[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7228473B2 - High-strength concrete containing steel fibers and its preparation method - Google Patents

High-strength concrete containing steel fibers and its preparation method Download PDF

Info

Publication number
JP7228473B2
JP7228473B2 JP2019109534A JP2019109534A JP7228473B2 JP 7228473 B2 JP7228473 B2 JP 7228473B2 JP 2019109534 A JP2019109534 A JP 2019109534A JP 2019109534 A JP2019109534 A JP 2019109534A JP 7228473 B2 JP7228473 B2 JP 7228473B2
Authority
JP
Japan
Prior art keywords
coarse aggregate
steel fiber
strength concrete
volume
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019109534A
Other languages
Japanese (ja)
Other versions
JP2020200228A (en
Inventor
俊文 菊地
圭一 ▲高▼橋
泰弘 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2019109534A priority Critical patent/JP7228473B2/en
Publication of JP2020200228A publication Critical patent/JP2020200228A/en
Application granted granted Critical
Publication of JP7228473B2 publication Critical patent/JP7228473B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)

Description

本発明は、鋼繊維入り高強度コンクリート及びその調合方法に関する。 The present invention relates to high-strength concrete with steel fibers and a method for preparing the same.

RC梁を構成する高強度コンクリートに鋼繊維を混入することは、RC建物の地震時のひび割れによる長周期化や極大地震時の端部圧壊による耐力低下の抑制に有効である。特に、鋼繊維の添加量を1.0容量%程度まで多くできれば、部材としての性能を著しく向上させることが可能となる。しかし、鋼繊維の添加量を増やすと、その調合設計に高度な技術を要することになる。
一般的にRC梁を構成する高強度コンクリートの設計基準強度は60N/mm以下(36~60N/mm)となる。
Mixing steel fibers into the high-strength concrete that constitutes RC beams is effective in increasing the cycle period of RC buildings due to cracking during earthquakes and in suppressing reduction in yield strength due to edge crushing during extreme earthquakes. In particular, if the amount of steel fiber added can be increased to about 1.0% by volume, the performance as a member can be remarkably improved. However, if the amount of steel fiber added is increased, advanced technology will be required for the formulation design.
In general, the standard design strength of high-strength concrete constituting RC beams is 60 N/mm 2 or less (36 to 60 N/mm 2 ).

鋼繊維を1.0容量%程度含むコンクリートとして、設計基準強度100N/mm以上を想定した水結合材比25%以下の超高強度コンクリート(特許文献1)や、水結合材比20%以下の耐爆裂性コンクリート(特許文献2)が提案されている。 Concrete containing about 1.0% by volume of steel fibers includes ultra-high-strength concrete (Patent Document 1) with a water binder ratio of 25% or less assuming a design standard strength of 100 N/mm 2 or more, or a water binder ratio of 20% or less. of explosion-resistant concrete (Patent Document 2) has been proposed.

特許第6432811号公報Japanese Patent No. 6432811 特許第4071983号公報Japanese Patent No. 4071983

特許文献1~2のように水結合材比が低い場合は、単位セメント量が800kg/m以上と多く、コンクリートの粘性が大きいため、鋼繊維を混入しても、コンクリートの材料分離抵抗性を充分に確保できる。
しかし、設計基準強度が60N/mm以下(36~60N/mm)の場合、水結合材比が高いため、単位セメント量が700kg/m以下と少なく、コンクリートの粘性が小さい。そのため、鋼繊維を1.0容量%程度混入すると、コンクリートの材料分離抵抗性を充分に確保できず、材料分離が生じることがある。特に、設計基準強度36~48N/mm(単位セメント量500kg/m以下)では、材料分離が顕著である。
When the water binder ratio is low as in Patent Documents 1 and 2, the unit cement amount is as large as 800 kg/m 3 or more, and the viscosity of the concrete is high. can be sufficiently secured.
However, when the design standard strength is 60 N/mm 2 or less (36 to 60 N/mm 2 ), the water binder ratio is high, so the unit cement amount is as small as 700 kg/m 3 or less, and the viscosity of the concrete is low. Therefore, when about 1.0% by volume of steel fibers are mixed, sufficient material separation resistance of concrete cannot be ensured, and material separation may occur. In particular, material separation is conspicuous at a design standard strength of 36 to 48 N/mm 2 (unit cement amount of 500 kg/m 3 or less).

本発明は、上記事情に鑑みてなされたものであって、鋼繊維混入率が高いながらも材料分離抵抗性が確保され、施工性に優れた、設計基準強度60N/mm以下の鋼繊維入り高強度コンクリート及びその調合方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and has a steel fiber containing steel fiber with a design standard strength of 60 N / mm 2 or less that ensures material separation resistance even though the steel fiber content is high, and has excellent workability. It is an object of the present invention to provide high-strength concrete and its preparation method.

本発明は以下の態様を有する。
[1]セメントと水と粗骨材と細骨材と化学混和剤と鋼繊維とを含み、水結合材比が30~60質量%、前記鋼繊維の混入率が0.50容積%超2容積%以下である鋼繊維入り高強度コンクリートであって、
前記化学混和剤が、高性能減水剤及び高性能AE減水剤のいずれか一方又は両方と、増粘剤とを含み、
単位粗骨材かさ容積が0.3~0.5m/mである、鋼繊維入り高強度コンクリート。
[2]前記鋼繊維の直径が0.15~0.9mm、長さが12~32mmである前記[1]の鋼繊維入り高強度コンクリート。
[3]20±5℃における塑性粘度が60~85Pa・sである前記[1]又は[2]の鋼繊維入り高強度コンクリート。
[4]セメントと水と粗骨材と細骨材と化学混和剤と鋼繊維とを配合し、水結合材比が30~60質量%、前記鋼繊維の混入率が0.5容積%超2容積%以下である鋼繊維入り高強度コンクリートを調合する方法であって、
前記化学混和剤として少なくとも、高性能減水剤及び高性能AE減水剤のいずれか一方又は両方と、増粘剤とを用い、
下記式(1)により前記鋼繊維入り高強度コンクリートの単位粗骨材かさ容積の目標値V’bGを算出し、前記目標値V’bGとなるように前記粗骨材の配合量を設定する、鋼繊維入り高強度コンクリートの調合方法。
V’bG=VbG-(K・2r/3r-1)・V/G (1)
ここで、V’bGは、前記鋼繊維入りコンクリートの単位粗骨材かさ容積の目標値(m/m)を示し、
bGは、ベースとする高強度コンクリートの単位粗骨材かさ容積(m/m)の標準値の範囲であって0.53~0.65(m/m)の数を示し、
は、影響係数であって1.0~1.35の数を示し、
は、前記粗骨材を球形と仮定し、前記粗骨材の粒度分布から得られる総粗骨材表面積から算出した前記粗骨材の半径(mm)を示し、
は、前記鋼繊維を円柱形と仮定して算出した前記鋼繊維の半径(mm)を示し、
は、前記鋼繊維の混入率(容積%)を示し、
は、前記粗骨材の実積率(容積%)を示す。
[5]前記鋼繊維の直径が0.15~0.9mm、長さが12~32mmである前記[4]の鋼繊維入り高強度コンクリートの調合方法。
[6]前記鋼繊維入り高強度コンクリートの20±5℃における塑性粘度が60~85Pa・sとなるように、前記増粘剤の配合量を設定する前記[4]又は[5]の鋼繊維入り高強度コンクリートの調合方法。
The present invention has the following aspects.
[1] Containing cement, water, coarse aggregate, fine aggregate, chemical admixture, and steel fiber, with a water binder ratio of 30 to 60% by mass, and a mixing ratio of the steel fiber exceeding 0.50% by volume 2 A steel fiber-containing high-strength concrete having a volume % or less,
The chemical admixture contains either or both of a high performance water reducing agent and a high performance AE water reducing agent and a thickening agent,
A steel fiber-containing high-strength concrete having a unit coarse aggregate bulk volume of 0.3 to 0.5 m 3 /m 3 .
[2] The steel fiber-containing high-strength concrete of [1], wherein the steel fibers have a diameter of 0.15 to 0.9 mm and a length of 12 to 32 mm.
[3] The steel fiber-containing high-strength concrete of [1] or [2], which has a plastic viscosity of 60 to 85 Pa·s at 20±5°C.
[4] Cement, water, coarse aggregate, fine aggregate, chemical admixture, and steel fiber are blended, the water binder ratio is 30 to 60% by mass, and the steel fiber mixing ratio is over 0.5% by volume. 1. A method of preparing high strength concrete with steel fibers of 2% by volume or less, comprising:
Using at least one or both of a high performance water reducing agent and a high performance AE water reducing agent as the chemical admixture and a thickener,
The target value V'bG of the unit coarse aggregate bulk volume of the steel fiber-containing high-strength concrete is calculated by the following formula (1), and the blending amount of the coarse aggregate is set so as to achieve the target value V'bG . , a method for preparing high-strength concrete with steel fibers.
V′ bG =V bG −(K S ·2r G /3r F −1)·V F /G S (1)
Here, V' bG represents the target value (m 3 /m 3 ) of the unit coarse aggregate bulk volume of the steel fiber-containing concrete,
V bG is a standard value range of unit coarse aggregate bulk volume (m 3 /m 3 ) of base high-strength concrete and indicates a number of 0.53 to 0.65 (m 3 /m 3 ). ,
K S is an influence coefficient and indicates a number from 1.0 to 1.35,
r G indicates the radius (mm) of the coarse aggregate calculated from the total coarse aggregate surface area obtained from the particle size distribution of the coarse aggregate, assuming that the coarse aggregate is spherical,
r F represents the radius (mm) of the steel fiber calculated assuming that the steel fiber has a cylindrical shape,
VF indicates the mixing ratio (% by volume) of the steel fibers,
GS indicates the actual volume ratio (volume %) of the coarse aggregate.
[5] The method of mixing high-strength concrete containing steel fibers according to [4], wherein the steel fibers have a diameter of 0.15 to 0.9 mm and a length of 12 to 32 mm.
[6] The steel fiber of [4] or [5], wherein the blending amount of the thickener is set so that the plastic viscosity of the steel fiber-containing high-strength concrete at 20 ± 5 ° C. is 60 to 85 Pa s. Mixing method for high-strength concrete.

