite A2: Lithium nitrite (B) Cement: Ordinary Portland cement (C) Polymer dispersion:
C1: Styrene/butadiene copolymer (SBR) synthetic rubber emulsion (solid content: 20% by mass)
C2: Re-emulsified powder resin made of all-acrylic copolymer (D) Expansion material: Quicklime-based expansion material (E) Fly ash: JIS fly ash (fly ash type II)
(F) Retardant:
F1: Citric acid F2: Soluble starch (G) Antifoaming agent: Polyether antifoaming agent (H) Organic fiber: Vinylon fiber (fiber length 5 mm)
(I) Fine aggregate: Silica sand (F.M.: 2.6)

Figure 0007234001000001
Figure 0007234001000001

作製したポリマーセメントモルタルの品質試験として、以下に示す通り、施工性試験、耐アルカリ性試験、付着強さ試験及び防せい性試験を行った。これらの結果及び評価を表2に示した。 As a quality test of the prepared polymer cement mortar, a workability test, an alkali resistance test, an adhesion strength test, and an antirust test were performed as shown below. These results and evaluations are shown in Table 2.

<品質試験方法>
・施工性試験
混練後20分間静置し再度30秒撹拌後に、左官工法に使用できるか否かで可使時間を確認し、垂直面への塗り付け厚さにて塗布可能性を確認するという方法により、塗布可能性及び可使時間を測定した。20分後の塗り付けにおいて10mm以上垂れずに塗り付ることができた場合を施工性良好(記号:○)、それ以外の場合を施工性不十分(記号:×)と評価した。

・耐アルカリ性試験
日本建築学会の「鉄筋コンクリート補修用防せい材の品質基準(案)」に規定される耐アルカリ性試験に従って試験を行った。試験の結果、「アルカリに浸しても異常が認められない」との評価の場合を「良好」(記号:○)、それ以外の場合を「不十分」(記号:×)と評価した。

・付着強さ試験
日本建築学会の「鉄筋コンクリート補修用防せい材の品質基準(案)」に規定される鉄筋に対する付着強さ試験方法に従って試験を行った。試験の結果、付着強さが7.8N/mm以上の場合を「良好」(記号:○)、それ以外の場合を「不十分」(記号:×)と評価した。

・防せい性試験
日本建築学会の「鉄筋コンクリート補修用防せい材の品質基準(案)」に規定される鉄筋に対する防せい性試験方法に準じて,露出した鉄筋の周囲を別途の防せい材を用いずに上記の作製したポリマーセメントモルタルで充填して供試体を作製し試験を行った。又、比較例の1水準として、試験No.6では、亜硝酸塩を含有しない配合No.5のポリマーセメントモルタルで充填する前に、亜硝酸塩を含有し防せい性能を有するセメントペースト(鉄筋防錆材)を塗布した供試体を作製し同様に試験を行った。試験の結果、ポリマーセメントモルタルで充填した部分(「処理部」という。)の防せい率が50%以上且つ基材モルタル部分(「未処理部」という。)の防せい率が-10%以上の場合を防せい性能「良好(有)」(記号:○)、それ以外の場合を「不十分」(記号:×)と評価した。また、合わせて、鉄筋が露出した供試体の断面修復の工程数を表2に記載した。
<Quality test method>
・Workability test After mixing for 20 minutes and stirring again for 30 seconds, the pot life is confirmed by whether or not it can be used for plastering. The method determined the applicability and pot life. The workability was evaluated as good (symbol: ◯) when the coating could be applied without dripping 10 mm or more after 20 minutes, and as poor workability (symbol: x) in other cases.

Alkali resistance test A test was conducted in accordance with the alkali resistance test stipulated in the Architectural Institute of Japan's "Quality Standards for Corrosion Prevention Materials for Repairing Reinforced Concrete (Draft)". As a result of the test, the evaluation that "no abnormalities were observed even when immersed in alkali" was evaluated as "good" (symbol: ○), and the other cases were evaluated as "insufficient" (symbol: x).

・Adhesion strength test A test was conducted according to the adhesion strength test method for reinforcing bars specified in the Architectural Institute of Japan's "Quality Standards for Corrosion Prevention Materials for Repairing Reinforced Concrete (Draft)". As a result of the test, when the adhesive strength was 7.8 N/mm 2 or more, it was evaluated as "good" (symbol: ◯), and in the other cases, it was evaluated as "insufficient" (symbol: x).