本発明によれば、鋼繊維混入率が高いながらも材料分離抵抗性が確保され、施工性に優れた、設計基準強度60N/mm以下の鋼繊維入り高強度コンクリート及びその調合方法を提供できる。 ADVANTAGE OF THE INVENTION According to the present invention, it is possible to provide a high-strength concrete containing steel fibers having a design standard strength of 60 N/mm 2 or less, which ensures material separation resistance even though the steel fiber content is high, and which has excellent workability, and a method for mixing the same. .

46-0.60-0-SP1の材料分離抵抗性の評価結果を示す写真である。46-0.60-0-SP1 is a photograph showing evaluation results of material separation resistance. 37-0.58-0-SP1の材料分離抵抗性の評価結果を示す写真である。37-0.58-0-SP1 is a photograph showing evaluation results of material separation resistance. 28-0.56-0-SP1の材料分離抵抗性の評価結果を示す写真である。28-0.56-0-SP1 is a photograph showing evaluation results of material separation resistance. 46-0.60-80-SP4の材料分離抵抗性の評価結果を示す写真である。46-0.60-80-SP4 is a photograph showing evaluation results of material separation resistance. 46-0.60-80-SP4’の材料分離抵抗性の評価結果を示す写真である。46-0.60-80-SP4' is a photograph showing evaluation results of material separation resistance. 46-0.60-80-SP1の材料分離抵抗性の評価結果を示す写真である。46-0.60-80-SP1 is a photograph showing evaluation results of material separation resistance. 46-0.40-80-SP3の材料分離抵抗性の評価結果を示す写真である。46-0.40-80-SP3 is a photograph showing evaluation results of material separation resistance. 46-0.40-80-SP4の材料分離抵抗性の評価結果を示す写真である。46-0.40-80-SP4 is a photograph showing evaluation results of material separation resistance. 46-0.40-80-SP2の材料分離抵抗性の評価結果を示す写真である。46-0.40-80-SP2 is a photograph showing evaluation results of material separation resistance. 37-0.30-80-SP4の材料分離抵抗性の評価結果を示す写真である。37-0.30-80-SP4 is a photograph showing evaluation results of material separation resistance. 28-0.30-80-SP4の材料分離抵抗性の評価結果を示す写真である。28-0.30-80-SP4 is a photograph showing evaluation results of material separation resistance.

以下の用語の定義は、本明細書及び特許請求の範囲にわたって適用される。
「コンクリート」は、フレッシュコンクリート及び硬化コンクリートを包含する。
「水結合材比」は、フレッシュコンクリート中の結合材の総質量に対する水の質量の割合(質量%)を示す。
「結合材」は、コンクリート中で水和反応する材料であり、例えばセメント、シリカフューム、スラグ、フライアッシュ等である。
「高強度コンクリート」は、設計基準強度が36N/mm以上であるコンクリートを示す。
「鋼繊維の混入率」は、鋼繊維入り高強度コンクリートのベースとする高強度コンクリートの総容積に対する鋼繊維の容積の割合(容積%)を示す。
「ベースとする高強度コンクリート」とは、鋼繊維を含まない以外は鋼繊維入り高強度コンクリートと同じ組成のコンクリート(鋼繊維入り高強度コンクリートから鋼繊維を除いた残部)を示す。
The following term definitions apply throughout the specification and claims.
"Concrete" includes fresh and hardened concrete.
"Water binder ratio" indicates the ratio (mass %) of water to the total mass of binders in fresh concrete.
A "binder" is a material that hydrates in concrete, such as cement, silica fume, slag, fly ash, and the like.
“High-strength concrete” refers to concrete having a design strength of 36 N/mm 2 or higher.
"Ratio of steel fiber content" indicates the ratio (volume %) of the volume of steel fiber to the total volume of high-strength concrete used as the base of high-strength concrete containing steel fiber.
"Base high-strength concrete" refers to concrete having the same composition as the steel-fiber-containing high-strength concrete except that it does not contain steel fibers (the remainder of the steel-fiber-containing high-strength concrete after removing the steel fibers).

(鋼繊維入り高強度コンクリート)
本発明の鋼繊維入り高強度コンクリート(以下、「本コンクリート」ともいう。)は、セメントと水と粗骨材と細骨材と化学混和剤と鋼繊維とを含む。
本コンクリートは、これら以外の他の成分をさらに含んでいてもよい。
(High-strength concrete containing steel fibers)
The steel fiber-containing high-strength concrete of the present invention (hereinafter also referred to as "this concrete") contains cement, water, coarse aggregate, fine aggregate, a chemical admixture, and steel fibers.
The present concrete may further contain other components other than these.

セメントとしては、水和熱が低い点で、中庸熱ポルトランドセメント、低熱ポルトランドセメントが好ましい。 As the cement, moderate heat Portland cement and low heat Portland cement are preferable because of their low heat of hydration.

水の含有量は、水結合材比が30~52質量%となる量である。水結合材比が低いほど、圧縮強度が高くなる。水結合材比が30~52質量%であれば、設計基準強度36~60N/mmを達成できる。設計基準強度が36~48N/mmの場合、水結合材比は、37~52質量%が好ましい。 The content of water is such that the water binder ratio is 30 to 52% by mass. The lower the water binder ratio, the higher the compressive strength. A water binder ratio of 30 to 52% by mass can achieve a design strength of 36 to 60 N/mm 2 . When the design strength is 36-48 N/mm 2 , the water binder ratio is preferably 37-52% by mass.

粗骨材としては、硬質砂岩砕石、安山岩砕石、流紋岩砕石等が挙げられる。
粗骨材の表乾密度は、例えば2.55~2.7g/cmである。
粗骨材の粗粒率は、例えば6~6.6である。
Coarse aggregates include hard sandstone crushed stone, andesite crushed stone, rhyolite crushed stone, and the like.
The surface dry density of coarse aggregate is, for example, 2.55-2.7 g/cm 3 .
The coarse grain ratio of the coarse aggregate is, for example, 6 to 6.6.

粗骨材の最大寸法は、典型的には20mm以下である。粗骨材の最大寸法は、粗骨材の90質量%以上が通るふるいのうち最小寸法のふるいの呼び寸法で示される寸法である。
最大寸法が20mm以下の粗骨材としては、例えば、最大寸法が20mmの粗骨材、最大寸法が15mmの粗骨材、最大寸法が13mmの粗骨材等が市販されている。
The maximum dimension of coarse aggregate is typically 20 mm or less. The maximum size of the coarse aggregate is the nominal size of the smallest size sieve through which 90% by mass or more of the coarse aggregate passes.
As coarse aggregate having a maximum dimension of 20 mm or less, for example, coarse aggregate having a maximum dimension of 20 mm, coarse aggregate having a maximum dimension of 15 mm, coarse aggregate having a maximum dimension of 13 mm, and the like are commercially available.

粗骨材の含有量は、本コンクリートの単位粗骨材かさ容積が0.3~0.5m/mとなる量である。単位粗骨材かさ容積は、0.33~0.43m/mが好ましい。単位粗骨材かさ容積が0.3m/m以上であれば、材料分離抵抗性が優れる。
本コンクリートの粗骨材の実積率は、例えば58容積%、さらには58~64容積%である。
The content of coarse aggregate is such that the unit coarse aggregate bulk volume of the concrete is 0.3 to 0.5 m 3 /m 3 . The unit coarse aggregate bulk volume is preferably 0.33 to 0.43 m 3 /m 3 . When the unit coarse aggregate bulk volume is 0.3 m 3 /m 3 or more, the material separation resistance is excellent.
The actual volume ratio of coarse aggregate in the present concrete is, for example, 58% by volume, more preferably 58 to 64% by volume.

細骨材としては、砕砂、山砂、陸砂等が挙げられる。
細骨材の表乾密度は、例えば2.55~2.7g/cmである。
Examples of fine aggregates include crushed sand, mountain sand, land sand, and the like.
The surface dry density of fine aggregate is, for example, 2.55 to 2.7 g/cm 3 .

化学混和剤は少なくとも、高性能減水剤及び高性能AE減水剤のいずれか一方又は両方(以下、これらを総称して「高性能(AE)減水剤」とも記す。)と増粘剤とを含む。
化学混和剤は、必要に応じて、本発明の効果を損なわない範囲で、他の化学混和剤を含んでいてもよい。
The chemical admixture contains at least one or both of a high performance water reducing agent and a high performance AE water reducing agent (hereinafter collectively referred to as "high performance (AE) water reducing agent") and a thickener. .
If necessary, the chemical admixture may contain other chemical admixtures to the extent that the effects of the present invention are not impaired.

高性能(AE)減水剤は、本コンクリートの施工性を高める目的で用いられる。
高性能減水剤、高性能AE減水剤それぞれの定義はJIS A 6204のとおりである。
高性能減水剤としては、例えば主成分がポリカルボン酸エーテル系のもの、主成分がポリカリボン酸コポリマーのもの等が挙げられる。
高性能AE減水剤としては、例えば主成分がポリカルボン酸系のものが挙げられる。
Advanced (AE) water reducing agents are used to improve the workability of the concrete.
Definitions of high performance water reducing agent and high performance AE water reducing agent are as per JIS A 6204.
Examples of high-performance water reducing agents include those containing polycarboxylic acid ether as the main component and those containing polycaribonic acid copolymer as the main component.
High-performance AE water reducing agents include, for example, those containing polycarboxylic acid as a main component.

増粘剤は、本コンクリートの粘性を高め、材料分離抵抗性を高める目的で用いられる。
増粘剤としては、コンクリートに配合可能なものであればよい。増粘剤の一例は、主成分がセルロース系のものである。
A thickener is used for the purpose of increasing the viscosity of the concrete and increasing the material separation resistance.
Any thickening agent may be used as long as it can be mixed with concrete. One example of a thickening agent is primarily cellulosic.

高性能(AE)減水剤及び増粘剤は、別々に本コンクリートの調合に供されてもよく、増粘剤を含有した高性能(AE)減水剤(以下、「増粘剤含有高性能(AE)減水剤」とも記す。)として本コンクリートの調合に供されてもよい。好ましくは、増粘剤含有高性能(AE)減水剤として本コンクリートの調合に供される。 The advanced (AE) water reducer and the thickener may be provided separately in the formulation of the present concrete, and an advanced (AE) water reducer containing thickener (hereinafter "thickener containing high performance ( AE) water-reducing agent”) may be used in the preparation of the present concrete. Preferably, it is provided in the concrete formulation as a thickener-containing advanced (AE) water reducer.

増粘剤含有高性能(AE)減水剤としては、市販品を用いることができる。増粘剤含有高性能減水剤の市販品としては、例えば花王社の「マイティ21-V」が挙げられる。増粘剤含有高性能AE減水剤の市販品としては、例えばBASFジャパン社の「マスターグレニウム6520」が挙げられる。 Commercially available products can be used as thickener-containing advanced (AE) water reducing agents. Commercially available thickener-containing superplasticizers include, for example, "Mighty 21-V" manufactured by Kao Corporation. Commercially available thickener-containing high-performance AE water reducing agents include, for example, "Master Glenium 6520" manufactured by BASF Japan.

高性能(AE)減水剤、増粘剤それぞれの含有量は、高性能(AE)減水剤、増粘剤それぞれの種類に応じて、所望の効果が得られるように適宜選定できる。
高性能(AE)減水剤及び増粘剤の合計の含有量又は増粘剤含有高性能(AE)減水剤の含有量は、例えば、固形分換算で、セメントの質量に対して0.3~0.9質量%程度である。
The content of each of the high performance (AE) water reducing agent and the thickening agent can be appropriately selected according to the types of the high performance (AE) water reducing agent and the thickening agent so that the desired effects can be obtained.
The total content of the high performance (AE) water reducing agent and the thickener or the content of the thickening agent-containing high performance (AE) water reducing agent is, for example, in terms of solid content, 0.3 to the mass of cement It is about 0.9% by mass.

鋼繊維を構成する鋼材としては、普通鋼材、ステンレス鋼等が挙げられ、耐アルカリ性を有するものが好ましい。
また、防錆の観点から、鋼材表面に亜鉛めっきを施したものが好ましい。
鋼繊維の形状としては、フック型、ストレート型、波型等が挙げられる。コンクリートと鋼繊維の付着向上、コンクリートの靭性向上の点では、フック型が好ましい。
鋼繊維としては、例えば、鋼繊維補強コンクリート用の鋼繊維として市販されているものを使用できる。
Examples of the steel material that constitutes the steel fiber include ordinary steel material, stainless steel, etc., and those having alkali resistance are preferable.
Moreover, from the viewpoint of rust prevention, it is preferable that the surface of the steel material is plated with zinc.
Examples of the shape of the steel fiber include hook type, straight type, wave type, and the like. The hook type is preferable in terms of improving the adhesion between concrete and steel fibers and improving the toughness of concrete.
As the steel fibers, for example, those commercially available as steel fibers for steel fiber reinforced concrete can be used.