・Rust prevention test In accordance with the rust prevention test method for reinforcing bars stipulated in the Architectural Institute of Japan's "Quality Standards for Rust Prevention Materials for Repairing Reinforced Concrete (Draft)", a separate rust prevention material was applied around the exposed reinforcing bars. A test piece was prepared by filling with the polymer cement mortar prepared above without using it, and a test was conducted. Moreover, as one level of the comparative example, Test No. 6, formulation no. Before filling with the polymer cement mortar of No. 5, a test piece coated with cement paste (reinforcement rust preventive material) containing nitrite and having rust prevention performance was prepared and tested in the same manner. As a result of the test, the part filled with polymer cement mortar (referred to as "treated part") has a rust prevention rate of 50% or more, and the base mortar part (referred to as "untreated part") has a rust prevention rate of -10% or more. The rust prevention performance was evaluated as "good (yes)" (symbol: ○) in the case of , and "insufficient" (symbol: ×) in other cases. In addition, Table 2 shows the number of processes for repairing the cross section of the test piece with exposed reinforcing bars.

Figure 0007234001000002
Figure 0007234001000002

本発明の実施例に当たる配合No.1~3のポリマーセメントモルタルは、耐アルカリ性試験においいて、「アルカリに浸しても異常が認められない」との評価、鉄筋に対する付着強さ試験において付着強さが7.8N/mm以上且つ防せい性試験において処理部の防せい率が50%以上で未処理部の防せい率が-10%以上であるから、日本建築学会の「鉄筋コンクリート補修用防せい材の品質基準(案)」に規定される「鉄筋腐食補修工法に用いる鉄筋コンクリート補修用防せい材」としての品質を満たしており、防せい性試験において断面修復材として用いることができ、断面修復材として鉄筋が露出した断面欠損部を断面修復する(埋める)だけで、鉄筋の防錆処理もでき、工程を少なくできることが分かった。 Formulation No. corresponding to an example of the present invention. In the alkali resistance test, the polymer cement mortar of 1 to 3 was evaluated as "no abnormalities even when immersed in alkali", and in the adhesion strength test to reinforcing bars, the adhesion strength was 7.8 N / mm 2 or more and In the rust prevention test, the rust prevention rate of the treated part is 50% or more and the rust prevention rate of the untreated part is -10% or more. It satisfies the quality of "corrosion prevention material for repairing reinforced concrete used in the reinforcement corrosion repair method" specified in , and can be used as a cross-section repair material in rust prevention tests. It was found that simply by repairing (filling in) the cross section of the part, it was possible to perform anti-corrosion treatment on the reinforcing bars and reduce the number of processes.

本発明は、劣化した鉄筋コンクリート造の構造物の補修工事に好適に用いることができる。 INDUSTRIAL APPLICABILITY The present invention can be suitably used for repair work of deteriorated reinforced concrete structures.

Claims (2)

(A)亜硝酸塩、(B)セメント、(C)ポリマーディスパージョン、(D)膨張材、(E)フライアッシュ、(F)遅延剤、(G)消泡剤、(H)有機繊維、及び(I)細骨材を含有し、(A)亜硝酸塩含有量がポリマーセメントモルタル中の亜硝酸イオン量が1~54.5kg/mとなる量であり、(B)セメント100質量部に対し、(C)ポリマーディスパージョンを2~20質量部、(D)膨張材を3~20質量部、(E)フライアッシュを5~50質量部、(F)遅延剤を0.05~2質量部、(G)消泡剤を0.05~0.5質量部、(H)有機繊維を0.2~2質量部含有し、ポリマーセメントモルタル中の骨材を除いたペーストの量が700~1250kg/mであることを特徴とするポリマーセメントモルタル。 (A) nitrite, (B) cement, (C) polymer dispersion, (D) expansive agent, (E) fly ash, (F) retardant, (G) defoamer, (H) organic fiber, and (I) contains fine aggregate, (A) the nitrite content is such that the amount of nitrite ions in the polymer cement mortar is 1 to 54.5 kg/ m3 , and (B) 100 parts by mass of cement In contrast, (C) 2 to 20 parts by mass of polymer dispersion, (D) 3 to 20 parts by mass of expansion agent, (E) 5 to 50 parts by mass of fly ash, (F) 0.05 to 0.05 parts of retarder 2 parts by mass, (G) 0.05 to 0.5 parts by mass of antifoaming agent, (H) 0.2 to 2 parts by mass of organic fiber, amount of paste excluding aggregate in polymer cement mortar is between 700 and 1250 kg/m 3 . 鉄筋コンクリートの劣化部分のコンクリートを当該部分に埋設されている鉄筋が露出するように除去する工程(A)と、前記工程(A)により露出した鉄筋に発生している錆を除去する工程(B)と、工程(A)で形成された断面欠損部を請求項1に記載のポリマーセメントモルタで埋め戻す工程(C)とを具備することを特徴とする鉄筋コンクリートの補修方法。 A step (A) of removing the concrete from the deteriorated portion of the reinforced concrete so as to expose the rebar embedded in the portion, and a step (B) of removing rust generated on the exposed rebar in the step (A). and a step (C) of filling back the cross-sectional defect formed in the step (A) with the polymer cement mortar according to claim 1.
JP2019061962A 2019-03-27 2019-03-27 Repair method for polymer cement mortar and reinforced concrete Active JP7234001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019061962A JP7234001B2 (en) 2019-03-27 2019-03-27 Repair method for polymer cement mortar and reinforced concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019061962A JP7234001B2 (en) 2019-03-27 2019-03-27 Repair method for polymer cement mortar and reinforced concrete