鋼繊維の長さは、12~32mmが好ましく、24~32mmがより好ましい。鋼繊維の長さが前記範囲内であれば、フレッシュコンクリート中の鋼繊維の分散性と硬化コンクリートの曲げ靭性がより優れる。鋼繊維の長さは、ノギス等により測定される。
鋼繊維の直径は、0.15~0.9mmが好ましく、0.38~0.75mmがより好ましい。鋼繊維の直径は、ノギス等により測定される。
The length of the steel fibers is preferably 12-32 mm, more preferably 24-32 mm. If the length of the steel fibers is within the above range, the dispersibility of the steel fibers in the fresh concrete and the bending toughness of the hardened concrete are more excellent. The length of the steel fiber is measured with a vernier caliper or the like.
The diameter of the steel fibers is preferably 0.15-0.9 mm, more preferably 0.38-0.75 mm. The diameter of the steel fiber is measured with a vernier caliper or the like.

本コンクリートにおいて、鋼繊維の混入率は、0.5容積%超2容積%以下が好ましく、0.7~1.2容積%がより好ましい。鋼繊維の混入率が0.5容積%超であれば、本コンクリートの靭性及びひび割れ抵抗性が優れる。鋼繊維の混入率が2容積%以下であれば、充分な材料分離抵抗性を確保できる。 In the present concrete, the mixing ratio of steel fibers is preferably more than 0.5% by volume and 2% by volume or less, more preferably 0.7 to 1.2% by volume. When the content of steel fibers exceeds 0.5% by volume, the concrete has excellent toughness and crack resistance. If the steel fiber content is 2% by volume or less, sufficient material separation resistance can be ensured.

他の成分としては、例えば、セメント以外の結合材(シリカフューム、スラグ、フライアッシュ等)、有機繊維(ポリプロピレン繊維、ポリエチレン繊維等のポリオレフィン系繊維、ポリビニルアルコール系繊維、ポリアセタール系繊維等)等が挙げられる。
有機繊維は一般的に、水結合材比の低いコンクリートに耐爆裂性を付与するために用いられる。本コンクリートは水結合材比が30質量%以上と高いため、典型的には、有機繊維を含まない。
Examples of other components include binders other than cement (silica fume, slag, fly ash, etc.), organic fibers (polyolefin fibers such as polypropylene fibers and polyethylene fibers, polyvinyl alcohol fibers, polyacetal fibers, etc.). be done.
Organic fibers are commonly used to impart blast resistance to concrete having a low water binder ratio. Since the concrete has a high water-binder ratio of 30% by mass or more, it typically does not contain organic fibers.

本コンクリートは、所定の水結合材比、鋼繊維の混入率、単位粗骨材かさ容積等を満たすように、セメントと水と粗骨材と細骨材と化学混和剤と鋼繊維と、必要に応じて他の成分と、を配合することにより調合できる。 This concrete must be mixed with cement, water, coarse aggregate, fine aggregate, chemical admixture, and steel fiber to satisfy the prescribed water-binder ratio, steel fiber mixing ratio, unit coarse aggregate bulk volume, etc. It can be prepared by blending other ingredients according to.

本コンクリートの20±5℃における塑性粘度は、60~85Pa・sが好ましく、65~75Pa・sがより好ましい。塑性粘度が60Pa・s以上であれば、材料分離抵抗性がより優れる。塑性粘度が85Pa・s以下であれば、施工性がより優れる。
塑性粘度は、後述する実施例に記載の測定方法により測定される。
塑性粘度は、増粘剤の配合量により調整できる。
The plastic viscosity of the present concrete at 20±5° C. is preferably 60 to 85 Pa·s, more preferably 65 to 75 Pa·s. If the plastic viscosity is 60 Pa·s or more, the material separation resistance is more excellent. If the plastic viscosity is 85 Pa·s or less, workability is more excellent.
The plastic viscosity is measured by the measuring method described in Examples below.
The plastic viscosity can be adjusted by adjusting the blending amount of the thickener.

本コンクリートは、下記式(2)により算出される塑性粘度の増加率が、10~20%であることが好ましく、13~17%であることがより好ましい。塑性粘度の増加率10%以上であれば、材料分離抵抗性がより優れる。塑性粘度の増加率が20%以下であれば、施工性がより優れる。
塑性粘度の増加率(%)=(P1-P2)/P2×100 (2)
ここで、P1は、本コンクリートの20±5℃における塑性粘度(Pa・s)を示し、
P2は、本コンクリートの高性能(AE)減水剤及び増粘剤を高性能(AE)減水剤に置換した比較品の20±5℃における塑性粘度(Pa・s)を示す。
塑性粘度の増加率は、増粘剤の配合量により調整できる。
The present concrete preferably has an increase rate of plastic viscosity calculated by the following formula (2) of 10 to 20%, more preferably 13 to 17%. If the plastic viscosity increase rate is 10% or more, the material separation resistance is more excellent. If the rate of increase in plastic viscosity is 20% or less, workability is more excellent.
Increase rate of plastic viscosity (%) = (P1-P2) / P2 × 100 (2)
Here, P1 indicates the plastic viscosity (Pa s) of this concrete at 20 ± 5 ° C,
P2 indicates the plastic viscosity (Pa·s) at 20±5° C. of a comparative product obtained by replacing the high efficiency (AE) water reducing agent and thickener of the present concrete with the high efficiency (AE) water reducing agent.
The rate of increase in plastic viscosity can be adjusted by adjusting the blending amount of the thickener.

以上説明した本コンクリートにあっては、化学混和剤として高性能(AE)減水剤と増粘剤とを含み、単位粗骨材かさ容積が0.3~0.4m/mであるため、水結合材比が30~60質量%と高く、鋼繊維の混入率が0.5容積%超2容積%以下と高いながらも、充分な材料分離抵抗性が確保され、施工性に優れる。また、水結合材比が30~60質量%であるため、設計基準強度36~60N/mmを達成できる。さらに、鋼繊維の混入率が0.5容積%超2容積%以下と高いため、靭性及びひび割れ抵抗性に優れる。 Since the present concrete described above contains an advanced (AE) water reducing agent and a thickening agent as chemical admixtures, and has a unit coarse aggregate bulk volume of 0.3 to 0.4 m 3 /m 3 , The water binder ratio is as high as 30 to 60% by mass, and the steel fiber mixing ratio is as high as more than 0.5% by volume and 2% by volume or less, while ensuring sufficient material separation resistance and excellent workability. Moreover, since the water-binder ratio is 30 to 60% by mass, a design standard strength of 36 to 60 N/mm 2 can be achieved. Furthermore, since the content of steel fibers is as high as more than 0.5% by volume and not more than 2% by volume, the toughness and crack resistance are excellent.

(鋼繊維入り高強度コンクリートの調合方法)
本発明の鋼繊維入り高強度コンクリートの調合方法(以下、「本調合方法」ともいう。)は、セメントと水と粗骨材と細骨材と化学混和剤と鋼繊維とを配合し、水結合材比が30~60質量%、前記鋼繊維の混入率が0.5容積%超2容積%以下である鋼繊維入り高強度コンクリートを調合する方法である。
セメント、粗骨材、細骨材、化学混和剤、鋼繊維とともに他の成分を配合してもよい。
(Method for mixing high-strength concrete containing steel fibers)
The method of mixing high-strength concrete containing steel fibers of the present invention (hereinafter also referred to as "the present mixing method") comprises mixing cement, water, coarse aggregate, fine aggregate, a chemical admixture, and steel fibers, A method for mixing steel fiber-containing high-strength concrete having a binder ratio of 30 to 60% by mass and a steel fiber content of more than 0.5% by volume and not more than 2% by volume.
Other ingredients may be blended with cement, coarse aggregate, fine aggregate, chemical admixtures, and steel fibers.

本調合方法では、下記式(1)により鋼繊維入り高強度コンクリートの単位粗骨材かさ容積の目標値V’bGを算出し、この目標値V’bGとなるように粗骨材の配合量を設定する。
V’bG=VbG-(K・2r/3r-1)・V/G (1)
ここで、V’bGは、前記鋼繊維入り高強度コンクリートの単位粗骨材かさ容積の目標値(m/m)を示し、
bGは、ベースとする高強度コンクリートの単位粗骨材かさ容積(m/m)の標準値の範囲であって0.53~0.65(m/m)の数を示し、
は、影響係数であって1.0~1.35の数を示し、
は、前記粗骨材を球形と仮定し、前記粗骨材の粒度分布から得られる総粗骨材表面積から算出した前記粗骨材の半径(mm)を示し、
は、前記鋼繊維を円柱形と仮定して算出した前記鋼繊維の半径(mm)を示し、
は、前記鋼繊維の混入率(容積%)を示し、
は、前記粗骨材の実積率(容積%)を示す。
In this mixing method, the target value V'bG of the unit coarse aggregate bulk volume of steel fiber-containing high-strength concrete is calculated by the following formula (1), and the blending amount of coarse aggregate is adjusted so as to achieve this target value V'bG . set.
V′ bG =V bG −(K S ·2r G /3r F −1)·V F /G S (1)
Here, V′ bG represents the target value (m 3 /m 3 ) of the unit coarse aggregate bulk volume of the steel fiber-containing high-strength concrete,
V bG is a standard value range of unit coarse aggregate bulk volume (m 3 /m 3 ) of base high-strength concrete and indicates a number of 0.53 to 0.65 (m 3 /m 3 ). ,
K S is an influence coefficient and indicates a number from 1.0 to 1.35,
r G indicates the radius (mm) of the coarse aggregate calculated from the total coarse aggregate surface area obtained from the particle size distribution of the coarse aggregate, assuming that the coarse aggregate is spherical,
r F represents the radius (mm) of the steel fiber calculated assuming that the steel fiber has a cylindrical shape,
VF indicates the mixing ratio (% by volume) of the steel fibers,
GS indicates the actual volume ratio (volume %) of the coarse aggregate.

bGの範囲は、日本建築学会:コンクリートの調合設計指針・同解説、日本建築学会:高強度コンクリート施工指針・同解説に基づき設定した。
セメント、粗骨材、細骨材、化学混和剤、鋼繊維、他の成分はそれぞれ前記したとおりである。
水結合材比、鋼繊維の混入率の好ましい範囲は前記と同様である。
細骨材、化学混和剤等の好ましい配合量は前記と同様である。
粗骨材の実積率はJIS A 1104により測定される。
本調合方法においては、得られる鋼繊維入り高強度コンクリートの20±5℃における塑性粘度又は塑性粘度の増加率が前記した好ましい範囲内となるように増粘剤の配合量を設定することが好ましい。
The range of VbG was set based on the Architectural Institute of Japan: Concrete Mixing Design Guidelines and Commentaries, and the Architectural Institute of Japan: High-strength Concrete Construction Guidelines and Commentaries.
Cement, coarse aggregate, fine aggregate, chemical admixtures, steel fibers and other components are as described above.
The preferable range of water binder ratio and steel fiber mixing ratio is the same as above.
The preferred blending amounts of fine aggregates, chemical admixtures, etc. are the same as described above.
The volume fraction of coarse aggregate is measured according to JIS A 1104.
In this mixing method, it is preferable to set the blending amount of the thickener so that the plastic viscosity or the increase rate of the plastic viscosity at 20±5° C. of the obtained high-strength concrete containing steel fibers is within the preferred range described above. .

以上説明した本調合方法にあっては、化学混和剤として少なくとも高性能(AE)減水剤と増粘剤とを用い、前記式(1)により算出した目標値V’bGとなるように粗骨材の配合量を設定するため、水結合材比が30~60質量%と高く、鋼繊維の混入率が0.5容積%超2容積%以下と高いながらも、充分な材料分離抵抗性が確保され、施工性に優れた鋼繊維入り高強度コンクリートを調合できる。また、得られる鋼繊維入り高強度コンクリートは、水結合材比が30~60質量%であるため、設計基準強度36~60N/mmを達成できる。さらに、鋼繊維の混入率が0.5容積%超2容積%以下と高いため、靭性及びひび割れ抵抗性に優れる。 In the present preparation method described above, at least an advanced (AE) water reducing agent and a thickening agent are used as chemical admixtures, and the coarse bone is adjusted to the target value V' bG calculated by the above formula (1). In order to set the blending amount of the material, the water binder ratio is as high as 30 to 60% by mass, and the steel fiber mixing ratio is as high as more than 0.5% by volume and 2% by volume or less, but sufficient material separation resistance is achieved. It is possible to prepare high-strength concrete containing steel fibers with excellent workability. In addition, the steel fiber-containing high-strength concrete obtained has a water-binder ratio of 30 to 60% by mass, so that a design standard strength of 36 to 60 N/mm 2 can be achieved. Furthermore, since the content of steel fibers is as high as more than 0.5% by volume and not more than 2% by volume, the toughness and crack resistance are excellent.

以下、実施例によって本発明を詳細に説明するが、本発明はこれらに限定されない。
使用材料を表1に示す。
EXAMPLES The present invention will be described in detail below with reference to Examples, but the present invention is not limited to these.
Table 1 shows the materials used.

Figure 0007228473000001
Figure 0007228473000001

(試験例1)
本試験例では、鋼繊維を1.0容量%の混入率で混入した鋼繊維入り高強度コンクリート(設計基準強度Fc:36~60N/mm)について、調合を検討した。
(Test example 1)
In this test example, the formulation of steel fiber-containing high-strength concrete (design standard strength Fc: 36 to 60 N/mm 2 ) in which steel fibers are mixed at a mixing ratio of 1.0% by volume was investigated.

<鋼繊維入り高強度コンクリートの調合>
表2に鋼繊維入り高強度コンクリートの調合を示す。調合名は、「W/C-単位粗骨材かさ容積(m/m)-鋼繊維の混入量(kg/m)-化学混和材の種類」で構成されている。
W/Cは、セメント(C)に対する水(W)の質量割合であり、水結合材比に相当する。W/Cは、設計基準強度36~60N/mmを想定して設定した。鋼繊維の混入量80kg/mは混入率1.0容量%に相当する。「SP量」は、セメント(C)100質量%に対する割合(質量%)である。
表2中、「スランプ又はスランプフロー」は、目標スランプ又は目標スランプフローを示し、「空気量」は目標空気量を示す。「s/a」は細骨材率を示す。
<Preparation of high-strength concrete containing steel fibers>
Table 2 shows the formulation of the steel fiber-filled high-strength concrete. The compound name consists of "W/C--unit coarse aggregate bulk volume (m 3 /m 3 )--mixed amount of steel fiber (kg/m 3 )--type of chemical admixture".
W/C is the mass ratio of water (W) to cement (C) and corresponds to the water binder ratio. W/C was set assuming a design standard strength of 36 to 60 N/mm 2 . A mixed amount of steel fibers of 80 kg/m 3 corresponds to a mixed rate of 1.0% by volume. "SP amount" is a ratio (% by mass) to 100% by mass of cement (C).
In Table 2, "slump or slump flow" indicates the target slump or target slump flow, and "air amount" indicates the target air amount. "s/a" indicates the fine aggregate ratio.

Figure 0007228473000002
Figure 0007228473000002

調合に際しては、適切な単位粗骨材かさ容積の目安として、下記式(1)により単位粗骨材かさ容積の目標値V’bGを算出し、この目標値V’bGとなるように粗骨材の配合量を設定した。
V’bG=VbG-(K・2r/3r-1)・V/G (1)
bG、K、r、r、V、Gそれぞれの定義は前記したとおりである。
本調合において採用したVbG、K、r、r、V、Gそれぞれの値と、算出されたV’bGの値を表3に示す。
At the time of preparation, as a guideline for an appropriate unit coarse aggregate bulk volume, the target value V'bG of the unit coarse aggregate bulk volume is calculated by the following formula (1), and the coarse bone is adjusted so that this target value V'bG is obtained. The amount of material to be added was set.
V′ bG =V bG −(K S ·2r G /3r F −1)·V F /G S (1)
The definitions of V bG , K S , r G , r F , V F and G S are as described above.
Table 3 shows the values of V bG , K S , r G , r F , V F and G S adopted in this formulation and the calculated value of V′ bG .