Publications (2)

Publication Number Publication Date
JP2020158371A JP2020158371A (en) 2020-10-01
JP7234001B2 true JP7234001B2 (en) 2023-03-07

Family

ID=72641732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019061962A Active JP7234001B2 (en) 2019-03-27 2019-03-27 Repair method for polymer cement mortar and reinforced concrete

Country Status (1)

Country Link
JP (1) JP7234001B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7383525B2 (en) * 2020-02-28 2023-11-20 太平洋マテリアル株式会社 quick hardening concrete
KR20220047152A (en) 2020-10-08 2022-04-15 대상이앤씨(주) Construction method by using repair and reinforcement shotcrete composition containing VAE polymer and hemp fiber
JP6985548B1 (en) * 2021-04-26 2021-12-22 デンカ株式会社 Repair mortar material, repair mortar composition and cured product
KR102365874B1 (en) * 2021-06-16 2022-02-24 주식회사 제이엠이앤씨 Anti-corrosion and lightweight polymer mortar components for repair of deteriorated concrete structures
JP7515810B2 (en) 2021-12-13 2024-07-16 福岡北九州高速道路公社 Method and structure for repairing concrete structures
WO2024195228A1 (en) * 2023-03-17 2024-09-26 日本国土開発株式会社 Reinforced concrete repairing method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120041A (en) 2001-10-16 2003-04-23 Sumitomo Osaka Cement Co Ltd Repair method for concrete deteriorated by salt damage
JP2003306370A (en) 2002-04-17 2003-10-28 Denki Kagaku Kogyo Kk Spray material and spraying method using it
JP2003306367A (en) 2002-04-11 2003-10-28 Toagosei Co Ltd Composition for repairing reinforced concrete and repairing method using it
JP2005067903A (en) 2003-08-21 2005-03-17 Railway Technical Res Inst Repairing material for controlling salt damage and repairing method for structure
JP2005281037A (en) 2004-03-29 2005-10-13 Sumitomo Osaka Cement Co Ltd Conductive polymer cement mortar and protective material for electrolytic protection using the same
JP2005336952A (en) 2004-05-31 2005-12-08 Denki Kagaku Kogyo Kk Cross section repair construction method for concrete deteriorated part and non-contracting polymer cement mortar used in it
JP2009132558A (en) 2007-11-30 2009-06-18 Taiheiyo Material Kk Hydraulic mortar composition and hardened body
JP2010053301A (en) 2008-08-29 2010-03-11 Daiki Kogyo Kk Corrosion-proof paint composition and its manufacturing method
JP2011136887A (en) 2009-12-28 2011-07-14 Taiheiyo Materials Corp Repairing material
JP2013119498A (en) 2011-12-07 2013-06-17 Taiheiyo Materials Corp Polymer cement mortar and mortar for repair
JP2013129570A (en) 2011-12-22 2013-07-04 Taiheiyo Materials Corp Heavy weight polymer cement mortar
JP2015117166A (en) 2013-12-19 2015-06-25 太平洋マテリアル株式会社 Mortar composition
JP2015157892A (en) 2014-02-24 2015-09-03 株式会社ジェイアール総研エンジニアリング Anticorrosion base coating material for steel material, anticorrosion coating method of steel material and anticorrosion steel material
JP2020158348A (en) 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Polymer cement grout mortar composition and polymer cement grout mortar