Figure 0007228473000003
Figure 0007228473000003

<練混ぜ>
練混ぜには、公称容量0.055mの2軸強制練りミキサ(大平洋機工製、型式SD-55型)を用いた。セメント(C)及び細骨材(S)を投入し、空練りした後、水(W)及び化学混和剤(SP)を投入及び混練し、モルタルとした。次いで、粗骨材(G)を投入及び混練し、高強度コンクリートとした。さらに、鋼繊維(ST)を投入し、120秒間混練して鋼繊維入り高強度コンクリートとした。
<Kneading>
For kneading, a twin-screw forced kneading mixer (manufactured by Pacific Machinery Co., Ltd., Model SD-55) with a nominal capacity of 0.055 m 3 was used. Cement (C) and fine aggregate (S) were added and dry kneaded, then water (W) and chemical admixture (SP) were added and kneaded to obtain mortar. Next, coarse aggregate (G) was added and kneaded to obtain high-strength concrete. Further, steel fibers (ST) were added and kneaded for 120 seconds to obtain steel fiber-containing high-strength concrete.

<評価>
各調合の鋼繊維入り高強度コンクリートについて、フレッシュコンクリート特性(スランプ、スランプフロー、フロー時間(50cm及び停止)、空気量、コンクリート温度、塑性粘度(20±5℃)、材料分離抵抗性)及び硬化コンクリート特性(圧縮強度(材齢28日)、弾性係数(材齢28日)、曲げ靭性係数(材齢28日)、封かん養生での自己収縮(材齢91日))を評価した。
スランプはJIS A 1101、スランプフローとフロー時間はJIS A 1150、空気量はJIS A 1128、コンクリート温度はJIS A 1156、材料分離抵抗性はJIS A 1160、圧縮強度はJIS A 1108、弾性係数はJIS A 1149、曲げ靭性係数はJSCE-G552-2013に従って評価した。
塑性粘度は、回転翼型粘度計を用いて、鋼繊維を入れる前のベースとなる高強度コンクリートについて、回転翼型粘度計の回転翼の回転数とトルクの関係を測定し、それらの関係を示すグラフの傾きの値で評価した(参考文献:和美広喜・笠井浩・柳田克巳・亀田泰弘、「回転翼型粘度計による高強度コンクリートの流動特性値測定方法に関する実験的研究」、コンクリート工学論文集、第1巻、第1号、pp.133-141、1990.1)。
自己収縮は、日本コンクリート工学協会:超流動コンクリート研究委員会報告書(II)、pp.209-210、1994.5の[付録1](仮称)高流動コンクリートの自己収縮試験方法に準拠し、東京測器研究所製の埋込み型ひずみ計KM-100BTを10×10×40cm供試体の中心部に設置して、自己収縮ひずみを測定した。
評価結果を表4に示す。また、図1~11に、46-0.30-80-SP2以外の各調合の材料分離抵抗性の評価結果(スランプフロー試験後のフレッシュコンクリートの状態)を示す。
<Evaluation>
Fresh concrete properties (slump, slump flow, flow time (50 cm and stop), air content, concrete temperature, plastic viscosity (20±5° C.), material separation resistance) and hardening for each formulation of high-strength concrete with steel fibers. Concrete properties (compressive strength (age: 28 days), elastic modulus (age: 28 days), flexural toughness coefficient (age: 28 days), autogenous shrinkage in sealed curing (age: 91 days)) were evaluated.
JIS A 1101 for slump, JIS A 1150 for slump flow and flow time, JIS A 1128 for air content, JIS A 1156 for concrete temperature, JIS A 1160 for material separation resistance, JIS A 1160 for compressive strength, JIS A 1108 for elastic modulus A 1149, flexural toughness modulus was evaluated according to JSCE-G552-2013.
The plastic viscosity is determined by measuring the relationship between the rotational speed and torque of the rotor blades of the rotary blade viscometer, and measuring the relationship between the rotation speed and torque of the high-strength concrete that serves as the base before the steel fibers are added. (Reference: Hiroki Kazumi, Hiroshi Kasai, Katsumi Yanagida, Yasuhiro Kameda, "Experimental study on measuring method of flow characteristics of high-strength concrete using rotary vane viscometer", Concrete Engineering Paper Vol. 1, No. 1, pp. 133-141, 1990.1).
Autogenous shrinkage is described in Japan Concrete Institute: Superfluid Concrete Research Committee Report (II), pp. 209-210, 1994.5 [Appendix 1] (tentative name) In accordance with the self-shrinkage test method for high-flow concrete, the embedded strain gauge KM-100BT manufactured by Tokyo Sokki Kenkyusho is placed in a 10 x 10 x 40 cm test piece. The autogenous contraction strain was measured by placing it in the central part.
Table 4 shows the evaluation results. 1 to 11 show the evaluation results of material separation resistance (state of fresh concrete after slump flow test) of each formulation other than 46-0.30-80-SP2.

Figure 0007228473000004
Figure 0007228473000004

表4に示すとおり、単位粗骨材かさ容積を低減し、増粘剤含有高性能(AE)減水剤を配合した調合(46-0.40-80-SP4、46-0.40-80-SP2、46-0.30-80-SP2、37-0.30-80-SP4、28-0.30-80-SP4)では、材料分離抵抗性を確保した施工性が良い鋼繊維入り高強度コンクリートを実現できた。 As shown in Table 4, formulations (46-0.40-80-SP4, 46-0.40-80- SP2, 46-0.30-80-SP2, 37-0.30-80-SP4, 28-0.30-80-SP4) are high-strength steel fiber containing steel fibers that ensure material separation resistance and have good workability. Concrete was achieved.

<考察>
「単位粗骨材かさ容積の影響」
コンクリートの粘性が小さく、最も材料分離しやすいと考えられる水セメント比46.0質量%の調合で検討を行った。
46-0.60-0-SP1は鋼繊維無混入で、水セメント比46.0質量%、単位粗骨材かさ容積0.60m/mの調合である。46-0.60-80-SP1は、46-0.60-0-SP1に鋼繊維を1容積%混入した調合である。46-0.60-80-SP1では、図6に示すように、スランプが崩れ、粗骨材が分離した。
46-0.60-80-SP4および46-0.60-0-SP4’は、46-0.60-80-SP1の高性能減水剤を増粘剤含有高性能減水剤に変更した調合である。図4に示すように、化学混和剤使用量が少ない場合には、材料分離はしないものの、スランプが小さく施工性が悪かった。一方、図5に示すように、施工性を改善するために、化学混和剤使用量を無理に増やした場合には、スランプが崩れ、粗骨材が分離した。
以上のことから、単位粗骨材かさ容積0.60m/mでは、材料分離抵抗性を確保した施工性が良い鋼繊維入り高強度コンクリートを実現できなかった。
<Discussion>
"Influence of Unit Coarse Aggregate Bulk Volume"
A formulation with a water-cement ratio of 46.0% by mass, which is considered to be the easiest to separate materials with a low concrete viscosity, was examined.
46-0.60-0-SP1 contains no steel fibers, has a water-cement ratio of 46.0% by mass, and a unit coarse aggregate bulk volume of 0.60m 3 /m 3 . 46-0.60-80-SP1 is a formulation of 46-0.60-0-SP1 with 1% by volume steel fiber. In 46-0.60-80-SP1, as shown in FIG. 6, the slump collapsed and the coarse aggregate separated.
46-0.60-80-SP4 and 46-0.60-0-SP4' are formulations in which the superplasticizer of 46-0.60-80-SP1 is changed to a thickener-containing superplasticizer. be. As shown in FIG. 4, when the amount of the chemical admixture used was small, the materials were not separated, but the slump was small and the workability was poor. On the other hand, as shown in FIG. 5, when the amount of the chemical admixture used was forcibly increased in order to improve workability, the slump collapsed and the coarse aggregate separated.
From the above, it was not possible to realize a high-strength concrete containing steel fibers with good workability while securing material separation resistance with a unit coarse aggregate bulk volume of 0.60 m 3 /m 3 .

「高性能AE減水剤の影響」
46-0.40-80-SP3は、鋼繊維を1容積%混入し、単位粗骨材かさ容積を0.40m/mとし、化学混和剤として高性能AE減水剤を使用した調合である。図7に示すように、スランプ周辺部にモルタルが滲み出し、モルタルが分離した。
以上のことから、単位粗骨材かさ容積を0.40m/mとしても、一般的な高性能AE減水剤では、材料分離抵抗性を確保した施工性が良い鋼繊維入り高強度コンクリートを実現できなかった。
"Influence of high performance AE water reducing agent"
46-0.40-80-SP3 is a blend that contains 1% by volume of steel fiber, has a unit coarse aggregate bulk volume of 0.40 m 3 /m 3 , and uses a high performance AE water reducing agent as a chemical admixture. be. As shown in FIG. 7, the mortar seeped out around the slump and separated.
From the above, even if the unit coarse aggregate bulk volume is 0.40 m 3 /m 3 , a general high-performance AE water reducing agent can produce high-strength concrete containing steel fibers that ensures material separation resistance and has good workability. could not be realized.

「増粘剤含有高性能(AE)減水剤の種類の影響」
46-0.40-80-SP4、46-0.40-80-SP2は鋼繊維を1容積%混入し、単位粗骨材かさ容積を0.40m/mとし、増粘剤含有高性能(AE)減水剤の種類のみが異なる調合である。図8及び図9に示すように、これらの調合ではいずれも、材料分離抵抗性を確保した施工性が良いスランプが得られている。
以上のことから、増粘剤含有高性能(AE)減水剤の銘柄が変わっても、材料分離抵抗性を確保した施工性が良い鋼繊維入り高強度コンクリートを実現できた。
"Influence of Types of Thickener-Containing Advanced (AE) Water-Reducing Additives"
46-0.40-80-SP4 and 46-0.40-80-SP2 contain 1% by volume of steel fiber, the unit coarse aggregate bulk volume is 0.40m 3 /m 3 , and the thickener content is high. Performance (AE) formulations differing only in type of water reducer. As shown in FIGS. 8 and 9, all of these formulations provide a slump with good workability that ensures material separation resistance.
From the above, even if the brand of the thickener-containing high performance (AE) water reducing agent is changed, high-strength concrete containing steel fibers that ensures material separation resistance and has good workability could be realized.

<まとめ>
本検討で得られた知見を以下に示す。
・前記式(1)を用いて粗骨材かさ容積を低減し、増粘剤含有高性能(AE)減水剤を使用することで、材料分離抵抗性を確保した施工性が良い鋼繊維入り高強度コンクリートを実現できた。また、増粘剤含有高性能(AE)減水剤の種類は影響しなかった。
・単位粗骨材かさ容積を低減しても、増粘剤含有高性能(AE)減水剤を使用しなければ、材料分離を生じた。
・増粘剤含有高性能減水剤を使用しても、粗骨材かさ容積を低減しなければ、材料分離を生じた。
<Summary>
The findings obtained in this study are shown below.
・By reducing the bulk volume of coarse aggregate using the above formula (1) and using a thickener-containing high performance (AE) water reducing agent, the material separation resistance is secured and workability is good. We were able to achieve high-strength concrete. Also, the type of thickener-containing advanced (AE) water reducer had no effect.
• Reducing the unit coarse aggregate bulk volume resulted in material segregation unless a thickener-containing advanced (AE) water reducer was used.
・Even if a thickener-containing superplasticizer is used, material separation occurs unless the coarse aggregate bulk volume is reduced.

Claims (7)

セメントと水と粗骨材と細骨材と化学混和剤と鋼繊維とを含み、水結合材比が30~60質量%、前記鋼繊維の混入率が0.50容積%超2容積%以下である鋼繊維入り高強度コンクリートであって、
前記化学混和剤が、高性能減水剤及び高性能AE減水剤のいずれか一方又は両方と、増粘剤とを含み、前記高性能減水剤、前記高性能AE減水剤及び前記増粘剤の合計の含有量が、前記セメントの質量に対して0.85~1.40質量%であり、
単位粗骨材量を粗骨材の表乾密度で割り、さらに実積率で割った値である単位粗骨材かさ容積が0.3~0.5m/mである、鋼繊維入り高強度コンクリート。
Containing cement, water, coarse aggregate, fine aggregate, chemical admixture, and steel fiber, the water binder ratio is 30 to 60% by mass, and the mixing ratio of the steel fiber is more than 0.50% by volume and 2% by volume or less. A steel fiber-containing high-strength concrete that is
The chemical admixture contains either one or both of a high performance water reducing agent and a high performance AE water reducing agent, and a thickening agent, and the sum of the high performance water reducing agent, the high performance AE water reducing agent and the thickening agent is 0.85 to 1.40% by mass with respect to the mass of the cement,
Steel fiber containing unit coarse aggregate bulk volume, which is the value obtained by dividing the unit coarse aggregate amount by the surface dry density of the coarse aggregate and further dividing by the solid volume ratio , is 0.3 to 0.5 m 3 /m 3 High-strength concrete.
フライアッシュを含む場合を除く請求項1に記載の鋼繊維入り高強度コンクリート。A high-strength concrete containing steel fibers according to claim 1, except that it contains fly ash. 前記鋼繊維の直径が0.15~0.9mm、長さが12~32mmである請求項1又は2に記載の鋼繊維入り高強度コンクリート。 The steel fiber-containing high-strength concrete according to claim 1 or 2, wherein the steel fibers have a diameter of 0.15 to 0.9 mm and a length of 12 to 32 mm. 20±5℃における塑性粘度が60~85Pa・sである請求項1~3のいずれか1項に記載の鋼繊維入り高強度コンクリート。 The steel fiber-containing high-strength concrete according to any one of claims 1 to 3, which has a plastic viscosity of 60 to 85 Pa·s at 20 ± 5°C. セメントと水と粗骨材と細骨材と化学混和剤と鋼繊維とを配合し、水結合材比が30~60質量%、前記鋼繊維の混入率が0.5容積%超2容積%以下である鋼繊維入り高強度コンクリートを調合する方法であって、
前記化学混和剤として少なくとも、高性能減水剤及び高性能AE減水剤のいずれか一方又は両方と、増粘剤とを用い、
下記式(1)により前記鋼繊維入り高強度コンクリートの単位粗骨材かさ容積の目標値V’bGを算出し、前記目標値V’bGとなるように前記粗骨材の配合量を設定する、鋼繊維入り高強度コンクリートの調合方法。
V’bG=VbG-(K・2r/3r-1)・V/G (1)
ここで、V’bGは、前記鋼繊維入り高強度コンクリートの単位粗骨材かさ容積の目標値(m/m)を示し、
bGは、ベースとする高強度コンクリートの単位粗骨材かさ容積(m/m)の標準値の範囲であって0.53~0.65(m/m)の数を示し、
は、影響係数であって1.0~1.35の数を示し、
は、前記粗骨材を球形と仮定し、前記粗骨材の粒度分布から得られる総粗骨材表面積から算出した前記粗骨材の半径(mm)を示し、
は、前記鋼繊維を円柱形と仮定して算出した前記鋼繊維の半径(mm)を示し、
は、前記鋼繊維の混入率(容積%)を示し、
は、前記粗骨材の実積率(容積%)を示す。
Cement, water, coarse aggregate, fine aggregate, chemical admixture, and steel fiber are blended, the water binder ratio is 30 to 60% by mass, and the mixing ratio of the steel fiber is more than 0.5% by volume and 2% by volume. 1. A method of formulating steel fiber-filled high-strength concrete comprising:
Using at least one or both of a high performance water reducing agent and a high performance AE water reducing agent as the chemical admixture and a thickener,
The target value V'bG of the unit coarse aggregate bulk volume of the steel fiber-containing high-strength concrete is calculated by the following formula (1), and the blending amount of the coarse aggregate is set so as to achieve the target value V'bG . , a method for preparing high-strength concrete with steel fibers.
V′ bG =V bG −(K S ·2r G /3r F −1)·V F /G S (1)
Here, V′ bG represents the target value (m 3 /m 3 ) of the unit coarse aggregate bulk volume of the steel fiber-containing high-strength concrete,
V bG is a standard value range of unit coarse aggregate bulk volume (m 3 /m 3 ) of base high-strength concrete and indicates a number of 0.53 to 0.65 (m 3 /m 3 ). ,
K S is an influence coefficient and indicates a number from 1.0 to 1.35,
r G indicates the radius (mm) of the coarse aggregate calculated from the total coarse aggregate surface area obtained from the particle size distribution of the coarse aggregate, assuming that the coarse aggregate is spherical,
r F represents the radius (mm) of the steel fiber calculated assuming that the steel fiber has a cylindrical shape,
VF indicates the mixing ratio (% by volume) of the steel fibers,
GS indicates the actual volume ratio (volume %) of the coarse aggregate.
前記鋼繊維の直径が0.15~0.9mm、長さが12~32mmである請求項に記載の鋼繊維入り高強度コンクリートの調合方法。 The method for mixing steel fiber-containing high-strength concrete according to claim 5 , wherein the steel fiber has a diameter of 0.15-0.9 mm and a length of 12-32 mm. 前記鋼繊維入り高強度コンクリートの20±5℃における塑性粘度が60~85Pa・sとなるように、前記増粘剤の配合量を設定する請求項又はに記載の鋼繊維入り高強度コンクリートの調合方法。 7. The steel fiber-containing high-strength concrete according to claim 5 or 6 , wherein the blending amount of the thickener is set so that the plastic viscosity of the steel fiber-containing high-strength concrete at 20±5° C. is 60 to 85 Pa s. formulation method.
JP2019109534A 2019-06-12 2019-06-12 High-strength concrete containing steel fibers and its preparation method Active JP7228473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019109534A JP7228473B2 (en) 2019-06-12 2019-06-12 High-strength concrete containing steel fibers and its preparation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019109534A JP7228473B2 (en) 2019-06-12 2019-06-12 High-strength concrete containing steel fibers and its preparation method