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8200256A (en) * 1981-04-15 1982-12-07 Grace W R & Co MORTAR MIXTURE; HARDENED MORTAR; PROCESS FOR REPAIR OF CORROSION DAMAGED STRUCTURE
JP2939490B2 (en) * 1991-04-16 1999-08-25 日本セメント株式会社 Rust control method for reinforced concrete
JP3394966B2 (en) * 1995-03-20 2003-04-07 新日本製鐵株式会社 Polymer cement composition for concrete structure repair

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003120041A (en) 2001-10-16 2003-04-23 Sumitomo Osaka Cement Co Ltd Repair method for concrete deteriorated by salt damage
JP2003306367A (en) 2002-04-11 2003-10-28 Toagosei Co Ltd Composition for repairing reinforced concrete and repairing method using it
JP2003306370A (en) 2002-04-17 2003-10-28 Denki Kagaku Kogyo Kk Spray material and spraying method using it
JP2005067903A (en) 2003-08-21 2005-03-17 Railway Technical Res Inst Repairing material for controlling salt damage and repairing method for structure
JP2005281037A (en) 2004-03-29 2005-10-13 Sumitomo Osaka Cement Co Ltd Conductive polymer cement mortar and protective material for electrolytic protection using the same
JP2005336952A (en) 2004-05-31 2005-12-08 Denki Kagaku Kogyo Kk Cross section repair construction method for concrete deteriorated part and non-contracting polymer cement mortar used in it
JP2009132558A (en) 2007-11-30 2009-06-18 Taiheiyo Material Kk Hydraulic mortar composition and hardened body
JP2010053301A (en) 2008-08-29 2010-03-11 Daiki Kogyo Kk Corrosion-proof paint composition and its manufacturing method
JP2011136887A (en) 2009-12-28 2011-07-14 Taiheiyo Materials Corp Repairing material
JP2013119498A (en) 2011-12-07 2013-06-17 Taiheiyo Materials Corp Polymer cement mortar and mortar for repair
JP2013129570A (en) 2011-12-22 2013-07-04 Taiheiyo Materials Corp Heavy weight polymer cement mortar
JP2015117166A (en) 2013-12-19 2015-06-25 太平洋マテリアル株式会社 Mortar composition
JP2015157892A (en) 2014-02-24 2015-09-03 株式会社ジェイアール総研エンジニアリング Anticorrosion base coating material for steel material, anticorrosion coating method of steel material and anticorrosion steel material
JP2020158348A (en) 2019-03-27 2020-10-01 太平洋マテリアル株式会社 Polymer cement grout mortar composition and polymer cement grout mortar

Also Published As

Publication number Publication date
JP2020158371A (en) 2020-10-01

Similar Documents

Publication Publication Date Title
JP7234001B2 (en) Repair method for polymer cement mortar and reinforced concrete
JP6223813B2 (en) Mortar composition
KR101637987B1 (en) Patching repair material and repairing method of deteriorated reinforced concrete structures
JP4787187B2 (en) Rapid hardened mortar and repair method using the same
KR101403293B1 (en) Concrete repairing method using waterproof repair mortar using crystallization and protector of carbonation
JP2003306367A (en) Composition for repairing reinforced concrete and repairing method using it
JP7045269B2 (en) Polymer cement mortar composition and polymer cement mortar
JP2003306369A (en) Spray material and spraying method using it
KR102224215B1 (en) Non-shirinkage mortar composition with crack resistance and the concrete structure section restoration method using thereof
Sikora et al. Geopolymer coating as a protection of concrete against chemical attack and corrosion
JP6254440B2 (en) Polymer cement grout material for submarine tunnel repair and repair method for submarine tunnel
JP2003306370A (en) Spray material and spraying method using it
JP5494049B2 (en) Premix powder of cement composition, hydraulic mortar and hardened mortar
JP4634213B2 (en) Alumina cement composition and repair method using the same
JP4634212B2 (en) Alumina cement composition and repair method using the same
JP5514790B2 (en) Acid-resistant dry-type mortar material and method for producing the spray material
JP7350425B2 (en) Highly durable grout composition
JP2009234897A (en) Composition for cement mortar and repairing method of pavement body
JP7465451B2 (en) Cement composition, mortar composition, and method for repairing concrete structure
JP7233381B2 (en) Iron finishing agent and its use
EP4046979A1 (en) Two component waterproofing membrane
JP2017222541A (en) Hydraulic composition
JP2022056867A (en) Repair mortar material, repair mortar composition, and hardened body
JP2015127286A (en) Method for manufacturing quick hardening expansive cement mixture
JP2006117451A (en) Cement composition for repairing and repairing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220921

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230222

R150 Certificate of patent or registration of utility model

Ref document number: 7234001

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150