Publications (2)

Publication Number Publication Date
JP2020200228A JP2020200228A (en) 2020-12-17
JP7228473B2 true JP7228473B2 (en) 2023-02-24

Family

ID=73742485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019109534A Active JP7228473B2 (en) 2019-06-12 2019-06-12 High-strength concrete containing steel fibers and its preparation method

Country Status (1)

Country Link
JP (1) JP7228473B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113063929B (en) * 2021-03-19 2024-06-11 上海市市政规划设计研究院有限公司 Method for testing uniformity of steel fibers in ultra-high performance concrete
CN113636817A (en) * 2021-08-30 2021-11-12 西京学院 Concrete containing recycled PVC aggregate and preparation method thereof
CN114953105B (en) * 2022-06-27 2023-03-10 中铁科学研究院有限公司 Non-rib high-doping-amount steel fiber concrete segment and manufacturing method thereof
CN116525040B (en) * 2023-04-26 2024-03-22 湖南铁院土木工程检测有限公司 Construction method and application of steel fiber-binary aggregate system filling density prediction model

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192253A (en) 2000-01-07 2001-07-17 Kajima Corp Fiber-incorporating highly flowing concrete
JP2004331436A (en) 2003-05-06 2004-11-25 Kajima Corp Fiber-mixed high-flow concrete
JP2005187261A (en) 2003-12-25 2005-07-14 Kao Corp Hydraulic composition
JP2010111538A (en) 2008-11-06 2010-05-20 Kao Corp Hydraulic composition
JP2010139358A (en) 2008-12-11 2010-06-24 Taiheiyo Cement Corp Suitability determining method of aggregate for ultra-high strength concrete
JP2012091453A (en) 2010-10-28 2012-05-17 Taisei Corp Mold form for manufacturing porous concrete, method for manufacturing porous concrete, and method for manufacturing concrete member including porous region
JP6432811B1 (en) 2018-06-13 2018-12-05 清水建設株式会社 Method of blending ultra high strength concrete
JP2019031438A (en) 2014-04-30 2019-02-28 アクティブ ミネラルス インターナショナル, エルエルシーActive Minerals International, Llc Concrete materials with modified rheology, methods of making the same, and uses thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3608128B2 (en) * 1996-02-19 2005-01-05 清水建設株式会社 Manufacturing method of steel fiber reinforced high fluidity high strength concrete
JP3750039B2 (en) * 1997-07-25 2006-03-01 清水建設株式会社 Mixing design method for high fluidity concrete
JP3601001B2 (en) * 1998-03-31 2004-12-15 清水建設株式会社 Mixing design method of high flow steel fiber reinforced concrete

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192253A (en) 2000-01-07 2001-07-17 Kajima Corp Fiber-incorporating highly flowing concrete
JP2004331436A (en) 2003-05-06 2004-11-25 Kajima Corp Fiber-mixed high-flow concrete
JP2005187261A (en) 2003-12-25 2005-07-14 Kao Corp Hydraulic composition
JP2010111538A (en) 2008-11-06 2010-05-20 Kao Corp Hydraulic composition
JP2010139358A (en) 2008-12-11 2010-06-24 Taiheiyo Cement Corp Suitability determining method of aggregate for ultra-high strength concrete
JP2012091453A (en) 2010-10-28 2012-05-17 Taisei Corp Mold form for manufacturing porous concrete, method for manufacturing porous concrete, and method for manufacturing concrete member including porous region
JP2019031438A (en) 2014-04-30 2019-02-28 アクティブ ミネラルス インターナショナル, エルエルシーActive Minerals International, Llc Concrete materials with modified rheology, methods of making the same, and uses thereof
JP6432811B1 (en) 2018-06-13 2018-12-05 清水建設株式会社 Method of blending ultra high strength concrete

Also Published As

Publication number Publication date
JP2020200228A (en) 2020-12-17

Similar Documents

Publication Publication Date Title
JP7228473B2 (en) High-strength concrete containing steel fibers and its preparation method
JP5939776B2 (en) Repair mortar composition
JP7199942B2 (en) Ultra-high-strength concrete and its mixing method
CN106316282A (en) Flowing-type ground adhesive
JP4039801B2 (en) Hydraulic composition
Chen A review on the effects of nanoparticles on properties of self-compacting concrete
JP4056696B2 (en) Cement slurry
JP2008162843A (en) High-strength admixture and concrete composition for centrifugal molding
JP6968637B2 (en) How to make concrete
JP2756303B2 (en) Concrete composition
JP2001322857A (en) Mortar composition for joining fresh concrete at construction joint
JP4556164B2 (en) High strength mortar composition
Mansor et al. Effect of silica fume on high performance concrete strength
JP2022114139A (en) Super high strength concrete, and preparation method therefor
JP6983522B2 (en) Cement composition
JP4165992B2 (en) Hydraulic composition
JP6728696B2 (en) Explosion-resistant concrete
JP2001226162A (en) Joint filler material for post-tension-prestressed concrete plate
JPH0524897A (en) Fiber-reinforced mortar
JP7403342B2 (en) Cement composition and its manufacturing method, and mortar
JP4526627B2 (en) Steel pipe filling concrete
JP6300734B2 (en) Method for producing high-strength cement admixture and concrete product
JP2005238605A (en) High toughness frc material manufacturing method
JP5107072B2 (en) Method for producing hardened cementitious body
JP6983523B2 (en) Cement composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230213

R150 Certificate of patent or registration of utility model

Ref document number: 7228473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150